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Abstract. The current state-of-the-art for image annotation and image retrieval tasks is obtained through deep neural networks,
which combine an image representation and a text representation into a shared embedding space. In this paper we evaluate the
impact of using the Full-Network embedding in this setting, replacing the original image representation in four competitive
multimodal embedding generation schemes. Unlike the one-layer image embeddings typically used by most approaches, the
Full-Network embedding provides a multi-scale representation of images, which results in richer characterizations. To measure
the influence of the Full-Network embedding, we evaluate its performance on three different datasets, and compare the results
with the original embedding scheme, and with the rest of the state-of-the-art. Results for image annotation and image retrieval
tasks indicate that the Full-Network embedding is consistently superior to the one-layer embedding. These results motivate the
integration of the Full-Network embedding on any multimodal embedding generation scheme, something feasible thanks to the
flexibility of the approach.
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1. Introduction

Image annotation (also known as caption retrieval)
is the task of automatically associating an input im-
age with a describing text. Image annotation methods
are an emerging technology, enabling semantic image
indexing, search applications and visual question an-
swering [1] . The complementary task of associating
an input text with a fitting image (known as image re-
trieval or image search) is also of relevance for the
same sort of applications. Furthermore, many methods
for caption generation are based on a joint embedding
space. In this setting, retrieval is a natural way to asses
the quality the joint embedding [2] before moving for-
ward.

State-of-the-art image annotation methods are cur-
rently based on deep neural net representations, where
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an image embedding (e.g., obtained from a convo-
lutional neural network or CNN) and a text embed-
ding (e.g., obtained from a recurrent neural network
or RNN) are combined into a unique multimodal em-
bedding space. While several techniques for merging
both spaces have been proposed [3–13], little effort
has been made in finding the most appropriate image
embeddings to be used in that process. In fact, most
approaches simply use a one-layer CNN embedding
[14, 15] and the only method proposed to increase the
quality of the embedding rely on obtaining more data
to allow for fine-tuning the CNN in the final stage of
training [10]. In this paper we explore the impact of us-
ing a Full-Network embedding (FNE) [16] to generate
the required image embedding, replacing the one-layer
embedding. We do so by integrating the FNE into the
multimodal embedding pipeline defined in [3], which
is based in the use of a Gated Recurrent Units neu-
ral network (GRU) [17] for text encoding and CNN
for image encoding. Unlike one-layer embeddings, the
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FNE represents features of varying specificity in the
context of the visual dataset, while also discretizes
the features to regularize the space and alleviate the
curse of dimensionality. These particularities result in
a richer visual embedding space, which may be more
reliably mapped to a common visual-textual embed-
ding space. A specially interesting feature of FNE is
that features are encoded using only 3 values with a
semantic meaning. It makes FNE closer to linguistic
representations based on concepts presence or absence
than a regular real-valued embedding.

The generic pipeline defined by Kiros et al.[3] had
been outperformed in image annotation and image
search tasks by methods specifically targeting one
of those tasks [6, 18]. However, more recent work
by Vendrov et al.[9] and Faghri et al.[10], based on
the same generic pipeline, has outperformed previous
methods in both tasks. In this paper we extend our
previous work Full-Network Embedding in a Multi-
modal Embedding Pipeline [19] introducing the im-
provements proposed by Vendrov et al.[9] and Faghri
et al.[10]. We also report improvements in our imple-
mentation, which increase the performance of the orig-
inal method [3] as well. Finally, we exhaustively test
the main variations on a leveled playground, obtaining
insights on the real impact on performance of each of
them. Performance evaluation is done using three pub-
licly available datasets: Flickr8k [20], Flickr30k [21]
and MSCOCO [22]. Additionally, some hindrances
found on Faghri et al.[10] are studied, and a methodol-
ogy for solving them is proposed which also increases
performance.

2. Related work

This paper builds upon the methodology described
by Kiros et al.[3], which is in turn based on previous
works in the area of Neural Machine Translation[23].
In their work, Kiros et al.[3] define a vectorized rep-
resentation of an input text by using GRU RNNs. In
this setting, each word in the text is codified into a vec-
tor embedding, vectors which are then fed one by one
into the GRUs. Once the last word vector has been pro-
cessed, the activations of the GRUs at the last time step
conveys the representation of the whole input text in
the multimodal embedding space. In parallel, images
are processed through a Convolutional Neural Net-
work (CNN) pre-trained on ImageNet [24], extracting
the activations of the last fully connected layer to be
used as a representation of the images. To solve the

dimensionality matching between both representations
(the output of the GRUs and the last fully-connected
of the CNN) an affine transformation is applied on the
image representation.

Following the same pipeline [3], Vendrov et al.[9]
proposed an asymmetric order-embedding space. Its
main hypothesis is that captions are actually abstrac-
tions of the images, such as an hypernym/hyponym re-
lation. This relation is imposed using the order error
similarity defined in Eq. (3), instead of cosine simi-
larity in the same contrastive loss formulation used in
previous work [3]. Another improvement for the same
pipeline was proposed in [10] which instead of taking
into account all the contrastive examples focus only
in the hardest of them. This approach has also been
applied to order embeddings successfully. The present
work extends the FNE to these methods.

