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Abstract. We present an AutomationML ontology (AMLO)
that covers the CAEX part of the AutomationML standard.
The AutomationML data format facilitates the engineering
data exchange during industrial systems design. Having a se-
mantic representation of the AutomationML standard allows
industrial practitioners to interlink and integrate heteroge-
neous data more efficiently and to benefit from the Seman-
tic Web tools and technology stack, while at the same time,
using a familiar domain-specific conceptualization. Com-
pared to earlier efforts for semantically representing Au-
tomationML, AMLO (a) covers the entire CAEX standard,
and not just portions relevant for a use case; (b) has been
developed following best practices for ontology engineer-
ing; and (c) is made openly available for the community by
following latest guidelines on resource sharing and publish-
ing. We describe AMLO and demonstrate its use in real-
life scenarios for improving engineering processes in Cyber-
Physical System design.
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1. Introduction

The vision of smart manufacturing is currently sup-
ported and investigated as part of various initiatives
worldwide, including Germany’s Industrie 4.0 ap-
proach [3]], the “Factory of the Future” initiative in
France and the UK [30] and the “Industrial Inter-
net Consortium’{l] in the USA. Core to these initia-
tives is enabling more flexible and efficient indus-

Uhttp://www.iiconsortium.org

trial production through a higher degree of digitiza-
tion of the entire manufacturing value-chain. In par-
ticular, plants and factories (more generically referred
to as production systems) will benefit from this digi-
tization to evolve into cyber-physical production sys-
tems (CPPS). CPSS combine physical sensing with
cyber-elements (i.e., software-based control) to more
timely and accurately influence their behavior. They
are complex mechatronic systems as, in their realiza-
tion, they require input from several engineering dis-
ciplines, such as mechanical, electric and software en-
gineering. To respond to fast-changing market needs,
the design and engineering of CPPS needs to be faster
while leading to results that are of high quality and
complexity.

During the engineering of complex mechatronic
systems such as CPPS, stakeholders typically belong-
ing to different engineering disciplines, have to collab-
orate efficiently in order to deliver a high-quality end
product (e.g., a complete production plant design) and
to satisfy strict time frames. The presence of various
engineering disciplines leads to a highly complex and
software intensive environment, which is characterized
by a) a multitude of engineering tools that were not de-
signed to cooperate with each other; b) a variety of en-
gineering domain-specific representations and data ex-
change formats applied; and c) differences in adopted
workflows across the involved disciplines. Therefore, a
key challenge for realizing CPPS relies on solving data
integration challenges among the various systems, or-
ganizations and stakeholders involved in the engineer-
ing and operation of CPPS both across engineering do-
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main boundaries (horizontal integration) and between
different abstraction levels (business, engineering, op-
eration) of the system (vertical integration) [5].

An approach for addressing data integration during
the engineering of complex systems is the automation
markup language AutomationML [18], the emerging
IEC 62714 standard for facilitating uniform data ex-
change between engineering tools. AutomationML is
an open (specification and schema are available), neu-
tral (manufacturer independent without proprietary in-
terfaces or libraries) and XML-based data exchange
format that aims to ensure consistent and lossless data
exchange during manufacturing systems design. Au-
tomationML enjoys intense industry interest and adop-
tion, yet, as an XML-based standard lacks a formal se-
mantic basis that is increasingly necessary in industrial
projects [23125]].

In fact, the use of knowledge-based approaches in
general, and semantic technologies in particular, is
a growing trend in the area of CPPS engineering.
This development materializes in a number of ap-
proaches [19133] that benefit from the following char-
acteristics of semantic and knowledge representation
technologies:

— formal and flexible semantic modeling with on-
tologies;

— intelligent, web-scale knowledge integration thanks
to linked data mechanisms and ontology align-
ment techniques;

— browsing and exploration of distributed data sets;

— querying and reasoning based data validation and
consistency checking; and

— knowledge reuse across diverse projects [32134].

Our work aims to realize these benefits and support
a wide-scale adoption of semantic technologies in
AutomationML-enabled CPPS engineering by provid-
ing a comprehensive ontology based representation of
the standard.

An ontology-based representation of the Automa-
tionML standard enables the following improvements:

— flexible schema refinement and heterogeneous
data linking and integration;

— using the semantic technology stack to enhance
the engineering processes in CPPS engineering;

— connecting to other industrial standards that al-
ready have semantic representation, e.g., eCl@ss
catalog [9] or the GoodRelations [16] ontology
through ontology reuse or linked data mecha-
nisms; and

— connecting to representations from other do-
mains, e.g., eCore in Model-Driven engineering.

Several approaches already aimed to provide a se-
mantic representation of AutomationML [1L6112/17)
21126], as detailed in Section[6} However, these efforts
have the following shortcomings:

1. they are not covering the complete standard and
are not tailored for specific use cases;

2. they are not developed according to best practices
for ontology design; and

3. they are not openly available for consultation, ex-
tension or improving current design.

The AutomationML Ontology (AMLO) described in
this paper advances the state of the art by address-
ing the issues above as follows. Firstly, AMLO is
an OWL ontology that covers the entire emerging
data exchange standard in the CPPS engineering field.
Secondly, we followed several ontology engineering
best practices during the design of AMLO, such as
adopting the Uschold and King ontology engineering
methodology [37]. We took as input two ontologies,
developed independently of each other as initial ef-
forts to cover the AutomationML standard for spe-
cific applications. The first one was created using a
top-down modeling approach [22], with the focus on
capturing the major concepts (i.e. classes and rela-
tions between them) and with the goal of enabling con-
sistency checking between different AutomationML
files. However, the property coverage was not suffi-
cient to match the AutomationML XSD schema speci-
fication, especially for data properties. The second on-
tology was developed as a part of the Alligator ap-
proach [13] following a bottom-up modeling approach
and had a well elaborated property structure, but was
limited w.r.t. a class hierarchy. Combining both on-
tologies allowed for better class and property cover-
age w.r.t. the AutomationML XSD schema as well as
for the AutomationML standard specification. Thirdly,
AMLO is openly available due to following best prac-
tices for ontology sharing and publishing, in particu-
lar those described in [[14]. As a result, AMLO cov-
ers 21 classes, 51 object properties and 48 data prop-
erties, and is aligned with three well-known vocabu-
laries, i.e., Provenance ontology, ontology of Units of
Measure, and skos vocabulary.

