
Benchmarking Semantic Reasoning on

Mobile Platforms: Towards Optimization

Using OWL2 RL

William Van Woensela,* and Syed Sibte Raza Abidia

aNICHE Research Group, Faculty of Computer Science, Dalhousie University, 6050 University Ave, Halifax, NS

B3H 4R2, Nova Scotia, Canada

Abstract. Mobile hardware has advanced to a point where apps may consume the Semantic Web of Data, as exemplified in

domains such as mobile context-awareness, m-Health, m-Tourism and augmented reality. However, recent work shows that the

performance of ontology-based reasoning, an essential Semantic Web building block, still leaves much to be desired on mobile

platforms. This presents a clear need to provide developers with the ability to benchmark mobile reasoning performance, based

on their particular application scenarios, i.e., including reasoning tasks, process flows and datasets, to establish the feasibility

of mobile deployment. In this regard, we present a mobile benchmark framework called MobiBench to help developers to

benchmark semantic reasoners on mobile platforms. To realize efficient mobile, ontology-based reasoning, OWL2 RL is a

promising solution since it (a) trades expressivity for scalability, which is important on resource-constrained platforms; and

(b) provides unique opportunities for optimization due to its rule-based axiomatization. In this vein, we propose selections of

OWL2 RL rule subsets for optimization purposes, based on several orthogonal dimensions. We extended MobiBench to support

OWL2 RL and the proposed ruleset selections, and benchmarked multiple OWL2 RL-enabled rule engines and OWL reasoners

on a mobile platform. Our results show significant performance improvements by applying OWL2 RL rule subsets, allowing

performant reasoning for small datasets on mobile systems.

Keywords: mobile computing; OWL2 RL; rule-based reasoning; OWL reasoning; reasoning optimization

1. Introduction

Advances in mobile technologies have enabled

mobile applications to consume semantic data, with

the goal of e.g., collecting context- [52], [59] and

location-related data [6], [50], achieving augmented

reality [42], [58], performing recommendations [60],

accessing linked biomedical data (m-Health) [40] and

enabling mobile tourism [28]. Automated reasoning,

an essential Semantic Web pillar, involves the

inference of useful information based on the semantics

of ontology constructs, domain-specific if-then rules,

or both. Giving the availability of advanced mobile

technology and large volumes of mobile-accessible

semantic data, we hence consider it opportune to

investigate the potential of semantic reasoning on

mobile, resource-constrained platforms. In light of

* Corresponding author. E-mail: william.van.woensel@gmail.com.

recent empirical work [11], [26], which indicates that

mobile reasoning performance still leaves much to be

desired, we choose to focus on benchmarking and

optimizing mobile semantic reasoning. In particular,

we discern a clear need for benchmarking specific

application scenarios, including reasoning task (e.g.,

ontology or rule-based reasoning), process flow (e.g.,

frequent vs. incremental reasoning) and rule- and

datasets, as it will allow mobile developers to make

more informed decisions – for instance, in case of poor

performance of their particular application scenario,

they may choose hybrid solutions that combine

mobile- and server-deployed reasoning [2], [56].

In traditional Semantic Web reasoning applications,

OWL2 DL is the most popular representation and

reasoning approach. Regarding resource-constrained

systems however, it has been observed that OWL2 DL

is too complex and resource-intensive to achieve

scalability [11], [26]. Reflecting this, most mobile

semantic reasoners i.e., tailored to resource-

constrained systems, instead focus on rule-based

OWL axiomatizations, such as custom entailment

rulesets [1], [29] or OWL2 RL rulesets [37], [48].

Indeed, OWL2 RL is an OWL2 profile with a stated

goal of scalability, partially axiomatizing the OWL2

RDF-based semantics as a set of rule axioms. Further,

a rule-based axiomatization allows easily adjusting

reasoning complexity to the application scenario [48]

or avoiding resource-heavy inferences [8], [44], by

applying subsets of rule axioms. In contrast,

transformation rules used in tableau-based DL

reasoning are often hardcoded, making it hard to de-

select them at runtime [48]. Also, most classic DL

optimizations improve performance at the cost of

memory [11], which is limited in mobile devices. At

the same time, as only a partial axiomatization, OWL2

RL does not guarantee completeness for TBox

reasoning [37]; and places syntactic restrictions on

ontologies to ensure all correct inferences.

Nevertheless, we find this expressivity trade-off

acceptable in case it would render semantic reasoning

feasible on resource-constrained platforms.

In this regard, our objective is three-fold:

(1) developing a mobile reasoning benchmark

framework (called MobiBench) that allows developers

to evaluate the performance of reasoning on mobile

platforms (reasoning times, memory usage), for

specific scenarios and using standards-based rule- and

datasets. Key features of MobiBench include a

uniform, standards-based rule and data interface

across reasoning engines, as well as its extensibility

and cross-platform nature, allowing benchmarks to be

applied across multiple platforms;

(2) optimizing semantic reasoning on mobile

platforms, by studying the following three OWL2 RL

rule subset selections: (i) Equivalent OWL2 RL rule

subset, which leaves out logically equivalent rules;

i.e., rules of which the results are covered by other

rules; (ii) Purpose and reference-based subsets, which

divides rule subsets based on their purpose and

referenced data; and (iii) Removal of resource-heavy

rules that have a large performance impact – although

this will result in missing certain inferences, we feel

that developers should be able to weigh their utility vs.

computational cost; and

(3) performing mobile reasoning benchmarks, which

measure the performance of the materialization of

ontology inferences, using the AndroJena and

RDFStore-JS rule systems loaded with different

OWL2 RL ruleset selections, as well as three OWL2

DL reasoners (HermiT, JFact and Pellet). We note

that, although the proposed OWL2 RL subset

selections were construed and evaluated in the context

of resource-constrained platforms, they may be

applied in any kind of computing environment.

This paper is built on previous work, which

presented a clinical benchmark [55] and an initial

version of the Mobile Benchmark Framework [54],

which only supplied an API, restricted benchmarking

to rule-based reasoning, and did not attempt

optimizations or applications of OWL2 RL.

The paper is structured as follows. Section 2

introduces the MobiBench framework, presenting its

architecture and main components, and Section 3

discusses how mobile developers can utilize

MobiBench. In Section 4, we shortly discuss the

OWL2 RL profile and our reasons for focusing on it,

and detail its implementation as a ruleset. Section 5

elaborates on our selection of OWL2 RL rule subsets

for optimization purposes. Section 6 presents and

discusses the benchmarks we performed using

MobiBench. We review related work in Section 7, and

end with conclusions and future work in Section 8.

2. Mobile Benchmark Framework

The goal of the MobiBench benchmark framework

is to allow studying and comparing reasoning

performance on mobile platforms, given particular

application scenarios, including reasoning task,

process flow and rule- and datasets. An important

focus lies on extensibility, with clear extension points

allowing different rule and data formats, tasks and

flows to be plugged in. Moreover, given the multitude

of mobile platforms currently in use (e.g., Android,

iOS, Windows Phone, BlackBerry), MobiBench was

implemented as a cross-platform system.

Fig. 1 shows the architecture overview of the

MobiBench framework. The API supplies third parties

with direct access to the MobiBench functionality. To

facilitate developers in running benchmarks, the

Automation Support allows automating large numbers

of benchmarks, and comprises (1) a remote

Automation Client, which generates a set of

benchmark configurations; and (2) an Automation

Web Service on the device that invokes the API for

each configuration. This setup avoids re-deploying

MobiBench for each benchmark (i.e., with a new hard-

coded configuration); and even allows benchmarking

without physical access to the device. The Analysis

Tools aggregates the benchmark results, including

reasoning times and memory dumps, into CSV files.

The core of the framework, the Benchmark Engine,

can perform different reasoning tasks, using different

process flows, to better align benchmarks with real-

world scenarios. Any Reasoning System can be

plugged into this component by implementing the

uniform plugin interface.

To support OWL2 RL, MobiBench was extended

with the following services: (a) Uniform Conversion

Layer, to cope with the myriad of rule (and data)

formats currently supported by rule-based reasoners;

(b) Pre-Processing Service, which pre-processes the

ruleset and ontology if required (e.g., to support n-ary

rules); and (c) Ruleset Selection Service, which

automatically applies OWL2 RL subset selections to

optimize ontology-based reasoning.

A remote RESTful Web Service, deployed on a

server (e.g., the developer’s PC), comprises these

services, and also hosts some utility services to persist

benchmark output (Persistence Support). A Local

Proxy component acts as an intermediary between the

mobile system and the remote Web service.

For portability across platforms, MobiBench was

implemented in JavaScript (JS) and deployed using

Apache Cordova [62] for mobile platforms and JDK8

Nashorn [68] for PC (this version is used for testing),

which allows native, platform-specific parts to be

plugged in. We note that this also allows MobiBench

to easily benchmark JavaScript reasoners, which are

usable in mobile websites or cross-platform,

JavaScript-based apps (e.g., developed using Apache

Cordova, Appcelerator Titanium [64]) with a write-

once, deploy-everywhere philosophy. We currently

rely on Android as the deployment platform, since

most reasoners are either developed for Android or

written in Java (which facilitates porting to Android),

but MobiBench could be easily deployed on other

platforms as well. The MobiBench framework can be

found online [51].

In the subsections below, we elaborate on the main

MobiBench components, namely the Uniform

Conversion Layer (Section 2.1), Ruleset Selection

Service (Section 2.2), Pre-Processing Service

(Section 2.3) and Benchmark Engine (Section 2.4);

Fig. 1. MobiBench Framework Architecture.

and indicate extension points for each component (see

parts on Extensibility). Section 3 shows how

developers can utilize the benchmark framework.

2.1. Uniform Conversion Layer

The goal of the Uniform Conversion Layer is to

handle the multitude of rule (and data) formats

currently supported by rule-based reasoners. It

supplies a uniform, standards-based resource interface

across reasoning engines, which dynamically converts

the input to their supported formats. The major benefit

of this layer is that it allows developers to re-use a

single rule- and dataset across different reasoners.

A range of semantic rule standards are currently in

use, including the Semantic Web Rule Language

(SWRL) [24], Web Rule Language (WRL) [3], Rule

Markup Language (RuleML) [12], and SPARQL

Inferencing Notation (SPIN) [32]. Some reasoners

also introduce their own custom formats (e.g., Apache

Jena) or rely on non-Semantic Web syntaxes (e.g.,

Datalog: IRIS, PocketKRHyper). When

benchmarking multiple systems, this multitude of

formats prevents direct re-use of a single rule- and

dataset. We chose to support SPIN rules and RDF data

as standard input formats; Section 2.1.1 shortly

discusses SPIN and our reasons for choosing it.

Since the only available SPIN API is developed for

the Java Development Kit (JDK) [31], conversion

functions are deployed on an external Web service. To

convert incoming SPIN rules, the SPIN API is utilized

to generate an Abstract Syntax Tree (AST), which is

then visited by a Rule Converter to convert the rule.

Section 2.1.2 discusses our current converters, and

how new converters can be plugged in. To convert

incoming RDF data, a Data Converter can utilize

Apache Jena [4] to query and manipulate the data.

2.1.1. SPIN

SPIN is a SPARQL-based rule and constraint

language, which provides a natural, object-oriented

way of dealing with constraints and rules associated

with RDF(S)/OWL classes. In the object-oriented

design paradigm, classes define the structure of

objects (i.e., attributes) together with their behavior,

which includes creating/changing objects (rules) and

ensuring a consistent object state (constraints).

Similarly, SPIN allows directly associating locally-

scoped rules and constraints to their related

RDF(S)/OWL classes, using properties such as

spin:rule and spin:constraint.

To serialize rules and constraints, SPIN relies on

SPARQL [19], a W3C standard with sufficient

expressivity to represent both queries and general-

purpose rules and constraints. SPARQL is supported

by most Semantic Web systems, and is well known by

Semantic Web developers. As such, this rule format is

more likely to be easily comprehensible to developers.

Further, relying on SPIN also simplifies support for

our current rule engines (see below).

2.1.2. Rule and Data Conversion

Regarding rule-based reasoners, our choice for

SPIN greatly reduces conversion effort for systems

with built-in SPARQL support. RDFStore-JS supports

INSERT queries from SPARQL 1.1/Update [19],

which are easy to obtain from SPIN rules in their

SPARQL query syntax. Both AndroJena and

RDFQuery support a triple-pattern like syntax, which

likewise makes conversion from SPIN

straightforward. Other rule engines lack built-in

Semantic Web support, and require more significant

conversion effort. Two systems, namely

PocketKrHyper and IRIS, accept Datalog rules and

facts in a Prolog-style input syntax. For these cases,

we utilize the same first-order representation as in the

W3C OWL2 RL specification [13], namely T(s, p, o)

(since predicates may also be variables, a

representation such as predicate(subject, object) is not

an option in non-HiLog).

Currently, our converters support SPIN functions

that represent primitive comparators (greater, equal,

etc.) and logical connectors in FILTER clauses.

Advanced SPARQL query constructs, such as

(not-)exists, optional, minus and union, are not yet

supported. None of the OWL reasoners (Section 2.4.1)

required (data) conversion, since they can consume

serializations of OWL in RDF out of the box.

Extensibility To plug in a new resource format,

developers can create a new converter class

implementing the uniform converter interface. The

class is then added to a configuration file (spin2s.txt /

rdf2s.txt), used by the Web service to dynamically

load converter class definitions at startup. Each

converter identifies its own format via a unique ID,

allowing to match incoming conversion requests to the

correct converter.

