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Abstract. Since the introduction of the Semantic Web vision in 2001 as an extension to the Web, the main research focus in
semantic reasoning was on the soundness and completeness of the reasoners. While these reasoners assume the veracity of the
input data, the reality is that the Web of data is inherently noisy. Recent research work on semantic reasoning with noise-tolerance
focuses on type inference and does not aim for full RDFS reasoning. This paper documents a novel approach that takes previous
research efforts in noise-tolerance in the Semantic Web to the next level of full RDFS reasoning by utilizing advances in deep
learning research. This is a stepping stone towards bridging the Neural-Symbolic gap for RDFS reasoning which is accomplished
through layering RDF graphs and encoding them in the form of 3D adjacency matrices where each layer layout forms a graph
word. Every input graph and its corresponding inference are then represented as sequences of graph words. The RDEFS inference
becomes equivalent to the translation of graph words that is achieved through neural network translation. The evaluation confirms
that deep learning can in fact be used to learn RDFS rules from both synthetic and real-world Semantic Web data while showing
noise-tolerance capabilities as opposed to rule-based reasoners.
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1. Introduction 1.1. A Realistic approach for an idealistic vision

It is foolish to expect that the Web or the Seman-
tic Web will ever be free of noise. Many research ef-
forts concentrate on noise detection and data cleans-
ing in the Web of data. Knowing that there will always
be other instances or types of noise that will be over-
looked, other research efforts focus on noise-tolerance
instead. Most of the current work in the latter category
targets adding some noise-tolerant reasoning capabili-
ties without aiming for full semantic reasoning.

This paper documents a novel approach that takes
previous research efforts in noise-tolerance to the next

The Web is inherently noisy and as such its exten-
sion is noisy as well. This noise is as a result of in-
evitable human error when creating the content, de-
signing the tools that facilitate the data exchange, con-
ceptualizing the ontologies that allow machines to un-
derstand the data content, mapping concepts from dif-
ferent ontologies, etc. For instance, the noise can be as
a consequence of building Linked Open Data (LOD)
from semi-structured or non-structured data. When
LOD is built from non-structured data such as text us-

ing Named Entity Linking (NEL) tools—whose accu-
racy is not perfect—they generate erroneous triples.
Thus, the integrity of the inference becomes question-
able.

level of full RDF Schema (RDFS) reasoning. The pro-
posed approach utilizes the recent advances in deep
learning- that showed robustness to noise in other ma-
chine learning applications such as computer vision
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and natural language understanding- for semantic rea-
soning.

1.2. Neural-Symbolic Gap

Humans are able to learn from very few examples
while providing explanations for their decision making
process. In contrast, deep learning techniques- even
though robust to noise and very effective in general-
izing across a number of fields including machine vi-
sion, natural language understanding, speech recogni-
tion etc. - require large amounts of data and are unable
to provide explanations for their decisions. Attaining
human-level robust reasoning requires combing sound
symbolic reasoning with robust connectionist learning
as outlined in [1]. “We argue that to face this chal-
lenge one first needs a framework in which inductive
learning and logical reasoning can be both expressed
and their different natures reconciled.” ([1]) However,
connectionist learning uses low-level representations-
such as embeddings- rather than “symbolic represen-
tations used in knowledge representation” ([2]). This
challenge constitutes what is referred to as the Neural-
Symbolic gap. The aim of this research is to provide a
stepping stone towards bridging the Neural-Symbolic
gap specifically in the Semantic Web field and RDFS
reasoning in particular.

1.3. Hypothesis and outline

The research hypothesis are:

1. RDFS rules are learnable by connectionist mod-
els
2. A deep reasoner for RDFS will be noise-tolerant

The first step towards bridging the Neural-Symbolic
gap for RDFS reasoning is to represent Resource De-
scription Framework (RDF) graphs in a format that
can be fed to neural networks. The most intuitive rep-
resentation to use is graph representation. However,
RDF graphs differ from simple graphs as defined in
the graph theory in a number of ways. We examine
in the literature different graph models for RDF from
which we conclude that the proposed models were nei-
ther designed for RDFS reasoning requirements nor
are they suitable for neural network input. Then, the
creation process is described for two noisy datasets—
a synthetic dataset and a real world dataset—that are
used as models to describe the design of the overall
approach. The creation of the graph words as well as
the description of the graph words translation are de-

scribed respectively in ?? and Section 6. The results of
the experiments are described in the Evaluation chap-
ter. Finally the learned lessons, main contributions and
future work are illustrated.

2. State of the Art
2.1. Handling Noise in Semantic Web Data

We classify the strategies of handling noise in Se-
mantic Web data into two categories:

Active noise handling consists of detecting noise and
cleansing the data before performing any tasks
that might be affected by the presence of noise

Adaptive noise handling the previous category pro-
vides solutions that are tailored to certain types
of noise as described in the following. Giving the
unrealistic expectation of cleansing every type of
noise in Semantic Web data, adaptive noise han-
dling approaches focus rather on building tech-
niques that are noise-tolerant. The research de-
scribed in this paper falls into this category as we
are building a noise-tolerant RDFS reasoner.

2.1.1. Active Noise Handling

Most of the work in this category focuses on de-
tecting and fixing noisy data in the LOD. LOD can
be created using structured, semi-structured or non
structured data. DBpedia [3], for example, is created
from semi-structured Wikipedia articles. Non struc-
tured texts can also feed NEL tools to create LOD.
These two methodologies are more likely to generate
noisy triples due to the non perfect accuracy of NEL
tools.

In [4], the authors describe two algorithms that they
designed to improve the quality of LOD. SDType algo-
rithm falls into the category of adaptive noise handling
and will be described in the corresponding section. SD-
Validate identifies wrong triples when there is a large
deviation between the resource types. The main idea
of this algorithm is to assign a relative predicate fre-
quency—describing the frequency of predicate/object
combinations—for every statement. Probability distri-
butions are then used to decide if a statement with low
relative predicate frequency should be considered erro-
neous. Both algorithms are validated on DBpedia and
Never-Ending Language Learning (NELL) [5] knowl-
edge bases.

In [6], the authors focus on detecting noisy type
assertions. They built a few synthetic noisy datasets
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based on Lehigh University Benchmark (LUBM).
Then a multi-class classifier is trained to learn disjoint
classes.

In [7, 8], the focus is on incorrect numerical data in
LOD datasets. [7] uses a two phase detection approach.
In the first phase, outliers of numerical values are de-
tected for every property and in the second phase, the
owl:sameAs property is used to confirm or reject the
outliers. [8] uses a few unsupervised learning tech-
niques including Kernel Density Estimation (KDE) [9]
combined with semantic grouping to identify the out-
liers.

2.1.2. Adaptive Noise Handling

In SDType algorithm [4, 10], the RDF:type infer-
ence uses information from the ABox rather than on-
tological descriptions from the TBox. For instance, in-
stead of using the RDFS:domain and RDFS:range of
the properties to infer the the resources types, which
will propagate noise, a weighted voting heuristic is
used instead to determine the types of the resources.
The weights are generated from the statistical distribu-
tion between predicates and types. For example, given
that the property dbo:location is mostly connected to
objects of type dbo:Place, then this property will have
high weight to infer the type dbo:Place.

To the best of our knowledge, all the previous work
in the literature about reasoning with noisy Seman-
tic Web data focuses on type inference. This research
is the first to aim full RDFS reasoning with noise-
tolerance capability.

2.2. Deep Learning and Semantic Web

The literature that tries to combine deep learning
and Semantic Web can be classified into two cate-
gories:

Deep learning for Semantic Web In this category,
deep learning methods are used to solve research
problems and/or improve current solutions to Se-
mantic Web challenges.

Semantic Web for deep learning In this category, Se-
mantic Web technologies are used to improve
deep learning methods by making the classifica-
tion algorithms more aware of the semantics of
the data they are learning from.

2.2.1. Deep Learning for Semantic Web

Deep learning methods are being used mainly to
serve two goals in the Semantic Web: Ontology build-
ing and Ontological reasoning.

Deep Learning for Ontology Building Ontologies are
the backbone of the Semantic Web. They are most
commonly defined using Gruber’s definition: “An on-
tology is an explicit specification of a conceptualiza-
tion” ([11]). They can be either upper level ontolo-
gies that describe high level concepts such as Agent,
Process, Spacial region etc. or domain ontologies that
describe domain specific concepts and their relations,
or hybrid ontologies. Domain ontologies are usually
built by capitalizing on the domain experts’ knowledge
from the domain texts for example. Ontology learning
consists of building ontologies automatically or semi-
automatically from texts. The literature contains ex-
tensive work [12—15] on building or bootstrapping on-
tologies from texts using Natural Language Process-
ing (NLP) tools. One of the most important steps in
the methodologies of building ontologies from texts is
the extraction of candidate terms. In [16], the authors
apply recent advances in word embedding—namely
Continuous Bag of Words (CBOW) and Continuous
Skip-gram [17]—in order to extract candidate terms
from a corpus of PubMed articles’ titles and abstracts.
They also compare the results with two traditional dis-
tributional semantic models namely Latent Semantic
Analysis (LSA) [18] and Latent Dirichlet Allocation
(LDA) [19]. In [20], the authors apply a similar ap-
proach to build an ontology from Arabic texts.

Deep Learning for Ontological Reasoning One of
the closest research efforts to the scope of this research
is [21]. Besides the used neural network model, the
main difference between their approach and ours is
that they consider only learning from intact data and
do not focus on noise-tolerance capabilities. In this
work, Relational Tensor Networks (RTN) are proposed
as an adaptation of Recursive Neural Tensor Networks
(RNTN) [22] for relational learning. RNTN were orig-
inally designed by Socher to support learning from
tree-structured data such as sentences’ parse trees and
they were used successfully to improve sentiment anal-
ysis results. In [21], the authors start by building a
Directed Acyclic Graph (DAG) representation of the
RDF input. Every resource in the graph is initially rep-
resented as an incidence vector that indicates the set
of RDF:type(s) of the resource. Then the embeddings
of the resources are computed using the RTN model
that takes into consideration the type or the relation
that each resource has. Two types of targets are con-
sidered: a unary target for type prediction and a binary
target for predicate classification. The input for the bi-
nary targets are the embeddings of two resources—to
which the predicates are being classified.
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2.2.2. Semantic Web for Deep Learning

Deep learning models are often described as black
box models because they are not built in a way that per-
mits backtracking their decision-making process. This
constitutes a major drawback, especially in safety-
critical systems. Imagine a self-driving car getting into
an accident by avoiding a pothole and hitting a tree
on the side. Understanding the root cause of the pot-
hole mis-classification is critical to improve the safety
awareness of autonomous cars. Demystifying the in-
ternals of neural network models is not a recent chal-
lenge. In [23], the authors use propositional rules to
generate explanations from neural network models.
[24] builds on top of these approaches by describ-
ing an early proof of concept that uses Suggested Up-
per Merged Ontology (SUMO) [25] as background
knowledge and description logic formalism to provide
human readable explanations of neural network deci-
sions.

3. Ground Truthing and Noise Induction

In supervised machine learning, the process of col-
lecting the data—ground truthing—is crucial because
the ground truth is used in the training phase to learn
a mapping between the inputs and their correspond-
ing targets in order to predict the targets of unseen in-
puts. For this research, the input is from one of two
types of datasets: a synthetic dataset from LUBM and a
real-world dataset from DBpedia. The target for these
datasets is set using a state of the art Semantic Web
reasoner (Jena [26]). Essentially, the goal for the deep
reasoner is to learn the mapping between input RDF
graphs and their inference graphs in the presence of
noise. Thus, noise was induced in the synthetic dataset
to test the noise-tolerance of the deep reasoner.

In this section, a taxonomy of noise types in Seman-
tic Web data is outlined, then the process of ground
truthing and noise induction in the LUBM dataset is
described, and finally the ground truthing of the DB-
pedia dataset is detailed.

3.1. Taxonomy of Semantic Web Noise Types

The literature contains a few taxonomies for the
types of noise that can impact RDF graphs. These tax-
onomies are drawn with respect to different goals. For
example [27] focuses on noise types that can occur
when publishing RDF graphs on the Web in the form
of LOD—such as accessibility and derefencability. On

the other hand, in [28] the authors consider a particu-
lar dataset in the LOD—which is DBpedia—and enu-
merate 17 different types of noise that can impact this
dataset. Furthermore, [6] considers two types of noisy
assertions: noisy type assertions and noisy property as-
sertions.

A noisy type assertion is a corruption of a triple in
the form:

subject RDF:type conceptl
into a triple of the form:

subject RDF:type concept?2

given that concept] # concept2. Similarly, a property
noise assertion is a corruption of a triple in the form

subject propertyl object .
into a triple of the form:

subject property2 object .

given that property1 # property?2.

These types of noises can either impact the infer-
ence or have no effect on it. For instance, if conceptl
and concept? in the previous example are two sibling
concepts and concept3 being their super-class, both
the original triple and the corrupted type assertion will
generate—according to RDFS rule RDFS9—the same
inference which is:

subject RDF:type concept3 .

Accordingly, a new taxonomy of noise types in Se-
mantic Web data that classifies the impact of the noise
on the inference is proposed in this paper. This taxon-
omy is divided into the following classes: (Figure 1)

3.1.1. TBox Noise

This is the type noise that resides within the on-
tology, such as in the classes hierarchy or domain
and range classes. This type of noise impacts the in-
ference of the whole dataset. For example, in the
DBpedia ontology, the property dbo:field has domain
dbo:Artist which implies that every scientist in the DB-
pedia dataset who has a dbo:field property (such as
dbr:Artificial_intelligence or dbr:Semantic_Web) will
be of type dbo:Artist in the inference. To be fair, it
can be argued that this is not noisy inference as every
scientist is an artist in the sense of creative thinking.
Reasoning with tolerance to TBox noise is outside the
scope of this research because of the following:
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Semantic Web noise

|
ABox noise
| |

Propagable noise Non-propagable
noise

TBox noise

Fig. 1. Semantic Web noise taxonomy

— Rule-based reasoners are used for ground truthing
and the goal is to learn the mapping between the
input and inference graphs in the ground truth.

— The presence of TBox noise biases the whole
ground truth and noisy inferences are not the only
anomalies that will be detected and fixed. In the
dbo:field example, when all the scientists’ infer-
ence graphs assert that they are artists, a learning
algorithm will also learn this mapping between
scientists and artists.

As a result of this, the following assumption is made
in order to scope this research within a manageable
framework:

Assumption 1. Noise locality

The noise is latent only in the ABox, but the TBox
is devoid of noise. In other words, the ontology is
not noisy and only assertions can be noisy.