The reminder of this article is structured as follows.
Section 2] introduces the AutomationML standard, ex-
plains its main constructs, and, additionally, presents
an example on how a compound device can be mod-
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eled in AutomationML. Section 3] describes the used
methodology for ontology design, depicts the design
process in detail, and also explains major design de-
cisions taken. Section [4] gives an overview of AMLO
structure, main classes and properties and important
implementation details, i.e., ontology design patterns
relevant in the ontology context, alignment to exist-
ing vocabularies and following best practices for shar-
ing and reusability. Section [5] showcases two applica-
tion examples for the AMLO. Section [6] presents the
related work and positions the AMLO in the context of
other semantic representations in automation engineer-
ing. Finally, Section[7|concludes and gives an overview
of directions for future work.

2. AutomationML and Engineering Design

The AutomationML standard[18]] enables modeling
systems from single automation components to entire
large and complex production systems and supports
representation of the various aspects of such systems,
i.e., system’s topology, geometry, kinematics, and con-
trol behavior [8]. AutomationML is currently well rec-
ognized by major manufacturing companies such as
Daimler, Audi and Siemens and continues gaining ac-
ceptance from the manufacturing market players.

AutomationML is not a completely new format, but
rather consists of existing formats, which were ex-
tended, adapted, and combined appropriately. It al-
lows modeling manufacturing system data sequen-
tially, i.e., starting from the plant structure design,
and then adding the geometry and kinematics infor-
mation up to process sequences and logical depen-
dencies following the sequence of engineering dis-
ciplines involved in the engineering chain. The top
level of AutomationML is represented in terms of the
Computer Aided Engineering Exchange (CAEX, IEC
62424) format for plant topology, which is used for
storing hierarchical object information, properties, and
libraries [10]. The geometry (mechanical drawings)
and kinematics (physical properties such as force,
speed, or torsion) are implemented with the COLLAD-
orative Design Activity (COLLADA) format [2]. Fur-
ther, the logic, i.e., sequencing, behavior, and control
information is implemented with PLCopen XML (IEC
61131).

In this article, we focus on modeling topology infor-
mation by means of the CAEX format. AutomationML
is based on the following CAEX concepts:

RoleClassLibrary contains a collection of possible
functionalities that can be provided by the plant equip-
ment. A role class (RC) defines a physical or a logi-
cal object as an abstraction of a concrete technical re-
alization, which is vendor independent, e.g., a robot or
a sensor. This way a functional semantics is assigned
to an object, enabling an automatic interpretation by
a tool. RCs can also define attributes that are gener-
ally expected for this object type, e.g., a payload for a
robot RC. Additionally, RCs can be assigned to objects
within the SystemUnitClassLibrary and InstanceHier-
archy to specify an object type.

SystemUnitClassLibrary comprises collections of
vendor specific solution equipment objects. Those ob-
jects can be matched with the system requirements,
defined by the role classes, and used to implement
the plant design. A system unit class (SUC) defines a
concrete technical realization of a physical or logical
object, thus representing a specific instantiation for a
RC. System unit classes are instantiated within the In-
stanceHierachy.

InterfaceClassLibrary defines all interfaces re-
quired to describe the plant model. An interface class
(IC) can be used either a) for specifying relations be-
tween objects of a plant topology, e.g., to connect a
sensor with a programmable logic controller (PLC);
or b) for specifying references to information that is
stored outside of the CAEX file, e.g., to assign a 3D
description to an object.

InstanceHierarchy describes the plant topology,
including the concrete equipment of an actual project
- the instance data. The instance hierarchy contains all
data including properties, interfaces, role classes, rela-
tions, as well as references.

Applying AutomationML in engineering projects is
already an important improvement, as it facilitates data
exchange between the project stakeholders and de-
fines a project-specific vocabulary to which all engi-
neers can relate. Nevertheless, there is still a lack of
infrastructure for supporting advanced engineering ac-
tivities across the various engineering disciplines and
their corresponding tools, e.g., data linking, change
propagation across connected datasets, data analysis
and consistency checking. Having an ontology for Au-
tomationML will help to address these gaps.

2.1. An AutomationML Modeling Example

To illustrate how a CPSS is represented in Automa-
tionML, we developed an example using the Automa-



) ] SampleRoleClasLib
Motor{ Class MechatronicAssembly }
A [t Sensor{ Class Sensor }

MagneticSensor { Class Sensor }
InductiveSensor{ Class Sensor }

Band{ Class BeltConveyor |
Frame{ Class MechznicalAssembly }

(a) RoleClassLibrary
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») B SampleystemUnitClassLib

A\ @ ComponentParts_byManufacturer] { Class |
v @ Mator_TypeA { Class }
A @ Sensor_TypeA { Class }
) 0 Sensor_TypeA-Interfaces
+g Bolting_Frame { Class Bolting }

+ Signal_PowerSupplySocket { Class PowerSupplySocket }

SampleRoleClassLib/Sensor

(b) SystemUnitClassLibrary

~ SamplelnterfaceClassLib

) +p Communication { Class AutomationMLBaselnterface |

op Signalinterface{ Class Communication }
+p PowerConnectionPlug { Class PhysicalEndPaint }
og Oeaning { Class AutomationMLBaselnterface |

+p Bofting { Class AutomationMLBaselnterface }
+p PowerSupplySocket { Class PhysicalEndPoint }

(c) InterfaceClassLibrary

Fig. 1. Sample AutomationML modeling example. Conveyor consisting of a frame, a band, an inductive sensor and a motor. (a) SampleRole-
ClassLib contains role classes that define vendor independent functionalities for the conveyor. (b) SampleSystemUnitClassLib lists vendor spe-
cific device realizations options for the sample conveyor. (c) SampleInterfaceClassLib comprises Interface classes for the conveyor.

tionML Editor 4.7.0E|, which allows browsing and de-
veloping AutomationML files. The example system
models a conveyor that consists of a frame, a band, an
inductive sensor and a motor.

The RoleClassLibrary contains classes to repre-
sent the basic functionalities for the system com-
ponents, in our case Motor, InductiveSensor, Band
and Frame. The Frame and Motor extend the basic
class MechatronicAssembly that is defined within Au-
tomationMLBaseRoleClassLib. Different types of sen-
sors are represented by the RCs MagneticSensor and
InductiveSensor, all of which are derived from the
more general Sensor RC (cf. Figure [Ta). The role
classes are vendor independent and do not comprise
implementation-specific details, e.g., a role class Mo-
tor means "something that can fulfill motor function".