2.2. Ruleset Selection Service

To optimize OWL2 RL reasoning on mobile

platforms, the Ruleset Selection Service automatically

applies the OWL2 RL ruleset selections presented in

this paper (Section 5), given one or more selection

criteria. Indeed, due to its rule-based axiomatization,

the OWL2 RL profile greatly facilitates applying

subsets of axioms. In Section 5, we discuss relevant

selection criteria in detail, such as logical equivalence

with other rules, and subsets based on purpose and

reference. As before, since the only available API for

SPIN (i.e., the input rule format) [31] is developed for

Java, this component is deployed in the Web service.

The Default Selection function selects an OWL2

RL subset, given a list of selection criteria indicating

rules and axioms to leave out, replace or add. The

Domain-based Selection function leaves out rules that

are not relevant to a given ontology – i.e., rules that

will not yield any additional inferences

(Section 5.2.2). Typically, a ruleset selection is

performed once, before reasoning takes place; and in

case of ontology updates that require re-executing the

selection (e.g., schema updates; Section 5.2.1). Hence,

the usefulness of selections will depend on whether

the ontology is prone to frequent, relevant updates at

runtime. This is especially true in our current setup,

where this requires re-invoking the remote service at

runtime, causing considerable overhead. By deploying

the service directly on the mobile device, and even

integrating it with the reasoner, this drawback could

be mitigated (see future work).

Extensibility: To support a new selection criterion

that requires an a priori analysis of the ontology,

developers can create a new subclass of the

DomainBasedSelection class. Else, the developer can

simply add a new subfolder under the owl2rl/ folder in

MobiBench, which keeps a list of rules and axioms to

be removed, replaced or added.

2.3. Pre-Processing Service

The Pre-processing Service performs pre-

processing of the ruleset and target ontology to

support OWL2 RL-based reasoning, if required. In

particular, the service implements 3 solutions to

support n-ary rules (see Section 4.2.3): (1) instantiate

the rules, based on schema assertions found in the

ontology; (2) normalize (or “binarize”) the input

ontology to only contain binary versions of the n-ary

assertions, and apply binary versions of the rules; and

(3) replace each rule by 3 auxiliary rules.

When applying solutions (1) and (2), pre-

processing needs to occur initially and each time the

ontology is updated. Solution (3) does not have this

drawback, but infers n+1 intermediary inferences for

each “complete” inference for an n-ary assertion,

which do not follow from the OWL2 RL semantics.

The choice between these solutions thus depends on

the scenario, e.g., whether the ontology is prone to

frequent updates. As before, deploying this service on

the mobile device could alleviate these drawbacks (see

future work). Currently, it is deployed on the Web

service since only a Java SPIN API is available.

Extensibility: To support a new pre-processing

mechanism, developers can create a new subclass of

the PreProcessor class. In case the mechanism

requires ontology analysis (cfr. solutions (1), (2)),

OntologyBasedPreProcessor should be subclassed.

2.4. Benchmark Engine

The Benchmark Engine performs benchmarks of

reasoning engines, following a particular reasoning

setup. A reasoning setup includes a reasoning task and

process flow. By supporting different setups, and

allowing new ones to be plugged in, benchmarks can

be better aligned to real-world scenarios.

In Section 2.4.1, we elaborate on the currently

supported reasoning engines. Next, we discuss the

available reasoning tasks (Section 2.4.2) and process

flows (Section 2.4.3), as well as the supported

benchmark measurement criteria (Section 2.4.4).

2.4.1. Reasoning Engines

Below, we categorize currently supported engines

according to their reasoning support. The engines not

indicated as Android systems, excluding the

JavaScript (JS) engines, were manually ported to

Android. In this categorization, we consider rule

engines as any system that can calculate the deductive

closure of a ruleset, i.e., execute a ruleset and output

resulting inferences (not necessarily limited to this).

Rule-based systems

AndroJena [61] is an Android-ported version of

Apache Jena [4]. It supplies a rule-based reasoner,

which supports both forward and backward chaining,

respectively based on the RETE algorithm [17] and

SLG resolution [15].

RDFQuery [70] is a JavaScript RDF store that

performs queries using a RETE network, and

implements a naïve reasoning algorithm.

RDFStore-JS [71] is a JavaScript RDF store,

supporting SPARQL 1.0 and parts of SPARQL 1.1.

We extended this system with naïve reasoning,

accepting rules as SPARQL 1.1 INSERT queries.

IRIS (Integrated Rule Inference System) [9] is a

Java Datalog engine meant for Semantic Web

applications. The system relies on bottom-up

evaluation combined with Magic Sets [7].

PocketKrHyper [45] is a J2ME first-order theorem

prover based on a hyper tableaux calculus, and is

meant to support mobile semantic apps. It supplies a

DL interface that accepts DL expressions and

transforms them into first-order logic.

OWL reasoners

AndroJena supplies an OWL reasoner, which

implements OWL Lite (incompletely) and supports

full, mini and micro modes that indicate custom

expressivities; and an RDFS reasoner, similarly with

full, default and simple modes. For details, we refer to

the Jena documentation [63].

The ELK reasoner [27] supports the OWL2 EL

profile, and performs (incremental) ontology

classification. Further, Kazakov et al. [26] has

demonstrated that it can take advantage of multi-core

CPUs of modern mobile devices.

HermiT [18] is an OWL2 DL reasoner based on a

novel hypertableaux calculus, and is highly optimized

for performing ontology classification.

JFact [66] is a Java port of the FaCT++ reasoner,

which implements a tableau algorithm and supports

OWL2 DL expressivity.

Pellet [46] is a DL reasoner with sound and

complete support for OWL2 DL, featuring a tableaux

reasoner. It also supports incremental classification.

In Section 6.3, we list the reasoning engines utilized

in our benchmarks.

Extensibility: To support a new JS reasoner, the

developer writes a JS plugin object, which implements

a uniform reasoner interface and specifies the accepted

rule and data format, the process subflow (if any)

dictated by the engine (Section 2.4.3), and its available

settings (e.g., reasoning scope (OWL, RDFS)). To rule

out communication, console output, etc. influencing

measurements, each plugin captures its own fine-

grained result times using our ExperimentTimer API.

Any required JavaScript libraries, as indicated by the

plugin, are automatically loaded. Developers register

their plugins in an engine.json file.

For native engines, the developer similarly

implements a native plugin class, and supplies a

skeleton JS plugin. The system wraps this skeleton

plugin with a proxy object that delegates invocations

to the native plugin over the Cordova bridge (see

Fig. 1). In practice, native (Android) reasoners often

have large amounts of dependencies, some of which

may be conflicting (e.g., different versions of the same

library). To circumvent this issue, we package each

engine and its dependencies as jar-packaged .dex files,

which are automatically loaded at runtime. For more

details, we refer to our online documentation [51].

2.4.2. Reasoning Tasks

Currently, we support three reasoning tasks. Fig. 2

illustrates the dependencies between these tasks.

1) Rule-based materializing inference: Computing

the deductive closure of a ruleset for a dataset, and

adding all inferences to the dataset.

2) OWL2 materializing inference: Given an

ontology, materialize all inferences based on an

OWL2 expressivity (e.g., OWL2 Full, OWL2 DL,

OWL Lite, or some other reduced expressivity). This

task can also be performed by rule engines, e.g., using

the rules axiomatizing the OWL2 RL semantics.

Fig. 2 shows two types of OWL inference: “built-in”

inference of any kind (e.g., OWL2 DL, QL, Lite, etc.),

which only requires an input ontology; and OWL2 RL

reasoning, which uses a rule engine and accepts both

an OWL2 RL ruleset and ontology as input.

Regarding our choice for materializing inferences

vs. reasoning per query (e.g., via resolution methods

such as SLG [15]), we note that each have their

advantages and drawbacks on mobile platforms. Prior

to data access, the former involves an expensive pre-

processing step that may significantly increase the

dataset scale, which is problematic on mobile

platforms, but then leaves query answering purely

depending on speed of data access. In contrast, the

latter incurs a reasoning overhead for each query that

depends on dataset scale and complexity. Another

materialization drawback is that inferences need to be

(re-)computed whenever new data becomes available.

For instance, Motik et al. [37] combine materialization

with a novel incremental reasoning algorithm, to

efficiently update previously drawn conclusions. To

allow benchmarking such incremental methods, our

framework supports an “incremental reasoning”

process flow (Section 2.4.3). For the purposes of this

paper, we chose to focus on a materialization

approach, although supporting resolution-based

reasoning is considered future work. We note that

many Semantic Web rule-based reasoners, including

DLEJena [36], SAOR [23], OwlOntDb [16] and

RuQAR [5], also follow a materialization approach.

3) Service matching: Checks whether a user goal,

which describes the services the user is looking for,

matches a service description. In its rule-based

implementation, a pre- or post-condition / effect from

one description (e.g., goal) acts as a rule; and its

counterpart condition from the other (e.g., service)

serves as a dataset, which is done by “freezing”

variables, i.e., replacing them by constants. A match is

found when rule execution infers the consequent. We

note that this rule-based task can easily be enhanced

with ontology reasoning – i.e., by including an OWL2

RL ruleset with the match rule(s), and relevant

ontology elements in the match dataset – which is one

of the additional advantages of utilizing a rule-based

OWL axiomatization. In mobile settings, service

matching enables mobile apps to locate useful services

in a smart environment, with all necessary

computation taking place on the mobile platform (see

e.g., [53]). While our benchmarks do not measure the

performance overhead of service matching, this is

considered future work.

Fig. 2. Reasoning types.

Extensibility: Reasoning tasks are implemented as

JS classes, with a hierarchy as shown in Fig. 2. A new

reasoning task class needs to implement the inference

function, which realizes the task by either directly

invoking the reasoner interface (see Section 2.4.1),

delegating to another task class (e.g., Rule-based

inference) or to a subflow (see Section 2.4.3 –

Extensibility). The Reasoning task super class

provides functions such as checking conformance,

collecting result times, and logging inferences. A new

task file should be listed in tasks.json.

2.4.3. Process Flows

To better align benchmarks with real-world use

cases, MobiBench supports several process flows,

which dictate the times at which operations (e.g., load

data, execute rules / perform reasoning) are

performed. From previous work [54], [55], and in line

with our choice for materializing inferences, we

identified two useful process flows:

Frequent Reasoning: in this flow, the system stores

all incoming facts directly in a data store (which

possibly also includes an initial dataset). To generate

new inferences, reasoning is periodically applied to

the entire datastore. Concretely, this entails loading a

reasoning engine with the entire datastore each time a

certain timespan has elapsed, applying reasoning, and

storing new inferences into the datastore.

Incremental Reasoning: here, the system applies

reasoning for each new fact (currently, MobiBench

only supports monotonic reasoning, and thus does not

deal with deletions). In this case, the reasoning engine

is first loaded into memory (possibly with an initial

dataset). Then, reasoning is (re-)applied for each

incoming fact, whereby the new fact and possible

inferences are added to the dataset. Some OWL

reasoners directly support incremental reasoning, such

as ELK and Pellet. As mentioned, Motik et al. [37]

implemented an algorithm to optimize this kind of

reasoning, initially presented by Gupta et al. [21].

Further, we note that each reasoner dictates a

subflow, which imposes a further ordering on

reasoning operations. In case of OWL inference

(implemented via e.g., tableau reasoning), data is

typically first loaded into the engine, and then an

inference task is performed (LoadDataPerform-

Inference). Similarly, RDFQuery, RDFStore-JS and

AndroJena first load data and then execute rules. For

the IRIS and PocketKrHyper engines, rules are first

loaded (e.g., to build the Datalog KB), after which the

dataset is loaded and reasoning is performed

(LoadRulesDataExecute). For more details, we refer

to previous work [54].

Extensibility: Process flows are implemented as JS

classes. Each main process flow is listed in flows.json,

and will call a reason task at certain times (e.g.,

frequent vs. incremental) and with particular

parameters (e.g., entire dataset vs. new fact). A

subflow is specific to a particular reasoning task (see

Section 2.4.2). A Reason task may thus utilize a

subflow class behind-the-scenes, in case multiple

subflows are possible. When called, a subflow class

executes the uniform reasoning functions (e.g., load-

data, execute) in the appropriate order.

2.4.4. Measurement Criteria

The Benchmark Engine allows studying and

comparing the metrics listed below.

Performance:

Loading times: time needed to load data and rules,

ontologies, etc. into the engine.

Reasoning times: time needed to infer new facts or

check for entailment.

Memory consumption: total memory consumed by

the engine after reasoning. Currently, it is not feasible

to measure this criterium for non-native engines; we

revisit this issue in Section 6.4.

Conformance:

The Benchmark Engine allows to automatically

compare inferences to the expected output for

conformance checking (Section 5.4). As such,

MobiBench allows investigating the completeness and

soundness of inference as well (cfr. [20]).

Other related works focus on measuring the fine-

grained performance of specific components [34],

such as large joins, Datalog recursion and default

negation. In contrast, MobiBench aims to find the

most suitable reasoner on a mobile platform given an

application scenario (e.g., reasoning setup, dataset).

Our performance metrics support this objective.