3.1.2. ABox Noise
The noise in the ABox can either be non-propagable
or propagable.

Definition 1. Triple corruption:

Triple corruption is the process of morphing an
existing triple in an RDF graph by changing one
of the triples’ resources

For example, a triple
subject property objectl
can be corrupted into

subject property object2

given that objectl # object2
Definition 2. Non-propagable noise

Non-propagable noise is any corrupted triple in
the input graph that does not have any impact on
the inference graph.

This can occur in one of three cases:

1. The original triple does not generate any infer-
ence nor does the corrupted triple.

2. The original triple does not generate any triple
but the corrupted triple generates an inference
that is generated also by another triple in the in-
put graph. (For example if the corrupted triple is
equal to another triple in the graph)

3. The original triple and the corrupted triple gener-
ate the exact same inference. For example, in the

LUBM ontology:

doctoralDegreeFrom rdfs:subPropertyOf
degreeFrom.

mastersDegreeFrom rdfs:subPropertyOf
degreeFrom.

If the following triple from LUBM1:

_:FullProfessor7 mastersDegreeFrom <
http://www.University901.edu>

is corrupted to:

_:FullProfessor7 doctoralDegreeFrom <
http://www.University901.edu>

both triples will generate the inference:

_:FullProfessor7 degreeFrom <http://www.
University901.edu>

Definition 3. Propagable noise

Propagable noise is any corrupted triple in the in-
put graph that changes the inference graph.

This occurs when the corrupted triple does not fall un-
der any of the three cases mentioned previously. The
necessary conditions for RDFS rules to generate noisy
inference from a corrupted triple are discerned in the
following:

First, the input patterns of the premises of the RDFS
rules ([29]) are classified as TBox pattern or ABox
pattern. Table 1 shows the results of this classifica-
tion. The rules that have only TBox type patterns such
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Table 1
Patterns types of RDFS rules premises

Rule Premise Pattern type
RDFS2 aaa RDFS:domain xxx . TBox
yyy aaa zzz . ABox
RDES3 aaa RDFS:range xxx . TBox
yyy aaa zzz . ABox
RDFSS5 xxx RDFS:subPropertyOf yyy . | TBox
yyy RDFES:subPropertyOf zzz . | TBox
RDFS6 xxx rdf:type rdf:Property . TBox
RDFS7 aaa RDFS:subPropertyOf bbb . | TBox
XXX aaa yyy . ABox
RDFS8 xxx rdf:type RDFS:Class . TBox
RDFS9 xxx RDFS:subClassOf yyy . TBox
zzz rdf:type Xxx . ABox
RDFS10 | xxx rdf:type RDFS:Class . TBox
RDFS: 1 f . TB
RDFS11 XXX S:subClassOf yyy 0X
yyy RDFS:subClassOf zzz . TBox

as RDFS5—which defines the properties hierarchy—
and RDFS11—which defines the classes hierarchy—
are excluded because any corruption of the triples that
match these patterns will induce TBox noise. Again,
this lies outside the scope of this research. For the re-
maining rules that have both TBox and ABox patterns
(i.e. RDFS2, RDFS3, RDFS7 and RDFS9), only the
ABox triple can be corrupted.

In Table 2, the necessary conditions for each of these
rules to generate a noisy inference from the corrupted
triple are identified. In plain English, if we corrupt the
triple

subject propertyl object .

into

subject property2 object .

the RDFS2 rule will generate a noisy inference if and
only if property2 has a domain defined in the ontology

and propertyl either does not have a specified domain
or has a domain that is different than the domain of

property2.
3.2. Ground-Truthing and Noise Induction

In the synthetic dataset obtained from LUBM, the
noise was fabricated using the concepts that were in-

troduced in the taxonomy. Real world data does not
necessitate noise induction as the noise is an inherent
feature within this data genre.

3.2.1. Ground-Truthing in LUBM1

Lehigh University Benchmark (LUBM) [30] is a
benchmark for Semantic Web repositories. The LUBM
ontology conceptualizes 42 classes from the academic
domain and 28 properties describing these classes’ re-
lationships. Using Univ-Bench Artificial Data Genera-
tor (UBA) [31], LUBM1—an RDF graph of one hun-
dred thousand triples—was generated. This graph con-
tains 17189 subject-resources within 15 classes. Table
3 lists the number of resources per class. Some of the
resources have more than one class such as a student
being a GraduateStudent and a TeachingAssistant at
the same time.

Let R be the set of these subject-resources. For each
resource r in R, a graph g is built by running the fol-
lowing SPARQL Protocol and RDF Query Language
(SPARQL) query:

DESCRIBE <r>

which constructs a graph description of the resource r.
Listing 1 contains the graph description of the resource
GraduateStudent9.

Let G be the set of graphs g obtained after this
step. For each graph g in G, the RDFS inference is
generated according to the LUBM ontology. For this
step, Jena [26]—a state of the art toolkit for Seman-
tic Web technologies that has RDFS and OWL reason-
ing capabilities—was used. Let I be the set of infer-
ence graphs obtained from the Jena reasoner. Listing 2
contains the inference graph of the input graph in List-
ing 1.

Finally, G and I are split into 60% training, 20%
validation and 20% testing sets using a stratified split-
ting technique. The resource class is used as the label
for the stratification. The goal of the stratification is to
have the same percentage of each resource type in the
training and test sets. Otherwise there is a risk of hav-
ing all the small classes in the training set, which will
mistakenly inflate the accuracy. Let G_train, G_val,
G _test, I_train, I_val and I_test be the training, valida-
tion and test sets. The input of the supervised learning
algorithm is the set G_train, the target is I_train and
the goal is to learn the inference generation.

3.2.2. Noise Induction in LUBM 1
In [6], the authors proposed a methodology for noise
induction in LUBM. They construct three datasets by
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Table 2
Propagable noise by rule-based RDFS reasoners

RDFS rule | Original triple Corrupted triple | Conditions Noisy inference

(aaa’ rdfs:domain xxx’ .)

A ((—3 xxx, aaa rdfs:domain xxx .)
RDFS2 yyy aaa zzz . yyy aaa’ zzz . \Y, yyy rdf:type xxx’ .
(Vxxx, aaa rdfs:domain xxx

= —(xxx = xxx)))

(aaa’ rdfs:range xxx’ .)

A ((—3 xxx, aaa rdfs:range xxx .)
RDFS3 yyy aaa zzz . yyy aaa’ zzz . \Y, zzz rdf:type xxx” .
(Vxxx, aaa rdfs:range xxx

= —(xxx = xxx)))

(aaa’ rdfs:subPropertyOf bbb’ .)

A ((—3 bbb, aaa rdfs:subPropertyOf bbb .)
RDFS7 XXX aaa yyy . xxx aaa’ yyy . \% xxx bbb’ yyy .
(Vbbb, aaa rdfs:subPropertyOf bbb .
= —(bbb = bbb")))

(xxx’ rdfs:subClassOf yyy’ .)

A ((—3 yyy, xxx rdfs:subClassOf yyy .)

RDFS9 zzz rdfitype xxx . | zzz rdfitype xxx’ . | V zzz rdf:type yyy’ .
(Vyyy, xxx rdfs:subClassOf yyy .
= ~(yyy =yyy'))

Table 3
Number of resources per class in LUBM1
Listing 1: Input graph g Class Number of resources
Publication2 ub:publicationAuthor ub:Publication 5999
GraduateStudent9 . ub:UndergraduateStudent 5916
Publication6 ub:publicationAuthor ub:GraduateStudent 1874
GraduateStudent9 . ub:University 979
Publicationl7 ub:publicationAuthor ub:Course 828
GraduateStudent9

Publicationll ub:publicationAuthor ub:GraduateCourse 799
GraduateStudent9 . ub:ResearchAssistant 547
Publicationl5 ub:publicationAuthor ub:TeachingAssistant 407
GraduateStudent9 . ub:ResearchGroup 224
ub:AssociateProfessor 176

GraduateStudent9 a ub:GraduateStudent ; .
ub:advisor FullProfessor7 ; ub:AssistantProfessor 146
ub:emailAddress ub:FullProfessor 125
"GraduateStudent 9@Department5. ub:Lecturer 93
UniversityO.edu" ; ub:Department 15

ub:memberOf <http://www.
Department5.University0.

edu> ; . . . . .
ub:name "GraduateStudent9" ; corrupting type assertions accordmg to a given noise

Ub:takesCourse level. The three datasets are described as follows:

GraduateCourse39 ;

RATA In this dataset, the instances of type Teachin-

ub:undergraduateDegreeF rom gAssistant are corrupted. to l?e of type ResearchAs-
<http://www.University718.edu> . sistant. This type of noise is non propagable be-
cause both concepts, TeachingAssistant and Re-
searchAssistant, are sub-classes of the concept

ub:telephone "xxx—xxx—xxXxXx"
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Listing 2: Inference graph of the input graph in List-
ing 1

Publication2 a ub:Publication .

Publication6 a ub:Publication .

Publicationl?7 a ub:Publication .

Publicationll a ub:Publication .
Publicationl5 a ub:Publication .

FullProfessor7 a ub:Employee,
ub:Faculty,
ub:Professor .

GraduateStudent9 a ub:Person ;
ub:degreeFrom <http://www.University718.
edu> .

<http://www.University718.edu> a
ub:0rganization,
ub:University .

Person. In theory, this type of noise will not affect
the inference thus a rule-based reasoner should
not be affected. It is reasonable to check if a deep
reasoner is also resilient to this type of noise.

UGS In this dataset, the instances of type Graduat-
eStudent are corrupted to be of type University.
This type of noise is propagable by the RDFS rule
RDFS9 because these concepts are not siblings.
A rule reasoner will generate a noisy inference by
deducing that the student instance is of type Or-
ganization which is the super-class of University.

GCC In this dataset, the instances of type Course are
corrupted to be of type GraduateCourse. This
type of noise is also non-propagable.

In this research, this technique for noise induction in
LUBM is adopted by creating three types of datasets:
RATA,, UGS , and GCC,, where the noise level p is
varied within {0, 15, 50, 100} percent.

As the authors of [6] focus only on noisy type asser-
tions, two additional datasets were created with noisy
property assertions for the purpose of this research as
well.

TEPA In this dataset the property publicationAuthor
is corrupted to be teachingAssistantOf. This noise
is propagable by the RDFS rules RDFS2 and
RDFS3 as the two properties have different do-
mains and ranges.

WOAD In this dataset the property advisor is cor-
rupted to be worksFor. This noise is non-propagable
as the property worksFor does not have any do-

main or range specification in the LUBM ontol-
ogy, but by removing the property advisor the
type inference that was deducted about the stu-
dent and his advisor is lost.

The datasets TEPA, and WOAD,, were also created
by varying the noise level within {0, 15,50, 100} per-
cent. More precisely in TEPA199 and WOAD1, ev-
ery graph in the dataset that is being corrupted will
have only one corrupted triple. For example if a publi-
cation has more than one publication author, only one
of them will have a corrupted property assertion.

3.3. Ground Truthing the Scientists Dataset from
DBpedia

[3] defines DBpedia as: “a community effort to ex-
tract structured information from Wikipedia and to
make this information available on the Web” in the
form of LOD [32]. From the DBpedia cloud, a dataset
of scientists’ descriptions was built. To obtain the list
of scientists in DBpedia, the following SPARQL query
was run against DBpedia endpoint.

prefix dbo: <http://dbpedia.org/ontology/>
select distinct ?scientist
where {

?scientist a dbo:Scientist .

}

This query returns 25760 URIs for scientists’ descrip-
tions. According to the LOD principles, these URIs
are dereferenceable. The scientists’ RDF descriptions
were obtained by fetching these URIs. In order to di-
versify the types of classes in the scientists dataset, a
few other classes that are related to the Scientist con-
cept in DBpedia were also collected, namely: Edu-
cationallnstitution, University, Place and Award. To
get the list of places in DBpedia that are related to
scientists—either by being their place of birth or work
etc.—and not all the places in DBpedia, this SPARQL
query was run:

prefix dbo: <http://dbpedia.org/ontology/>

select distinct ?place

where {
?scientist a dbo:Scientist .
?scientist ?property ?place .
?place a dbo:Place .

For the classes Educationallnstitution and Award simi-
lar queries to this one were used. Table 4 lists the num-
ber of resources per class in the scientists dataset. The
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Table 4
Number of resources per class in the scientists dataset
Class Number of resources
dbo:Scientist 25760
dbo:Place 22035
dbo:Educationallnstitution 6048
dbo: Award 1166

total number of triples obtained in the scientists dataset
is ~ 5.5 million triples (5578576 precisely).

No artificial noise was induced in this dataset as it
already has pre-existing noise. Using an empirical as-
sessment of a DBpedia sample, [28] identified 17 qual-
ity issue types and estimated that 11.93% of DBpedia
triples have at least one of these quality issues. These
issues can manifest in noisy type assertions or noisy
property assertions. An example of noisy type asser-
tion in DBpedia is the resource dbo:United_States be-
ing of type dbo:Person. This is not one of a kind ex-
ample. There are 1761 resources in DBPedia that are
of types dbo:Person and dbo:Place simultaneously,
which obviously indicates that one of them is a noisy
triple. In the scientists dataset, there are 94 of these
resources, which can be enumerated using this query:

prefix dbo: <http://dbpedia.org/ontology/>

select distinct ?place_person

where
?scientist a dbo:Scientist .
?scientist ?property ?place_person .
?place_person a dbo:Place .
?place_person a dbo:Person .

4. Layered Graph Model for RDF

Despite its effectiveness as a standardized “frame-
work for representing information in the Web” ([33])
and as an essential building block for the Semantic
Web, the graph representation for the RDF model re-
mains an open question in the Semantic Web research
community. Even though the RDF conceptual model
is designed as a graph, it differs from the graph theory
definition of graphs in a number of ways detailed later
in this section. The motivation behind the research ef-
forts to represent the RDF model as a graph that con-
forms to the graph theory can be summed up in the
following:

1. Taking advantage of the well established mathe-
matical foundations of the graph theory

2. Exploiting the recent advances in graph databases
which inherently support graph querying—such
as finding the shortest path—as opposed to stor-
ing RDF graphs in relational databases that were
not designed for graph algorithms

Other motivations that are closely related to the theme
of this research are:

3. Representing RDF graphs in a format suitable for
neural network input

4. Capitalizing on the emerging research on deep
learning for graphs

5. Stating the RDFS reasoning problem as a graph
completion problem

4.1. Preliminary Notions

[34] defines graphs as: “A graph G is an ordered
triple (V(G), E(G), U consisting of a nonempty set
V(G) of vertices, a set E(G), disjoint from V(G), of
edges, and an incidence function W that associates
with each edge of G an unordered pair of (not neces-
sarily distinct) vertices of G. [34]”

An RDF graph can be defined using these for-
malisms from [35-37] (that is updated in this paper
to conform to the more recent RDF 1.1 recommenda-
tion [33]:

Let:

I be an infinite set of Internationalized Resource Iden-
tifier (IRI) (which is an extension of Uniform
Resource Identifier (URI) that supports Unicode
characters).