The SystemUnitClassLibrary contains component
realizations that can be used to implement the func-
tionalities, defined by RCs in a real system. SUCs are
vendor specific, e.g., Motor_TypeA represents a spe-
cific device with the motor functionality produced by
Manufacturerl (cf. Figure [Tb). RCs are assigned to
SUC:s to specify the functionalities that a specific de-
vice can fulfill. E.g., Sensor_TypeA has the RC Sensor
assigned, meaning that it can be used to implement the
functionality defined by Sensor RC.

The InterfaceClassLibrary contains interface classes
representing various relations between the system
components. These relations can be of different nature:
mechanical ones, e.g., Bolting and Gearing; electrical,
e.g., PowerConnectionPlug and PowerSupplySocket;

2https://www.automationml.org/o.red.c/dateien.html

of software and control related, e.g., Signallnterface
(cf. Figure[Ic).

Additionally, attributes are specified for the SUCs
providing further details for the specific devices.
For example, ConveyorBand_TypeB has the attributes
Weight, Material, MaxPayload and MaxSpeed defined.
For each attribute a description, a measurement unit, a
data type and value can be specified. For example, one
can see that the ConveyorBand_TypeB has the maxi-
mum payload of two kilograms (cf. Figure [2)).

Attributes

gy Material

gy Weight

. MaxPayload
gy MaxSpeed

A Attribute Detail: MaxPayload

Description

Unit kg
AttributeDataType xsiinteger
DefaultValue

Value 7

Fig. 2. MaxPayload Attribute of the ConveyorBand Conveyor-
Band_TypeB Values of the MaxPayload attribute of the Convey-
orBand_TypeB in the sample system, i.e., Unit, AttributeDataType
and actual Value of the Attribute are shown. Other attributes of the
system such as Material, Weight and MaxSpeed are also depicted.

Finally, the InstanceHierarchy contains the design
of the real-life system - the conveyor consisting of
a band myConveyorBand, a motor myMotor to move
the band, a frame myConveyorFrame, and an induc-
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tive sensor mylnductiveSensor to identify positioning
of the object on the band (cf. Figure 3).

~ “E§ Samplebystem
~ [ myConveyor { Class Conveyer Role }
~ myMotor { Class Motor_Typed Role }
7y mylnductiveSensor { Class InduktiveSensor_Typed Role }

~ mylnductiveSensor-Interfaces
«g Bolting_Frame { Class Bolting }

oo Signal_PowerSupplySocket { Class PowerSupplySocket }
SampleRoleClassLib/Sensor/InductiveSensor
| [1f] myConveyorBand { Class ConveyarBand_TypeB Role }
e myConveyorFrame { Class Frame_TypeE Role }

Fig. 3. Instance hierarchy classes for the sample system. myCon-
veyor is defined via four IEs: myConveyorBand, myMotor, myCon-
veyorFrame, myInductiveSensor, each representing a specific device
for the conveyor design.

3. Ontology Design: Methodology and Modeling
Decisions

In this section, we describe the modeling process
for the AutomationML Ontology (AMLO). Section[3.1]
presents the design methodology and explains the on-
tology engineering process in detail. Section [3.2] de-
scribes major design alternatives and design choices
made for the AMLO.

3.1. Methodology

The AMLO was designed following the "Process-
based design" methodology of Uschold and King [37].
As the main purpose for ontology creation we formu-
lated the following points:

— AMLO should be maximally compatible with the
AutomationML XSD schema and the Automa-
tionML standard;

— The vocabulary used by AMLO should be as
close as possible to the terminology in the stan-
dard, to allow an intuitive understanding of the
ontology by users from industry who are famil-
iar with the standard, but not with Semantic Web
technologies.

— To facilitate ontology reuse by other parties,
AMLO should be easy to find, access and reuse.

As a starting point for ontology development we re-
lied on two ontologies, initially designed with the in-

tention to provide semantic representation for the Au-
tomationML standard for specific applications.

The first ontology was built at TU Vienna using top-
down modeling approach [21]]. The result was a light-
weight ontology capturing the major design decisions
in terms of classes and relations between Automa-
tionML elements. The intended application was con-
sistency checking between different AutomationML
files in multidisciplinary engineering projects. How-
ever, property coverage was weakly elaborated and did
not completely cover the AutomationML XSD schema
specification, particularly for data properties.

The second ontology was built following the bottom-
up modeling approach as part of the Alligator project
at the University of Bonn [13]]. The intended appli-
cation was the automatic semantic integration of Au-
tomationML documents. This ontology had a well
elaborated data property structure, but a less developed
hierarchy for classes and relations.

The conceptualization phase of AMLO was there-
fore accomplished by combining both ontologies and
refining the conflicting concepts, where necessary.
This allowed for better class and property coverage
w.r.t. the AutomationML XSD schema and the Au-
tomationML standard specification.

While working on the AMLO we put especial em-
phasis on following the best practices for ontology de-
sign [27129]. Namely, we make use of Ontology De-
sign Patterns (see Section , reuse constructs from
the already existing semantic sources (see Sectiond.3)
and ensure that the ontology is fully available and doc-
umented (see Section [4.4).

With the goal of validating the ontology resulting
from the previous steps we applied the following ap-
proach. First, we performed two iterations of struc-
ture validation with domain experts. For this we asked
the support of colleagues in the Otto-von-Guericke
University (Magdeburg), who are actively involved
in the development of the AutomationML standard
and are, therefore, deeply familiar with the semantics
of the AutomationML constructs. Second, we man-
ually implemented several AutomationML data sam-
ples, provided on the official AutomationML Web—siteE]
by means of the AMLO. This guaranteed that various
modeling situations supported by the standard can be
indeed described by means of AMLO.