We further note that the performance of the

remotely deployed services, i.e., the Uniform

Conversion Layer (Section 2.1), Ruleset Selection

(Section 2.2) and Pre-Processing (Section 2.3)

services are not measured. The Uniform Conversion

Layer will not be included in actual reasoning

deployments since it only aims to facilitate

benchmarking; e.g., for production systems, rulesets

can be converted a priori and then stored locally.

Regarding the Ruleset Selection and Pre-Processing

services, we note that these services are invoked once,

before reasoning takes place; and then each time a

relevant ontology update (e.g., schema update) occurs

at runtime, i.e., which requires re-executing the

operation. In scenarios where such updates may take

place, we currently do not utilize selections or pre-

processing options that would require re-invoking the

service (see Section 5.2.1) at runtime. Therefore, and

in light of future work to improve these services (e.g.,

by directly integrating them with the reasoner), we do

not measure their performance.

Finally, we note that this paper focuses in particular

on performance times and memory consumption on

mobile platforms. Clearly, battery usage is an

important aspect on mobile platforms as well. In the

state of the art, a recent study [39] reported a near

linear relation between consumed energy and OWL

reasoning time, meaning that energy usage estimates,

based on our captured performance times, could

already be realistic. Nevertheless, future work

involves supporting battery measurements as well.

3. Using MobiBench for Benchmarking

While the previous section indicated how

MobiBench can be extended by third-party

developers, this section describes how developers can

utilize MobiBench for benchmarking. Developers

may run benchmarks programmatically (Section 3.1)

or use the automation support (Section 3.2). To

aggregate benchmark results into summary CSV files,

developers can utilize the analysis tools (Section 3.3).

For more detailed instructions, we refer to our online

documentation [51].

3.1. Programmatic Access

To execute benchmarks programmatically,

developers call the MobiBench’s execBenchmark

function with a configuration object, specifying

options for reasoning and resources. Below, we show

an example (Code 1):

config: {
 engine: 'androjena', nrRuns: 10, warmupRun: true,
 dumpHeap: true,
 reasoning: {
 task: ‘ontology_inference',
 mechanism: {
 ontology_inference: {
 type: 'owl2rl', dependency: 'rule_inference'
 },
 rule_inference: {
 mainFlow: 'frequent',
 subFlow: 'load_data_exec_rules'
 } } },
 resources: {
 ontology: {
 path: 'res/owl/data/0.nt',
 type:'data', format:'RDF', syntax:'N-TRIPLE'
 },
 owl2rl : {
 axioms: {
 path: 'res/owl/owl2rl/full/axioms.nt',
 type:'data', format:'RDF', syntax:'N-TRIPLE'
 },
 rules: {
 path: 'res/owl/owl2rl/full/rules.spin',
 type: 'rules', format: 'SPIN' },
 preprocess: 'inst-rules',
 selections: ['inf-inst', 'entailed']
 },
 confPath: 'res/owl/conf/ontology_inference/0.nt'
 outputInf: 'res/output/ontology_inference/...'
 id: '...' }

Code 1. Example benchmark configuration object.

This object specifies the unique engine id, the

number of experiment runs, possibly including a

“warmup” run (not included in the collected metrics),

and whether memory usage should be measured

(dumpHeap). The reasoning part indicates the high-

level reasoning task (i.e., ontology_inference) and

concrete mechanism (i.e., owl2rl), as well as details on

dependency tasks (i.e., rule_inference), including its

main and sub process flow.

The resources section lists the resources to be used

in the benchmark; in this case, an ontology and OWL2

RL axioms and rules. Further, the section specifies

that the inst-rules pre-processing method (i.e.,

instantiate rules; Section 4.2.3, (1)) should be applied,

as well as selections inf-inst (i.e., inference-instance

subset) and entailed (i.e., leaving out logically

redundant rules) (Section 5). Both involve calling the

respective services on the Web service. It may also

indicate the path for storing inferences (outputInf); as

well as the expected reasoning output (confPath), to

allow for automatic conformance checking.

3.2. Automation Support

Due to the potential combinatorial explosion of

configuration options, including engines and their

possible settings, resources and OWL2RL subsets,

manually writing configurations quickly becomes

impractical. For that purpose, we implemented an

Automation Support component.

This solution includes an Automation Client,

deployed on a server or PC, which generates a set of

benchmarks based on an automation configuration;

and communicates these benchmarks over HTTP with

the Automation Web Service on the mobile device,

which locally invokes the MobiBench API and returns

the benchmark results. In the Automation Client code,

developers specify ranges of configuration options,

whereby each possible combination will be used to run

a benchmark. Code 2 shows (abbreviated) example

code for running a set of OWL2 RL benchmarks:

1. OWL2RLRunConfig config = new OWL2RLRunConfig();
2. config.setTask("owl_inference", "owl2rl");
3. config.select({ "entailed" },

 { "inf-inst", "entailed", "domain-based" });
5. config.addDataset("ore", 0, 188); ...

Code 2. Example automation configuration.

In this case, one subset leaves out entailed, logically

redundant rules (entailed), and the second applies the

inf-inst (i.e., inference-instance subset), entailed and

domain-based (i.e., selecting a domain-based subset)

selections. Both rulesets are applied on all benchmark

ontologies, creating a total of 378 benchmarks.

3.3. Analysis Tools

To deal with large amounts of benchmark results,

the MobiBench Analysis Tools assemble benchmark

results into a CSV file. This file lists the performance

results and memory usages per configuration;

including process flow and reasoning task, rule

subsets, engine-specific options, and datasets.

Further, the Analysis Tools include a utility function

to easily compare performance times of two reasoning

configurations (e.g., different OWL2 RL subsets), and

output both the individual (i.e., per benchmark

ontology) and total (i.e., aggregated) differences in

performance. The Analysis Tools are available both as

source code and a command line utility. See our online

documentation [51] for more information.

4. OWL2 RL Realization

We argue that OWL2 RL is a promising solution for

ontology-based reasoning on resource-constrained

devices, as it targets scalability at the expense of

expressivity; while its rule-based axiomatization also

provides unique opportunities for optimization, as

discussed in Section 5. Although its reduced

expressivity leads to a lack of completeness of TBox

reasoning [37] and places syntactic restrictions on

ontologies, we find this trade-off acceptable if it would

lead to ontology-based reasoning becoming feasible

on resource-constrained platforms.

 In this section, we discuss our realization of the

OWL2 RL profile. First, we shortly discuss the OWL2

RL profile (Section 4.1), and then elaborate on our

practical implementation (Section 4.2).

4.1. OWL2 RL Profile

The OWL2 Web Ontology Language Profiles

document [13] introduces three OWL2 profiles,

namely OWL2 EL, OWL2 QL and OWL2 RL. By

restricting ontology syntax and reducing expressivity,

these profiles can more efficiently handle specific

application scenarios. The OWL2 RL profile is aimed

at balancing expressivity with reasoning scalability,

and presents a partial, rule-based axiomatization of

OWL2 RDF-Based Semantics. Reasoning in OWL2

RL has been found to be decidable, in particular,

PTIME-complete with regards to data and taxonomic

complexity, and co-NP-complete (PTIME-complete

for atomic class expressions) regarding combined

complexity [14]. Using OWL2 RL, reasoning systems

can be implemented using standard rule engines. The

W3C specification [13] presents the OWL2 RL

axiomatization as a set of universally quantified, first-

order implications over a ternary predicate T, which

stands for a generalization of RDF triples. In addition

to regular inference rules, OWL2 RL includes rules

that are always applicable (i.e., without antecedent),

and consistency-checking rules (i.e., with consequent

false). Below, we exemplify each type of rules

(namespaces omitted for brevity) for later reference.

Code 3 shows a “regular” inference rule that types

resources based on the subClassOf construct:

𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2), 𝑇(? 𝑥, 𝑡𝑦𝑝𝑒, ? 𝑐1) → 𝑇(? 𝑥, 𝑡𝑦𝑝𝑒, ? 𝑐2)

Code 3. Rule classifying resources (#cax-sco).

The second type of rule lacks an antecedent and is

thus always applicable. E.g., the rule in Code 4

indicates that each built-in OWL2 RL annotation

property has the owl:AnnotationProperty type:

𝑇(? 𝑎𝑝, 𝑡𝑦𝑝𝑒, 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

Code 4. Rule typing annotation properties (#prp-ap).

Thirdly, the consistency-checking rule in Code 5

checks whether an instance of a restriction, indicating

a maximum cardinality of 0 on a particular property,

participates in said property. If so, the ontology is

flagged as inconsistent.

𝑇(? 𝑥, 𝑚𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦, 0), 𝑇(? 𝑥, 𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝),
𝑇(? 𝑢, 𝑡𝑦𝑝𝑒, ? 𝑥), 𝑇(? 𝑢, ? 𝑝, ? 𝑦) → 𝑓𝑎𝑙𝑠𝑒

Code 5. Rule based on maxCardinality restriction to check
consistency (#cls-maxc1).

4.2. Practical Realization of OWL2 RL

To implement the OWL2 RL axiomatization for

general-purpose rule engines, where no particular

internal support can be assumed, three types of rules

may pose problems: 1) rules that require internal

datatype support; 2) rules that are always applicable;

and 3) rules referring to lists of elements. Below, we

present these issues and our solutions, and we end with

a description of our final ruleset implementation.

4.2.1. Rules requiring datatype support

The datatype inference rule #dt-type2 (Code 6)

requires literals with data values from a certain value

space to be typed with the datatype of that value space

(e.g., typing an integer “42” with xsd:int):

𝑇(? 𝑙𝑡, 𝑡𝑦𝑝𝑒, ? 𝑑𝑡)

Code 6. Rule typing each literal with its corresponding datatype

(#dt-type2).

Similarly, a second rule (#dt-not-type) flags an

inconsistency when a literal is typed with the wrong

datatype. Two other datatype rules (#dt-eq and #dt-

diff) indicate equality and inequality of literals based

on their values; which requires differentiating literals

from URIs, to avoid these rules to fire for URI

resources as well. These four rules thus require built-

in support for RDF datatypes and literals, meaning

they cannot be consistently implemented across

arbitrary rule engines. Therefore, we chose to leave

these rules out of our OWL2 RL ruleset. Related work,

including DLEJena [36], the SPIN OWL ruleset by

Knublauch [30] and OWLIM OWL2 RL ruleset [8]

also do not include datatype rules.

4.2.2. Always-applicable rules

A number of OWL2 RL rules lack an antecedent,

and are thus always applicable. One subset of these

rules lack variables (e.g., specifying that owl:Thing

has type owl:Class), and may thus be directly

represented as axiomatic triples to accompany the

OWL2 RL ruleset. A second subset comprises

“quantified” variables in the consequent; e.g., stating

that each annotation property has type

owl:AnnotationProperty (Code 4). Likewise, these

were implemented by axioms that properly type each

annotation property (built-in for OWL2 [22]) and

datatype property (supported by OWL2 RL [13]).

4.2.3. Rules referencing element lists

This set of rules includes so-called n-ary rules,

which refer to a finite list of elements. A first

subset (L1) of these rules lists restrictions on

individual list elements (#eq-diff2, #eq-diff3, #prp-

adp, #cax-adc, #cls-uni). For instance, rule #eq-diff2

flags an ontology inconsistency if two equivalent

elements of an owl:AllDifferent construct are found.

In contrast, rules from the second subset (L2)

include restrictions referring to all list elements (#prp-

spo2, #prp-key, #cls-int1), and a third ruleset (L3)

yields inferences for all list elements (#cls-int2, #cls-

oo, #scm-int, #scm-uni). E.g., for (L2), rule #cls-int1

infers that y is an instance of an intersection in case it

is typed by each intersection member class; for (L3),

for any union, rule #scm-uni (Code 8) infers that each

member class is a subclass of that union.

To support rulesets (L1) and (L3), we added two

list-membership rules (Code 7) that recursively link

each element to preceding list cells, eventually linking

the first cell to all list elements:

𝑇(? 𝑙, 𝑓𝑖𝑟𝑠𝑡, ? 𝑚) → 𝑇(? 𝑙, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚) a)

 𝑇(? 𝑙1, 𝑟𝑒𝑠𝑡, ? 𝑙2), 𝑇(? 𝑙2, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚) →
𝑇(? 𝑙1, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚) b)

Code 7. Two rules for inferring list membership.

Using these rules, #scm-uni (L3) may be formulated

as follows (Code 8):

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑙), 𝑇(? 𝑙, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙)

→ 𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐)

Code 8. Rule inferring subclasses based on union membership
(#scm-uni).

Since the supporting rules (Code 7) eventually link

all list elements to the first list cell (i.e., ?l) using

hasMember assertions, the rule yields inferences for

all union member classes.

However, extra support is required for (L2). For

these kinds of n-ary rules, we supply three solutions,

each with their own advantages and drawbacks:

(1) Instantiate the rules based on n-ary assertions

found in the ontology. Per OWL2 RL rule, this

generates a separate rule for each related n-ary

assertion, by constructing a list of the found length and

instantiating variables with concrete schema

references. E.g., a property chain axiom 𝑃 with

properties 𝑃1−3 will yield the following rule (Code 9):

𝑇(? 𝑢1, 𝑃1, ? 𝑢2), 𝑇(? 𝑢2, 𝑃2, ? 𝑢3), 𝑇(? 𝑢3, 𝑃3, ? 𝑢4)
→ 𝑇(? 𝑢1, 𝑃, ? 𝑢4)

Code 9. Instantiated rule supporting a specific property chain axiom
(#prp-spo2).