B be an infinite set of Blank nodes

L be an infinite set of RDF literals

A tuple (s, p,0) € (IUB) x I x (IUBUL) is called
an RDF triple where s denotes the triple’s subject, p
denotes its predicate and o denotes its object.

An RDF graph is a set of RDF triples.

T ={(s,p,0)|(s,p,0) € {UB)xIx (IUBUL)}
Let:

Subj(T) be the set of subjects from (/U B) that occur
in the triples of T’

Pred(T) be the set of predicates from I that occur in
the triples of T

Obj(T) be the set of objects from (I U B U L) that
occur in the triples of T

Subj-0bj(T) = Subj(T) U Obj(T)
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4.2. Existing Graph Models for RDF

There are three main structural differences between
RDF graphs and simple graphs which are outlined as
follows:

Multigraph Unlike simple graphs, two RDF nodes
can be linked with more than one link of different
labels.

Heterogeneous Nodes in RDF graphs are connected
by different types of edges (labeled edges).

Multivalent nodes and edges a node in RDF graphs
can also be an edge at the same time.

4.2.1. Labeled Directed Graph Model

This is the graph-model described in the RDF 1.1
Concepts and Abstract Syntax [33]. In this model, the
nodes V(T') of an RDF graph T are the elements of the
set Subj-obj(T) and the edges E(T) are labeled edges
with elements from Pred(T) (Fig. 2).

Predicat

Fig. 2. A triple in the labeled directed graph model [33]

When triples from the ontology are described ac-
cording to this graph model, two main challenges
arise:

— If the predicate in one triple becomes the subject
in another triple (this case occurs when describ-
ing the domain and range of properties such as in
the example in Figure 3), then the predicate will
become a node as well.

:publicationAut

-

dfs:domai
ulf:publication Authbr e coman ub:Publication

Fig. 3. Intersecting nodes and edges sets in RDF

In this example
V(T) N E(T) = {ub:publicationAuthor}
which contradicts the requirement in the graph

definition from [34] that £ and V should be dis-
joint.

— If both the subject and object of the triple are
predicates in other triples (this case occurs when
defining a property hierarchy such as in the ex-
ample in Figure 4), then this relation is repre-
sented by a labeled directed edge between two
edges. This means that the incidence function Wy
has values inside the set E(T), which again con-
tradicts the definition from [34] that restricts the
range of U to pairs of vertices in V(T

FullProfessorl ubsworksFor Department6
subPropert
b: h dOf
FullProfessorl o @

Fig. 4. Edge between edges in RDF graph model

To overcome these challenges, the existing literature
proposes several graph models to represent the RDF
data model. These graph models can be categorized
as follows: Bipartite graph, Hypergraph based ap-
proaches and Metagraph approach.

4.2.2. Bipartite Graph Model

One of the earliest proposed graph-based models for
RDF was the bipartite graph model [38]. In this model,
an RDF graph T is represented as two disjoint sets
of nodes: the first set contains the union of resources
Subj(T) U Obj(T) U Pred(T) and the second set of
nodes is equal to the set of triples. Each resource in the
first set of nodes is connected with a labeled edge to
a node in the second set. The label of the edge indi-
cates the role of the resource in the triple i.e. subject,
predicate or object.

This model was adopted in some of the preliminary
experiments, which showed that it is not suitable for
the graph-to-graph based RDFS reasoning approach.
The reason is that the representation of the inference
graph in this model will contain new nodes denoting
the inferred triples. By stating the RDFS reasoning
problem as a graph completion problem, the introduc-
tion of new nodes—and not only new edges—makes
the problem even more difficult to solve.

4.2.3. Hypergraph Models

The Mathworld [39] encyclopedia defines a hyper-
grah as: “a graph in which generalized edges (called
hyperedges) may connect more than two nodes.”

In the class of models that represent RDF as a hy-
pergraph [36, 40—42], each hyperedge connects three
nodes which are the subject, the predicate and the ob-
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ject of the triple. This forms a 3-uniform hypergraph.
The authors of [36] use a directed hypergprah in order
to reduce the size complexity and the load time of RDF
graphs.

4.2.4. Metagraph Model

A more recent research effort ([43]) uses the meta-
graph model proposed in [44]. In metagraphs, an edge
connects a set of nodes (called metavertex) to an-
other set of nodes. This model is useful in representing
RDF reification and N-ary relations [43]. RDF reifi-
cation consists of expressing statements about RDF
statements—for example, to record their provenance,
time of collection, validity span etc. In the metagraph
model, the reification can be expressed as an edge be-
tween the reification subject and the set of nodes rep-
resenting the original statement.

4.3. Layered Graph Model for RDF

Even though the models described previously were
suggested to propose a graph model for the RDF data
model, they target different goals ranging from storing
and querying RDF graphs to reducing space and time
complexity to solving the reification and provenance
problem. Unfortunately, these goals neither coincide
with RDFS reasoning nor neural network input. The
reason why these models are not suitable for neural
network input is that they use complex graph models
beyond simple directed graphs. This paper describes a
layered graph model that uses simple directed graphs
to achieve the goal of representing RDF graphs and
their inference graphs according to the RDFS rules. It
is important to note that the mapping between RDF to
the proposed layered model is irreversible—meaning
that the reconstruction of the original RDF graph is
not guaranteed. Thus, the layered graph model is not
suitable for storing and querying RDF data.

4.3.1. Notations and Definitions
In Table 1, the premises of RDFS rules were classi-
fied into ABox patterns and TBox patterns.

Definition 4. TBox rule is a rule where its premises
are all of type TBox pattern.

The Thox rules in RDFS are:

1. RDFSS5: the subPropertyOf transitivity rule
2. RDFS6: the subPropertyOf reflexivity rule
3. RDFS11I: the subClassOf transitivity rule
4. RDFSI0: the subClassOf reflexivity rule

As these rules’ patterns are present in the ontological
level and there is only one ontology per training set,
there are not enough samples to learn these rules. Thus,
it is assumed that there is a materialized version of
the ontology where the TBox rules are already applied.
This materialized version is inferred only once and is
part of the training input.
Let:

O: be the materialized ontology.

P: be the set of properties in O.

Pt = PU {RDF:type}

np: be the size of the set PT

(P1, P2, - ... Pnp): be a tuple of the elements of PT (It
is crucial to maintain the same order of elements
in this tuple throughout the training process)

Definition 5. A Layered directed graph is a graph that
has multiple sets of directed edges where each layer
has its own set of edges.

An n-layered directed graph is a layered directed graph
of n layers. More formally, an n-layered directed graph
is defined as:

G(V,(E1,Es,...E,)) where the edges part is a tuple
containing n sets of directed edges.

Definition 6. Layered directed graph for RDF':
An RDF graph T is represented by a layered di-
rected graph:
G(Subj-obj(T),(E1,Es,...E,),)) where:
(ei,prej) €T
e; € G(Subj-obj(T)

e; € G(Subj-obj(T)

(ei,ej) € E} —

Again, it is important to note that the transforma-
tion of an RDF graph into its layered directed graph
representation is not bijective as two non isomorphic
RDF graphs can have the same layered directed graph
representation.

Proof by construction. Let T be an RDF graph and
Ly be its layered directed graph representation ac-
cording to the ontology O and its tuple of prop-
erties (p1,p2,....pnp). If (s,p,0) ¢ T and p ¢
(P1, P2, ... Pnp) thenthe RDF graph T/ = TU(s, p, 0)
is not isomorphic to 7" but has the same representation
LT. O]

However this transformation guarantees that two
RDF graphs have the same layered directed graph rep-
resentation if and only if their RDFS inference graphs
according to the ontology O are isomorphic.
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5. Encoding and Embedding of RDF Graphs

The encoding and embedding stages aim to trans-
form RDF graphs into a format suitable for neural net-
work input. Firstly, a simplified version of the encod-
ing/decoding technique that is applicable to small RDF
graphs is described. This will lay the ground to present
a more complex approach that can be used for both
small and large RDF graphs. Finally, the embedding
phase is illustrated.

5.1. RDF Graphs Encoding Requirement

The way the generic methodology of supervised ma-
chine learning is utilized in this work is depicted in
Figure 5 where the pair of (input, target) is the input
graph and its corresponding inference. In a nutshell,
the input graph g and its corresponding inference i are
encoded. The encoded representations of these graphs
are then used in the training phase. The encoding algo-
rithm outputs an encoded version of the graph and its
encoding dictionary that will be used in the decoding
phase to regenerate the original graph.

Decoding .(2

Encoding
dictionary of t

Fig. 5. Encoding/decoding in training and inference phases

Proposition 1. The encoding dictionaries of the input
graph and its corresponding inference graph must be
equal.

Proof by contradiction. Assuming that during the train-
ing phase the input graph and its corresponding infer-
ence graph are encoded independently (allowing their
encoding dictionaries to be different):

In the inference phase the test input graph is encoded
then the trained model is used to predict the encoded
version of the inference graph. Because there is access
to only one encoding dictionary—which is the input

Fig. 6. 3D Adjacency matrix

graph encoding dictionary—it has to be used in the
decoding algorithm to obtain the inference graph.

This proves that the encoding dictionary for the input
graph and inference graph in the training phase must
be the same. O

Corollary 1. The encoding dictionary of the input
graph should contain all the possible resources of the
inference graph.

Proof. For the encoding dictionaries of the input graph
and the inference graph to be equal, the encoding algo-
rithm of the inference graph should only use lookups
from the encoding dictionary without adding any new
resources. This means that all the resources of the in-
ference graph were already added to the encoding dic-
tionary when encoding the input graph. [

Hence, it is mandatory that the encoding dictio-
nary for a given graph g contains all the possible
resources that might be used in its corresponding
inference graph i.

5.2. Simplified Encoding/Decoding Technique

In addition to preparing the RDF graph for input into
a neural network, the main goal of the encoding phase
is to capture the pattern similarities between graphs in
such a way that “similar" graphs will have similar en-
codings. An example of “similar" graphs is:
two graphs containing RDF descriptions of two re-
sources of the same type (such as two Publications’
descriptions in the LUBM1 dataset).

The size of the input RDF graphs plays an impor-
tant role in determining how it will be encoded. While
the “complex encoding/decoding technique" works on
both small and large RDF graphs, it is salient to detail
the “simplified encoding/decoding technique"—which
works only on small RDF graphs—in order to compre-
hensively describe the complex technique.

5.2.1. 3D Adjacency Matrix

The first step of the multi-layer encoding approach
is to create a 3D adjacency matrix, where each layer is
the adjacency matrix relative to one property (Fig. 6).
An ID must be assigned to each resource in the RDF
graph to model it as 3D adjacency matrix.

In this approach, two dictionaries were created; one
for the subject and objects IDs—which is split into a
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Table 5
Properties_dictionary sample
Property ID
rdf:type 0
ub:memberOf 10
ub:takesCourse 11
ub:telephone 12
ub:name 13
ub:emailAddress 14
ub:publicationAuthor 15
ub:undergraduateDegreeFrom | 16
ub:advisor 17
ub:degreeFrom 31

global and a local dictionary—and one for the proper-
ties IDs. The global resources dictionary contains the
subjects and objects resources that are used throughout
the G set (which are basically the RDFS classes in the
ontology). The local dictionary contains the resources
that are specific to a particular graph g in G.

In order to fulfill the requirement established in
Proposition 1, it is mandatory that the global_re-
sources_dictionary and the local_resources_diction-
ary for a given graph g contain all the possible re-
sources that might be used in its corresponding in-
ference graph i. To create the properties dictionary
Properties_dictionary shown in Table 5, the list of
properties is collected using the following SPARQL

query:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf
-syntax-ns#>

select distinct ?property where {
?property a rdf:Property .
?subject ?property ?object

which returns all the properties in the ontology that
were used at least once. An ID is then assigned to each
property. In the LUBMI dataset, this query gives 32
properties, which means that the 3D adjacency matrix
will have 32 layers.

For the global resources dictionary, the list of RDFS
classes are collected from the ontology using this
SPARQL query:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-
schema#>

select distinct ?class where {
?class a rdfs:Class

Table 6
Global_resources_dictionary sample
Resource ID
ub:ResearchAssistant 18
ub:GraduateStudent 19
ub:University 20
ub:Employee 31
ub:Professor 33
ub:Person 36
ub:Organization 39
Table 7
Local_resources_dictionary sample for the graph g in Table ??
Resource ID
_:GraduateStudent9 57
"GraduateStudent9" 58
< http : | /www.Department5.UniversityO.edu > | 59
_:Professor7 60

filter (isuri(?class))

A filter is used to eliminate blank nodes. In the
LUBMI dataset, this query returns 57 classes where
each class is assigned an ID in a global_resources_dic-
tionary shown in Table 6.

The local_resources_dictionary is created incre-
mentally during the encoding routine for each graph
g in G. It holds the IDs of the resources that are
not present in the global_resources_dictionary. The
local_resources_dictionary is populated with an off-
set equal to the length of global_resources_dictionary
i.e. 57 in the case of LUBMI. The largest ID in the
local_resources_dictionary for every graph in G is
less than 80. This value will be used to initialize the
size of the 3D adjacency matrix. For example, the re-
sources in the graph g of Listing 1 will have the lo-
cal_resources_dictionary in Table 7.

5.2.2. Encoding Algorithm

Once the properties_dictionary and the global_re-
sources_dictionary are created, they are used in the
encoding routine listed in Algorithm 1. The function
ZEROS in Algorithm 1 creates a 3D matrix of the de-
sired shape filled with zeros, and the function SORT-
EDTRIPLESBYPROPERTY lists the triples of the input
graph sorted by the property attribute. When encoding
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an RDF graph, the triples having a property not listed
in the properties_dictionary are ignored because they
will not have any effect on the inference generation.
Subsequent to encoding the input graph g and creat-
ing the local_resources_dictionary, the latter is used to
encode the corresponding inference graph i. The infer-
ence graph encoding algorithm is very similar to the in-
put graph encoding. It is crucial to not update the local-
_resources_dictionary since all the resources in the in-
ference graph should already be either in the global-
_resources_dictionary or in the local_resources_dic-
tionary.