3https://www.automationml.org/
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3.2. Design Decisions

(D1) Flexibility of the standard

In order to support a wide adoption among indus-
trial practitioners, the standard creators intentionally
avoided including too many constraints in the Automa-
tionML standard specification level. For instance, the
general design approach in AutomationML assumes
that one first defines the functional capabilities for a
future system using role classes (RCs) and then one se-
lects and assigns suitable system unit classes (SUCs),
which will be a concrete realization of those capabili-
ties defined via RCs. However, it is also possible (and
will not be an error) if one defines a system directly
using the SUC libraries. This way the tool vendors that
typically would have elaborated SUC structures, but
only limited (if any) hierarchies of general functional-
ities, could use AutomationML without having to sig-
nificantly adjust their workflows.

With the aim to support the flexibility of the Au-
tomationML standard in the designed ontology, we de-
cided to keep the amount of predefined restrictions to
a minimum. This way, modeling with the AMLO will
have the same flexibility as when using the Automa-
tionML standard.

(D2) Modeling hierarchies of ICs, RCs and SUCs

There were three major options to model the hier-
archies of interface classes (ICs), RCs and SUCs in
AMLO.

First, one can build class hierarchies to capture hi-
erarchical relations between the elements of IC-, RC-
and SUC- libraries in AutomationML. For example,
MagneticSensor and InductiveSensor are both sub-
classes of Sensor, which is a subclass of a RoleClass.
Instances of InductiveSensor describe specific roles as-
signed to a certain device (represented via instance of
an InternalElement class). For example, InductiveSen-
sor role assigned to a specific device myInductiveSen-
sor in the instance hierarchy (see modeling example in
Section 2.T)).

Secondly, all roles can be modeled as instances of
the RC concept. In this case, the further hierarchical
relations between the individual roles should be mod-
eled via additional constructs in the ontology, which
would relate the RC instances to each other.

The third option consists in capturing different roles
via relations, e.g., hasSensor that would connect in-
stances of InternalElement (corresponding to specific
devices) to instances of RoleClass. The hierarchical re-
lations between the roles are then modeled using the
subproperty mechanism, e.g., hasMagneticSensor and

hasCurrentSensor being subproperties of hasSensor.
These three possibilities for modeling the same seman-
tics are compatible, i.e., rules can be defined to auto-
matically transform one into another [31].

Inspired by the experiences in building the Ontol-
ogy of Units of Measure [31]] we opted for the first ap-
proach for modeling the IC, RC, and SUC hierarchi-
cal relations in AMLO. We also found this approach
the most intuitive in terms of similarity to the Automa-
tionML representation.

(D3) Splitting up multiple-use properties with
rdfs:subPropertyOf

There are some relations in AutomationML that
capture the same semantics, but for different object
types. For example, an AutomationML file can contain
all four AutomationML main object collections: In-
stanceHierarchy, InterfaceClassLib, RoleClassLib and
SystemUnitClassLib. In this case, the contains prop-
erty holds the same semantics for all four constructs,
meaning ‘having this structure within the file’. There-
fore, the straight-forward way of modeling this sce-
nario would be simply defining contains Object prop-
erty that would relate instances of a CAEXFile to the
instances of RoleClassLib, SystemUnitClassLib, Inter-
faceClassLib, and InstanceHierarchy. However, this
can potentially cause problems during reasoning and
inference tasks, because of the Open Word Assump-
tion logic implied by reasoners. To tackle this prob-
lem, we decided to model such relations in the fol-
lowing way: a) a super property is defined capturing
the general relation semantics and does not explicitly
specify a certain class for its range. E.g., the domain
of the contains property is the CAEXFile, but nothing
is specified for the range; b) subproperties are defined
to describe each specific case for the property range,
e.g., hasRoleClassLib, hasSystemUnitClassLib, hasln-
terfaceClassLib, and hasInstanceHierarchy are sub-
properties of contains.

This approach allows using a less complex vocab-
ulary for the applications where only querying is im-
portant. That is, one can define all the relations using
the general contains Object property without having
to learn the property name for each specific case. At
the same time, if the intended application involves rea-
soning or inference one can use more elaborated and
detailed vocabulary (i.e., subproperty labels) to avoid
potential conflicts.

(D4) Terminology

We stayed as close as possible to the labels used in
the AutomationML standard while choosing terms for
naming classes and properties in AMLO. The main in-
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tention is to facilitate the understanding of the ontol-
ogy constructs and their semantics for users that are
already familiar with the AutomationML standard, but
might not possess deep knowledge of Semantic Web
technologies.

(D5) Linking to eCl@ss and domain-specific
standards

An important feature of AutomationML is the abil-
ity to link to eCl@ss{Z_r] - the standardized catalogue for
describing products and services. In AutomationML,
semantics of RCs and Attributes can be specified by
linking them to corresponding eCl@ss definitions.
Namely, Attributes are semantically equivalent if they
share the same value for the refSemantic attribute;
and RCs are semantically equivalent whenever they
share the same eCl@ss references for the Automa-
tionML attributes eClassVersion, eClassClassification,
and eClassIRDI [35]].

AMLO also supports linking to the eCl@ss stan-
dard via the class ExternalStandard and object prop-
erty hasRefSemantic, which has ExternalStandard as
its range. Following the strategy explained in (D3) two
subproperties of the hasRefSemantic are further de-
fined, with RoleClass and Attribute as a domain and
ExternalStandard as a range.

Thanks to the general nature of this linking mecha-
nism, one can also link to other domain specific stan-
dards. To this end a corresponding instance of the
class ExternalStandard should be created. Linking is
then done in a similar way as described above for the
eCl@ss standard.

4. Ontology Development

In this section we discuss the development aspects
of AMLO. Firstly, Section [.1] gives an overview on
ontology structure and major classes and properties.
Secondly, Section [1;2] discusses what are the relevant
ontology design patterns (ODPs) in the context of Au-
tomationML and how they are reflected in AMLO.
Next, Section describes the existing vocabularies
that have been reused in AMLO. Finally, Section [4.4]
documents our efforts to ensure that AMLO follows
best practices for ontology sharing and publishing. A
summary of the main ontology details is provided in
Table[Il

4eCl@ss standard: https://www.eclass.eu/en/standard

4.1. Ontology Overview

By considering the aforementioned design deci-
sions, we modeled AMLO with focus on the main
AutomationML elements. AMLO covers all the ma-
jor constructs of the CAEX XSD schema, with one
exception for the family types for RCs, SUCs and
ICs, i.e., RoleFamilyType, SystemUnitFamilyType and
InterfaceFamilyType. Those are XML related struc-
tural concepts that are needed in XML to specify the
parent-child hierarchical relations. Since OWL pro-
vides means to model such relations explicitly there
was no need to keep those construct in the ontology.
Figure 4] shows the main entities of the ontology.