Some related works apply this approach (a.k.a.

“rule-templates”) for any n-ary rule [38], or even all

(applicable) OWL2 RL rules [5], [36], [37].

A drawback of this approach is that it requires pre-

processing the ruleset for each ontology, and

whenever it changes. Although our selections also

include a pre-processing option (Section 5.2), this is

only needed for optimization. Of course, the severity

of this drawback depends on the frequency of

ontology updates. In addition, it yields an extra rule

for each relevant assertion, potentially inflating the

ruleset. On the other hand, instantiated rules contain

less variables, and may also reduce the need for joins,

as for #prp-spo2 (see also [37]). Further, in case no

related assertions are found, no rules will be added the

ruleset. Future work includes studying the application

of this approach to all rules (Section 8).

(2) Normalize (or “binarize”) the input ontology to

only contain binary versions of relevant n-ary

assertions. E.g., an n-ary intersection can be converted

to a set of binary intersections as follows (Code 10),

with 𝐼 representing the original, n-ary intersection; 𝐼𝑖

representing a binary intersection; and 𝐶𝑖 standing for

a constituent class of the original n-ary intersection:

𝐼 = 𝐶1 ∩ 𝐶2 ∩ … ∩ 𝐶𝑛 ≡
𝐼 = 𝐶1 ∩ 𝐼2 ∧ 𝐼2 = 𝐶2 ∩ 𝐼3 ∧ … ∧ 𝐼𝑛−1 = 𝐶𝑛−1 ∩ 𝐶𝑛

Code 10. Binary version of an n-ary intersection.

With the binary version of #cls-int1 (Code 11):

𝑇(? 𝑐, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑓, ? 𝑥1), 𝑇(? 𝑥1, 𝑓𝑖𝑟𝑠𝑡, ? 𝑐1), 𝑇(? 𝑥1, 𝑟𝑒𝑠𝑡, ? 𝑥2),
𝑇(? 𝑥2, 𝑓𝑖𝑟𝑠𝑡, ? 𝑐2), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐1), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐2)

→ ? 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)

Code 11. Binary version of rule #cls-int1.

This rule may be considered recursive, since it both

references and infers the same kind of assertion (i.e.,

𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)). Applying this rule on a set of binary

assertions 𝐼, 𝐼2, … , 𝐼𝑛−1 (see Code 10) yields the

following for any resource R (Code 12), with 𝑅𝑡

representing the resource’s set of all types, and, as

before, 𝐼𝑖 representing a binary intersection and 𝐶𝑖

standing for a constituent intersection class:

{

{𝐶𝑛−1, 𝐶𝑛} ⊂ 𝑅𝑡 → 𝑅𝑡 = R𝑡 + 𝐼𝑛−1
{𝐶𝑖−1, 𝐼𝑖} ⊂ 𝑅𝑡 → 𝑅𝑡 = 𝑅𝑡 + 𝐼𝑖−1 (𝑛 − 1 ≥ 𝑖 ≥ 1)
{𝐶1, 𝐼2} ⊂ 𝑅𝑡 → 𝑅𝑡 = 𝑅𝑡 + 𝐼

Code 12. Inferences when applying binary #cls-int1.

In doing so, the rule travels up the chain of binary

intersections, until it finally infers type I for R.

It is not hard to see how this approach only works

for recursive rules. Rule #prp-key is not a recursive

rule, since it infers equivalence between resources but

does not refer to such relations. So, this approach only

works for rules #prp-spo2 and #cls-int1 from (L2).

Another drawback is that, similar to (1), it requires

pre-processing for each ontology and its updates. In

particular, each relevant n-ary assertion needs to be

replaced by 𝑛 − 1 binarized versions. Further, to

support a complete, single n-ary inference, this

solution generates a total of 𝑛 − 1 inferences. While

these are sound inferences, they may be considered to

“crowd” (i.e., expand) the dataset.

(3) Replace each rule from (L2) by 3 auxiliary

rules. Bishop et al. [8] suggested this solution for

OWLIM, based on a W3C note [41]. In this solution,

a first auxiliary rule starts at the end of any list, and

infers an intermediary assertion for the last element

(cell n). Starting from the first inference, a second rule

travels up the list structure by inferring the same kind

of assertions for cells 𝑖 (𝑛 > 𝑖 ≥ 0). In case the first cell

is related to a relevant n-ary assertion (e.g.,

intersection, property chain), a third auxiliary rule

generates the original, n-ary inference. See Bishop et

al. [8] or our online documentation [51] for details.

A distinct advantage of this approach is that, in

contrast to (1) and (2), it does not rely on pre-

processing. However, each complete, single n-ary

inference requires a total of n+1 inferences, and these

do not follow from OWL2 RL semantics (instead, they

ensue from custom, auxiliary rules). As such, they can

be considered to not only “crowd” but also “pollute”

the dataset with unsound inferences. Bishop et al. [8]

internally flag these inferences so they are skipped in

query answering. Developers may want to support a

similar mechanism when adopting this solution.

4.2.4. OWL2 RL Realization Outcome

Based on all observations from Section 4, we

collected an OWL2 RL ruleset implementation written

in the SPARQL Inferencing Notation (SPIN), based

on an initial ruleset created by Knublauch [30]. This

initial ruleset relies on built-in Apache Jena functions

to implement the rules from Section 4.2.3. Such built-

in support cannot be assumed for arbitrary rule

engines, which are targeted by our ruleset. Also, it

does not specify axioms (Section 4.2.2). Our ruleset

contains 69 rules and 13 supporting axioms, and can

be found in Appendix A. This ruleset includes the two

list-membership rules (Code 7) for n-ary rules from

sets (L1) and (L3) (Section 4.2.3). To add support for

a particular solution for (L2), our Web service needs

to be contacted (Section 2.3) to pre-process the

necessary rules or ontology, and/or add the rules (e.g.,

binary versions, auxiliary rules) to the ruleset. Note

that our evaluation does not compare the performance

of these n-ary rule solutions; this is future work.

In Section 5.4, we discuss options for checking

conformance with OWL2 RL semantics.

5. OWL2 RL Optimization

This section discusses OWL2 RL ruleset selections

with the goal of optimizing ontology-based reasoning.

We note that, while this solution was construed and

evaluated for resource-constrained platforms, it may

be applied in any kind of computing environment. We

consider three selections: leaving out redundant rules

(Section 5.1), dividing the ruleset based on rule

purpose and references (Section 5.2), and removing

resource-heavy rules (Section 5.3). We note that most1

selections represent a best-effort in reducing the size

of the OWL2 RL ruleset, and do not necessarily

optimize the ruleset for all types of systems. Although

the total number of rules is reduced, some selections

involve removing or replacing specific rules by more

general rules, which could negatively impact

performance. Our evaluation (Section 6) compares the

effects of each subset selection.

For the purpose of these selections, we introduce

the terms owl2rl-schema-completeness and owl2rl-

instance-completeness, to indicate when a selection

respectively derives all schema inferences and

instance inferences covered by the OWL2 RL

axiomatization. Although OWL2 RL reasoning infers

all ABox inferences over OWL2 RL-compliant

ontologies, it does not cover all TBox inferences

dictated by the OWL 2 semantics [33], [37], hence our

introduction of these specialized terms. Further, we

1 Aside from the selection presented in Section 5.3, as it

focuses in particular on leaving out resource-heavy rules.

discuss conformance with the OWL2 RL W3C

specification (Section 5.4).

5.1. Equivalent OWL2 RL subset

As mentioned by the OWL2 RL specification [13],

the presented ruleset is not minimal, as certain rules

are implied by others. The stated goal of this

redundancy is to make the semantic consequences of

OWL2 constructs self-contained. Although this is

appropriate from a conceptual standpoint, this

redundancy is not useful when optimizing reasoning.

Aside from rules that are entailed by other rules

(Section 5.1.1), opportunities also exist to leave out

specialized rules by introducing extra axioms

(Section 5.1.2) or replacement by generalized rules

(Section 5.1.3). Some inference rules may also be

considered redundant at the instance level, since they

do not contribute to inferring instances (Section 5.1.4).

5.1.1. Entailments between OWL2 RL rules

A first set of rules is entailed by #cax-sco (see

Code 3), each time combined with a second inference

rule. For instance, #scm-uni (see Code 8) indicates that

each class in a union is a subclass of that union.

Together, these two rules entail the #cls-uni rule

(Code 13). This rule infers that each instance of a

union member is an instance of the union itself:

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑥), 𝑇(? 𝑥, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙),
𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐𝑙) → 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)

Code 13. Rule that infers membership to OWL unions
(#cls-uni).

Code 14 shows that the rule #cls-uni, for each

instantiation of the input variables, is covered by

#scm-uni + #cax-sco:

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑥), 𝑇(? 𝑥, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙) →
𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐) a)

𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐𝑙) →
𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐) b)

Code 14. Entailment of #cls-uni by #scm-uni, #cax-sco.

Applying #scm-uni on two premises from #cls-uni

returns inference (a). Then, #cax-sco is applied on the

remaining premise, together with (a). This yields the

inference in (b), which equals the #cls-uni consequent.

As such, this rule may be left out without losing

expressivity. Similarly, it can be shown that rules #cls-

int2, #cax-eqc1 and #cax-eqc2 are entailed by #cax-

sco, each time combined with a schema-based rule.

A second set of inference rules is entailed by the

#prp-spo1 rule, each time combined with rules that

indicate equivalence between owl:equivalent

[Class|Property] and rdfs:sub[Class|Property]Of.

Similar to #cax-sco, #prp-spo1 (Code 15) infers that

resources related via a sub property are also related via

its super property:

𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦) → 𝑇(? 𝑥, ? 𝑝2, ? 𝑦)

Code 15. Rule that infers new resource relations (#prp-spo1).

E.g., the #scm-eqp1 (Code 16) rule indicates that

two equivalent properties are also sub properties:

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2)
→ 𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑝2, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝1)

Code 16. Rule inferring sub properties (#scm-eqp1).

These two rules collectively entail the rule #prp-

eqp1 (Code 17). This rule infers that, for two

equivalent properties, any resources related via the

first property are also related via the second property:

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦)
→ 𝑇(? 𝑥, ? 𝑝2, ? 𝑦)

Code 17. Rule for property membership (#prp-eqp1).

This entailment is shown by Code 18:

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2) →
𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2) a)

𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦) →
𝑇(? 𝑥, ? 𝑝2, ? 𝑦) b)

Code 18. Entailment of #prp-eqp1 by #scm-eqp1,#prp-spo1.

By applying #scm-eqp1 on the first premise from

#prp-eqp1, the inference from (a) is returned.

Applying #prp-spo1 on this inference and the

remaining premise yields (b), which equals the #prp-

eqp1 consequent. This rule may thus be left out. Rule

#prp-eqp2 is similarly equivalent to these two rules.

Other rules are covered by single rule. The #eq-

trans rule (Code 19) indicates the transitivity of

owl:sameAs:

𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦), 𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧) → 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧)

Code 19. Rule indicating transitivity of owl:sameAs (#eq-trans)

This rule is entailed by #eq-rep-o (Code 20), which

indicates that, for any triple, subject resources are

related to any resource equivalent to the object:

𝑇(? 𝑜, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑜2), 𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝, ? 𝑜2)

Code 20. Rule inferring new relations via owl:sameAs (#eq-rep-o)

By partially materializing the premise of #eq-rep-o,

Code 21 shows how this rule entails #eq-trans:

𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧), 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦)

→ 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧)

Code 21. Entailment of #eq-trans by #eq-rep-o.

When executing the #eq-rep-o rule on suitable data,

the ?p variable is instantiated with owl:sameAs, thus

covering each possible inference of #eq-trans.

Finally, we note that some rules could potentially

be removed, depending on type assertions found in the

dataset. Rules #cls-maxqc4 & #cls-svf2 support

restrictions that apply to owl:Thing, and thus do not

require objects to be typed with the restriction class

(since each resource is implicitly already an

owl:Thing). Related rules #cls-maxqc3 & #cls-svf2

support restrictions that apply to a particular class, and

thus require related objects to be typed with the

restriction class. Since owl:Thing is the supertype of

each class (#scm-cls rule), and each instance is typed

by its class’s supertype (#cax-sco rule, Code 3), any

instance will be typed as owl:Thing. Therefore,

executing the second ruleset on restrictions relating to

owl:Thing could produce the same inferences.

However, #cax-sco requires each instance to be

explicitly typed, which often is not the case in practice.

Therefore, we opted to leave these rules in the ruleset.

We note that our online documentation [51]

discusses all rule equivalences in detail. In total, this

selection involved leaving out 7 redundant rules.

5.1.2. Extra supporting axiomatic triples

In other cases, extra axiomatic triples can be

introduced to allow for entailment by existing rules.

For instance, the rule #eq-sym (Code 22) explicitly

encodes the symmetry of the owl:sameAs property:

𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦) → 𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑥)

Code 22. Rule indicating owl:sameAs symmetry (#eq-sym).

By adding an axiom stating that owl:sameAs has

type owl:SymmetricProperty, Code 23 shows that any

inferences generated by the #eq-sym rule are covered

by the #prp-symp rule:

𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦), 𝑇(? 𝑥, ? 𝑝, ? 𝑦)
→ 𝑇(? 𝑦, ? 𝑝, ? 𝑥)

 𝑇(𝑠𝑎𝑚𝑒𝐴𝑠, 𝑡𝑦𝑝𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

Code 23. Rule implementing property symmetry (#prp-symp) and
supporting axiom.