5.2.3. Decoding Algorithm

The decoding algorithm takes a 3D adjacency ma-
trix and the resources dictionaries as inputs, and re-
generates the original RDF graph. To be more pre-
cise, the decoding algorithm will regenerate the orig-
inal RDF graph for every graph i in 1. Nevertheless,
the graphs in G can be different than their decoded
graphs because the properties that are not present in
the properties_dictionary are disregarded during the
encoding process. This is irrelevant to the process of
inference learning: both the regenerated graph and the
original RDF graph should have the same inference
graph because the ignored properties are not from the
ontology.

The NON_ZEROS routine in Algorithm 2 returns the
list of 3-tuples containing the indices of the non zeros
values. The INVERT method for dictionaries returns the
dictionary with the values as keys and vice versa.

5.2.4. Limitations

As previously stated, the main goal of the encod-
ing phase is to capture the pattern similarities between
graphs describing resources of the same type. This
can be achieved by the simplified encoding technique
when the cardinality of each property within these
graphs is variable within a small range. For example,
in LUBMI, students take more or less the same num-
ber of courses, and a publication has between one to
seven authors. To get the full list of these statistics, the
following SPARQL query is run:

select ?type ?property
(group_concat (?count) as ?
possible_values)
where {
select distinct ?type ?property
(count (?object) as ?count)
where
?subject ?property ?object .
?subject a ?type .

}
group by ?type ?subject ?property
}
group by ?type ?subject ?property
order by ?type ?property

The inner query counts the number of objects per
property per class and the outer query concatenates the
possible values. Table 11 contains a sample of these
statistics in LUBM1.

Alas, this is not the case in real-world knowledge
graphs such as DBpedia, where even graphs describ-
ing resources of the same type differ widely. For ex-
ample the DBpedia graph describing Professor James
Hendler [45] has 40 objects for the property RDF:type
including owl:Thing, foaf:Person, dbo:Person, dul:-
Agent, dbo:Agent, dbo:Scientist, schema:Person, yago-
:Scholar110557854, etc. Out of these 40 objects,
12 are in the global_resources_dictionary because
they are concepts in the DBpedia ontology and the
other 28 objects will populate the local_resources-
_dictionary. In contrast, the DBpedia graph describ-
ing Professor Yoshua Bengio [46] has only 12 links
for the property RDF:type and all of the objects are
in global_resources_dictionary. This implies that the
RDF:type layers in the 3D adjacency matrices for
Professor Hendler and Yoshua Bengio graphs will be
very different. In fact all the subsequent layers will
be very different. For instance, when encoding the
layer of the property dbo:almaMater for Professor
Hendler’s graph, the resources dbr:Brown_University,
dbr:Southern_Methodist_University and  dbr:Yale-
_University will have IDs 29, 30 and 31 respectively
as there is already 28 resources in the local_resources-
_dictionary. When encoding the same layer for Profes-
sor Bengio’s graph, the resource dbr:McGill_University
will have ID 1 as the corresponding local_resources-
_dictionary is still empty. Consequently, this has a
domino effect on the rest of the layers. To overcome
this limitation, a more advanced encoding/decoding
technique is proposed in the next section.

5.3. Advanced Encoding/Decoding Technique

The main idea of the advanced encoding/decoding
technique is to create a local_resources_dictionary per
layer instead of a local_resources_dictionary for the
whole graph being encoded. While this may seem suf-
ficient to overcome the limitation of the simple encod-
ing technique, a few challenges in the encoding of the
inference graphs as well as in the decoding phase for
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both the input and the inference graphs are encoun-
tered.

5.3.1. Challenges

According to Corollary 1, for the encoding dictio-
naries of the input graph and the inference graph to be
equal, the encoding algorithm of the inference graph
should only use lookups from the encoding dictionary
without adding any new resources. The simplified en-
coding technique achieved this because all the layers
share the same local_resources_dictionary. However,
by having a local_resources_dictionary per layer (i.e.
per property) the following issues arise:

Type Inference Challenges When the type inference
rule, RDFS9, is applied to this input graph:

dbo:Scientist RDFS:subClassOf dbo:Person .
dbr:James_Hendler a dbo:Scientist .

it infers the following:

dbr:James_Hendler a dbo:Person .

The input graph contains the following subject-
object resources: dbo:Scientist, dbo:Person and dbr:-
James_Hendler. When encoding the input graph and
populating the resources dictionaries, the first two re-
sources will be already in the global_resources_dic-
tionary as they are concepts in the DBpedia ontology
and the dbr:James_Hendler resource will populate the
local_resources_dictionary of the layer RDF :type.

The inference graph has two subject-object re-
sources: dbr:James_Hendler and dbo:Person. As they
appear in a triple with the property RDF:type, first look
into the global_resources_dictionary and find the ID of
the resource dbo:Person then in the local resources-
_dictionary of the property RDF:type and find the ID
of the resource dbr:James_Hendler. In this case all the
required resources when encoding the inference graph
were inserted in the corresponding dictionaries during
the encoding of the input graph. However, this will not
be the case for the rules RDFS2 and RDFS3.

When the type inference rule RDFS3 is applied to
this input graph:

dbo:almaMater RDFS:range
dbo:EducationalInstitution .
dbr:James_Hendler dbo:almaMater
dbr:Brown_University .
dbr:James_Hendler dbo:almaMater
dbr:Southern_Methodist_University .
dbr:James_Hendler dbo:almaMater
dbr:Yale_University .

it infers that:

dbr:Brown_University a
dbo:EducationalInstitution .
dbr:Southern_Methodist_University a
dbo:EducationalInstitution .

dbr:Yale_University a
dbo:EducationalInstitution .

The input graph has the following subject-object re-
sources: dbr:Brown_University, dbr:James_Hendler,
dbo:Educationallnstitution, dbr:Yale_University and
dbr:Southern_Methodist_University. When encoding
the input graph, the resource dbo:Educationallnstitution
is found in the global_resources_dictionary and the
rest of the resources are added to the local_resources-
_dictionary of the layer dbo:almaMater. And when
encoding the inference graph, in the first triple, the
resource dbr:Brown_University is looked-up in the
local_resources_dictionary of the property RDF:type
but it will not be found as this resource was only added
to the layer of the property dbo:almaMater. The same
problem occurs with the RDFS2 rule.

Solution: Six out of the fourteen RDFS rules are type
inference rules i.e. infer a conclusion in the form:

yyy RDF:type xxx .

Consequently, there is a high chance that any resource
r in the input graphs will be used in a triple with the
pattern

r RDF:type xxx .

in the inference graph.

The solution to this issue is to simply add all the lo-
cal resources to the local_resources_dictionary of the
RDF:type property. Whenever any resource is added to
the local_resources_dictionary of any property when
encoding the inputs graphs, it should be added to the
local_resources_dictionary of the RDF:type property
as well. This way when the corresponding inference
graph is encoded, all the required resources will be
found in the respective local_resources_dictionary.

SubProperty Challenges When a property appears
only in the inference graph but not in the input graph,
the local_resources_dictionary for this property will
be empty. As a result, all the resources seen in the in-
ference graph will be unknown. For instance, this can
happen when the RDFS7 rule is applied. Consider the
following input graph:
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dbo:field RDFS:subPropertyOf
dul:isDescribedBy .

dbr:James_Hendler dbo:field
dbr:Artificial_intelligence .

dbr:James_Hendler dbo:field dbr:Semantic_web.

which has this inference:

dbr:James_Hendler dul:isDescribedBy
dbr:Artificial_intelligence .

dbr:James_Hendler dul:isDescribedBy
dbr:Semantic_web .

When encoding the input graph, the resources dbr-
:James_Hendler, dbr:Artificial_intelligence and dbr:-
Semantic_web are added to the local_resources_dic-
tionary of the layer dbo:field. Subsequently, when en-
coding the inference graph, lookup these resources in
the local_resources_dictionary of the layer dul:isDe-
scribed By, but they will not be found as its local_re-
sources_dictionary is still empty and will not contain
the required resources.

Solution: The same fix used to solve the type infer-
ence case by adding all the resources to every local-
_resources_dictionary results exactly in using the sim-
plified version of the encoding/decoding technique and
having a shared local_resources_dictionary between
all the properties; thus, this fix cannot be applied.

By analyzing the root cause of the issue at hand, it
seems logical when encoding the inference graph gen-
erated by the RDFS7 rule to lookup the unknown re-
sources in the local_resources_dictionary of the corre-
sponding sub-properties. For example, while encoding
the inference graph in this section, when the resource
dbr:Artificial_intelligence is not found in the local-
_resources_dictionary of the layer dul:isDescribedBy,
it is looked-up in the local_resources_dictionary of
its subProperty dbo:field. Nonetheless, the property in
question can have more than one subProperty, which
makes the resources lookup process ambiguous. For
instance, the property dul:isDescribedBy has two sub-
properties: dbo:field and dbo:knownFor. If a larger ex-
cerpt of Professor Hendler’s DBpedia graph is consid-
ered:

dbr:James_Hendler dbo:field
dbr:Artificial_intelligence .

dbr:James_Hendler dbo:field dbr:Semantic_web.

dbr:James_Hendler dbo:knownFor
dbr:Semantic_Web .

it generates the inference:

dbr:James_Hendler dul:isDescribedBy
dbr:Artificial_intelligence .

dbr:James_Hendler dul:isDescribedBy
dbr:Semantic_web.

dbr:James_Hendler dul:isDescribedBy
dbr:Semantic_Web.

When the input graph is encoded, the resource dbr:-
James_Hendler will have an ID in the local_resources-
_dictionary of the layers dbo:field and dbo:knownFor.
When the inference graph is encoded and lookup of
the resources’ IDs for the property dul:isDescribedBy
is performed, if its sub-properties dictionaries were to
be searched’ two sub-properties dictionaries contain-
ing the resource in question probably having different
IDs in each dictionary will be found.

This attempt is obviously an unsuccessful fix that
one can imagine improving in the following way:
Instead of having a local_resources_dictionary per
property, the local_resources_dictionary can be shared
between sibling properties (i.e. properties having the
same super-property) and their super-properties. In the
previous example, the properties dbo:field, dbo:known-
For and dul:isDescribedBy will share the same
local_resources_dictionary. Again, this is not a fix
because some properties can have more than one
super-property. For example, in the DBpedia on-
tology, the property dbo:capital is a subPropertyOf
dul:isLocationOf and dbo:administrativeHeadCity. In
this case the property dbo:capital will have to share
its local_resources_dictionary with its sibling proper-
ties from the super-property dul:isLocationOf and also
from the super-property dbo:administrativeHeadCity.

When the network of the property RDFS:subProp-
ertyOf is drawn as shown in Fig. 7 (zoomed in Fig. 14),
a set of disconnected subgraphs can be observed—
where each subgraph contains the properties having a
path connecting them.

By sharing the local_resources_dictionary between
the properties of each subgraph, the issue at hand is
solved. This is because every subgraph contains sibling
properties, their super-properties recursively and their
sub-properties recursively also. To get the list of these
subgraphs, the following SPARQL query is run:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-
schema#>

select ?propertyl ?property2

where {
?propertyl rdfs:subPropertyOf ?property2
filter (?propertyl != ?property2)
}
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e,

Fig. 7. The network of the relation RDFS:subPropertyOf in the DB-
pedia ontology (depicted without labels for visibility)

An undirected graph is then created using the Python
library networkX [47]. Finally, the connected com-
ponents of the resultant graph are computed to get
the subgraphs which were previously mentioned. In
the DBpedia ontology case, 53 connected components
were found and in the LUBM ontology only 4 were
found.

The final working solution for the advanced en-
coding challenges consists of having a separate local-
_resources_dictionary per group of properties—these
groups being the result of the connected components’
computation. If a property does not belong to any
group, it will automatically have its own local_re-
sources_dictionary.

Scaling Challenge Besides the preceding issues,
which are inherent to the advanced encoding tech-
nique, scaling is a matter that needs to be taken care
of. When using the simplified encoding technique on
small graphs and small ontologies, 3D adjacency ma-
trices can be created with the desired dimensions. On
the other hand, when dealing with large ontologies
with a big number of properties and a large set of sub-
jects and objects resource, the size of the 3D adja-
cency matrices becomes unmanageable. For example,
the DBpedia ontology contains 3006 properties and
1576 subjects and objects resources. Thus, even when
encoding the smallest possible RDF graph with only
one triple containing two local resources, the total size
of the matrix becomes 3006 * 1578 * 1578 which re-

quires approximately 6 Gigabytes of memory for a sin-
gle RDF graph.

Solution: Even though a large ontology such as DB-
pedia contains a big number of properties, a smaller
number of these properties are usable in a restricted
domain dataset such as the Scientists dataset. If the
dataset is encoded with the simplified encoding tech-
nique, most of the layers through out the dataset in the
3D adjacency matrices will be empty. The only thing
this achieves is the slowing down of the training with-
out having any impact on the training results.

Instead of using a layer for each property from the
ontology by utilizing the full properties_dictionary,
a dictionary of the usable properties needs to be
maintained—denoted usable_properties_dictionary.
The usable_properties_dictionary is populated while
encoding the dataset. Similarly for the global_re-
sources_dictionary, not all the resources in this dictio-
nary will be used in a restricted domain dataset. A us-
able_global_resources_dictionary containing the re-
sources from the global_resources_dictionary that are
used in the dataset should be maintained.

In the simplified encoding technique, the size of
the local_resources_dictionary should be known prior
to encoding the dataset, because this size should be
used to offset the IDs in the local_resources_diction-
ary so that the IDs in both dictionaries do not overlap.
However, as the usable_global_resources_dictionary
is populated incrementally while encoding the graphs
in the dataset, the final size of the usable_global_re-
sources_dictionary cannot be known until the whole
dataset is encoded. Thus, the IDs of the local_re-
sources_dictionary cannot be offset during the encod-
ing in the same way they can be offset in the simplified
encoding technique. Instead, the IDs of the local re-
sources dictionaries and the usable_global_resources-
_dictionary should be incremented in opposite direc-
tions. For instance, whenever a new resource is added
to the usable_global_resources_dictionary a positive
value equal to the size of usable_global_resources-
_dictionary should be assigned to it. When a new re-
source is added to the local resources dictionary, a neg-
ative ID equal to minus the size of that local dictio-
nary should be assigned to it. After encoding the whole
dataset, the IDs in the local resources dictionaries
are adjusted using the final size of usable_global_re-
sources_dictionary so that no overlaps occur.