Also using the ranking loss as methodology key-
stone, the Embedding Network proposed in [25] intro-
duce novel neighbourhood constraints in the form of
additional loss penalties, achieving competitive perfor-
mance. For the specific problem of image annotation,
good results are obtained with the Word2VisualVec
(W2VV) model [18]. This approach uses as a multi-
modal embedding space the same visual space where
images are represented, involving a deeper text pro-
cessing. These methods are very similar to the ones
presented in this work thus are good candidates to ben-
efit from same improvements (e.g., FNE).

A different group of methods is based in the Canon-
ical Correlation Analysis (CCA). A first successful
approach in this direction is the Fisher Vector (FV)
[6]. FV are computed with respect to the parameters
of a Gaussian Mixture Model (GMM) and an Hybrid
Gaussian-Laplacian Mixture Model (HGLMM). For
both images and text, FV are build using deep neural
network features; a VGG [26] CNN for images fea-
tures, and a word2vec [27] for text features. A more
recent approach [13], based on CCA methodology, in-
troduce a novel bidirectional neural network architec-
ture that project image and sentence to a maximally
correlated space using the Euclidean loss instead of
CCA. Since these methods rely on a CNN representa-
tion of the image the introduction of the FNE should
be straightforward.

Attention-based models have also proved their ad-
vantages in this task. Dual Attention Networks (DANs)
[11] currently holds the best results on Flickr30K
dataset. DANs exploits two attention mechanisms to
estimate the similarity between images and sentences
by focusing on their shared semantics. In the same line,
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selective multimodal Long Short-Term Memory net-
work (sm-LSTM) [12] includes a multimodal context-
modulated attention scheme at each time-step that
can selectively attend to a pair of instances of image
and sentence, by predicting pairwise instance-aware
saliency maps for image and sentence. Attention-based
methods rely on representations of parts of the image
(and text) while FNE obtains a compact representation
of the whole image at the cost of losing the spatial in-
formation. Application of the FNE to those techniques
is far from being immediate, requiring important mod-
ifications in the FNE schema to be possible.

3. Methods

The multimodal embedding generator pipeline of
[3] represents images and textual captions within the
same space. The pipeline is composed by two main el-
ements, one which generates image embeddings and
another one which generates text embeddings. In this
work we replace the original image embedding gener-
ator by the FNE, resulting in the architecture shown in
Figure 1. Next we describe these components in fur-
ther detail.

3.1. Full-network Embedding

The FNE generates a vector representation of an in-
put image by processing it through a pre-trained CNN,
and extracting the neural activations of all convolu-
tional and fully-connected layers. After the initial fea-
ture extraction process, the FNE performs a dimen-
sionality reduction step for convolutional activations,
by applying a spatial average pooling on each convo-
lutional filter. After the spatial pooling, every feature
(from both convolutional and fully-connected layers)
is standardized through the z-values, which are com-
puted over the whole image train set. This standardiza-
tion process puts the value of the each feature in the
context of the dataset. At this point, the meaning of a
single feature value is the degree with which the fea-
ture value is atypically high (if positive) or atypically
low (if negative) in the context of the dataset. Zero
marks the typical behavior.

The last step of the FNE is a feature discretiza-
tion process. The previously standardized embedding
is usually of large dimensionality (e.g., 12,416 features
for VGG16) which entails problems related with the
curse of dimensionality. A common approach to ad-
dress this issue would be to apply some dimensionality

reduction methods (e.g., PCA) [28, 29]. The FNE uses
a different approach, reducing expressiveness through
the discretization of features, while keeping the dimen-
sionality. Specifically, the FNE discretization maps the
feature values to the {−1, 0, 1} domain, where -1 in-
dicates an unusually low value (i.e., the feature is sig-
nificant by its absence for an image in the context of
the dataset), 0 indicates that the feature has an aver-
age value (i.e., the feature is not significant) and 1 in-
dicates an uncommonly high activation (i.e., the fea-
ture is significant by its presence for an image in the
context of the dataset). The mapping of standardized
values into these three categories is done through the
definition of two constant thresholds. The optimal val-
ues of these thresholds can be found empirically for a
labeled dataset [30]. Instead, we use threshold values
shown to perform consistently across several domains
[16].

3.2. Multimodal embedding

In our approach, we integrate the FNE with the mul-
timodal embedding pipeline of Kiros et al.[3]. To do so
we obtain the FNE image representation instead of the
output of the last layer of a CNN, as the original model
does. The encoder architecture processing the text is
used as in the original pipeline, using a GRUs recurrent
neural network to encode the sentences. Each word in
the sentence is first encoded in a one-hot vector us-
ing a dictionary containing all the words in train and
validation sets. Next, it is encoded through a trainable
linear embedding into a word embedding of lower di-
mensionality. Finally, the sequence of words (embed-
dings) in the sentence is fed to a GRU and the final
state of the hidden units is the sentence embedding.
To combine both embeddings, Kiros et al.[3] use an
affine transformation on the image representation (in
our case, the FNE) analogous to a fully connected neu-
ral network layer (with identity activation function).
We simplified it by removing the bias term, resulting in
a linear transformation as in [9]. This linear transfor-
mation is trained simultaneously with the GRUs and
the word embedding. The elements of the multimodal
pipeline that are tuned during the training phase of the
model are shown in orange in Figure 1 (notice the im-
age embedding is not fitted).