Similarly, #prp-inv2 is entailed by #prp-symp with

an extra axiom, together with the #prp-inv1 rule.

Rules #scm-spo and #scm-sco, implementing the

transitivity of rdfs:subPropertyOf and

rdfs:subClassOf, respectively, are entailed by #prp-trp

with supporting axioms (Code 24):

𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦), 𝑇(? 𝑥, ? 𝑝, ? 𝑦),
𝑇(? 𝑦, ? 𝑝, ? 𝑧) → 𝑇(? 𝑥, ? 𝑝, ? 𝑧)

 𝑇(𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

 𝑇(𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
Code 24. Transitivity rule (#prp-trp) and supporting axioms.

In doing so, 4 rules can be left out, at the expense

of adding 4 new supporting axioms.

5.1.3. New generalized OWL2 RL rules

Opportunities also exist to generalize multiple rules

into a single rule, combined with supporting axioms.

We observe that rules #eq-rep-p (Code 25) and #prp-

spo1 (see Code 15) are structurally very similar:

𝑇(? 𝑝, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑝2), 𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝2, ? 𝑜)
Code 25. Rule inferring new relations via owl:sameAs

(#eq-rep-p).

Therefore, both rules can be generalized into a

single rule, with accompanying axioms (Code 26):

𝑇(? 𝑝1, ? 𝑝, ? 𝑝2), 𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑆𝑢𝑏𝐿𝑖𝑛𝑘),
𝑇(? 𝑠, ? 𝑝1, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝2, ? 𝑜)

 𝑠𝑎𝑚𝑒𝐴𝑠 𝑡𝑦𝑝𝑒 𝑆𝑢𝑏𝐿𝑖𝑛𝑘 .
 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓 𝑡𝑦𝑝𝑒 𝑆𝑢𝑏𝐿𝑖𝑛𝑘 .

Code 26. Rule covering #eq-rep-p and #prp-spo1 (#prp-sl) and

supporting axioms.

In fact, several rules are structurally very similar,

and may be pairwise generalized into a single rule with

supporting axioms: rules #scm-hv and #scm-svf2;

#scm-avf1 and #scm-svf1; #eq-diff2 and #eq-diff3;

#prp-npa1 and #prp-npa2; and #cls-com and #cax-dw

(see [51] for details). We note that the same solution

could also be applied for rule #prp-eqp1 (Code 17) but

this rule had already been removed (Code 18). In

doing so, we left out 12 specialized rules while adding

6 general rules and 12 supporting axioms. After

applying these selections, 52 rules remain and

16 axioms are added.

5.1.4. Equivalence with instance-based rules

So-called “stand-alone” schema inferences, which

extend the ontology but do not impact the set of

instances, may also be considered redundant, at least

at the instance level. E.g., #scm-dom1 (Code 27)

infers that properties also have as domain the super

types of their domains:

𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐1), 𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2)

→ 𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐2)

Code 27. Rule inferring super class domains (#scm-dom1).

Although this information may be a useful addition

to the ontology, the new schema element will not

result in new instance inferences. Code 28 shows that

its resulting instance inferences are already covered by

rules #prp-dom (a) and #cax-sco (b):

 𝑇(? 𝑠, ? 𝑝, ? 𝑜), 𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐1) → 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐1) a)

 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐1), 𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2)

2 These rule subsets both include the two membership rules

(Section 2.2.3), making them cumulatively larger.

→ 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐2) b)

Code 28. Two rules yielding same instances as #scm-dom1.

Thus, any variable ?s will already be typed with

super classes of the property’s domain, regardless of

the inferences generated by #scm-dom1. Similarly,

rules #scm-rng1, #scm-dom2 and #scm-rng2 will not

yield any new instances. By leaving out these 4 rules,

this selection retains owl2rl-instance-completeness

but clearly breaks owl2rl-schema-completeness.

5.2. Purpose- and reference-based subsets

In this section, we discuss selections based on

purpose and reference. We differentiate between

selections independent of the domain (Section 5.2.1)

and that leverage domain knowledge (Section 5.2.2).

5.2.1. Domain-independent ruleset selection

Many (e.g., context-aware [37]) scenarios only

involve adding or updating ABox (instance)

statements at runtime, meaning that TBox reasoning

may be restricted to design/startup time and whenever

the ontology changes, with ABox reasoning being re-

applied when new instances are added. Reflecting this,

most OWL2 RL reasoners focus on separating TBox

from ABox reasoning [5], [16], [23], [36], [37].

Further, data generated by the system may have a

smaller likelihood of being inconsistent, thus reducing

(or even removing) the need for continuous

consistency checking as well.

Consequently, an opportunity exists to divide our

OWL2 RL ruleset into 2 major subsets according to

purpose; 1) inference ruleset, comprising inference

rules (53 rules), and 2) consistency-checking ruleset,

containing rules for checking consistency (18 rules2).

The inference ruleset can further be subdivided along

both purpose and reference, into 1.1) instance ruleset,

consisting of rules inferring only instance assertions,

while referring to both instance and schema elements

(32 rules); and 1.2) schema ruleset, comprising rules

only referencing schema elements (23 rules2). Since

the consistency-checking ruleset only contains rules

referring to both instance and schema elements, it

cannot be further subdivided.

In this approach, inference-schema is applied on the

ontology, initially and whenever the ontology

changes, to materialize all schema inferences. When

new instances are added, only inference-instance is

applied on the instance assertions and materialized

schema. As shown in our evaluation (Section 6),

executing only inference-instance has the potential to

improve performance. Below, we show that this

process still produces a complete materialization.

Definition 1. We define 𝑆 as the set of all schema

assertions (i.e., TBox) and 𝐼 the set of all instance

assertions (i.e., ABox) with 𝑆 ∩ 𝐼 = ∅, and 𝐴 = 𝑆 ∪ 𝐼

the set of all assertions. We further define schema

ruleset 𝛼 and instance ruleset 𝛽 as follows, with 𝐼𝑅 =
𝛼 ∪ 𝛽 the set of all inference rules in OWL2 RL:

𝛼 = { 𝑟 | ∀𝑐 ∈ 𝑏𝑜𝑑𝑦(𝑟), (1)

∀𝑎 ∈ 𝐴 ∶ 𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑐) → 𝑎 ∈ 𝑆 }

𝛽 = { 𝑟 | ∀𝑖 ∈ 𝑖𝑛𝑓𝑒𝑟(𝑟, 𝐴): 𝑖 ∈ 𝐼 }

Where r is a rule from the OWL2 RL ruleset,

𝑏𝑜𝑑𝑦(𝑟) returns all clauses in the body of rule 𝑟,

𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑐) returns true if assertion 𝑎 matches a body

clause 𝑐, and 𝑖𝑛𝑓𝑒𝑟(𝑟, 𝐴) returns all inferences yielded

by rule 𝑟 on the set of assertions 𝐴. In other words,

ruleset 𝛼 includes rules for which each body clause is

only matched by assertions from 𝑆, and ruleset 𝛽

includes rules that only infer assertions from 𝐼. These

conditions can be easily confirmed for our OWL2 RL

rulesets [51]. Further, 𝑘∗(𝑋) denotes the deductive

closure of ruleset 𝑘 on assertions 𝑋 (i.e., returning 𝑋

extended with any resulting inferences).

Theorem 1. The deductive closure of 𝐼𝑅 on the

union of any ontology schema 𝑂 (𝑂 ⊆ 𝑆) and dataset

𝐷 (𝐷 ⊆ 𝐼) is equivalent to the deductive closure of 𝛽

on the union of materialized schema 𝛼∗(𝑂) (i.e.,

including schema inferences) and dataset D:

(𝛼 ∪ 𝛽)∗(𝑂 ∪ 𝐷) ≡ 𝛽∗(𝛼∗(𝑂) ∪ 𝐷) (2)

It is easy to see why this equivalence holds.

Compared to the left operand, the set of assertions on

which ruleset 𝛼 is applied no longer includes

inferences from 𝛽 (since its deductive closure is now

calculated separately), nor assertions from D. But this

does not affect the deductive closure of 𝛼, since 𝛼 only

matches assertions from 𝑆 with 𝑆 ∩ 𝐼 = ∅, whereas

𝐷 ⊆ 𝐼 and 𝛽 only infers 𝑖 ∈ 𝐼 (see Definition 1). ∎

In the same vein, the consistency-checking ruleset

needs to be applied on a dataset with all inferences

materialized using the inference ruleset. It can be

similarly shown that applying only consistency-

checking on such a dataset will not result in losing any

consistency errors. We note that related work often

uses a separate OWL reasoner for materializing the

schema [5], [16], [36]. Although this is a viable

approach, we argue that this is not optimal for mobile

platforms as it requires deploying two resource-heavy

components (i.e., an OWL reasoner and rule engine).

At the same time, it is clear that the utility of

separately applying these subsets depends on the

frequency of ontology (schema) updates, since each

update requires re-materializing the (schema)

inferences. Although ontology changes are typically

infrequent compared to instance data, this depends on

the concrete scenario. In general, we define an

ontology as stable when (a) it is not subject to relevant

changes at runtime, i.e., changes that require re-

executing the selection; or (b) these changes occur so

infrequently that it remains advantageous to apply the

selection. We note that the “relevancy” of a change, as

well as what constitutes a “re-execution” of the

selection, depends on the ruleset selection. In case of

inference-instance, a relevant change involves a

schema update, which requires re-materializing the

ontology schema at runtime. In case an ontology is not

stable in the context of a ruleset selection, it should not

be applied. An ontology is considered volatile when it

is not stable. Bobed et al. use a similar definition for

static ontology properties [10].

5.2.2. Domain-based ruleset selection

By leveraging domain (i.e., ontology) knowledge,

rules that do not reference the ontology and will thus

not yield any inferences, may be left out as well,

yielding a domain-based rule subset.

Manually determining such a domain-based ruleset

is quite cumbersome and error-prone. Firstly, one can

clearly not just check whether constructs referenced

by the rule are present; e.g., the ontology may contain

owl:subClassOf constructs, but the premise of #scm-

eqc2 requires two classes to be subclasses of each

other, which is less likely. Secondly, some rules may

be indirectly triggered by other rules, meaning that

checking inferences per individual rule is insufficient.

Consequently, Tai et al. [48] describe a “selective

rule loading” algorithm to determine this ruleset. As a

type of naïve forward-chaining algorithm, it executes

each rule sequentially on the initial dataset, adding any

inferences. In case a rule yields results, it is added to

the selective ruleset. This process continues until no

more inferences are generated. We implemented this

algorithm in the MobiBench framework (Section 2.2).

Similar to before, the applicability of this ruleset

selection depends on the “stability” of the ontology. In

this case, relevant changes not only include schema

updates but also insertions of certain data patterns, i.e.,

sets of instance assertions (e.g., reciprocal

owl:subClassOf relations would make the #scm-eqc2

rule relevant); these will require re-calculating the

ruleset (with its associated overhead) at runtime.

5.3. Removal of inefficient rules

Rule #eq-ref (Code 29), inferring that each resource

is equivalent to itself, greatly bloats the dataset:

𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑠),
𝑇(? 𝑝, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑝), 𝑇(? 𝑜, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑜)

Code 29. Rule inferring that each unique resource is equivalent to
itself (#eq-ref).

For each unique resource, this rule creates a new

statement indicating the resource’s equivalence to

itself. Consequently, 3 new triples are generated for

each triple with unique resources, resulting in a worst-

case 4x increase in dataset size (!). One could argue

that there is limited practical use in materializing these

statements; and it is unlikely that their absence will

affect other inferences (there is one case where this

may happen; see [51]). If needed, the system could

e.g., be adapted to support them virtually. Therefore,

we feel that developers should at least be allowed to

weigh the utility of this rule versus its computational

cost. We note that some production-strength OWL

reasoners, such as SwiftOWLIM, have configuration

options available to disable such rules as well [25].

After applying all selections cumulatively (aside

from purpose- and reference-based subsets), this

leaves a ruleset of 51 rules; 18 rules less than the

original ruleset. Our evaluation (Section 6) studies the

performance of separately and cumulatively applying

these selections.

5.4. Conformance testing

To check the conformance of our original OWL2

RL ruleset and its subset selections (Sections 5.1–5.3),

standard OWL2 RL conformance tests should be

applied. However, many test cases listed on the W3C

OWL2 Web Ontology Language Conformance page

for the OWL2 RL profile [47] are not actually covered

by OWL2 RL (as confirmed by one of its major

contributors on the W3C mailing list [72]). Therefore,

we used the OWL2 RL conformance test suite

presented by Schneider et al. [43]. We note that some

of these tests had to be left out, either due to the

limitations of the original OWL2 RL ruleset

(Section 4.2; e.g., lack of datatype support), or due to

difficulties testing conformance. We detail these cases

in our online documentation [51].

The original OWL2 RL ruleset (Section 4.2), as

well as its conformant subsets (Sections 5.1.1–5.1.3),

pass this conformance test suite. As a sanity-check

regarding domain-independent ruleset selection

(Section 5.2.1), the result of sequentially applying

inference-schema rules, inference-instance rules and

consistency-checking rules also passes the

conformance tests. As expected, the selections

presented in Section 5.1.4 (Equivalence with instance-

based rules) loses owl2rl-schema-completeness, and

Section 5.3 (Removal of inefficient rules) fully breaks

conformance with the test suite. Finally, we note that

conformance of the domain-based ruleset selection

(Section 5.2.2) cannot be checked using this test suite,

since this subset only includes rules specific to the

domain ontology (while the test suite clearly checks

all OWL2 RL rules). Instead, conformance of this rule

subset was tested by collecting the inferences of the

full ruleset (when applied on our evaluation

ontologies; Section 6), and comparing them to the

output of the domain-based rule subset.