The final adjustment that should be applied to the
simplified encoding technique to make it more scalable
is to apply sparse encoding: instead of creating huge
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sparse matrices, only the list of indices where these
matrices contain the value 1 are maintained.

5.3.2. Advanced Encoding Technique Algorithm

The full algorithm of the advanced encoding tech-
nique is detailed in Algorithm 3. The decoding algo-
rithm for the advanced version is very similar to the
simplified decoding algorithm.

5.4. Graph Words

At this stage, every RDF graph is encoded as a 3D
adjacency matrix of size:
(nb_properties, max_nb_resources, max_nb_resources)
where each layer represents an adjacency matrix ac-
cording to one property. nb_properties being the num-
ber of usable properties and max_nb_resources the
maximum number of resources in the encoded graphs.

Proposition 2. The maximum number of possible lay-
outs of layers in a dataset of size dataset_size is equal
to:

{ 2mwc_nb_resources2

min

dataset_size x nb_properties

Proof. Let Ip be the layer of the property p in the 3D
adjacency matrix and /p_size be the number of ele-
ments in [p. [p is a matrix of size

max_nb_resources X max_nb_resources

)

Ip_size = max_nb_resources®

Each element Ip; ; in the layer has two possible values:

— 1if the resource r; having the ID i in the encoding
dictionaries is linked to the resource r; with ID
J according to the property p (i.e. if the encoded
graph contains the triple (r; p r; .)

— 0 otherwise

Which means that there are 2/7-%¢ possible layers lay-
outs.

In a dataset of size dataset_size there are dataset_size *
nb_properties layers.

If (dataset_size*nb_properties) < 2-*¢ and all the
layers in the dataset have different layouts then the
dataset contains (dataset_size*nb_properties) layouts.
Otherwise if (dataset_size*nb_properties) > olp_size
then the layers in the dataset cannot be all differ-
ent and the maximum number of layouts is equal to
2]p7size' O

When encoding an RDF graph from the LUBM1
dataset—which contains /7/89 RDF graphs—a 3D
adjacency matrix of size (32,80,80) is obtained. Ac-
cording to Proposition 2, the maximum number of lay-
ers layouts is equal to:
minimum(264" ~ 10123332 % 17189) = 550048 pos-
sible layouts.

The actual number of layouts when encoding LUBM 1
is much smaller than the theoretical boundary of possi-
ble layouts. When using the simplified encoding tech-
nique, 547 different layouts are obtained in the encod-
ings of the input graphs set G and 739 layouts in the
encodings of the inference graphs set /. And, when us-
ing the advanced encoding technique, an even smaller
number of different layouts is obtained: 107 and 469
for the sets G and I respectively. This observation is a
good indication that the encoding algorithm achieved
one of its major goals of having similar encodings for
“similar” graphs.

Let Cataloge and Catalog; be the layers’ catalogs
for the sets G and [ respectively where each layout is
assigned an ID. The 3D adjacency matrix can now be
represented as a sequence of layouts’ IDs as shown in
Fig. 8. The layouts in the catalogs are termed “graph
words", as the sequence (or phrase) of graph words
represents a 3D adjacency matrix and thus an RDF
graph. Representing an RDF graph as a sequence of
graph words has two main advantages:

1. Reducing the size of the encoded dataset: instead
of saving redundant layers’ layouts across the
dataset, only the ID of the layer’s layout along
with a catalog of layouts is saved.

2. Having an RDF graph represented as a sentence
of graph words allows for the exploitation of the
research results in neural machine translation—
which is detaied in the next chapter.

The full algorithm for converting a dataset of RDF
graphs to a corpus of graph words is detailed in Algo-
rithm 4.

5.5. Layered Embedding of RDF Graphs

At this stage, there is a parallel corpus of graph
words for the input and inference graphs. Every input
graph and its corresponding inference graph are repre-
sented as a sequence of graph words. This representa-
tion has the following drawbacks:

— Handeling of “unknown" graph words
— Insensitivity to graph words similarities
— Graph words embedding
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Fig. 8. From a 3D adjacency matrix to a sentence of graph words

5.5.1. Handling of “Unknown" Graph Words

When encoding a sentence from a natural language
corpus, there is a special token for unknown words.
The reason there are unknown words is that usually the
dictionary of words is limited in size and contains only
the words that are most relevant to the learning task.
Every unknown word is assigned the same ID. This is
not a deterrent to most learning tasks in natural lan-
guage, such as topic categorization or sentiment anal-
ysis.

In the parallel corpus of graph words, unknown
graph words can be encountered for one of two rea-
sons:

1. A graph word seen only in the test set but not
previously during the training phase.

2. When inducing noise, most of the graph words
will be unknown.

Proposition 3. If the same ID is assigned to every
unknown graph word then the learning process will
be compromised and will not generate the exact infer-
ence.

Proof. To prove this, two graphs having the same input
representations but having different targets should be
built.

Let

graphl and graph2 be two input RDF graphs
from the test set.

inferencel and inference2 be the inference graphs
generated using a rule reasoner from graphl and
graph? respectively.

Catalogg be the catalog of graph words of the in-
put graphs.

n be the number of properties in the dataset.

- [gwly,..gwl,], [gW21, .., gw2,], [iwly, .., iwl,] and
[iw2q, .. ,iw2,] be the sequence of graph words

representing respectively the graphs graphl, graph?2,

inferencel and inference?2

Assuming that graphl and graph?2 layers are equal ex-
cept in the first layer, there are two possible cases:

1. The layout of the first layer in graphl and/or
the layout of the first layer in graph2 are in
Catalogg, in which case gwl; # gw2;—which
implies that [gwly,..gwl,] # [gw21, .., gw2,].

2. Both layouts of the first layers in graphl and
graph2 are not present in Catalogg, in which
case gwl; = gw2; = UNK (UNK being the
ID assigned to unknown graph words). In this
case [gwly,..gwl,] = [gw21,..,gw2,] as the rest
of the layers are equal. Contrarily, The output se-
quences [iwly,..,iwl,] and [iw2y, .. ,iw2,] can
be different because graphl and graph2 are not
isomorphic.

O

5.5.2. Insensitivity to Graph Words Similarities

When incrementing the IDs of the graph words in
the catalogs arbitrarily as was done in Algorithm 4,
the similarity information between graph words is lost.
Consequently, two similar graph words can have very
different IDs and vice versa. Table 8 shows how the
graph words with IDs 84,85 and 86 have very differ-
ent layouts but their IDs are consecutive. This can be
a deterrent to the learning process because similar se-
quences of graph words should have similar sequences
for their target graph words.

5.5.3. Graph Words Embedding

In order to overcome the drawbacks of representing
an RDF graph as a sequence of IDs of graph words,
namely handling of unknown graph words and the lack
in capturing the similarities between graph words, a
technique used in natural language processing can be
utilized. This technique is word embedding—except
that in this case, instead of embedding words, graphs
should be embedded. The goal of words embedding
is to represent words as vectors in a continuous space
that captures semantic and grammatical similarities,
instead of using arbitrary IDs for words and encoding
them using huge one-hot vectors.

As previously mentioned, RDF graphs are heteroge-
neous graphs where each node can be an edge. This
hinders the use of most graph embedding algorithms
that work on homogeneous graphs. The main reason of
encoding an RDF graph as a 3D adjacency matrix is to
obtain a sequence of layers where each layer contains
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Table 8
Sample from the catalog of graph words in LUBM1 dataset
Graph word Graph word Graph word
84 85 86

0 10 0 10 0 10
08 08 08
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06 06 06
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02 02 02
) 00 & 00 8 00
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an adjacency matrix of a directed graph according to
one property. Thus, graph embedding algorithms can
be used on each layer of the 3D adjacency matrix. This
method is termed “layered embedding". Graph embed-
ding algorithms can have many purposes including—
but not limited to—node classification, clustering, link
prediction, graph completion and graph reconstruction
etc.

Proposition 3 proves that if two different graph
words have the same ID, the learning process is
compromised. Similarly, for the embedding of graph
words: if two different graph words end up having the
same embeddings, the learning process will be com-
promised as well. To ensure that different graph words
can never have the same embeddings, the embedding
algorithm must have perfect reconstruction accuracy.

Proposition 4. To ensure that different graph words
have different embeddings, it is sufficient that the em-
bedding algorithm has a perfect reconstruction accu-
racy.

Proof. By contradiction:
Let:

GW be the group of graph words

E be the group of graph words embeddings
EMBED be the function that transforms a graph
word g from G into its embedding e in E.
RECONSTRUCT be the function that transforms an
embedding e in E into a graph word g in G.

gwi and gws be two different graph words in GW.
e1 and e, be the embeddings of gw; and gws re-
spectively.

The embedding algorithm have a perfect reconstruc-
tion accuracy

—> RECONSTRUCT o EMBED = ¥ (The Identity
function)

=1
=1

Assuming that e; = es
= RECONSTRUCT(e;) = RECONSTRUCT(e2)
= gw; = gws (Contradiction) — ¢; # e5

RECONSTRUCT o EMBED(gw1) = gw1
RECONSTRUCT o EMBED(gwa) = gwa

RECONSTRUCT(e1) = gwy
RECONSTRUCT(e3) = gws

O

In order to satisfy the criteria of perfect reconstruc-
tion accuracy, High-Order Proximity preserved Em-
bedding (HOPE) algorithm[48] was used as it had the
best reconstruction accuracy when tested on the cata-
log of graph words. From an adjacency matrix A of a
directed graph with size m by m (where m is the num-
ber of nodes), HOPE embedding algorithm creates two
vectors U an V of size m by d where d is the embed-
ding dimension. The dot product of the vector U and
the transpose of V produces a matrix P of size m by m
where each element P; ; in P represents the probability
of the node i being linked to the node j. When using a
threshold to round these probabilities, the original ad-
jacency matrix A should be reconstructed. Figure 15
shows the embedding and reconstruction results of the
graph word with ID 84. In this example the embedding
dimension is 2.

The graph words embedding also solves the prob-
lem of capturing the similarities between graph words.
Table 13 shows four examples of graph words and their
embedding vectors. Graph words 61 and 85 are similar
and so are their embedding vectors. Graph words 100
and 104 are also similar but different from 61 and 85
and so are their respective embeddings.



B. Makni and J. Hendler / Deep learning for noise-tolerant RDFS reasoning 21

6. Graph Words Translation for RDFS Reasoning

The graph words translation model is basically a
sequence-to-sequence model with a Bidirectional Re-
current Neural Network (BRNN) [49] encoder. The
designers of BRNN define it as: “The BRNN can be
trained without the limitation of using input informa-
tion just up to a preset future frame. This is accom-
plished by training it simultaneously in positive and
negative time direction. ~ ([49]) In practice, this is
achieved by training two Recurrent Neural Network
(RNN)s: one on the input sequence and one on the re-
versed input sequence and combining the hidden states
of both RNNs. This has been proven to improve the
accuracy results for sequence learning [50].

6.1. Graph Words Translation for LUBM Inference

In designing the sequence-to-sequence model for
graph words translation, keras [51]—a state of the
art neural network library that can run the designed
models on a variety of backends including Tensor-
Flow [52]—was used. The model architecture is illus-
trated in Fig. 9 and its layers and hyper-parameters are
described as follows:

17 is the length of the input sequence and the output
sequence, which is equal to the number of usable
properties in the usable_properties_dictionary
obtained when encoding LUBMI1 using the ad-
vanced encoding technique.

cuDNNGRU layer is an implementation of the Gated
Recurrent Unit (GRU) [53] layer that uses the
cuDNN [54] primitives. By switching to this im-
plementation, the training time improved dramat-
ically.

256 in the input layer is the size of the graph embed-
ding.

0.2 In order to avoid over-fitting, three dropout layers
of 0.2 are used: for input, encoder and decoder.

470 in the output layer is the size of the inference
graph words catalog.

6.2. Graph Words Translation for DBpedia Inference

When using the advanced encoding technique for
the Scientists dataset, the size of the graph words cat-
alog was more than seventeen thousands graph words.
This was an indication that learning to translate the se-
quence of these graph words will not be successful as
most graph words appear only once in the training set.

input: | (None, 17, 256)
input_input: InputLayer
output: | (None, 17, 256)
input: | (None, 17, 256)

input: Dense
output: | (None, 17, 256)

I

input_dropout_0.2: Dropout

)

input: | (None, 17, 256)

output: | (None, 17, 256)

input: | (None, 17, 256)
bidirectional(encoder): Bidirectional(CuDNNGRU)
output: (None, 256)
input: | (None, 256)

encoder_dropout_0.2: Dropout

!

repeat_vector: RepeatVector

!

input (None, 17, 256)

output: | (None, 256)

input: (None, 256)

output: | (None, 17, 256)

decoder: CuUDNNGRU

output: | (None, 17, 128)

)

input: | (None, 17, 128)
decoder_dropout_0.2: Dropout
output: | (None, 17, 128)
input: | (None, 17, 128)

time_distributed(dense): TimeDistributed(Dense)

output: | (None, 17, 470)

Fig. 9. Graph words translation model for LUBM

By examining the size of the graph words per property,
it was clear that most of the graph words appear in the
layer of the RDF:type property.

In order to reduce the number of graph words,
the following simplification was necessary: instead
of inferring all the types of resources that appear
in the graph, only the types of the main resources
are inferred. For instance, for the graph of Professor
Hendler, instead of inferring the types of his univer-
sities and his birth town, only the types of his re-
source are inferred. This is actually what is returned
by the state of the art SPARQL endpoints such as
GraphDB [55] when running the DESCRIBE query
with inference. By applying this simplification, the
number of graph words dropped to 4393 for the input
graphs and to 286 for the inference graphs, which is
manageable.

The sequence-to-sequence model for the Scientists
graph words translation has the same architecture as
the LUBM1 model. Few hyper-parameters needed to
be changed though to adapt the model to the data in-
put and output sizes. Another distinction between this
model and the LUBM1 model is the difference be-
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tween the length of the input sequence and the length
of the output sequence. In the LUBM1 model, both se-
quences had length of 17—which is the size of the us-
able properties in the LUBM ontology. In the scientists
dataset, the size of the usable properties dictionary is
779. If 779 is used for the sequence output too, this
slows down the training. Only 33 of these 779 prop-
erties are actually used in the inference graphs. This
value can be obtained and calculated quickly by adding
all the elements in the target array in the first axis and
searching the indices where the sum is non zero. In the
evaluation section, the training speeds for both models
are compared.