CAEXFile represents the AutomationML docu-
ment and is the core element of the ontology. To de-
scribe the metadata related to the document, the class
AdditionalInformation was connected to the CAEXFile
class. It comprises data about the version, writer iden-
tification, name, release, vendor as well as the project
to which the document belongs.

Container classes InterfaceClassLib, RoleClassLib,
SystemUnitClassLib and InstanceHierarchy are con-
tainer concepts, i.e., classes grouping other classes.
These classes describe containers for InterfaceClass,
RoleClass, SystemUnitClass and InternalElement re-
spectively and are linked to the CAEXFile class via
contains property.

RoleClass represents the AutomationML role class
concept and defines a vendor independent functional-
ity that can be provided by equipment elements. Role-
Classes are used to assign generic functional semantics
to instances of InternalElement and SystemUnitClass,
i.e., to describe the functional capabilities of equip-
ment elements. This is done via properties hasSupport-
edRoleClass and hasRoleRequirements.

SystemUnitClass represents the AutomationML
system unit class concept and defines a vendor-specific
technical realization of a physical or logical object. In-
stances of the SystemUnitClass can contain (or be a
part of) other system unit classes. This is defined via
properties hasPart and isPartOf respectively.

InterfaceClass represents the interface class con-
cept in the AutomationML and in general is used to
specify either a) relations between the different topol-
ogy elements; or b) references to various external
information sources. Interfaces can be linked to the
instances of RoleClass, SystemUnitClass and Inter-
nalElement via the haslnterface property. Externalln-
terface is a subclass of InterfaceClass.
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Table 1
AMLO Ontology details.
General Name: AutomationML Ontology (AMLO)
Size 21 classes, 51 object properties, 46 data properties
DL Expressivity ALHIF+(D)
Availability PersistentURI https://w3id.org/140/aml
GitHub https://github.com/140-Tools/AutomationMLOntology,
Licence Creative Commons
Reusability VoCol Instance http://vocol.iais.fraunhofer.de/aml/
Technical Ont. Eng. Methodology King and Uschold [37]
Quality Reused Ontologies PROV-O, Units of Measure
Reused ODPs transitive PartOf ODP

Documentation

By means of skos:definition, skos:altLabel, skos:prefLabel

InternalElement represents the InternalElement
concept in the AutomationML and defines concrete
equipment of an actual project, i.e., devices used in
a concrete plant. Similar to the SystemUnitClass, In-
ternalElements can contain (and be part of) other In-
ternalElements. This is defined via properties hasPart
and isPartOf. One can additionally define what Syste-
mUnitClass is instantiated by a specific InternalEle-
ment via the hasBaseSystemUnitClass property.

Attribute expresses the actual properties of CPPS
such as length, size, temperature, speed, etc. Attributes
can be defined for the instances of RoleClass, Inter-
faceClass, SystemUnitClass via the hasAttribute prop-
erty. Classes om:Measure and om:Unit_of_measure
are imported from the Ontology of Units of Measure-
ment to formally define the units of measure for at-
tributes.

InternalLink is an interesting element of Automa-
tionML that represents a directed connection between
two constructs. Each InternalLink references two Ex-
ternallnterfaces and two constructional elements, i.e.,
either InternalElements or SystemUnitClasses, de-
pending on which level of abstraction a given connec-
tion is specified. This is done via properties hasRef-
erencePartnerSide(A/B)_Interface to link to the Exter-
nallnterfaces, and via properties hasReferencePartner-
Side(A/B)_Object to link to InternalElements and Sys-
temUnitClasss. The direction is important here, i.e.,
"from A to B".

4.2. Ontology Design Patterns

Ontology design patterns (ODPs) are reusable mod-
eling building blocks providing solutions to recurrent
domain modeling problems [11]. ODPs are an impor-
tant means to improve the quality of an ontology de-
sign as they represent best practices in ontology mod-
eling frequently used by ontology developers.

Sabou et al. distinguished three major groups of pat-
terns that are important in the engineering context: a)
part-whole relations; b) connections between compo-
nents; and c) component roles [34]. We hereby discuss
these groups of patterns and how they were applied to
support our modeling.

Part-whole relations are important for modeling
containment hierarchies. In AMLO we decided to use
the transitive version of partOf relation that corre-
sponds to the PartOf ODIﬂ We selected this option
for part-whole relation, because in the context of en-
gineering system design a potentially important appli-
cation is recursively getting all parts and their sub-
parts for a specific object. We did not use the Com-
ponency ODPE] (nontransitive version of part-whole)
or the TimelndexedPartOf ODH!| (part-whole relation
holding only for a specific time interval) in AMLO,
since there are no relations with similar semantics in
the AutomationML standard.

Another pattern, which is often discussed in the con-
text of part-whole relations, and is also relevant in
the AutomationML context is modeling constituency.
Constituency refers to relations without a clear part-
of relationship. Typical example is representing a ma-
terial from which an object is made, e.g., several types
of wood constitute a table. There is a special ODP de-
fined for modeling constituency - Constituency OD
In the context of AutomationML, constituency is typ-
ically represented by an attribute hasMaterial or sim-
ilar defined for SUCs or IEs. Since the attribute hier-
archy is not intended to be stable, but rather can vary
from one AutomationML file to another, we decided
to model this aspect as follows: a) an object property
hasConstituent is included in the ontology; b) after

3 http://ontologydesignpatterns.org/wiki/Submissions:PartOf
Shttp://ontologydesignpatterns.org/wiki/Submissions:Componency