6. Mobile Reasoning Benchmark Results

This section presents the benchmark results for

materializing ontology inferences on mobile

platforms, obtained using MobiBench.

6.1. Reasoning Task

Our benchmarks cover OWL2 materializing

inference. We note that, although rule-based reasoning

is not benchmarked separately, it is used to implement

this task (Section 2.4.2). Our goals include:

1) Measuring the performance impact of our OWL2

RL subset selections (Section 5). To that end, we

utilize two rule-based systems (Section 6.3).

2) Using the best performing OWL2 RL rulesets,

benchmarking the best-effort performance of the two

rule-based systems under different orthogonal cases:

“stable” vs. “volatile” ontologies (Section 5.2); and

OWL2 RL-conformant vs. non-conformant rulesets.

In addition, we benchmark three OWL2 DL reasoners

(Section 6.3) and compare the benchmark results.

Currently, we chose to only apply the Frequent

Reasoning process flow; since most systems either

support incremental reasoning only partially (e.g.,

Pellet: only incremental classification), or not at all.

This means they will have virtually identical

performance for incremental reasoning steps.

6.2. Benchmark Resources

To benchmark our reasoning task, we rely on the

validated resources listed below (available for

download at our online documentation [51]),

including OWL ontologies (Section 6.2.1) and rulesets

for OWL2 RL reasoning (Section 6.2.2).

6.2.1. OWL2 Ontologies

OWL 2 RL Benchmark Corpus [35]: Matentzoglu

et al. extracted this corpus from repositories including

the Oxford Ontology repository [69], the Manchester

OWL Corpus (MOWLCorp) [67], and BioPortal [49],

a comprehensive repository of biomedical ontologies.

The corpus contains ontologies from clinical and

biomedical fields (ProPreo, ACGT, SNOMED),

linguistic and cognitive engineering (DOLCE) and

food and wine domains (Wine), thus covering a range

of use cases for ontology-based reasoning.

To suit the constrained resources of mobile

platforms, we extracted ontologies with

500 statements or less from this corpus, resulting in

189 benchmark ontologies (total size: ca. 9Mb). By

focusing on OWL2 RL ontologies, all ontology

constructs are supported by all evaluated reasoners,

i.e., OWL2 RL and DL.

In Section 6.6, benchmark ontologies are ordered

0–188, with an ontology’s cardinal number indicating

its relative OWL2 RL reasoning performance.

6.2.2. OWL2 RL Rulesets

To study the effects of OWL2 RL subset selections

on performance (Section 5), we created multiple

benchmark rulesets using our Ruleset Selection

Service (Section 2.2). We summarize each selection

below, and indicate their label used in the benchmark

results. Note that, when discussing the benchmark

results, the “+” symbol indicates applying one or more

selections on the OWL2 RL ruleset.

All selections from (1) guarantee OWL2 RL

conformance, i.e., they are complete under the OWL2

RL semantics (Section 5.4); whereas the inst-ent

selection from (2) still guarantees owl2rl-instance-

completeness (Section 5.1.4), i.e., ensuring all

instances are inferred under the OWL2 RL semantics.

(1) Conformant selections

- entailed: leave out logically redundant rules

(Section 5.1.1);

- extra-axioms: add extra supporting axioms, which

allows leaving out specific rules (Section 5.1.2);

- gener-rules: add generalized rules, each replacing

two or more specialized rules (Section 5.1.3);

- inf-inst: retain inference rules referring to both

instance and schema elements (Section 5.2.1);

- inf-schema: retain inference rules referring only to

schema elements (Section 5.2.1);

- consist: retain only consistency-checking rules

(Section 5.2.1);

- domain-based: leave out rules not referenced by

the ontology (Section 5.2.2).

(2) Non-conformant selections

- inst-ent: leave out schema-based rules not yielding

extra instance inferences (Section 5.1.4);

- ineff: leave out inefficient rules (Section 5.3).

To support n-ary rules from (L2) (Section 4.2.3) we

chose to only apply solution (1), i.e., instantiating the

ruleset. This was done for all benchmarks, i.e., all

benchmark results were obtained with a ruleset that

can deal with any n-ary rule. Since the benchmark

ontology corpus (Section 6.2.1) only contains

18 intersections in total (with no property-chain or

has-key assertions), we chose a solution that leaves out

these rules in case no related n-ary assertions are

found. Due to the low number of relevant assertions in

this corpus, comparing the performance impact of

different solutions would not make much sense (this is

future work). We also note that ontologies with

intersections were manually extended with relevant

instance assertions, so inferences would be made

based on the (instantiated) #cls-int1 rule.

6.3. Benchmarked Systems

In order to focus on our main goals (Section 6.1),

namely studying the performance impact of the

proposed OWL2 RL rule subsets and best-effort

performances in light of the proposed optimizations,

we limit ourselves to benchmarking only two rule-

based systems (AndroJena, RDFStore-JS). An

exhaustive comparison of all systems would warrant

its own paper and is thus considered out of scope. For

this purpose, we chose the best-performing native

Android system (AndroJena) and JavaScript system

(RDFStore-JS). Our reason for including a JavaScript

system is because they are interesting from a

development perspective; i.e., they can be directly

used by cross-platform, JavaScript-based mobile apps

(e.g., deployed using Apache Cordova). We put these

results side-by-side with performance results for

Hermit, JFact, and Pellet, the only three OWL2 DL

reasoners currently supported by our framework.

6.4. Benchmark Measurements

Benchmarks capture the metrics discussed in

Section 2.4.4, including loading and reasoning times

and memory consumption. Regarding memory,

Android Java heap dumps are used to accurately

obtain memory usage of native Android engines.

However, regarding JavaScript engines, heap dumps

can only capture the entire memory size of the native

WebView (used by Apache Cordova to run JavaScript

on native platforms), not individual components.

Although Chrome DevTools [65] is more fine-

grained, it only records memory inside the mobile

Chrome browser. Therefore, memory measurements

were only possible for native Android reasoners.

6.5. Benchmark Hardware

To perform the benchmarks, we used an LG

Nexus 5 (model LG-D820), with a 2.26 GHz Quad-

Core Processor and 2Gb RAM. This device runs

Android 6, which grants Android apps 192Mb of heap

space. During the experiments, the device was

connected to a power supply.

6.6. Benchmarking Results and Discussion

This section presents and discusses the benchmarks

for OWL materializing inference. We show the results

for individually benchmarking OWL2 RL ruleset

selections for AndroJena (Section 6.6.1) and

RDFStore-JS (Section 6.6.2), and summarize these

results in Section 6.6.3. In Section 6.6.4, we present

the best performing OWL2 RL rule subsets, given

different requirements and scenarios, and set them

side by side with benchmarks of OWL2 DL reasoners

(HermiT, JFact and Pellet). Unless indicated

otherwise, result times include ontology loading,

reasoning, and inference collection.

6.6.1. AndroJena Benchmarking Results

Figures 3-5 show the performance of OWL2 RL

ruleset selections for AndroJena. Fig. 3 shows that

leaving out logically redundant rules (+entailed, i.e.,

applying the entailed selection) has a slight positive

impact on performance (avg. ca. -180ms), whereas

also replacing specific rules by extra axioms and

general rules (+ entailed, extra-axioms, gener-rules)

performs slightly worse (avg. ca. +180ms). This was a

3 Some figures chop off peaks to avoid skewing the graph.

The full average results can be found at [51].

possibility, since this selection introduces more

general, i.e., less constrained, rules (e.g., less able to

leverage internal data indices). Applying a domain-

specific ruleset (+entailed, domain-based) supplies a

much larger performance gain (avg. ca. -0,78s). The

inf-inst selection improves performance even more

(avg. ca. -1s). The ineff selection loses completeness

but shows the highest cumulative gain (avg. ca. -1,3s).

Fig. 3. AndroJena: OWL2 RL selections (full)3.

Although the inf-inst selection shows promise, it

requires materializing schema inferences using the inf-

schema subset, initially and in case of ontology

updates. Also, when consistency needs to be checked,

the consist ruleset needs to be separately executed.

Next, we discuss the performance of inf-schema and

consist, and the effect of ruleset selections on inf-inst.

Fig. 4 shows the performance of materializing

schema inferences (inf-schema). As was the case

before, ruleset selections may be applied on this

subset. Similar to the full case, replacing specific rules

with extra axioms and general rules (+extra-axioms,

gener-rules) reduces performance (avg. ca. +250ms,

compared to inf-schema). For inf-schema, a non-

conformant selection is leaving out rules inferring

schema inferences that do not yield extra instances

(inst-ent, Section 5.1.4), which slightly improves

performance (avg. ca. -80ms). Since entailed and ineff

do not include schema-only rules, they cannot be

applied here. Applying domain-based, alone and when

combined with inst-ent (+inst-ent, domain-based),

similarly improves performance slightly (avg. ca.

-50ms and -100ms, respectively).

Fig. 4. AndroJena: OWL2 RL selections (inf-schema).

Fig. 5. AndroJena: OWL2 RL selections (inf-inst).

However, we note that when applying domain-

based on the inf-schema subset, the domain-based

selection would need to reconstruct the inf-schema

ruleset for each ontology update; and the ruleset is

then utilized only once4, i.e., to materialize schema

inferences in the updated ontology. Its suitability here

thus depends on the performance of the domain-based

selection, which is not measured as part of these

benchmarks as it is deployed on a Web service5.

4 Except for scenarios where e.g., the ontology needs to be

re-materialized at each startup.

After materializing the ontology with schema

inferences, instance-related rules (inf-inst) are applied

whenever new instances are added. When consistency

needs to be checked, the consist ruleset selection is

applied on a materialized set of schema and instance

assertions (avg. ca. 420ms). We note that the only

applicable selection for consist, i.e., gener-rules,

results in very similar performance (avg. ca. 430ms).

Fig. 5 shows that, similar to the full case, leaving

out redundant rules (+entailed) results in small

improvements (avg. ca. -145ms, compared to inf-inst).

Additionally replacing specific rules by extra axioms

and general rules (+ entailed, extra-axioms, gener-

rules) similarly leads to performance loss (avg. ca.

+0,5s), while selecting a domain-based subset

(+entailed, domain-based) results in gains (avg. ca.

-0,5s). Regarding non-conformant cases, a first option

is to execute the rule subset when the ontology schema

is instead materialized by inst-ent, which is smaller

since it lacks some schema elements (i.e., not yielding

extra instances). This scenario (+ entailed, inst-ent)

improves performance by avg. ca. -340ms. Also

removing inefficient rules (+ entailed, inst-ent, ineff)

increases performance by avg. ca. -1,3s. Combining

all selections yields reductions of avg. ca. -1,5s.

6.6.2. RDFStore-JS Benchmarking Results

Figures 6-8 show OWL2 RL subset performances

for RDFStore-JS. Fig. 6 shows that, similar to

AndroJena, entailed yields only slightly better

performance (avg. ca. -100ms), whereas entailed,

extra-axioms and gener-rules collectively result in

worse performance (avg. ca. +0,85s). At the same

time, compared to AndroJena, also applying domain-

based yields much higher performance gains (avg. ca.

-5,8s), while inf-inst (avg. ca. -1,3s) and ineff (avg. ca.

-1,9s) have a smaller comparative impact.

Fig. 7 shows the performance of materializing

schema inferences (inf-schema). As for AndroJena,

replacing specific rules (+extra-axioms, gener-rules)

reduces performance (avg. ca. +380ms, compared to

inf-schema), while leaving out “instance-redundant”

rules (inst-ent) improves performance to a larger

extent (avg. ca. -270ms). As before, we note that

entailed and ineff are not applicable here. Utilizing

domain-based, individually and combined with inst-

ent (+inst-ent, domain-based) results in the largest

improvements in performance (avg. ca. -0,46s and

5 Future work involves studying mobile deployment, see

Section 8.

-0,5s, respectively), although, as mentioned, the

suitability of domain-based could be questioned here.

Fig. 8 shows the results of the inf-inst rule subsets,

applied on an ontology materialized with schema

inferences. In contrast to AndroJena and the full case

for RDFStore-JS, collectively applying entailed,

extra-axioms and gener-rules improves performance

(avg. ca. -0,8s), and thus exceeds the performance

gained by only +entailed (avg. ca. -180ms). Similar to

full (Fig. 6), the domain-based selection (+entailed,

domain-based) performs much better (avg. ca. -4,5s).

Considering non-conformant selections, applying

the rule subset when instead materializing the

ontology schema using inst-ent (+entailed, inst-ent)

increases performance by avg. ca. -430ms (compared

to inf-inst). Also applying the ineff selection

(+entailed, inst-ent, ineff) significantly improves

performance (avg. ca. -3,8s). Combining all selections

reduces reasoning times by avg. ca. -5,5s. Finally, the

consist ruleset yields a performance of avg. ca. 2,1s,

with +gener-rules (only applicable selection)

performing slightly better (avg. ca. -160ms).