The network model is depicted in Figure 16 and its
main hyper-parameters are described as follows:

779 Size of the usable properties dictionary

791 Size of the embedding of the input graph words.
The original size of the embedding of the graphs
from the Scientists dataset was 2048—compared
to 256 in the case of LUBM1. The value 791 was
obtained after dropping the indices that always
contain zeros.

33 Size of the usable properties in the inference

286 Size of the catalog of the inference graph words

7. Evaluation
7.1. Hardware Setup

The training was done on a server, which has four
Tesla K40m NVidia Graphics Processing Unit (GPU)s.
Each GPU has 2880 Compute Unified Device Archi-
tecture (CUDA) cores and 12Gb of memory. The mod-
els were trained using all the GPUs in parallel.

7.2. Evaluation on LUBM1 Dataset

In this section, the training process and the inference
results on intact as well as on noisy data are described.

7.2.1. Training Phase

Fig. 10 describes the training process on the LUBM1
dataset. After approximately 12 minutes of training,
98.4% validation accuracy was achieved. The best
model weights are saved to be used for the test phase.

7.2.2. Evaluation on Intact LUBM1 Dataset

When testing the trained model on the intact LUBM 1
test set, an overall accuracy of 98% was obtained.
A break down of the accuracy per class as shown

41
— Training loss

best accuracy: 98.40%
Validation accuracy
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Fig. 10. Training results on intact LUBM1 data

in Figure 17, shows 100% accuracy for most classes
that have over one thousand samples in the train-
ing. On the other hand, for the small classes, such as
ub:Department—that has only 13 samples from which
7 will be used in training and 3 for validation—the test
accuracy is only 13%. This confirms the rule of thumb
that deep learning techniques require a large amount of
data for training in order to obtain decent test accuracy.

7.2.3. Evaluation on Noisy LUBM1 Data

In this experiment, the trained model is tested on the
noisy datasets which were created as described in Sec-
tion 3. For the evaluation of the noise-tolerance capa-
bility, two metrics were designed:

Macroscopic metric: Per-graph accuracy This met-
ric consists of measuring the percentage of cor-
rupted graphs where their inference is equal to
the inference of their corresponding intact graphs.
As depicted in Fig. 11, for every graph g in the
testing dataset, the corrupted graph g’ is created
according to the selected corruption method (i.e.
UGS, TEPA, etc.). Then, the inference of the in-
tact graph i as well as that of the corrupted graph
i’ are generated using Jena. The deep reasoner is
used to generate the inference dr from the cor-
rupted graph. Correct inferences are when dr and
i are isomorphic—in other words, when the deep
reasoner inference from the corrupted graph is
isomorphic to the Jena inference from the intact
graph.

Microscopic metric: Per-triple precision/recall Inthe
previous metric, an inference is considered to be
wrong if it is not isomorphic to the Jena inference
of the intact graph. This overlooks how differ-
ent the deep reasoner inference is to that of Jena.
For instance, the per-graph accuracy metric does
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Fig. 11. Macroscopic metric: Per-graph accuracy

not indicate if the wrong inference contains only
one triple that is different than Jena’s inference or
if the whole graph is different. Moreover, some
triples generated by the deep reasoner, which
were not generated by Jena, were in fact valid.
To address these cases, a microscopic metric was
designed where two materialization graphs are
generated: the first materialization graph contains
all the triples generated by Jena from the intact
graphs and the second materialization graph con-
tains all the triples generated by the deep reasoner
from the corrupted graphs. Let J and DR be the
set of triples in the graphs generated by Jena and
the deep reasoner respectively. Then the quasi-
confusion matrix with respect to Jena (depicted
in Table 9) is computed as follows:

— True positives are the triples generated by the
deep reasoner and by Jena as well—which are
the triples in the set: DR N J

— False positives are the triples generated by the
deep reasoner but not by Jena—which are the
triples in the set: DR \ J

— False negatives are the triples generated by
Jena but missed by the deep reasoner—which
are the triples in the set: J \ DR

— True negatives are not defined because the
deep reasoner is not a classifier that separates
between valid and invalid triples. Rather, it
is a generative model and any triple that is
not generated by the deep reasoner can ei-
ther be valid or invalid according to the open-
world assumption. This is the reason the term
quasi-confusion matrix was used. The preci-
sion and recall can be computed from this qusi-
confusion matrix as they do not require the true
negative value.

As mentioned previously, some of the triples gen-
erated by the deep reasoner and not by Jena—i.e.
the false positives—can in fact be valid triples.
In order to assess the validity of these triples, the
SPARQL query:

Deep reasoner inference

P n total
True positive: False negative:
p P’
DRNJ J\ DR
Jena
inference
False positive: True negative:
n’ N/
DR\ J -
total P N
Table 9

Confusion Matrix with respect to Jena inference

Deep reasoner inference

p n total
True positive: False negative:
P’ P’/
(DRNJ)UV J\ DR
Jena
inference
False positive: True negative:
n’ N’
(DR\ J)\V -
total P N
Table 10

Refined confusion matrix

ASK {subject property object .}

is run against a triple store containing an OWL-
RL materialization of LUBMI1. Let V be the sub-
set of valid triples from the set DR\ J. The refined
quasi-confusion matrix becomes as referenced in
Table 10.

UGS UGS, datasets were created by corrupting—
according to the noise level p—the resources of type
GraduateStudent to be of type University. This con-
stitutes propagable type-assertion noise as defined in
Definition 3. Every GraduateStudent resource in the
corrupted graphs will be inferred to be of type Orga-
nization by a rule reasoner. Thus, it is not surprising
that Jena reasoner has 0% per-graph accuracy in the
UGS 1¢p case. In other terms, all the inference graphs
from the corrupted graphs i’ are different than the in-
ference graphs from the intact graphs i. The deep rea-
soner, on the other hand, achieved a per-graph accu-
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racy of 93% on the test set of UGS 199, which shows
exceptional noise tolerance capability.

Listing 3 shows an example of GraduateStudent
graph that was distorted according to UGS noise into
the graph shown in Listing 4. The correct deep rea-
soner inference is shown in Listing 5 and the Jena
wrong inference is shown in Listing 6. An example of
an input graph where the deep reasoner and Jena make
wrong inference is shown in Listing 7, Listing 8, List-
ing 9 and Listing 10 for the original graph, distorted
graph, deep reasoner inference and Jena inference re-
spectively. It should be noted that the deep reasoner got
the inference that Jena made a mistake on correctly,
but made another mistake.

In the microscopic metric, the set J (the Jena infer-
ence from the intact graph) contains 10820 triples. The
set DR (the deep reasoner inference from the UGS 1¢¢)
also contains 10820 triples from which 129 triples are
different than the Jena inference. When assessing the
validity of the 129 false positive triples using the ASK
SPARQL queries, 25 of these triples turn out to be
valid. Using the quasi-confusion matrix, the precision
for UGS 10 is equal to:

10691 + 25

Precision_UGS 199 =

and the recall is equal to:

10691 + 25

~ 98.81
(10691 + 25) 4 129 %

Recall_UGS 100 =

RATA RATA, datasets were created by corrupting—
according to the noise level p—the resources of type
ub:TeachingAssistant to be of type ub:ResearchAssistant.
This constitutes non propagable type-assertion noise
as defined in Definition 2. Even though this type of
noise should not affect a rule based reasoner, our met-
rics show that Jena has an accuracy of only 78% on
RATA100 when compared to the Jena inference of the
intact graphs. This happens when the inference of the
corrupted graph contains triples of the form:

s RDF:type ub:TeachingAssistant .

while the inference of the intact graph does not contain
such triple because it was already in the input graph.
The deep reasoner per-graph accuracy is comparative
to that of Jena in the RATA1¢gg case. The total num-
ber of triples in the set J generated by Jena from the
intact graphs is 10820. The deep reasoner generated

(10691 + 25) + (129 — 25)

9826 correct triples in DR from the RAT A1¢ dataset,
missed 994 triples and generated 814 invalid triples.
This results in the following precision and recall:

Precision_RATA100 ~ 92.35%

Recall_ RAT Ao ~ 90.81%

GCC GCC, datasets were created by corrupting—
according to the noise level p—the resources of type
ub:Course to be of type ub:GraduateCourse. This is
also non-propagable type-assertion noise. In GCC1qg,
the per-graph accuracy of Jena is 100% as expected.
The deep reasoner on the other hand, has 66.87% per-
graph accuracy only. However, a big portion of the in-
ferences that are counted to be wrong because they are
different than Jena inferences are actually valid. The
graph example illustrated in Listing 11 and its respec-
tive deep reasoner inference shown in Listing 12 show
correct inferences that were considered wrong as they
are different than the Jena inference.
The microscopic metric aims to quantify these
cases. Jena generates 3913 triples from the intact
GCCy. The deep reasoner missed 249 of these
triplesoin the GCC1o case and generated 1611 triples
that were not generated by Jena from which 627 are
valid. The following listing contains two valid triples
that were generated by the deep reasoner but not by
Jena:

UndergraduateStudent132 RDF:type ub:Person .
Course37 RDF:type ub:Course .

The precision and recall of the deep reasoner for
GCC1q are:

Precision_GCCioo ~ 81.35%

Recall_GCCloo >~ 9452%

TEPA TEPA, datasets were created by corrupting—

according to the noise level p—the properties ub:teacherOf

into ub:publicationAuthor. Unlike the previous noisy
datasets—which contain type-assertion noisy triples—
TEPA and WOAD contain property-assertion noisy
triples. TEPA contain propagable property-assertion
noise and Jena had 0% accuracy in TEPA1qy as ex-
pected. The deep reasoner got 45.82% per-graph ac-
curacy in TEPA;oo. Jena generated 2062 triples from
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the intact graphs TEPAg. The deep reasoner gen-
erated 1861 valid triples from the corrupted dataset
TEPA100, missed 201 triples and did not generate any
invalid triples. This results in the following precision
and recall for TEPA1go:

Precision_TEPA oo = 100%

Recall_TEPAwo >~ 9025%

WOAD WOAD, datasets were created by corrupting—
according to the noise level p—the properties ub:advisor

into ub:worksFor. This is non propagable property-
assertion noise because the property ub:worksFor does
not have any domain or range in the LUBM ontol-
ogy. However Jena accuracy was 0% on WOAD1qg
compared to the inference from intact graphs WOAD).
This is because even though the Jena inference does
not contain any invalid triple, it missed the triples that
were generated using the property ub:advisor domain
and range. For instance, the inference from the intact
graph indicates that the type of the student is ub: Person
and that his advisor is of type ub:Professor but the
inference from the corrupted graph does not contain
these two triples.

The per-graph accuracy of the deep reasoner on
WOAD1 is also 0%. Jena generated 13301 triples
from the intact graphs and the deep reasoner inference
from WOAD1yo missed 4772 triples and added 8252
false positive triples. This results in the following pre-
cision and recall for WOAD1¢:

Precision_WOAD1yo ~ 50.83%

Recall WOAD1 oo ~ 64.12%

Even though the deep reasoner had poor noise-tolerance
in this case, there is an interesting pattern that was cap-
tured. For instance, when corrupting the triple:

GraduateStudent0 ub:advisor
AssistantProfessor3 .

into

GraduateStudent0 ub:worksFor
AssistantProfessor3 .

the inference from the deep reasoner contains these
two triples:
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Fig. 12. Macro and micro evaluation on noisy LUBM1 datasets

AssistantProfessor3 RDF:type ub:University .
AssistantProfessor3 RDF:type ub:0Organization

Both triples are obviously invalid but they show how
the deep reasoner captured the implicit range of the
property ub:worksFor. The range of this property is not
encoded using RDFS:range property in the ontology
but rather using Web Ontology Language (OWL) rules
as follows:

<owl:Class rdf:ID="Employee">
<rdfs:label>Employee</rdfs:label>
<owl:intersectionOf rdf:parseType="
Collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#
worksFor"/>
<owl:someValuesFrom>
<owl:Class rdf:about="#
Organization"/>
</owl:someValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

In other words, even though the ground truth did not
specifically contain the range of the ub:worksFor prop-
erty as we used RDFS reasoning, the deep reasoner
captured that this property is connected to resources of
types ub:Organization and ub: University.

Section 7.2.3 summarizes the macro and micro eval-
uation on the 5 noisy datasets.
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7.3. Evaluation on the Scientists Dataset

As detailed in Section 6, two models are trained on
the scientists dataset. The first model is similar to the
LUBMI1 model—except for the hyper-parameters—
having the same length of the input and output se-
quences. This model takes more than 16 hours to reach
a validation accuracy of 87.76% (Section 7.3). As the
output sequence is mainly filled with zeros except for
33 indices out of 779, we used a compressed version
of the output containing these indices only.

41

— Training loss
—— Validation accuracy

best accuracy: 87.76%
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Fig. 13. Training results on DBPpedia Scientists dataset

The optimized model reaches similar performance
in approximately half the time.

7.3.1. Noise-Tolerance Evaluation on the Scientists
Dataset

For the noise-tolerance evaluation, we used the
person-place examples. Out of the 1761 person-place
graph descriptions in DBpedia, the Scientists dataset
contains 94. Unlike the LUBMI1 case—where the
training is performed on intact data and the test on
controlled noisy data—the training on the scientists
dataset is performed on noisy data. When an input
graph contains a triple of the form:

r RDF:type dbo:Person .
the Jena reasoner infers that

r RDF:type dbo:Agent .

as the class dbo: Person is a subclass of dbo:Agent. For
the person-place graphs, this constitutes a propagation
of noise because dbo:Agent and dbo:Place are disjoint
classes. In order to evaluate the noise-tolerance ca-
pability of the deep reasoner, we check if it inferred

that a person-place is of type dbo:Agent. Out of the
94 examples, 6 inferences only contain this noisy in-
ference. However, some of the remaining 88 inference
either contain false positive or missed valid triples that
were inferred by Jena. 38 inference graphs are per-
fect in the sense that they contain exactly the inference
from Jena minus the noisy triple. Some examples of
these graphs are: dbr:Socialist_Republic_of _Croatia,
dbr:Teylers_Museum and dbr:Meta_River. This makes
up 40% of the noisy examples. For the remaining
person-place graphs, a few inferences contain false
positive triples that were not generated by Jena.
For example, the deep reasoner inference from the
dbr:Big_Ben graph, missed these two triples compared
to Jena (The first triple should be missed):

dbr:Big_Ben a dbo:Agent
dbr:Big_Ben dul:isDescribedBy
dbr:Gothic_Revival .

and generated the following extra triple:

dbr:Big_Ben a dbo:HistoricPlace .