7 http://ontologydesignpatterns.org/wiki/Submissions: TimeIndexedPartOf

8 http://ontologydesignpatterns.org/wiki/Submissions:Constituency
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Prefixes

aml: https://w3id.org/i40/aml#

rdf:  http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
prov: http://www.w3.org/ns/prov#

om: http://www.wurvoc.org/vocabularies/om-1.8/

amI:AdditionaIInformation] [aml:ExternaIReference] prov:Activity

aml:hasAdditionallnformation

/

aml:hasExternalReference

aml:CAEXFile

aml:contains

aml:SystemUnitClassLib

aml:contains

aml:contains aml:InstanceHierarchy

aml:hasInternalElement
aml:contains

aml:RoleClassLib

aml:InterfaceClassLib

aml:hasInterfaceClass

aml:hasRoleClass

prov:wasGeneratedBy aml:hasSystemUnitClass

aml:hasBaseSystemUnitClass

aml:InternalElement
aml:hasSupportedRoleClass

aml:hasRoleRequirements

TN

aml:isPartOf

aml:SystemUnitClass

aml:hasReferencePartnerSideA/B_Object
aml:hasSupportedRoleClass

aml:InternalLink

aml:hasAttribute
aml:hasReferencePartnerSideA/B_Object

aml:hasAttribute

om:Unit_of_measure

»| aml:RoleClass

aml:InterfaceClass

rdfs:subClassOf

aml:Externallnterface id—‘

aml:hasinterface

aml:hasAttribute

aml:ExternalStandard | aml:hasSemanticRef

aml:hasReferencePartnerSideA/B_Interface

om:Measure

aml:hasUni

aml:hasAttribute

aml:hasSemanticRef y_v amhasUnitValue

aml:Attribute

aml:hasinterfact

Fig. 4. Core classes and properties of the AMLO Core AML concepts are represented in AMLO. Classes and relations of the Ontology are
depicted in blue. White classes represent reused classes from important ontologies such as PROV and OM.

a specific AutomationML file is transformed into the
AMLO, and, therefore, a certain property hierarchy is
formed under the hasAttribute property, one can align
the specific attribute, e.g., hasMaterial with the has-
Constituent, specifying that these two have similar or
the same semantics.

Connections between system components represent
interactions between its parts, such as flows of energy,
matter or signals [36]. In AutomationML connections
are modeled via ICs, which allow specifying connec-
tion elements (between which the connection is es-
tablished), direction, and connection type (e.g., signal
transfer for control variables or different kinds of me-
chanical linking between the hardware elements). ICs
as they are modeled in the AutomationML allow for a
detailed and flexible definition of various connections
in an engineering system. Therefore, we decided not
to use additional ODPs in the ontology for modeling
connections.

Component roles represent functionality and be-
havior associated with a component in a system [34].
In AutomationML such information is represented via
RCs. A RC is specified for an IE or SUC to define
what kind of functionality in a system this component
has. Hence, we did not use any additional ODPs to
model these kind of relations, since they can be mod-
eled directly by means of AutomationML constructs
that AMLO derives from the standard.

4.3. Reusing Existing Ontologies

Reusing existing and recognized ontologies is con-
sidered a good practice for ontology building [24,28ﬂ
There is a rich variety of data sources in semantic for-
mats available for the engineering domain, which can
be potentially used to improve the quality of engineer-

9https://www.w3.org/TR/Id-bp/#VOCABULARIES
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ing data and allows more comprehensive analyses. Ex-
amples are ontologies that cover engineering and re-
lated topics, or domain-specific sources, e.g., product
catalogues like eCl@ss [9]]. Once having the seman-
tic representation of the original AutomationML data,
existing semantic data sources can be used to enrich
original data structures with additional information.

Even though AutomationML comprises very spe-
cific concepts and relations, we have reused some well-
known ontologies such as the skos vocabulary, the on-
tology of Unit of Measure [31]], as well as the Prove-
nance ontology ( PROV—OET].

The Provenance ontology is used to represent the in-
formation about a tool that has generated the given Au-
tomationML documents. The skos vocabulary is used
to encode additional information about concepts and
property related to documenting, e.g., definitions for
AMLO constructs or alternative labels. The Ontology
of Units of Measure (OM) is used to bring formal
semantics for encoding units or measurement, which
are originally represented as strings in AutomationML.
Since the problem of the disambiguation of units of
measure is very common and relevant for the engineer-
ing domain, we will focus on it in more detail. Below
we show how OM can be exploited in AMLO to se-
mantically decsribe units of measurement.

In CPPS environments, units of measurement are
of crucial importance for the correct functioning and
coordination of the associated processes. They are re-
quired for the specification of products as well as for
representing the data produced by measuring devices.
Commonly, data related to units of measurement are
codified as simple strings, thus, losing the semantics
associated with them. The Ontology of Units of Mea-
surements (OM) has been proposed to bring semantics
to this domain [31]]. The OM ontology provides a com-
plete and comprehensive set of units of measurement.

In AutomationML, attributes are used to express
properties of different objects. For instance, let’s con-
sider the motor from the sample conveyor system pre-
sented in the Section 2.1. An important attribute of a
motor is a rotational speed, which can be measured
both in radians per second and in revolutions per sec-
ond. If represented informally as a string, both of those
units can be expressed as "r/s". Listing[I|depicts a frag-
ment of an AutomationML document showing an at-
tribute setting the rotational speed of the motor. The
intended meaning of "r/s" in this case is radians per

Ohttps://www.w3.org/TR/prov-o/

second, but could be also interpreted as revolutions
per second. This example demonstrates the importance
of semantically representing units of measurement to
avoid ambiguity as well as to express the correct se-
mantics of the attribute.

1 <Attribute Name="RotationalSpeed" Unit="r/s"
AttributeDataType="xs:float">
<Value>16.6</Value>

</Attribute>

2
3

Listing 1:
Fragment of the RotationalSpeed attribute of
the motor myMotor. A fragment of the attribute
RotationalSpeed encoded in the AML standard
representing the Unit, the AttributeDataType as well
as the value.

As a solution, Listing [2| depicts an example where
AML and OM were used together to describe units of
measure.

prefix om:<http://www.wurvoc.org/vocabularies/om-1.8/> .
prefix aml:<https://w3id.org/i40/aml/> .

aml:SpeedAttribute a aml:Attribute,
aml:hasNameAttribute "RotationalSpeed"@en,
om:value aml:spMeasurement;
aml:RotationalSpeed a om:Rotational_speed,
om:phenomenon aml:SpeedAttribute;
aml:spMeasurement a om:Measure,

om:unit om:radian_per_second-time,
om:numerical_value 16.6.

— OV IUN B WN —

Listing 2: Representing units using the OM
ontology. Representing the unit of measure of the
RotationalSpeed attribute, i.e., radians per second
by combining AML and OM ontologies.