In simple terms, the pipeline training procedure con-
sist on the optimization of the pairwise ranking loss
between the correct image-caption pair and a random
pair. Assuming that a correct pair of elements should
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Fig. 1. Overview of the proposed multimodal embedding generation pipeline with the integrated full-network embedding. Elements colored in
orange are components modified during the neural network training phase. During testing, only one of the inputs is provided.

be closer in the multimodal space than a random pair,
the loss LS can be formally defined as follows:

LS =
∑

I

∑
k

max(0, α− S(i, c) + S(i, ck)) (1)

+
∑

C

∑
k

max(0, α− S(i, c) + S(c, ik))

Where i is an image vector, c is its correct caption
vector, and ik and ck are sets of random images and
captions respectively. The operator S(•, •) stands for
a similarity metric. This formulation includes a margin
term α to avoid pulling the image and caption closer
once their distance is smaller than the margin. This
makes the optimization focus on pulling together dis-
tant pairs instead of improving the ones that are already
close.

The similarity metric proposed in [3] is the cosine
similarity defined in Eq. (2). In our case, since all
embeddings (c, i) are already normalized to have unit
norm, we use the dot product of the vectors as similar-
ity.

SCOS (c, i) =
c · i

‖ c ‖ · ‖ i ‖
(2)

3.3. Multimodal Order Embedding

Using the same general schema, Vendrov et al.[9]
proposed an asymmetric order embedding space. Their
main hypothesis is that captions are actually abstrac-
tions of the images, including information such as the
hypernym/hyponym relation. In the resulting shared
embedding space, an image corresponds to a caption
if the value of all components of the image embedding
have higher values than the components of the caption
embedding (ik > ck∀ik ∈ i, ck ∈ c). This relation is im-
posed during training, using the order error similarity
defined in Eq. (3) instead of the cosine similarity in the
same contrastive loss formulation defined in Eq. (1).

SOE(c, i) = − ‖ max(0, c− i) ‖2 (3)

Notice that since image and caption embeddings
are normalized to have unit L2-norm, both lay on an
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hyper-sphere centered on its coordinate origin, thus a
perfect order-embedding will not be achieved unless
they are exactly the same vector which is extremely
unlikely to happen.

3.4. Maximum error loss

A recent contribution to the field [10] proposes to
compute the loss focusing only on the worst contrast-
ing example (i.e., the closest but wrong) instead of tak-
ing into account all the examples. To achieve it, Eq.
(1) is modified substituting the sum over all contrast-
ing examples for the maximum contrasting example,
as shown in Eq. (4).

LM =
∑

I

max
k
{max(0, α− S(i, c) + S(i, ck))}(4)

+
∑

C

max
k
{max(0, α− S(i, c) + S(c, ik))}

3.5. Curriculum learning

Faghri et al.[10] reported problems in training be-
ginning using their proposed Maximum of Hinge Loss
(MH). They indicate that a rough form of curriculum
learning [31] could be applied, but do not develop
or experiment it further as in their preliminary exper-
iments it obtained worse performance than the pro-
posed method. Our experiments showed these diffi-
culties and also an unstable behaviour with respect to
hyper-parameter selection which cause the models not
to train in a reasonable number of epochs.

We define a sort of curriculum learning approach to
combine the benefits of the sum loss LS and the max
loss LM . The basic idea is to train using one method
until there is no improvement in the validation set.
Next take this pre-trained model and train it again us-
ing a different method. Several of those training steps
can be concatenated.

We propose to train the model using the sum of er-
rors loss LS , obtain the best performing model and,
in a second step, train it using the maximum error
loss LM . Notice that different hyper-parameters may
be used in each training phase as long as the dimen-
sionalities of the embeddings are not changed.

We performed preliminary experiments using this
methodology to apply a learning rate reduction. We ob-
tained small increases in the performance of some al-
gorithms but we kept these results out of the paper to
avoid shadowing more relevant points.

4. Experiments

In this section we evaluate the impact of using the
FNE in a multimodal pipeline for both image annota-
tion and image retrieval tasks. We extend our previ-
ous work [19] introducing the FNE in different mul-
timodal pipelines. To properly measure the relevance
of the FNE, we compare the results obtained with
those of the original multimodal pipelines (i.e., without
the FNE). Given the discrepancies in the experimental
setup of the different contributions, we define baselines
by keeping as much of the original setup as possible
while leveling the playground (i.e., same training and
test sets, same text preprocessing, same source CNN,
same data augmentation, etc.).

We identify the different combinations of embed-
ding and multimodal pipeline with a notation in the
form of EMB-PIPE. EMB denotes the embedding be-
ing either FNE (for the full network embedding) or
FC7 (for the baselines using the last CNN layer, fc7).
PIPE denotes the multimodal pipeline used, one of
SH, MH, SOE, MOE, PH, POE. The details of each
pipeline and the hyper-parameters used in the experi-
ments can be found in Section 4.2.