6.6.3. Benchmarking Results Summary

Overall, we observe that the entailed selection has

a relatively small performance impact, with reductions

from -1,2% (rdfstore-js: full) to -8% (androjena: inf-

inst). Utilizing extra-axioms and gener-rules typically

results in (slightly) worse performance; which is not

wholly unexpected, seeing how it replaces specific

rules with more general ones (e.g., with more joins and

less ability to leverage internal data indices). In some

cases however, these selections perform better: i.e.,

when executing inf-inst (-21%) on RDFStore-JS.

In case of a stable ontology, additional conformant

optimizations exist. Executing the inf-inst ruleset on a

materialized ontology results in performance increases

from -17% (rdfstore-js) to -36% (androjena) compared

to the full ruleset. Here, applying the best-performing,

conformant selection (i.e., inf-inst+entailed+domain-

based) yields huge optimizations, up to -72%

(rdfstore-js) compared to the non-selection case.

When dropping the conformance requirement,

utilizing the inst-ent selection yields slight

improvements in performance for inf-schema; 8%

(androjena) and 15% (rdfstore). Re-using the smaller

materialized ontology optimizes the inf-inst selection

as well, up to -12% (androjena). Putting it all together,

selection +inf-inst, entailed, inst-ent, domain-based,

ineff yields dramatic improvements, as much as -90%

(androjena) compared to the full case.

Fig. 6. RDFStore-JS: OWL2 RL selections (full).

Fig. 7. RDFStore-JS: OWL2 RL selections (inf-schema).

Fig. 8. RDFStore-JS: OWL2 RL selections (inf-inst).

6.6.4. Best Overall Performance

Table 1 shows the best-effort performances of the

rule engines: for the full, original OWL2 RL ruleset

(original, for reference); when applying best-

performing conformant (conformant) and non-

conformant (non-conformant) rule subsets; and for

cases where the domain ontology frequently faces

changes (volatile ontology) that rule out certain

selections, and cases where such changes are not likely

to occur (stable ontology) (Section 5.2.1). For brevity,

we only consider a single “volatile” case, i.e., where

frequent ontology updates rule out both the domain-

based selection and separation of inf-inst, inf-schema

and consist selections. For the “stable” case, times for

a priori materializing the schema (inf-schema),

inferring new instances (inf-inst), and consistency

checking times (consist) are shown. Based on results

from the previous section, we chose the best-

performing ruleset selections for each case (see table).

Both total times and constituent loading and reasoning

times are indicated. Further, the table sets these results

side by side with the overall performance of HermiT,

Pellet and JFact, well-known OWL2 DL reasoners.

These systems perform reasoning with higher

complexity (OWL2 DL), which yields extra schema

(TBox) inferences not covered by the OWL2 RL rule

axiomatization [33], [37]. We confirmed that the

OWL2 RL and OWL2 DL reasoners infer the same

ABox inferences. Clearly, any comparison should take

this schema incompleteness issue into account.

In line with expectations, the table shows that

AndroJena, as a native Android system and featuring

a non-naïve, RETE-based forward chainer, greatly

outperforms RDFStore-JS, which we manually

outfitted with naïve reasoning (Section 2.4.1). As

shown before, the ruleset selection suiting volatile

ontologies and guaranteeing conformance (entailed)

performs only slightly better. However, if the ontology

is considered stable, the conformant inf-inst selection

supplies huge relative gains (avg. ca. 1,6s (55%) – 5,8s

(72%)) compared to the original case, respectively for

AndroJena and RDFStore-JS (percentage indicates the

proportion of time gained w.r.t. original). At the same

time, inf-schema yields a comparatively lower, but

certainly not negligible, overhead, which is incurred

for each ontology update. As mentioned, since

applying the domain-based selection on inf-schema

would not be advantageous in most scenarios, it is not

Table 1. Best overall performances (avg) (ms)

OWL2 RL* OWL2 DL**

AndroJena

original 2819 (88 | 2731)

Hermit 21111

 volatile ontology stable ontology

conformant

full inf-schema inf-inst consist

2639 (90 | 2549)

 + entailed
1001 (69 | 932)

1245 (187 | 1058)

+ entailed,

domain-based

418

(195 | 223)

non-conformant

full inf-schema inf-inst

Pellet 6978
1547 (93 | 1455)

+ entailed, ineff

919 (65 | 854)

inst-ent

272 (165 | 106)

+ entailed, domain-

based, ineff, inst-ent

RDFStore-JS

original 8120 (618 | 7502)

 volatile ontology stable ontology

JFact 7034

conformant

full inf-schema inf-inst consist

8022 (620 | 7402)

+ entailed
1831 (536 | 1296)

2304 (566 | 1738)

+ entailed,

domain-based

1947

(1282 | 665)

non-conformant

full inf-schema inf-inst

6168 (583 | 5586)

+ entailed, ineff

1561 (511 | 1050)

+ inst-ent

1255 (1080 | 176)

+ entailed, domain-

based, ineff, inst-ent

* : [total-time] ([load-time] | [reason-time] ; applied selections are shown, if any.

**: total-time

applied here. In contrast, the best-performing

conformant inf-inst ruleset requires the domain-based

ruleset selection, which needs to be re-calculated for

each ontology update and thus adds an extra overhead

(not included here). Hence, we only apply this

configuration for stable ontologies, i.e., not faced by

frequent updates that would require such re-

calculations at runtime. Similarly, the cost of consist

is not negligible; the frequency of applying the ruleset

depends on the scenario.

When dropping conformance, we find significant

performance improvements even for volatile

ontologies (avg. ca. 1,3s (45%) – 1,9s (24%)). For

non-conformant reasoning in stable ontologies, the

performance gain of inf-inst is tremendous (avg. ca.

2,5s (90%) – 6,9s (85%)). Regarding OWL2 DL

reasoners, Pellet and JFact have comparable

performance (around avg. ca. 7s) with HermiT being

a clear outlier (avg. ca. 21s).

Table 2 shows memory usage for each engine (aside

from the JavaScript-based RDFStore-JS; see

Section 6.4). JFact uses the least amount of memory,

i.e., only 585Kb, making it a suitable choice overall

(see Table 1) for mobile platforms. Nevertheless, all

memory usages appear acceptable (at least on

Android), seeing how each Android app receives a

192Mb max. heap.

Table 2: Memory usage (Kb)

AndroJena HermiT Pellet JFact

6242 13543 12832 585

7. Related Work

In the state of the art on rule-based OWL reasoning,

most works focus on separating TBox from ABox

reasoning [5], [16], [23], [36], [37]. In most cases, a

separate OWL reasoner is utilized to compute and

materialize schema inferences [5], [16], [36].

However, this is inadvisable on mobile platforms,

since it necessitates deploying two (resource-heavy)

reasoner systems, i.e., an OWL reasoner and rule

engine. After this separate schema reasoning step,

some works [5], [36], [37] proceed with a rule-

template approach; where OWL2 RL rules are

instantiated based on the materialized input ontology.

In particular, multiple instantiated rules are created for

each rule, replacing schema variables by concrete

schema references. We support a similar solution to

support certain n-ary rules, and applied it in our

benchmarks. Implementing and benchmarking this as

an optimization for all rules is considered future work.

Tai et al. [48] propose a selective rule loading

algorithm, which composes an OWL2 RL ruleset

depending on the input ontology. In our benchmarks,

we found that this domain-based rule selection can

significantly improve performance.

Bobed et al. [11] presented a set of comprehensive

benchmarks on Android devices for a number of DL

reasoners, focusing on classification and consistency

checking in the OWL2 DL and OWL2 EL profiles.

The authors manually ported the OWL reasoners to

Android and detailed their porting efforts. It was found

that reasoning on PC was between 1.5 and 150 times

faster than on Android, with the number of out-of-

memory errors increasing on Android as well.

Similarly, Kazakov et al. [26] found orders of

magnitude difference between PC and Android

reasoning times. Nonetheless, Bobed et al. found some

promising trends: reasoners on the new Android

RunTime (ART), which features ahead-of-time

compilation, can be around 2 times faster than in

Dalvik. In prior work [57], the same team also found

a performance increase of ca. 30% between Android

devices only 1 year apart.

While the benchmarks presented by Bobed et al. are

comprehensive and informative, our work goes

beyond the benchmarking of existing reasoners by

presenting 1) a freely available, cross-platform

benchmark framework for evaluating mobile reasoner

performance, so others may perform detailed

benchmarks given their application scenarios; and

2) selections of OWL2 RL rule subsets to optimize

mobile reasoning, accompanied by comprehensive

benchmarks that show their performance effects.

As mentioned, Patton et al. [39] reported that due to

the single-threaded nature of most reasoners, a near

linear relation exists between energy usage and

computing time for OWL inferences on mobile

systems. As such, energy usage estimates, based on

reasoning times, could be realistic. Regardless, future

work involves measuring battery usage as well.

8. Conclusion and Future Work

This paper presented the following contributions:

- The MobiBench cross-platform, extensible

mobile benchmark framework, for evaluating mobile

reasoning performance. Given a reasoning setup,

including process flow, reasoning task, ruleset (if any)

and ontology, developers can use MobiBench to

benchmark reasoners on mobile platforms, and thus

find the best system for the job. The large differences

in performance between reasoners and scenarios, as

observed in our benchmarks, clearly point towards the

need for such a framework. To facilitate the

developer’s job, the framework includes a uniform

conversion layer, ruleset selection and pre-processing

services, as well as automation and analysis tools. We

indicated the extensibility for each component,

allowing developers to easily plug in new variants.

- A selection of OWL2 RL subsets, with the goal of

optimizing reasoning performance on mobile systems.

Orthogonally, these methods include OWL2 RL-

conformant vs. non-conformant selections; and

selections suiting “stable” vs. “volatile” ontologies.

Our benchmarks showed that, depending on ontology

volatility and need for conformity, these selections can

greatly improve performance.

- Mobile benchmarks, which measure reasoning

performance when materializing ontology inferences;

focusing on the impact of different OWL2 RL ruleset

selections, as well as the computational cost of best-

performing OWL2 RL rulesets for particular scenarios

and systems. We put these performance results side-

by-side with the performance of 3 OWL2 DL

reasoners. Depending on the scenario, we found that

OWL2 RL reasoning can be greatly optimized.

Despite the presented work, as well as

advancements reported in the state of the art, scalable

mobile performance remains elusive. A huge gap still

looms between PC and mobile reasoning times.

Therefore, future work includes integrating additional

optimization methods into MobiBench, such as

utilizing rule templates for all rules. Optimizing and

porting domain-specific rule selection to the mobile

platform, in light of its positive impact on

performance, is also an avenue of future work.

Similarly, we aim to deploy pre-processing solutions

for n-ary rules directly on the mobile device, and

compare their performance on an ontology corpus

featuring large amounts of n-ary assertions. Measuring

energy consumption, an important aspect for mobile

systems, is also part of future work.

Our major focus in this paper was on materializing

ontology inferences. Reasoning per query (via e.g.,

SLG) may also have its merits on mobile platforms,

since it does not require a priori materialization.

Studying its performance on mobile systems is

considered a major avenue of future work. We also

aim to study the utility of semantically enhancing

service matching, one of the supported reasoning tasks

(Section 2.4.2), by weighting the extra found matches

against the ensuing performance overhead. Finally,

identifying additional OWL2 RL rule subsets for

particular reasoning tasks (such as instance checking

and realization) is also viewed as future work.

References

[1] S. Ali and S. Kiefer, “microOR --- A Micro OWL DL

Reasoner for Ambient Intelligent Devices,” in

Proceedings of the 4th International Conference on
Advances in Grid and Pervasive Computing, 2009, pp.

305–316.

[2] N. Ambroise, S. Boussonnie, and A. Eckmann, “A
Smartphone Application for Chronic Disease Self-

Management,” in Proceedings of the 1st Conference on

Mobile and Information Technologies in Medicine, 2013.
[3] J. Angele et al., “Web Rule Language (W3C Member

Submission 2005),” 2005. [Online]. Available:

http://www.w3.org/Submission/WRL/.
[4] Apache, “Apache Jena.” [Online]. Available:

https://jena.apache.org/. [Accessed: 28-Jul-2017].

[5] J. Bak, M. Nowak, and C. Jedrzejek, “RuQAR: Reasoning
Framework for OWL 2 RL Ontologies,” in The Semantic

Web: ESWC 2014 Satellite Events, Anissaras, Crete,

Greece, May 25-29, 2014, Revised Selected Papers, 2014,
vol. 8798, pp. 195–198.

[6] C. Becker and C. Bizer, “DBpedia Mobile: A Location-
Enabled Linked Data Browser.,” in LDOW, 2008, vol.

369.

[7] C. Beeri and R. Ramakrishnan, “On the Power of Magic,”

in Proceedings of the Sixth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems,

1987, pp. 269–284.
[8] B. Bishop and S. Bojanov, “Implementing OWL 2 RL and

OWL 2 QL Rule-Sets for OWLIM.,” in OWLED, 2011,

vol. 796.
[9] B. Bishop and F. Fischer, “IRIS - Integrated Rule

Inference System,” in Proceedings of the 1st Workshop

on Advancing Reasoning on the Web: Scalability and
Commonsense, 2008.

[10] C. Bobed, F. Bobillo, S. Ilarri, and E. Mena, “Answering

Continuous Description Logic Queries: Managing Static
and Volatile Knowledge in Ontologies,” Int. J. Semant.