4.4. Following Best Practices for Ontology Sharing
and Reusability

While designing AMLO, we followed the guide-
lines for ontology sharing and reuse created for the
ISWC2016 Resources Track [14)]. The major focus
here was on performing all necessary steps to en-
sure high-quality documentation and availability of the
ontology for other interested parties, thus, facilitat-
ing ontology reuse. There are three big parts in the
guidelines: 1) steps related to reusability (denoted with
"R.x"); 2) steps related to availability (denoted with
"A.x") of the ontology; and 3) design and technical
quality (denoted with "DTQ.x"). Below we describe
how we followed those steps for AMLO.

(R.1) How easy it is to (re)use the ontology (e.g.,
is there documentation or tutorials available?). There
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is a detailed description of AMLO structure avail-
able at https://w3id.org/i40/aml. In addi-
tion, the documentation regarding the ontology is pub-
licly available via a VoCol instance[ﬂ VoCol is a plat-
form to support the collaborative development process
of ontologies based on version control systems, git and
github in this case [15]. After every push to the github
repository, VoCol automatically provides features such
as documentation generation, evolution of changes, vi-
sualization, ontology validation, etc.

(R.2) Possibility to apply in a wide set of scenarios.
We did not make application specific design decisions
during the AMLO development. The major goal was to
fully cover the standard while preserving its flexibility
in the ontology. Therefore, AMLO can be used in a
wide range of scenarios.

(R.3) Potential for extensibility. AMLO can be

aligned to other standards using the ExternalStandard

class and the object property hasRefSemantic.

(A.1) Publishing at a persistent URL. AMLO is pub-
lished at the w3id™]

(A.2) License specification. AMLO has the Creative
Commons license.

(A.3) Is the resource publicly available / findable?
The source code for the AMLO as well as its evolution
track is publicly available on GitHul:{E

(DTQ.1) Following best practices for ontology de-
sign. We followed the design methodology of Urshold
and King[37]] (see Section 3.1 for details).

(DTQ.2) Reuse or extension of high-quality re-
sources (e.g., ODPs or well-known ontologies). The
AMLO design process covered both the reuse of ODPs
(see Section 4.1) and the reuse of well-known ontolo-
gies (see Section 4.2).

(DTQ.3) Being self-explanatory (e.g., are there ap-
propriate human and machine readable descriptions?).
With the objective to ensure that the AMLO is self-
explanatory we included the following skos constructs:
a) skos:definition to explain the meaning of
main entities; b) skos:altLabel to include the al-
ternative names for ontology entities, e.g., "SUC" for
"System Unit Class"; and ¢) skos:prefLabel to
include the most commonly used name for ontology
entities.

Uhttp://vocol.iais.fraunhofer.de/aml/
2https://w3id.org/i40/aml
Bhttps://github.com/i40-Tools/AutomationMLOntology

5. Applying AMLO for CPPS System Engineering

In this section, we present three representative use
cases supported by AMLO. The first use case aims for
the integration of AutomationML documents across
different engineering disciplines (Section [5.I). The
second and third use cases show how querying (Sec-
tion[5.2) and reasoning (Section[5.3)) can be applied on
top of integrated AMLO data.

The context for the all three use cases is developing
an automation system, e.g., a production plant and the
corresponding control system. Such engineering set-
ting is characterized by a rich variety of engineering
tools, terminologies, heterogeneous data models, and
data formats applied by project stakeholders. Stake-
holders work on the same engineered system, but con-
sider it from different points of view, e.g., plant plan-
ning, mechanical engineering, electrical wiring or con-
trol system implementation. Therefore, this is a com-
plex and data-rich setting, with high demand for effec-
tive and efficient data integration and advanced analyt-
ics within and across the invilved disciplines. Project
participants apply AutomationML as a common vo-
cabulary for data exchange, which is a first step to fa-
cilitate data exchange and communication. However,
there is still need for tool-support and technologies,
which would allow a) data integration across the dif-
ferent engineering disciplines and b) comprehensive
and flexible analytics over the system’s engineering
data. Semantic technologies possess rich capabilities
for both tasks, e.g., by offering comprehensive query-
ing with SPARQL and inference and reasoning facili-
ties.

5.1. UCI - Integration of Multi-disciplinary
AutomationML Documents

AutomationML is used to describe CPSS compo-
nents and to facilitate their integration in the context
of multi-disciplinary engineering of CPPS. In this con-
text, AutomationML documents are developed from
different expertise, i.e., mechanic, electric and soft-
ware. Different expertise generate different views over
the same elements described in AutomationML and,
thus, semantic heterogeneity when integrating CPPS
components [4/20]. Semantic heterogeneity needs to
be solved while keeping the meaning of the CPSS
components. In the Alligator approach [13], this prob-
lem is tackled by defining an RDF-based representa-
tion of AutomationML documents which are based on
AMLO. AMLO is used here as a canonical represen-
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tation defining the semantics of the elements with re-
spect to the AutomationML standard. Based on this,
a Datalog-based representation of the AutomationML
input documents, and a set of rules for identifying se-
mantic heterogeneity conflicts are developed. A deduc-
tive engine is used to resolve the conflicts, to merge the
input documents and produce an integrated Automa-
tionML document.

5.2. UC2 - Inconsistency Checking in Engineering
Design

After the AutomationML data from various disci-
plines have been integrated (e.g., in Alligator approach
described above), SPARQL can be used to perform
analyses on the top of engineering data.

Hereinafter we present the example consistency
check that was implemented in the use case of our in-
dustry partner, a power plant system integrator, based
on the AMLO. In the example we leverage the formal
foundations of AMLO to access the device character-
istics transitively to gather the overall system statistics.

Assume there are maximum weight and electrical
consumption thresholds specified by a customer for
the system under design based on the location settings
where the system will be deployed. Project engineers
can run the following SPARQL query over the engi-
neering data to obtain this information:

1 SELECT (SUM(xsd:integer (?deviceWeight)) AS ?systemWeight)
(SUM (xsd:integer (?devicePowerConsumption)) AS ?

systemPowerConsumption)

WHERE {

aml :myConveyor aml:hasPart* ?device

?device a aml:InternalElement .

?device aml:hasAttribute 2attribute .

?attribute aml:hasAttributeName "Weight" .

?attribute aml:hasValue ?deviceWeight .

?device aml:hasAttribute 2attribute .

?attribute aml:hasName "PowerConsumption".