4.1. Datasets

In our experiments we use three different and pub-
licly available datasets:

The Flickr8K dataset [20] contains 8,000 hand-
selected images from Flickr, depicting actions and
events. Five correct captions are provided for each im-
age. Following the provided splits, 6,000 images are
used for train, 1,000 are used for validation and 1,000
more are kept for testing.

The Flickr30K dataset [21] is an extension of
Flickr8K and includes it. It contains 31,783 pho-
tographs of everyday activities, events and scenes. Five
correct captions are provided for each image. In our
experiments 29,000 images are used for training, 1,014
conform the validation set and 1,000 are kept for test.
These splits are the same ones used in [3, 32].

The MSCOCO dataset [22] includes images of
everyday scenes containing common objects in their
natural context. For captioning, 82,783 images and
413,915 captions are available for training, while
40,504 images and 202,520 captions are available for
validation. Captions from the test set are not publicly
available. Previous contributions consider using a sub-
set of the validation set for validation and the rest for
test. In most cases, such subsets are composed by ei-
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ther 1,000 or 5,000 images per set, with their corre-
sponding 5 captions per image. In our experiments
we only consider the 1k test set to simplify results
presentation. Some previous work extend the training
set by adding the images and captions in the original
validation set that are not used for validation or test
[9, 10]. This split raises the number of training images
to 113,287, consequently increasing the performance
of algorithms [10]. We did not consider using this ex-
tended training set since the effect of the quantity of
training data is already seen on the performance ob-
tained for the 3 different datasets (which have different
sizes).

4.2. Experimental Setup

We will experiment the impact of the FNE on the
methods proposed in [3, 9, 10], and on the curriculum
learning methodology proposed in Section 3.5. The
methods are named following the convention of [10].
Notice all losses are based on a Hinge Loss:

– Sum of Hinge Loss (SH). Uses the sum loss LS

with cosine similarity sCOS .
– Maximum of Hinge Loss (MH). Uses the max

loss LM with cosine similarity sCOS .
– Sum of Order Embedding Loss (SOE). Uses the

sum lossLS with order embedding similarity sOE .
– Maximum of Order Embedding Loss (MOE).

Uses the max loss LM with cosine similarity
sCOS .

– Pre-trained Hinge Loss (PH). Use curriculum
learning. Pre-train using the sum lossLS and fine-
tune using the max loss LM using always cosine
similarity sCOS .

– Pre-trained Order Embedding Loss (POE). Use
curriculum learning. Pre-train using the sum loss
LS and fine-tune using the max loss LM using al-
ways order embedding similarity sOE .

The details of the hyper-parameters used in the ex-
periments for each method can be found in Table 1.

4.3. Implementation Details

The devil is in the details. To facilitate the repro-
ducibility and interpretability of our work, we provide
in this section all the details regarding our implemen-
tation.

4.3.1. Training
During a training epoch all images are presented

with one caption chosen randomly from the five cap-
tions available. This approach differs from the usual of
presenting all 5 captions per image each epoch [3, 19].
If all 5 image-caption pairs are included in the dataset
it implies that more than one correct image-caption
pairs can be included in the same random batch. Since
the method uses all image-caption combinations in the
batch as contrastive examples, a real correct pair could
be wrongly considered incorrect during loss computa-
tion, leading to a noisy labels hindrance. The approach
used remove this possibility. On the other hand it is
now possible that not all captions are used for training.
It is easy to check that the probability of actually not
using all of the captions during the whole training is in
the order of 10−8 for our setups. Practically, this ap-
proach implies that to achieve a similar training it re-
quires 5 times the number of epochs. On the other side,
it reduces to almost 1/5 the memory requirements.

The models are trained until a maximum number of
epochs is reached and the best performing model on
the validation set is chosen (i.e., early stopping). In the
case of baseline experiments the maximum number of
epochs is set to 200 for all methods. In MH experi-
ments on Flicker8k and Flicker30k we raise the maxi-
mum number of epochs to 400 as we observed results
kept improving after 200 epochs.

On all our experiments (both the FC7 and the FNE)
the batch size is of 128 image-caption pairs. Within the
same batch, every possible alternative image-caption
pair is used as contrasting example (i.e., we sum over
127 contrasting examples or we choose the worst ex-
ample out of 127). We use gradient clipping with a
threshold of 2. We use ADAM [33] as optimization al-
gorithm.

4.3.2. Caption processing
The caption sentences are word-tokenized using the

Natural Language Toolkit (NLTK) for Python [34]. We
did not remove punctuation marks as in [10, 19] in con-
trast to [9]. Also in contrast to previous work [3, 19] we
do not remove long sentences from the training split.
We did not observe a significant impact on perfor-
mance with this reduction of the text pre-processing.