It should be noted that this information is not explic-
itly nor implicitly(i.e. can be inferred) embedded in
the DBpedia graph of the the resource dbr:Big_Ben.
It is therefore counted as false positive even though it
“makes sense". The deep reasoner inferred such infor-
mation by capturing that resources that have similar
links as the dbr:Big_Ben resource are usually of type
dbo:HistoricPlace.

8. Conclusions and Future Work

The main contribution of this paper is the empirical
evidence that deep learning (neural networks transla-
tion in particular) can in fact be used to learn semantic
reasoning—RDFS rules specifically. The goal was not
to reinvent the wheel and design a Yet another Seman-
tic Reasoner (YaSR) using a new technology; it was
rather to fill a gap that existing rule-based semantic
reasoners could not satisfy, which is noise-tolerance.

Towards achieving the main contribution of this re-
search, the following sub-contributions were made:

Noise Intolerance Conditions In order to illustrate
the intolerance of rule-based reasoners to noise in
Semantic Web data, a taxonomy for the different
types of noise that can be found in it was drawn.
Additionally, the necessary conditions for a noise



B. Makni and J. Hendler / Deep learning for noise-tolerant RDFS reasoning 27

type to be propagable (i.e affect the inference) by
any RDFS rule were discerned.

Layered Graph Model for RDF Even though the lit-
erature encompasses quite a few propositions for
graph models for RDF, none of them is designed
for RDFS reasoning specifically or for neural net-
work input. We proposed a layered graph model
for RDF data that fulfilled these requirements.

Graph Words Using the layered graph model, we
proposed a novel way of representing RDF graphs
as a sequence of graph words. The main observa-
tion that led to this design is that layers of RDF
graphs in a restricted domain are slightly variable.

Graph-to-Graph Learning By representing RDF graphs

as a sequence of graph words, we were able to use
neural network translation techniques for trans-
lation of graph words, which constitutes a novel
approach for graph-to-graph learning.

While the current approach proves empirically that
RDFS rules are learnable by sequence-to-sequence
models with noise-tolerant reasoning capabilities, it is
barely a scratch on the surface of noise-tolerant rea-
soning in general. This research can be extended in the
following directions:

8.1. Generative adversarial model for graph words

The experiments on controlled noisy datasets from
LUBMI1 showed that the noise-tolerance capability
of the deep reasoner depends on the type of noise—
specifically the noise-tolerance on noisy type as-
sertions is better than the noise-tolerance on noisy
property assertions. In the propagable noise cases—
where Jena or any rule-based reasoner generates noisy
inferences—the deep reasoner showed noise-tolerance
with varying degrees of accuracy (from 93% to 46%).
However, for the non-propagable noise cases—that do
not affect rule reasoners inference—Jena performed
better than the deep reasoner. For the special case of
WOAD noise, both Jena and the deep reasoner have
the worst accuracy of 0%. In these experiments, the
training was performed on intact data and noise was
seen only during the test phase. One way to improve
the noise-tolerance capability for these cases is to in-
duce a small percentage of noise in the training set as
well. Our previous experiments on the naive sequence-
to-sequence learning for RDFS reasoning [56] proved
that training with a small percentage of noise improves
the noise-tolerance capability dramatically. Instead of
generating noise of a specific type—which assumes

the prior knowledge of the type of noise encountered
during the test phase—we propose designing adversar-
ial generative models for graph words. Generative ad-
versarial models, described in [57], are being used suc-
cessfully in other fields to add robustness to unknown
types of noise. In these models, two networks were
trained while competing with each other: the genera-
tor is trained to generate the most difficult sample that
can fool the discriminator into thinking that the sam-
ple is not noisy, and the discriminator is trained to dis-
tinguish between noisy and intact samples. The deep
reasoner will then learn from the ground truth graph
words as well as the corrupted graph words generated
by the adversarial generator.

8.2. OWL Reasoning

In this work, we tackled the problem of noise-
tolerant RDFS reasoning. OWL reasoning with noise-
tolerant capability is also a very promising research
track that can find its applications in the biological and
biomedical fields for example. We investigated some
use cases using ontologies from the Open Biologi-
cal and Biomedical Ontology (OBO) Foundry [58],
specifically using the Human Disease Ontology [59].
In this use case, some patients’ descriptions would
contain misdiagnoses and the goal is to generate cor-
rect inferences with the presence of these misdiag-
noses. The hurdle that we faced in proceeding with this
use case was ground truthing, as we needed patients’
data with tagged noise. In this context, tagged noise
means that the misdiagnosed cases are known. This is
required to compare the inference from intact data ver-
sus the inference from noisy data.

In [56], we tested the naive sequence-to-sequence
learning approach on a subset of OWL-RL rules.
This subset includes what we call generative rules
that generate inference triples and exclude the consis-
tency checking rules. The performance of the naive
sequence-to-sequence approach on OWL-RL rules
was comparable to its performance on RDFS rules.
This is a preliminary indication that the graph words
translation approach can also be applicable to learning
OWL-RL rules.

8.3. Training with multiple “A-Boxes"

Another limitation to the current approach is that the
training is done on a dataset that uses only one on-
tology for the inference. After training the graph-to-
graph model on LUBMI1 dataset, we needed to adapt
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the model hyper-parameters for the scientists’ dataset
and start the training from scratch. We propose explor-
ing transfer learning: Instead of starting the training
process from scratch when training to infer using a new
ontology, the neural network weights from the previ-
ous training can be used to initialize the new model.
Transfer learning [60] aims to capitalize on the knowl-
edge learned from one domain and adapt it to a new
domain. The adaptation phase in neural networks con-
sists of tuning the model weights after initializing them
using the previous models’ weights. Research in this
direction looks promising especially when transferring
weights between models of different width. The width
of the model is determined by the length of the graph
words sequence.

8.4. Towards the trust layer

In a recent positional paper titled “Semantic Web:
Learning from Machine Learning" [61], Brickley de-
scribes his vision of how deep learning and Seman-
tic Web fields can communicate and learn from each
other. In this paper, we initiated the communication
in one direction which is: deep learning for Seman-
tic Web. The other direction, Semantic Web for deep
learning, is also equally as important and very promis-
ing with lots of opportunities for research and subse-
quent discovery. One such research effort in that direc-
tion is [24] where the authors use Semantic Web tech-
nologies to describe the inputs and outputs of neural
networks.

We believe that our deep learning for noise-tolerant
semantic reasoning contribution can be extended into
a hub where both fields can communicate and benefit
from each other. One way to create this hub is through
provenance-based reasoning. Imagine that the deep
reasoner will not only have access to the erroneous
triple in DBpedia but to the provenance of that triple
i.e. the person who originally edited the Wikipedia
page and input the wrong information. By detecting
that most of the triples provenant from that user causes
the reasoner to be in noise-tolerance mode, it can not
only ignore the triples generated by that user but also
assign a trust level to its “facts". This can be a step to-
wards the trust layer in the Semantic Web layers cake.
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Appendix A. Simplified Encoding Algorithm

Algorithm 1 Simplified encoding algorithm

Input: rdf graph, /* The RDF graph to be encoded */
properties_dictionary, /* A dictionary containing the IDs of the properties */
global_resources_dictionary, /* A dictionary containing the IDs of the subjects and objects resources in the

ontology */
local_resources_dictionary, /* If encoding an input graph, this dictionary is empty and will be filled during the
encoding, and if encoding an inference graph, this dictionary contains the IDs of the local subjects’ and objects’
resources */

Parameter: is_inference /* A boolean set to True if encoding the inference graph and to False otherwise */
max_local_dictionary_size /* The size of the biggest local_resources_dictionary */
Output: adjacency_matrix /* 3D adjacency matrix containing an encoded representation of the RDF graph */
local_resources_dictionary /* The filled local_resources_dictionary if encoding an input graph */
Begin:

number_of_properties <— SIZE(properties_dictionary)
max_size <— max_local_dictionary_size + SIZE(global_resources_dictionary)
adjacency_matrix <— ZEROS(number_of_properties, max_size, max_size)
function ADD_RESOURCE(resource)
‘ if resource in global_resources_dictionary
or resource in local_resources_dictionary then
‘ return
else
‘ ‘ local_resources_dictionary[resource] <—
SIZE(local_resources_dictionary) + SIZE(global_resources_dictionary)
/* We offset the IDs in the local_resources_dictionary with the size of the global_resources_dictionary so their
IDs do not overlap */
function LOOKUP_RESOURCE(resource)
if resource in global_resources_dictionary then
‘ return global_resources_dictionary[resource]
else if resource in local_resources_dictionary then
‘ return local_resources_dictionary[resource]
else
| ERROR, EXIT

function ENCODE(rdf_graph, global_resources_dictionary, local_resources_dictionary, properties_dictionary,
is_inference)

for all (s,p,0) in SORTED_TRIPLES_BY_PROPERTY (rdf_graph) do
if p not in properties_dictionary then

| continue

p_id < properties_dictionary[p]

if not is_inference then

| ADD_RESOURCE(s)

| ADD_RESOURCE(0)

s_id +~ LOOKUP_RESOURCE(S)

0_id < LOOKUP_RESOURCE(0)

adjacency_matrix[p_id, s_id, o_id] < 1

return adjacency_matrix, local_resources_dictionary

End
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Appendix B. Simplified Decoding Algorithm

Algorithm 2 Simplified decoding algorithm

Input: adjacency_matrix, /* 3D adjacency matrix containing */
global_resources_dictionary, local_resources_dictionary, properties_dictionary

Output: rdf graph

Begin:
rdf_graph <— GRAPH() /* Creating an empty RDF graph */
inverted_properties_dictionary <— INVERT(properties_dictionary)
inverted_global_resources_dictionary <— INVERT(global_resources_dictionary)
inverted_local_resources_dictionary <— INVERT(local_resources_dictionary)
function REVERSE_LOOKUP(resource_id)

if resource_id in inverted_global_resources_dictionary then

‘ return inverted_global_resources_dictionary[resource_id]

else if resource_id in inverted_local_resources_dictionary then

\ return inverted_local_resources_dictionary[resource_id]

else

| ERROR, EXIT

function DECODE(adjacency_matrix, inverted_global_resources_dictionary, inverted_local_resources_dictionary,
inverted_properties_dictionary)
for all (p_id,s_id,o_id) in NON_ZEROS(adjacency_matrix) do
p < inverted_properties_dictionary[p_id]
S < REVERSE_LOOKUP(s_id)
0 < REVERSE_LOOKUP(0_id)
ADD_TRIPLE(rdf_graph, s, p, 0)
return rdf_graph

End

Appendix C. Advanced Encoding Algorithm

Algorithm 3 Advanced encoding algorithm

Input: rdf graph, properties_dictionary, properties_groups,
global_resources_dictionary, usable_properties_dictionary,
usable_global_resources_dictionary,
local_resources_dictionaries I* The list of local resources dictionaries that will be populated if encoding an
input graph */
Parameter: is_inference
Output: sparse_encoding,
local_resources_dictionaries /* Not modified if encoding an inference graph */
Begin:
function LOOKUP_RESOURCE(resource, property)
property_group <— properties_groups[property]
if resource in usable_global_resources_dictionary then
‘ return usable_global_resources_dictionary [resource]
else if resource in local_resources_dictionaries [property_group] then
‘ return local_resources_dictionaries [property_group][resource]
else
| ERROR, EXIT
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function ADD_RESOURCE(resource, property)
property_group <— properties_groups[property]
if resource in usable_global_resources_dictionary then
‘ return
else if resource in global_resources_dictionary then
‘ ‘ usable_global_resources_dictionary [resource]
< SIZE(usable_global_resources_dictionary)
\ else if resource not in local_resources_dictionaries [property_group] then
‘ ‘ local_resources_dictionaries [property_group][resource]
< —(s1zE(local_resources_dictionaries [property_group][resource]))

for all (s,p,0) in SORTED_TRIPLES_BY_PROPERTY (rdf_graph) do
if p not in properties_dictionary then
| continue
else if p not in usable_properties_dictionary then
‘ usable_properties_dictionary[p] <— SIZE(usable_properties_dictionary)
p_id < usable_properties_dictionary[p]
if not is_inference then
ADD_RESOURCEC(S,p)
ADD_RESOURCE(0,p)
s_id -~ LOOKUP_RESOURCE(S,p)
0_id <— LOOKUP_RESOURCE(0,p)
APPEND(sparse_encoding, p_id, s_id, o_id)

End

Appendix D. Graph words creation algorithm

Algorithm 4 From RDF dataset to graph words corpus

Input: G, /* The set of input RDF graphs */
I /* The set of inference RDF graphs */
global_resources_dictionary, properties_dictionary

Output: X, /* Input corpus */
Y, /* Target corpus */
G_Catalog, /* Layouts catalog of the input corpus */
I_Catalog, /* Layouts catalog of the target corpus */
Local_Resources_Dictionaries /* A list containing the local_resources_dictionary */

Begin:
dataset_size < SIZE(G)
index < 0
X< 1[]

Y <[]

G_Catalog < [ ]
I_Catalog <[]
Local_Resources_Dictionaries < [ ]
while index < dataset_size do
rdf_input <— G[index]
inference < I[index]
local_resources_dictionary < [ ]
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‘ x_graph_sentence < [ ]
‘ y_graph_sentence < [ ]
/* First we encode the input graph */
‘ adjacency_matrix, local_resources_dictionary <— ENCODE(rdf_input, global_resources_dictionary, local_resources_dictionary
properties_dictionary, is_inference=False)
Local_Resources_Dictionaries[index] <— local_resources_dictionary
for all layer in adjacency_matrix do
‘ if LAYoUT(layer) not in G_Catalog then
| | APPEND(G_Catalog, LAYOUT(layer))
‘ graph_word < G_Catalog[LAYOUT(layer)]
\ APPEND(x_graph_sentence, graph_word)
X[index] < x_graph_sentence

/* Then we encode the inference graph using local_resources_dictionary */

‘ adjacency_matrix, local_resources_dictionary <— ENCODE(inference, global_resources_dictionary, local_resources_dictionary
properties_dictionary, is_inference=True)
for all layer in adjacency_matrix do
‘ if LAYoUT(layer) not in I_Catalog then
| | APPEND(I_Catalog, LAYOUT(layer))
\ graph_word < I_Catalog[LAYOUT(layer)]
‘ APPEND(y_graph_sentence, graph_word)
Y[index] < y_graph_sentence
index < index + 1

return X, Y, G_Catalog, I_Catalog, Local_Resources_Dictionaries
End

Appendix E. Possible Number of Links per Properties per Classes in LUBM1

Table 11
Possible number of links per properties per classes in LUBM1
Properties X .