?attribute aml:hasValue ?devicePowerConsumption . }

SO XU AW

Listing 3: Returning the weight and power
consumption of the production model. SPARQL
query returning the overall weight and power
consumption of the production model by using data
annotated according to AMLO.

5.3. UC3 - Flexible Hierarchy Adaptation using
Reasoning

Assume there is the following requirement defined
by a project engineer: "All controller devices in a pro-
duction system must have exactly one connection to
automation object defined". However, the "controller"

role was not defined explicitly in the project and must
be defined separately for each topology of roles.

The ontology-based representation of AutomationML
data allows flexible reconfiguration of the defined
structures. Reasoning can be applied to the roles hi-
erarchy in order to enrich the existing classification,
e.g., the following SWRL rule can be defined to
automatically classify the controllers (assuming that
the marker for being a controller is supporting the
"Ro_MechatronicAssembly" role):

1 SystemUnitClass (?device_type) A RoleClass(?role) A
hasSupportedRole (?device_type, 2role) A

Ro_MechatronicAssembly — Controller (?device)

Listing 4: SWRL rule for reclassification of
the RoleClass hierarchy The rule relies of the
semantics encoded in AMLO for reclassifying the
RoleClass hierarchy.

This rule enriches the existing Roles hierarchy. The
newly derived triples (i.e., knowledge) can be then ei-
ther saved into the ontology (then the new classifica-
tion will be available for all later check executions) or
stay in memory (therefore being only available during
the current checking session). All the devices in the
production system can be now automatically checked
for being controllers or not. After re-classification has
been performed, one can run a SPARQL query to
check whether all controller devices in the system have
the required property.

6. Related Work

In recent years, much attention has been paid to
represent the knowledge regarding the automation do-
main by using ontologies [7]]. Concretely, the Automa-
tionML standard has been at the core of many efforts
in this regard. The main focus of these works has been
in formalizing the CAEX format into an ontology as
follows. Abele et al. [1]] present an ontology for the
validation of plant models, e.g., attribute consistency
checking and correctness of internal links. The on-
tology covers base concepts of AutomationML, i.e.,
CAEX, and how they are mapped to OWL; Bjorkelund
et al. [6] model an ontology exploiting core concepts
of AutomationML and utilize the resulting ontology
as a common vocabulary to transform AutomationML
models into RDF. [26] describes a knowledge integra-
tion framework for robotics. In this context, the knowl-
edge is represented in AutomationML and transformed
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Comparison of existing semantic representations of the AML standard. Comparison of existing AutomationML ontologies with AMLO;
Comparison is performed regarding the use of ontology engineering methodology, the inclusion of ODPs, the reuse of terms from other ontolo-
gies, the availability of ontology sources, the source used to develop the ontology, the ontology formalization as well as the generality of the use

case in which the ontology is utilized.

Approach Methodology ~ ODPs  Reuse  Availability ~ Source  Formalization Use Case

Abele et al. [1] No No No - CAEX OWL Plant Validation

Bjorkelund et al. [6]  No - - Knowledge and Skill Representation
Glawe et al. [12] No No No Security in Automation

Persson et al. [26] No No No Knowledge Integration

Hua et al. [17] No No Yes - - - A Model-driven Approach for Robotics
AMLO Yes Yes Yes Yes CAEX OWL General applicability

to RDF to publish the RDF data according to Linked-
Data principles. To this end, they propose an ontology
covering the main CAEX concepts. Another definition
of a CAEX ontology is developed in the context of us-
ing knowledge to support the engineering process of
automation systems [12]]. While the focus of this work
is on security, core concepts of the CAEX scheme are
designed as an OWL ontology. Further, SWRL rules
are introduced to logically connect CAEX elements.
Hua et al. [[17]] developed a semantic-based approach
to software engineering of industrial robotics. Authors
propose an approach to deal with robotic components
and how they can be classified and modeled with Au-
tomationML. Further, how AutomationML models can
be processed by means of an ontology is demonstrated
in this work. To this end, an AutomationML ontology
covering main aspects of AutomationML is created.

To analyze existing works for an AutomationML
ontology, aspects considered of crucial importance for
ontology development are investigated (cf. Table [2),
namely: a) The utilization of an Ontology Engineer-
ing methodology; b) the inclusion of Ontology Design
Patterns (ODPs); c) the reuse of existing well-known
ontologies; d) the availability of ontology resources,
i.e., on Github, or Linked Open Vocabularies (LOVE
e) the language used as an input for the ontology, e.g.,
CAEX, f) the language utilized to describe the ontol-
ogy, e.g. OWL, and, finally g) the main use case in
which the ontology is used.

Overall, existing works lack common desirable fea-
tures for an AutomationML ontology. First, previous
ontologies are tailored for specific use cases and do not
consider all the details of the AutomationML standard.
Second, most of the existing ontologies are designed
without considering any methodology for ontology de-
sign or best practices such as the inclusion of ontol-
ogy design patterns or reusing well-known vocabular-

14Linked Open Vocabularies: http://lov.okfn.org/dataset/lov

ies. Lastly, besides being described in papers existing
ontologies are not available for consulting or reusing.
We addressed all these gaps with AMLO.

7. Conclusions

We presented the AutomationML ontology (AMLO)
that covers the AutomationML data exchange standard
in the industrial engineering domain. AMLO provides
concepts to support the design of an engineering sys-
tem - components and subcomponents, required and
supported functionality of the components, various at-
tributes (e.g., mechanical, electrical of logical ones),
logical and physical connections between the system
elements, to name the main ones. The ontology de-
sign process was based on domain-specific and onto-
logical requirements that were identified for the Au-
tomationML context. Particular attention during the
AMLO design was given to following the best prac-
tices for ontology design (acc. to [14]]). The resulting
ontology covers completely the XSD schema for Au-
tomationML and provides means for enhancing the en-
gineering data with additional resources (e.g., by in-
cluding the Ontology of Units of Measure). We also
showed how the AMLO can be used in real life scenar-
ios to improve the engineering processes during sys-
tem design.

Future work includes extending the ontology with
the COLLADA and PLCOpen fragments of the Au-
tomationML standard. Additionally, we will explore
what other resources in the industrial engineering area
have semantic representations available and would be
useful to link with the AMLO to provide more possi-
bilities for enhancing the original AutomationML data
content and data structure.
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