The choice of the word embedding size and the
number of GRUs has been analyzed to obtain a range
of suitable parameters to test in the validation set. Pre-
vious contributions [3, 9, 10] set the word embedding
dimensionality to 300. In our preliminary experiments
we found that higher dimensionalities help to obtain
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Table 1
Hyper-parameter configuration for the experiments

Model SH SH-bl MH MH-bl SOE SOE-bl MOE MOE-bl PH POE

Loss sum sum max max sum sum max max sum-maxb sum-maxb

Similarity cos cos cos cos order order order order cos order

Embed. dim.
f8k 1536 2048 1024 1024 1024 1024 1536 1024 1536 1024

f30k 1536 2048 1536 1024 1024 1024 1536 1024 1536 1024
coco 1536 2048 2048 1024 1536 1024 2048 1024 1536 2048

Word embed. dim. 1024 1000a 1024 300 1024 300 1536 300 1024 1024
Learning rate 0.0002 0.0002a 0.0002 0.0002 0.001 0.001 0.001 0.0002 0.0002 0.001 - 0.0001b

Margin 0.2 0.2 0.2 0.2 0.05 0.05 0.05 0.2 0.2 0.05
Absolute value embed. 7 7 7 7 3 3 3 7 7 3

a For MSCOCO Word embedding dimensionality is 2000 and Learning rate is 0.00025. b First training - second training parameters

better results. We also found that very different dimen-
sionalities between the word embedding and the multi-
modal embedding (i.e., 300D - 2048D) slow down the
convergence speed during training. For word embed-
dings from 1024D to 1536D the performance is good
for all methods.

Similarly we found that multimodal embedding di-
mensionalities (i.e., number of GRU units) between
1024 and 2048 gives good results for all methods. Pre-
vious methods use to adopt 1024 as the dimensionality
of the multimodal embedding space [9, 10], or even as
little as 300 [3].

4.3.3. Image processing
For generating the image embedding we use the

classical VGG16 CNN architecture [26] pretrained for
ImageNet [24] as source model. This architecture is
composed by 16 convolutional layers combined with
pooling layers, followed by two fully connected layers
and a final softmax output layer. Using only the activa-
tions of the last fully connected layer before the soft-
max (fc7) the dimensionality of the image embedding
is 4096. When using the FNE, features from different
layers are combined in an image embedding space of
12,416 dimensions.

To obtain a better representation of the image, the
full network embedding resizes the image to 256x256
pixels and extracts 5 crops of 224x224 pixels (one
from each corner and the center). Mirroring these 5
crops horizontally we obtain a total of 10 crops which
are processed through the CNN independently. The ac-
tivations collected from each of these 10 crops are av-
eraged to obtain a single representation of the image
before further processing. For the baseline we use the
same process before L2-normalization. Although this
process is common for data augmentation notice that

we are not actually doing data augmentation since the
number of training samples does not increase.

4.4. Evaluation metrics

To evaluate the image annotation and image re-
trieval tasks we use the following metrics:

– Recall@K (R@K) is the fraction of images for
which a correct caption is ranked within the top-
K retrieved results (and vice-versa for sentences).
Results are provided for R@1, R@5 and R@10.

– Median rank (Med r) of the highest ranked
ground truth result.

To obtain a comparable performance metric per model,
we use the sum of the recalls on both tasks. This has
been done before in [19] and in [10], the latter us-
ing only R@1 and R@10. We only use the score ob-
tained on the validation set to select the best perform-
ing model for early stopping and hyper-parameter se-
lection.

5. Results

Table 2 shows the results of the proposed full net-
work embedding on the Flickr8k dataset, for both
image annotation and image retrieval tasks. The top
part of the table includes the current state-of-the-art
(SotA) results as published. The second part summa-
rize the results published by the original contributions
this work is based on. Following parts contain the re-
sults produced by us for each of the models defined in
Section 4.2. Each of these blocks contain two pairs of
results. The first pair corresponds to the results while
using a configuration of hyper-parameters as close as
possible to the original (i.e., baseline or -bl), while
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Table 2
Results obtained for the Flickr8 dataset. R@K is Recall@K (high is good). Med r is Median rank (low is good). Best results for each FC7 - FNE
comparison are shown in underline. Best results for SotA and our experiments are shown in bold

.

Model
Image Annotation Image Retrieval

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

FV [6] 21.2 50.0 64.8 5 31.0 59.3 73.7 4
m-CNN [7] 24.8 53.7 67.1 5 20.3 47.6 61.7 5

Bi-LSTM [35] 29.3 58.2 69.6 3 19.7 47.0 60.6 5
W2VV [18] 33.6 62.0 75.3 3 - - - -

2WayNet [13] 43.4 63.2 - - 29.3 49.7 - -

UVS [3] 18.0 40.9 55.0 8 12.5 37.0 51.5 10

FC7-SH-bla 21.0 45.7 60.4 7 14.0 35.8 48.6 11
FNE-SH-bla 23.3 50.8 66.8 5 15.0 38.2 51.6 10

FC7-SH 22.4 49.8 62.9 6 16.6 41.2 54.3 8
FNE-SH 25.0 50.8 64.3 5 18.6 44.9 58.0 7

FC7-MH-bl b 22.6 48.6 61.9 6 17.7 42.7 54.9 8
FNE-MH-bl b 24.2 52.0 65.2 5 19.4 44.3 57.3 7

FC7-MH 23.0 49.0 63.3 6 18.5 43.2 56.1 8
FNE-MH 27.3 56.8 69.3 4 21.2 47.1 59.7 6

FC7-SOE-bl 20.6 45.4 58.0 7 15.4 38.8 52.7 9
FNE-SOE-bl 21.5 48.5 60.7 6 16.2 40.7 53.8 9