rdf:type | ub:advisor | ub:teacherOf | ub:researchlnterest
Classes
ub:GraduateStudent 1,2 1 0 0
ub:Publication 1 0 0 0
ub:TeachingAssistant 2 1 0 0
ub:ResearchAssistant 2 1 0 0
ub:AssistantProfessor 1 0 2,3,4 1
ub:AssociateProfessor 1 0 2,3,4 1
ub:Lecturer 1 0 2,3,4 0
ub:Course 1 0 0 0
ub:GraduateCourse 1 0 0 0
ub:FullProfessor 1 0 2,3,4 1
ub:ResearchGroup 1 0 0 0
ub:Department 1 0 0 0
ub:University 1 0 0 0
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Table 12

Possible number of links per properties in the Scientists dataset for the Scientist class
Property Possible number of links
rdf:type 1,2,3,[5..97],99, 101, 103, 107, 110, 111, 112, 116, 118, 134, 135, 154
dbo:doctoralStudent | [1 ..17], 19, 20, 21, 22, 26, 27, 28, 31, 32
dbo:knownFor [1..17], 19, 20, 23, 25, 28
dbo:field [1..12], 14,17, 18,22
dbo:influenced [1..11],13,16,19,21,30
dbo:influencedBy [1..13],15,16, 18,19

Listing 3: Original graph (LUBM!1 description of GraduateStudent0)

:Publication4 ub:publicationAuthor _:GraduateStudentO
:Publication8 ub:publicationAuthor _:GraduateStudentO
:Publication7 ub:publicationAuthor _:GraduateStudentO
:Publicationl4 ub:publicationAuthor _:GraduateStudentO
:Publicationl3 ub:publicationAuthor _:GraduateStudentO
:GraduateStudent0 a ub:GraduateStudent,
ub:ResearchAssistant ;
ub:advisor _:AssistantProfessor3 ;
ub:emailAddress "GraduateStudentO@Department0.University0.edu”
ub:memberOf <http://www.Department0.UniversityO.edu> ;
ub:name "GraduateStudentO"
ub:takesCourse _:GraduateCoursel6
_:GraduateCourse50
_:GraduateCourseb6bd ;
ub:telephone "xxx—-xxx-xxxx"
ub:undergraduateDegreeFrom <http://www.University358.edu>

Appendix F. Possible Number of Links per Properties in the Scientists Dataset for the Scientist Class

Appendix G. A zoom in on the network of the relation RDFS:subPropertyOf in the DBpedia ontology with
labels

Appendix H. Graph Words Embedding and Reconstruction
Appendix I. Capturing graph words similarity via embedding
Appendix J. Graph words translation model for DBpedia
Appendix K. LUBMI1 accuracy results per class

Appendix L. Examples of inference on noisy RDF graphs
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Listing 4: Distorted graph (LUBM1 description of GraduateStudent0)

:Publicationd4 ub:publicationAuthor _:GraduateStudentO
:Publication8 ub:publicationAuthor _:GraduateStudentO
:Publication7 ub:publicationAuthor _:GraduateStudentO
:Publicationl4 ub:publicationAuthor _:GraduateStudentO
:Publicationl3 ub:publicationAuthor _:GraduateStudentO

_:GraduateStudent0 a ub:University ,

ub:ResearchAssistant;
ub:advisor _:AssistantProfessor3 ;
ub:emailAddress "GraduateStudentO@Department0.University0.edu" ;
ub:memberOf <http://www.DepartmentO.University0O.edu> ;
ub:name "GraduateStudentO"
ub:takesCourse _ :GraduateCoursel6
_:GraduateCourse50
_:GraduateCourseb6d ;
ub:telephone "xxx—-xxx-xxxx" ;
ub:undergraduateDegreeFrom <http://www.University358.edu>

Listing 5: Deep reasoner correct inference from noisy input of type UGS

:Publication4 a ub:Publication
:AssistantProfessor3 a ub:Employee,
ub:Faculty,
ub:Professor
:Publication8 a ub:Publication
:Publication7 a ub:Publication
:Publicationl4 a ub:Publication
:Publicationl3 a ub:Publication
_:GraduateStudent0 a ub:Person ;
ub:degreeFrom <http://www.University358.edu>
<http://www.University358.edu> a ub:0Organization,
ub:University

Listing 6: Jena inference from noisy input of type UGS

:Publication4 a ub:Publication
:AssistantProfessor3 a ub:Employee,
ub:Faculty,
ub:Professor
:Publication8 a ub:Publication
:Publication7 a ub:Publication

:ublicationl4 a ub:Publication

:Publicationl3 a ub:Publication

_:GraduateStudent0 a ub:0rganization ,

ub:Person ;
ub:degreeFrom <http://www.University358.edu>
<http://www.University358.edu> a ub:0Organization,
ub:University
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dbo:chorusCharacterInPlay

dbo:characterInPlay

35

dbo:oilSystem

dbo:engine dbo:component
dbo:zipCode é dbo:postalCode \ /
dul:hasComponent
dbo:muteCharacterInPlay
dbo:boiler dbo:automobilePlatform
dbo:nrhpd9piPlo0dTyBg: oender
dbo:spurType dbo:typeOfElectrification dbo:fuelSystem
dbo:millType dbo:terytCode
dhn:industryAK dbo:biome
dbo:governmentTipe dbo:category
dbo:building Typ| dbo:webcast
dbo:musicType dbo:voiceType
dbo:format \
& - dbo:genre
Mountain e dul:isClassifiedBy.
dbo:simcCode dbo:rocketFunction
dbo:orogeny / dbo:mediaType dbo:coL:let{)):/e\’\\/'ei
dbo:fastestDriverTean
dbo:territor
dbo:type dbo:satScore
dbo:championInDoubleditte
dbo:engineTypy dbo:programmeFormat dbo:closingFilm
Y dbo:country WithFirstSa¢lite
dbo:boilerPressufe dbo:legalForm
dbo:shuttle,
dbo:class dbo:museumType
dbo:humanDevelopmentIndexRankingCategory dbo:powerType dbo:thirdTea
reé}?eginn dbo:silCode
:state dbo:firstDriverCopntr:
o:linkedTo
bo:wineRegion
sourceConfluencePlace dbo:launchVehi
Y dbo:settlement
dbo:region .
-0l ath!
bo:bodyDiscovered dbo:olympicOathSwornRR¥udxe
dbo:canton
dbo:capitalPlace dbo:LanguageCode dbo:championInSii vlem\ /
dbo:countySeat (\ L %
dboscity dbo:secortdTeam — dul:hasParticipant
dbo:mouthPlace o
dbo:homeport dbo:laundhSite

dbo:locationCity

dbo:borough
T dbo:locatedInArea

dbo:is06393Code dbosiso6392Code

dbo:is06391Code

dbo:show]udg

n

>

Fig. 14. A zoom in on the network of the relation RDFS:subPropertyOf in the DBpedia ontology with labels
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Table 13
Capturing graph words similarity via embedding
ID | Graph word Embedding vectors U and V
0 10 o 10
08 0.8
il - 20
06 0.6
61 4 A0
04 o4
] 50
02 ]
G 00 80 0.0
0 » 'l & ] 01 2 3
0 10 o 10
08 0.8
il —_ 20
06 0.6
85 4 40
04 o4
] 60
02 oz
] 00 80 o0
0 il i ] ] 01 2 3
0 10 o 10
08 0.8
| | . 20
| 0§ 0.6
100 4 A0
04 o4
i 60
02 ]
)] 00 80 W]
0 » E 0 G o1 2 3
0 10 o 10
08 0.8
bl .. 20 —
| —
06 0.6
104 4 A0
04 o3
] &0
02 0.2
G 00 80 0.0
0 » i & G o1 2 3
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input_input: InputLayer

input:

(None, 779, 791)

output:

(None, 779, 791)

'

input: Dense

input:

(None, 779, 791)

output:

(None, 779, 256)

l

input_dropout_0.2: Dropout

input: | (None, 77

6)

oufput:

9,
(None, 779,

25
256)

'

bidirectional(encoder): Bidirectional(CuDNNGRU)

input:

(None, 779, 256)

output:

(None, 256)

'

input: | (None, 256)
encoder_dropout_0.2: Dropout
output: | (None, 256)
input: (None, 256)
repeat_vector: RepeatVector
output: | (None, 33, 256)

'

decoder: CuDNNGRU

input:

(None, 33, 256)

output:

(None, 33, 128)

'

decoder_dropout_0.2: Dropout

input:

(None, 33, 128)

output:

(None, 33, 128)

'

time_distributed(dense): TimeDistributed(Dense)

input:

(None, 33, 128)

output:

(None, 33, 287)

Fig. 16. Graph words translation model for DBpedia
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Fig. 17. LUBMI1 accuracy results per class

Listing 7: Original graph (LUBM!1 description of GraduateStudent114)

_:Publication8 ub:publicationAuthor _:GraduateStudentll4
_:Publication7 ub:publicationAuthor _:GraduateStudentll4
_:Publication2 ub:publicationAuthor _:GraduateStudentll4

:Publicationll ub:publicationAuthor _:GraduateStudentl114
:Publication6 ub:publicationAuthor _:GraduateStudentl14
:GraduateStudentl114 a ub:GraduateStudent,
ub:TeachingAssistant ;
ub:advisor _:FullProfessord ;
ub:emailAddress "GraduateStudentll4@Department(0.University0.edu"
ub:memberOf <http://www.DepartmentO.University0.edu> ;
ub:name "GraduateStudentl114"
ub:takesCourse _ :GraduateCourselob,
_ :GraduateCourse66,
_:GraduateCourse8 ;
ub:teachingAssistantOf _:Coursed?7 ;
ub:telephone "xxx-xxx-xxxx"
ub:undergraduateDegreeFrom <http://www.University989.edu>
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Listing 8: Distorted graph (LUBM!1 description of GraduateStudent114)

:Publication8 ub:publicationAuthor _:GraduateStudentl14
:Publication7 ub:publicationAuthor _:GraduateStudentl14
:Publication2 ub:publicationAuthor _:GraduateStudentl14
:Publicationll ub:publicationAuthor _:GraduateStudentl114
:Publication6 ub:publicationAuthor _:GraduateStudentl14

_:GraduateStudentl114 a ub:University ,

ub:TeachingAssistant ;

ub:advisor _:FullProfessor4d ;
ub:emailAddress "GraduateStudentll4@Department0.University0.edu"
ub:memberOf <http://www.DepartmentO.University0.edu> ;
ub:name "GraduateStudentl114"
ub:takesCourse _:GraduateCourselob,

_:GraduateCourseb66,

_:GraduateCourse8 ;
ub:teachingAssistantOf _:Coursed?7 ;
ub:telephone "xxx—-xxx—-xxxx"
ub:undergraduateDegreeFrom <http://www.University989.edu>

Listing 9: Deep reasoner wrong inference from noisy input of type UGS

_:Publication8 a ub:Publication

_:Publication7 a ub:Publication

_:Publication2 a ub:Publication

_:Publicationll a ub:Publication

_:Coursed47 a ub:0Organization,
ub:University

_:FullProfessor4 a ub:Employee,
ub:Faculty,

ub:Professor
_:Publication6 a ub:Publication

_:GraduateStudentl1l14 a ub:Person ;
ub:degreeFrom <http://www.University989.edu>

Listing 10: Jena inference from noisy input of type UGS

_:Publication4 a ub:Publication
_:AssistantProfessor3 a ub:Employee,
ub:Faculty,
ub:Professor
_:Publication8 a ub:Publication
_:Publication7 a ub:Publication
_:Publicationl4 a ub:Publication
_:Publicationl3 a ub:Publication
_:GraduateStudent0 a ub:Organization ,
ub:Person ;
ub:degreeFrom <http://www.University358.edu>
<http://www.University358.edu> a ub:0rganization,
ub:University
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Listing 11: GCC distorted graph

:FullProfessor8 ub:teacherOf _:Coursel?2
:GraduateStudentl5 ub:teachingAssistantOf _:Coursel2
:UndergraduateStudent114 ub:takesCourse _:Coursel?2
:UndergraduateStudent132 ub:takesCourse _:Coursel2
:UndergraduateStudent143 ub:takesCourse _:Coursel?2

:UndergraduateStudentl18 ub:takesCourse _:Coursel2
:UndergraduateStudent199 ub:takesCourse _:Coursel?2
:UndergraduateStudent200 ub:takesCourse _:Coursel2
:UndergraduateStudent205 ub:takesCourse _:Coursel?2
:UndergraduateStudent2l ub:takesCourse _:Coursel2
:UndergraduateStudent215 ub:takesCourse _:Coursel?2
:UndergraduateStudent225 ub:takesCourse _:Coursel2
:UndergraduateStudent317 ub:takesCourse _:Coursel?2
:UndergraduateStudent330 ub:takesCourse _:Coursel2
:UndergraduateStudent347 ub:takesCourse _:Coursel?2
:UndergraduateStudent348 ub:takesCourse _:Coursel2
:UndergraduateStudent353 ub:takesCourse _:Coursel?2
:UndergraduateStudent383 ub:takesCourse _:Coursel2
:UndergraduateStudent406 ub:takesCourse _:Coursel?2
:UndergraduateStudent419 ub:takesCourse _:Coursel?2
:UndergraduateStudent425 ub:takesCourse _:Coursel?2
:UndergraduateStudent465 ub:takesCourse _:Coursel2
:UndergraduateStudent466 ub:takesCourse _:Coursel?2
:UndergraduateStudent467 ub:takesCourse _:Coursel?2
:UndergraduateStudent475 ub:takesCourse _:Coursel?2
:UndergraduateStudent478 ub:takesCourse _:Coursel?2
:UndergraduateStudent492 ub:takesCourse _:Coursel?2
:UndergraduateStudent520 ub:takesCourse _:Coursel?2
:UndergraduateStudent523 ub:takesCourse _:Coursel?2
:UndergraduateStudent64 ub:takesCourse _:Coursel2

_:Coursel2 a ub:GraduateCourse ;

ub:name "Coursel2"

Listing 12: Deep reasoner inference from noisy input of type GCC

_:Coursel2 a ub:Organization
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Listing 13: Jena inference from noisy input of type GCC

_:Coursel2 a ub:Work
_:FullProfessor8 a ub:Employee,
ub:Faculty
_:GraduateStudentl5 a ub:TeachingAssistant
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