Web Inf. Syst., vol. 10, no. 3, pp. 1–44, Jul. 2014.

[11] C. Bobed, R. Yus, F. Bobillo, and E. Mena, “Semantic
reasoning on mobile devices: Do Androids dream of

efficient reasoners?,” Web Semant. Sci. Serv. Agents

World Wide Web, vol. 35, pp. 167–183, 2015.

[12] H. Boley, S. Tabet, and G. Wagner, “Design Rationale of

RuleML: A Markup Language for Semantic Web Rules,”

in Proc. Semantic Web Working Symposium, 2001, pp.
381–402.

[13] D. Calvanese et al., “OWL2 Web Ontology Language

Profiles (Second Edition),” 2012. [Online]. Available:
http://www.w3.org/TR/owl2-profiles/#OWL_2_RL.

[Accessed: 28-Jul-2017].

[14] D. Calvanese et al., “OWL 2 Web Ontology Language
Profiles (Second Edition): Computational Properties,”

2012. [Online]. Available: https://www.w3.org/TR/owl2-

profiles/#Computational_Properties.
[15] W. Chen and D. S. Warren, “Towards Effective

Evaluation of General Logic Programs,” in The 12th ACM

Symposium on Principles of Database Systems (PODS),
1993.

[16] R. U. Faruqui and W. MacCaull, “OwlOntDB: A Scalable

Reasoning System for OWL 2 RL Ontologies with Large

ABoxes,” Found. Heal. Inf. Eng. Syst., vol. 7789, pp.
105–123, 2013.

[17] C. L. Forgy, “Rete: A Fast Algorithm for the Many

Patterns/Many Objects Match Problem,” Artif. Intell., vol.
19, no. 1, pp. 17–37, 1982.

[18] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z.

Wang, “HermiT: An OWL 2 Reasoner,” J. Autom.
Reason., vol. 53, no. 3, pp. 245–269, 2014.

[19] W. S. W. Group, “SPARQL 1.1 Overview (W3C

Recommendation 21 March 2013),” 2013. [Online].
Available: http://www.w3.org/TR/sparql11-overview/.

[20] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for

OWL knowledge base systems,” Web Semant. Sci. Serv.
Agents World Wide Web, vol. 3, no. 2, pp. 158–182, 2005.

[21] A. Gupta, I. S. Mumick, and V. S. Subrahmanian,

“Maintaining Views Incrementally,” in Proceedings of
the 1993 ACM SIGMOD International Conference on

Management of Data, 1993, pp. 157–166.

[22] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider,
and S. Rudolph, “OWL 2 Web Ontology Language

Primer (Second Edition),” 2012. [Online]. Available:

http://www.w3.org/TR/owl2-primer/. [Accessed: 28-Jul-
2017].

[23] A. Hogan and S. Decker, “On the Ostensibly Silent `W’
in OWL 2 RL,” in Proceedings of the 3rd International

Conference on Web Reasoning and Rule Systems, 2009,

pp. 118–134.
[24] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B.

Grosof, and M. Dean, “SWRL: A Semantic Web Rule

Language Combining OWL and RuleML (W3C Member

Submission 21 May 2004),” 2004. [Online]. Available:

http://www.w3.org/Submission/SWRL/.

[25] M. Karamfilova and B. Bishop, “SwiftOWLIM
Reasoner,” 2011. [Online]. Available:

https://confluence.ontotext.com/display/OWLIMv35/Sw

iftOWLIM+Reasoner#SwiftOWLIMReasoner-
PerformanceOptimizationsinRDFSandOWLSupport.

[26] Y. Kazakov and P. Klinov, “Experimenting with ELK

Reasoner on Android,” in Proceedings of the 2nd
International Workshop on OWL Reasoner Evaluation,

Ulm, Germany, July 22, 2013, 2013, pp. 68–74.

[27] Y. Kazakov, M. Krötzsch, and F. Simančík, “The
Incredible ELK: From Polynomial Procedures to Efficient

Reasoning with EL Ontologies,” J. Autom. Reason., vol.

53, no. 1, pp. 1–61, 2014.
[28] C. Keller, R. Pöhland, S. Brunk, and T. Schlegel, “An

Adaptive Semantic Mobile Application for Individual

Touristic Exploration,” in HCI (3), 2014, pp. 434–443.

[29] T. Kim, I. Park, S. J. Hyun, and D. Lee, “MiRE4OWL:

Mobile Rule Engine for OWL,” in Proceedings of the

2010 IEEE 34th Annual Computer Software and
Applications Conference Workshops, 2010, pp. 317–322.

[30] H. Knublauch, “OWL 2 RL in SPARQL using SPIN.”

[Online]. Available: http://composing-the-semantic-
web.blogspot.ca/2009/01/owl-2-rl-in-sparql-using-

spin.html. [Accessed: 28-Jul-2017].

[31] H. Knublauch, “The TopBraid SPIN API,” 2014.
[Online]. Available: http://topbraid.org/spin/api/.

[32] H. Knublauch, J. A. Hendler, and K. Idehen, “SPIN -

Overview and Motivation (W3C Member Submission
22/02/2011),” 2011. [Online]. Available:

http://www.w3.org/Submission/spin-overview/.

[33] M. Krötzsch, “The Not-So-Easy Task of Computing Class
Subsumptions in OWL RL,” Springer, Berlin,

Heidelberg, 2012, pp. 279–294.

[34] S. Liang, P. Fodor, H. Wan, and M. Kifer,

“OpenRuleBench: An Analysis of the Performance of
Rule Engines,” in Proceedings of the 18th International

Conference on World Wide Web, 2009, pp. 601–610.

[35] N. Matentzoglu, S. Bail, and B. Parsia, “A Snapshot of the
OWL Web,” in The Semantic Web – ISWC 2013 – 12th

International Semantic Web Conference, Sydney, NSW,

Australia, October 21-25, 2013, Proceedings, Part I,
2013, pp. 331–346.

[36] G. Meditskos and N. Bassiliades, “DLEJena: A Practical

Forward-chaining OWL 2 RL Reasoner Combining Jena
and Pellet,” Web Semant., vol. 8, no. 1, pp. 89–94, Mar.

2010.

[37] B. Motik, I. Horrocks, and S. M. Kim, “Delta-reasoner: A
Semantic Web Reasoner for an Intelligent Mobile

Platform,” in Proceedings of the 21st International

Conference Companion on World Wide Web, 2012, pp.
63–72.

[38] M. O’Connor and A. Das, “A Pair of OWL 2 RL

Reasoners,” in OWL: Experiences and Directions
Workshop 2012, 2012.

[39] E. W. Patton and D. L. McGuinness, “A Power

Consumption Benchmark for Reasoners on Mobile
Devices,” in 13th International Semantic Web

Conference, Riva del Garda, Italy, October 19-23, 2014.,
2014, vol. 8796, pp. 409–424.

[40] E. Puertas, M. L. Prieto, and M. De Buenaga, “Mobile

Application for Accessing Biomedical Information Using
Linked Open Data,” in Proceedings of the 1st Conference

on Mobile and Information Technologies in Medicine,

2013.

[41] D. Reynolds, “OWL 2 RL in RIF (Second Edition),”

2013. [Online]. Available: http://www.w3.org/TR/rif-

owl-rl/.
[42] V. Reynolds, M. Hausenblas, A. Polleres, M. Hauswirth,

and V. Hegde, “Exploiting linked open data for mobile

augmented reality,” in W3C Workshop: Augmented
Reality on the Web, 2010.

[43] M. Schneider and K. Mainzer, “A Conformance Test

Suite for the OWL 2 RL RDF Rules Language and the
OWL 2 RDF-Based Semantics,” in 6th International

Workshop on OWL: Experiences and Directions, 2009.

[44] C. Seitz and R. Schönfelder, “Rule-Based OWL
Reasoning for Specific Embedded Devices,” in 10th

International Semantic Web Conference, Bonn, Germany,

Proceedings, Part II, 2011, vol. 7032, pp. 237–252.
[45] A. Sinner and T. Kleemann, “KRHyper - In Your Pocket,”

in Automated Deduction - CADE-20, 20th International

Conference on Automated Deduction, Tallinn, Estonia,

July 22-27, 2005, Proceedings, 2005, vol. 3632, pp. 452–

457.

[46] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz,
“Pellet: A Practical OWL-DL Reasoner,” Web Semant.,

vol. 5, no. 2, pp. 51–53, Jun. 2007.

[47] M. Smith, I. Horrocks, M. Krotzsch, and B. Glimm,
“OWL 2 Web Ontology Language Conformance (Second

Edition),” W3C Recommendation, 2012. [Online].

Available: http://www.w3.org/TR/owl2-test/.
[48] W. Tai, J. Keeney, and D. O’Sullivan, “Resource-

constrained reasoning using a reasoner composition

approach,” Semant. Web, vol. 6, no. 1, pp. 35–59, 2015.
[49] The National Center for Biomedical Ontology,

“BioPortal,” 2016. [Online]. Available:

http://bioportal.bioontology.org/. [Accessed: 28-Jul-
2017].

[50] M. Wilson, A. Russell, D. A. Smith, A. Owens, and M. C.

Schraefel, “mSpace Mobile: A Mobile Application for the

Semantic Web,” in User Semantic Web Workshop,
ISWC2005, 2005.

[51] W. Van Woensel, “MobiBench Online Documentation,”

2016. [Online]. Available:
https://niche.cs.dal.ca/materials/mobi_bench/.

[52] W. Van Woensel, S. Casteleyn, E. Paret, and O. De

Troyer, “Mobile Querying of Online Semantic Web Data
for Context-Aware Applications,” IEEE Internet Comput.

Spec. Issue (Semantics Locat. Serv., vol. 15, no. 6, pp. 32–

39, 2011.
[53] W. Van Woensel, M. Gil, S. Casteleyn, E. Serral, and V.

Pelechano, “Adapting the Obtrusiveness of Service

Interactions in Dynamically Discovered Environments,”
in Proceedings of the 9th International Conference on

Mobile and Ubiquitous Systems, 2012, pp. 250–262.

[54] W. Van Woensel, N. Al Haider, A. Ahmad, and S. S. R.
Abidi, “A Cross-Platform Benchmark Framework for

Mobile Semantic Web Reasoning Engines,” in 13th

International Semantic Web Conference, Riva del Garda,
Italy. Proceedings, Part I, 2014, pp. 389–408.

[55] W. Van Woensel, N. Al Haider, P. C. Roy, A. M. Ahmad,

and S. S. Abidi, “A Comparison of Mobile Rule Engines
for Reasoning on Semantic Web Based Health Data,” in

2014 IEEE/WIC/ACM International Conference on Web
Intelligence (WI 2014), 2014, pp. 126–133.

[56] W. Van Woensel, P. C. Roy, S. Abidi, and S. S. Abidi, “A

Mobile & Intelligent Patient Diary for Chronic Disease
Self-Management,” in 15th World Congress on Health

and Biomedical Informatics, 2015.

[57] R. Yus, C. Bobed, G. Esteban, F. Bobillo, and E. Mena,

“Android goes Semantic: DL Reasoners on

Smartphones,” in Proceedings of the 2nd International

Workshop on OWL Reasoner Evaluation, Ulm, Germany,
2013, pp. 46–52.

[58] S. Zander, C. Chiu, and G. Sageder, “A computational

model for the integration of linked data in mobile
augmented reality applications,” in Proceedings of the 8th

International Conference on Semantic Systems, 2012, pp.

133–140.
[59] S. Zander and B. Schandl, “A framework for context-

driven RDF data replication on mobile devices,” in

Proceedings of the 6th International Conference on
Semantic Systems, 2010, p. 22:1--22:5.

[60] C. Ziegler, “Semantic web recommender systems,” in In

Proceedings of the Joint ICDE/EDBT Ph.D. Workshop
2004 (Heraklion, 2004, pp. 78–89.

[61] “AndroJena.” [Online]. Available:

https://github.com/lencinhaus/androjena. [Accessed: 28-

Jul-2017].

[62] “Apache Cordova.” [Online]. Available:

https://cordova.apache.org/.
[63] “Apache Jena Inference Support.” [Online]. Available:

https://jena.apache.org/documentation/inference/.

[Accessed: 28-Jul-2017].
[64] “Appcelerator Titanium.” [Online]. Available:

http://www.appcelerator.com/mobile-app-development-

products/.
[65] “Chrome DevTools.” [Online]. Available:

https://developer.chrome.com/devtools.

[66] “JFact.” [Online]. Available: http://jfact.sourceforge.net/.
[67] “Manchester OWL Repository.” [Online]. Available:

http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/

. [Accessed: 16-Jun-2016].
[68] “Nashorn JavaScript Engine.” [Online]. Available:

http://www.oracle.com/technetwork/articles/java/jf14-

nashorn-2126515.html.

[69] “Oxford Ontology repository.” [Online]. Available:
http://www.cs.ox.ac.uk/isg/ontologies/. [Accessed: 16-

Jun-2016].

[70] “RDFQuery.” [Online]. Available:
https://code.google.com/p/rdfquery/wiki/RdfPlugin.

[71] “RDFStore-JS.” [Online]. Available:

http://github.com/antoniogarrote/rdfstore-js.
[72] “W3C Forum Post on OWL2 RL test cases.” [Online].

Available: http://lists.w3.org/Archives/Public/public-

owl-dev/2010AprJun/0074.html.