FC7-SOE 21.2 48.1 61.7 6 17.8 43.6 56.5 8
FNE-SOE 24.0 52.4 63.9 5 18.7 44.2 57.7 7

FC7-MOE-bl 22.6 48.2 62.3 6 16.9 41.5 54.2 9
FNE-MOE-blb 0.1 0.3 0.3 2,476 0.1 0.6 1.0 499

FC7-MOE 21.5 46.1 60.0 7 15.6 39.0 51.9 9
FNE-MOE 25.5 55.5 67.8 4 18.7 44.4 58.4 7

FC7-PH 22.9 48.8 62.5 6 17.1 41.7 54.6 8
FNE-PH 26.3 55.7 68.5 4 20.5 45.8 58.1 7

FC7-POE 21.0 48.3 62.0 6 16.9 41.7 55.3 8
FNE-POE 26.2 53.6 65.8 5 19.7 45.6 58.4 7

a Results from [19]. b Trained for 400 epochs.

the second pair corresponds to the results while using
the best configuration we found for the FNE. Within
each pair, the first experiment uses the FC7 embed-
ding and the second uses the FNE, keeping all hyper-
parameters unchanged. Best results for each pair are
underlined. Tables 4.4 and 4 are analogous for the
Flickr30k and MSCOCO datasets. Additional results
of the UVS model were made publicly available later
on by the original authors [36]. We include these for
the MSCOCO dataset, which was not evaluated in the
original paper [3].

First, let us consider the effect of all modifications in
the pipeline (detailed in Sections 3 and 4.3) compared
to our previous work [19]. In the first block of exper-
iments we can compare the results from [19] (hyper-
parameters are already optimized for FNE) with the
ones obtained in this work for the same model. The
modifications are We can see a significant improve-

ment in results obtained using both the FC7 and the
FNE image embeddings. Results are now very close to
the ones obtained by other methods, dimming the ben-
efits of the proposed variants. These results validate the
improvements made in the pipeline.

Now, let us focus on the differences between a
model and the same model using the FNE image em-
bedding. This is the most important contribution of this
paper, as it introduces the FNE on several multimodal
embedding pipelines. We can see through the tables
of results that every method on every dataset obtains
better results when using the FNE embedding when
compared to the FC7. Moreover, even with the original
hyper-parameter configuration (sub-optimal for FNE)
the FNE obtains better results on all tests. The only ex-
ception is FNE-MOE-bl where training problems oc-
cur with the original configuration (in Section 6 we
analyze this issue). Even in this case, results using
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Table 3
Results obtained for the Flickr30 dataset. R@K is Recall@K (high is good). Med r is Median rank (low is good). Best results for each FC7 -
FNE comparison are shown in underline. Best results for SotA and our experiments are shown in bold

.

Model
Image Annotation Image Retrieval

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

FV [6] 25.0 52.7 66.0 5 35.0 62.0 73.8 3
m-CNN [7] 33.6 64.1 74.9 3 26.2 56.3 69.6 4

Bi-LSTM [35] 28.1 53.1 64.2 4 19.6 43.8 55.8 7
W2VV [18] 39.7 67.0 76.7 2 - - - -

sm-LSTMa [12] 42.4 67.5 79.9 2 28.2 57.0 68.4 4
2WayNet [13] 49.8 67.5 - - 36.0 55.6 - -

DAN (VGG) [11] 41.4 73.5 82.5 2 31.8 61.7 72.5 3
DAN (ResNet) [11] 55.0 81.8 89.0 1 39.4 69.2 79.1 2

EN [25] 43.2 71.6 79.8 - 31.7 61.3 72.4 -

UVS [3] 23.0 50.7 62.9 5 16.8 42.0 56.5 8
VSE++(1C) [10] 31.9 - 68.0 4 23.1 - 60.7 6

VSE++(ResNet)b [10] 52.9 - 87.2 1 39.6 - 79.5 2
FC7-SH-blc 30.4 58.0 69.5 4 18.9 44.6 57.0 7
FNE-SH-blc 30.4 61.8 73.2 3 22.1 47.6 59.8 6

FC7-SH 32.4 60.9 72.6 3 24.1 51.1 64.1 5
FNE-SH 36.4 64.6 75.7 3 25.5 53.8 65.7 5

FC7-MH-bl d 29.5 59.9 70.8 4 23.0 48.9 60.4 6
FNE-MH-bl d 34.7 63.1 75.6 3 25.1 52.3 64.7 5

FC7-MH 33.6 59.4 69.3 3 23.6 50.0 61.8 5
FNE-MH 37.7 66.6 78.6 2 27.8 56.0 67.1 4

FC7-SOE-bl 31.6 60.0 72.4 3 24.0 52.1 64.1 5
FNE-SOE-bl 33.7 63.8 75.3 3 26.0 55.1 67.7 4

FC7-SOE 30.2 59.4 70.4 4 23.8 50.5 62.7 5
FNE-SOE 35.5 63.4 75.3 3 26.8 56.1 67.5 4

FC7-MOE-bl 31.1 56.2 67.8 4 20.8 47.1 58.2 7
FNE-MOE-bl 0.1 0.4 0.4 2,461 0.1 0.5 0.9 498

FC7-MOE 31.9 61.3 72.7 3 23.8 50.2 61.5 5
FNE-MOE 35.3 65.0 77.1 3 27.3 55.2 68.0 4

FC7-PH 31.8 60.1 73.6 3 24.0 51.8 63.3 5
FNE-PH 36.6 63.9 75.0 3 25.9 54.3 66.2 4

FC7-POE 31.4 60.9 72.3 3 24.5 51.3 63.7 5
FNE-POE 37.2 67.1 77.9 2 28.1 57.8 69.1 4

a Single model. b CNN fine-tuned. c Results from [19]. d Trained for 400 epochs.

an appropriate hyper-parameter selection are superior
to those of the baseline (FC7-MOE-bl). Considering
all experiments on MSCOCO dataset (including base-
lines), the average increase in recall using the FNE em-
bedding is 3.7%.

Beyond the impact of the FNE, performing a con-
sistent comparison between different multimodal ap-
proaches is difficult since different authors make dif-
ferent choices in the settings of their experiments (and
sometimes fail to detail them thoroughly). Particularly,
large differences arise depending on the data used for
training and testing. This is specially significant when

experimenting on MSCOCO dataset as we have seen in
Section 4.1. Similarly, data augmentation techniques,
a common approach in most SotA contributions, can
give a boost on performance. In our experiments we
did our best to avoid such differences or to explicit
them clearly when they are unavoidable. In this con-
text, the results we provide are as comparable as pos-
sible. Its important to keep in mind all these consider-
ations, when comparing the results we report with the
ones from other publications.

Weighting the results of the family of methods based
on [3] with the state-of-the-art we see that its rela-
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Table 4
Results obtained for the MSCOCO dataset. R@K is Recall@K (high is good). Med r is Median rank (low is good). Best results for each FC7 -
FNE comparison are shown in underline. Best results for SotA and our experiments are shown in bold

.

Model
Image Annotation Image Retrieval

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

FV [6] 25.1 59.8 76.6 4 39.4 67.9 80.9 2
m-CNN [7] 42.8 73.1 84.1 2 32.6 68.6 82.8 3

sm-LSTM a [12] 52.4 81.7 90.8 1 38.6 73.4 84.6 2
2WayNet [13] 55.8 75.2 - - 39.7 63.3 - -

EN [25] 54.9 84.0 92.2 - 43.3 76.4 87.5 -

UVS b [3] 43.4 75.7 85.8 2 31.0 66.7 79.9 3
Order c [9] 46.7 - 88.9 2 37.9 - 85.9 2

VSE++(1C) [10] 43.6 - 85.8 2 33.7 - 81.0 3
VSE++(ResNet)c,d [10] 64.6 - 95.7 1 52.0 - 92.0 1

Order++c [10] 53.0 - 91.9 1 42.3 - 88.1 2

FC7-SH-ble 41.2 72.8 85.1 2 26.2 58.6 73.9 4
FNE-SH-ble 47.3 76.8 85.8 2 31.4 65.4 78.7 3

FC7-SH 44.0 77.0 86.0 2 33.6 68.8 81.1 3
FNE-SH 50.6 80.0 88.4 1 36.7 71.3 82.7 2

FC7-MH-bl 43.8 74.7 84.5 2 32.8 67.5 80.5 3
FNE-MH-bl 49.6 78.9 89.5 2 37.5 72.1 83.6 2

FC7-MH 44.6 75.8 85.7 2 34.1 68.2 80.7 3
FNE-MH 50.2 80.5 90.5 1 37.2 71.9 83.0 2

FC7-SOE-bl 41.5 74.4 86.0 2 33.8 69.0 82.6 3
FNE-SOE-bl 47.1 78.5 89.6 2 36.8 71.6 84.2 2

FC7-SOE 44.3 74.8 84.4 2 34.9 69.2 81.9 3
FNE-SOE 46.7 79.8 88.9 2 36.4 72.8 84.7 2

FC7-MOE-bl 40.7 75.3 85.9 2 32.2 66.4 78.3 3
FNE-MOE-bl 0.1 0.3 0.4 2,472 0.1 0.5 0.9 499

FC7-MOE 43.9 75.4 84.9 2 34.2 68.0 81.2 3
FNE-MOE 47.1 79.6 88.3 2 36.6 71.7 83.3 2

FC7-PH 45.3 75.0 85.5 2 33.8 68.4 81.0 3
FNE-PH 50.6 80.0 88.4 1 36.7 71.3 82.7 2

FC7-POE 45.6 75.9 86.6 2 35.2 69.7 83.1 2
FNE-POE 48.2 81.5 89.7 2 38.8 73.5 85.0 2

a Single model. b Results provided on [36]. c Extra training data from validation set.
d CNN fine-tuned. e Results from [19].

tive performance increases with dataset size (larger
datasets lead to more competitive performances of
these methods). Since the methods tested are more
data-driven (i.e., fewer assumptions are made apriori),
it is to be expected that they can benefit more from the
increase of available data. These results are congru-
ent with the ones in [10] where the experiments using
more data obtain state-of-the-art results.

Considering the methods tested in our consistent ex-
perimental setup, we see that FNE-MH tend to obtain
the best results on image annotation while FNE-POE is
usually superior in image retrieval tasks. With these re-
sults we can not consider one method clearly superior

to the other except in the smallest Flicker8K dataset,
where FNE-MH is clearly superior. Nevertheless the
differences between the best versions of each method
remain quite small. In experiments on MSCOCO, the
recall gap between the best and the worst method (for
each task separately) is on average 2.1%.

The proposed methodology of curriculum learning
increases the already good performance of the original
FC7-MOE [10] and the FNE-MOE 1.7% on average
on MSCOCO. On the other hand, on methods based
on the cosine similarity SCOS , the second training step
(using max loss LM) add very little improvement on
the sum loss LS results. Final results of FC7-PH and
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Table 5
Hyper-parameter configuration and results for the experiments on
MOE training behaviour. Success indicates the number of times that
experiment succeeded in starting training (i.e., score > 10) over total
repetitions

Model L.rate Margin Abs. val. Success
FC7-MOE-bl 0.0002 0.2 7 5/5

FC7-MOE-bl-abs 0.0002 0.2 3 0/5
FC7-MOE-abs 0.0001 0.05 3 0/5
FNE-MOE-bl 0.0002 0.2 7 0/5

FNE-MOE-bl-abs 0.0002 0.2 3 0/5
FNE-MOE-abs 0.0001 0.05 3 4/5

FNE-PH are in general inferior to those achieved by
single training using max loss LM (FC7-MH, FNE-
MH).

6. Experiments on MOE training behaviour

When training models using the maximum order
embedding (MOE and MOE-bl), we observed insta-
bility issues. For some configurations of the hyper-
parameters, the model does not start learning, even af-
ter extending the number of epochs significantly. To
obtain some insights on that behaviour we trained the
exactly same model 5 times with different random ini-
tializations. The configurations tested are shown in Ta-
ble 5. The combinations of learning rate, margin and
absolute value are taken from the original works of
[9, 10].

The rest of the hyper-parameters are kept the same
for all experiments. The dimensionality of the word
embedding is 300 and multimodal embedding has
1024 dimensions. The maximum number of epochs is
200. We run all the tests on Flickr8K to minimize com-
putational cost, although we observed this behaviour
in Flickr30K and MSCOCO too.

To evaluate these experiments we count the number
of times the algorithm succeeded in starting training
out of 5 tests. We consider it does not train if validation
and test scores are below 10 (regular scores are higher
than 200). The results obtained are shown in Table 5.

Results, quite surprisingly, do not point to a single
variable as the cause of the problem. For the FC7 em-
bedding it did not train when absolute value was used,
independently of the learning rate and margin. The ex-
periment with the same configuration that worked well
with FC7 does not train with FNE. On the other hand,
the original configuration from [9] (but using max loss)
successfully trained on FNE embedding, but this be-
haviour is not fully robust since it failed once.

These experiments show that the instability train-
ing does not depend on the embedding mainly, but on
hyper-parameter selection and parameter initialization.
While these experiments help to shed light into the
problem, further work is required to truly understand
the cause.

The proposed curriculum learning methodology
(see Section 3.5) effectively solve this problem as it
initializes the network using the more robust sum loss.
None of the experiments we did using the proposed
curriculum learning methodology for different hyper-
parameters configurations failed to start training.

7. Conclusions

For the multimodal pipeline of Kiros et al.[3] and
other methods based on it [9, 10], using the Full-
Network image embedding results in consistently
higher performances than using a one-layer image em-
bedding. These results suggest that the visual represen-
tation provided by the FNE is superior to the current
standard for the construction of most multimodal em-
beddings. Indeed, the impact FNE has on performance
is significantly superior to the improvement resultant
of applying the main contributions from [9] and [10].

When compared to the current state-of-the-art, the
results obtained by the studied variants using FNE are
below results reported through other methods. This
difference is often the result of using a larger amount
of data for training. Indeed, results from [10] indicate
that models based on the pipeline of [3] can obtain
state-of-the-art results when using enough data.

Another issue we tackled was the instability of MOE
models. Depending on the random initialization of the
weights, the exactly same model may start training or
not. The proposed curriculum learning method of pre-
training using a sum of losses effectively alleviate this
hindering while increasing performance significantly.

Finally, let us remark that the FNE is straight-
forward compatible with most multimodal pipelines
based on CNN embeddings. If the boost in perfor-
mance we demonstrate here for the variants proposed
by [3, 9, 10] translates to other methods, the introduc-
tion of the FNE on methods which currently hold the
state-of-the-art results would likely define a new best
method. The integration of FNE with methods not so
clearly compatible (e.g., DAN) remains as future work.

Since the FNE is compatible with most multimodal
pipelines based on CNN embeddings it should be
straightforward to introduce it. If the boost in perfor-
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mance obtained by the FNE on the methods studied
[3, 9, 10] translates to other methods, such combina-
tion would be likely to define new state-of-the-art re-
sults on both tasks.
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