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Abstract. Mobile hardware has advanced to a point where apps may consume the Semantic Web of Data, as exemplified in 

domains such as mobile context-awareness, m-Health, m-Tourism and augmented reality. However, recent work shows that the 

performance of ontology-based reasoning, an essential Semantic Web building block, still leaves much to be desired on mobile 

platforms. This presents a clear need to provide developers with the ability to benchmark mobile reasoning performance, based 

on their particular application scenarios, i.e., including reasoning tasks, process flows and datasets, to establish the feasibility 

of mobile deployment. In this regard, we present a mobile benchmark framework called MobiBench to help developers to 

benchmark semantic reasoners on mobile platforms. To realize efficient mobile, ontology-based reasoning, OWL2 RL is a 

promising solution since it (a) trades expressivity for scalability, which is important on resource-constrained platforms; and  

(b) provides unique opportunities for optimization due to its rule-based axiomatization. In this vein, we propose selections of 

OWL2 RL rule subsets for optimization purposes, based on several orthogonal dimensions. We extended MobiBench to support 

OWL2 RL and the proposed ruleset selections, and benchmarked multiple OWL2 RL-enabled rule engines and OWL reasoners 

on a mobile platform. Our results show significant performance improvements by applying OWL2 RL rule subsets, allowing 

performant reasoning for small datasets on mobile systems. 
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1. Introduction 

Advances in mobile technologies have enabled 

mobile applications to consume semantic data, with 

the goal of e.g., collecting context- [52], [59] and 

location-related data [6], [50], achieving augmented 

reality [42], [58], performing recommendations [60], 

accessing linked biomedical data (m-Health) [40] and 

enabling mobile tourism [28]. Automated reasoning, 

an essential Semantic Web pillar, involves the 

inference of useful information based on the semantics 

of ontology constructs, domain-specific if-then rules, 

or both. Giving the availability of advanced mobile 

technology and large volumes of mobile-accessible 

semantic data, we hence consider it opportune to 

investigate the potential of semantic reasoning on 

mobile, resource-constrained platforms. In light of 
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recent empirical work [11], [26], which indicates that 

mobile reasoning performance still leaves much to be 

desired, we choose to focus on benchmarking and 

optimizing mobile semantic reasoning. In particular, 

we discern a clear need for benchmarking specific 

application scenarios, including reasoning task (e.g., 

ontology or rule-based reasoning), process flow (e.g., 

frequent vs. incremental reasoning) and rule- and 

datasets, as it will allow mobile developers to make 

more informed decisions – for instance, in case of poor 

performance of their particular application scenario, 

they may choose hybrid solutions that combine 

mobile- and server-deployed reasoning [2], [56]. 

In traditional Semantic Web reasoning applications, 

OWL2 DL is the most popular representation and 

reasoning approach. Regarding resource-constrained 

systems however, it has been observed that OWL2 DL 



is too complex and resource-intensive to achieve 

scalability [11], [26]. Reflecting this, most mobile 

semantic reasoners i.e., tailored to resource-

constrained systems, instead focus on rule-based 

OWL axiomatizations, such as custom entailment 

rulesets [1], [29] or OWL2 RL rulesets [37], [48]. 

Indeed, OWL2 RL is an OWL2 profile with a stated 

goal of scalability, partially axiomatizing the OWL2 

RDF-based semantics as a set of rule axioms. Further, 

a rule-based axiomatization allows easily adjusting 

reasoning complexity to the application scenario [48] 

or avoiding resource-heavy inferences [8], [44], by 

applying subsets of rule axioms. In contrast, 

transformation rules used in tableau-based DL 

reasoning are often hardcoded, making it hard to de-

select them at runtime [48]. Also, most classic DL 

optimizations improve performance at the cost of 

memory [11], which is limited in mobile devices. At 

the same time, as only a partial axiomatization, OWL2 

RL does not guarantee completeness for TBox 

reasoning [37]; and places syntactic restrictions on 

ontologies to ensure all correct inferences. 

Nevertheless, we find this expressivity trade-off 

acceptable in case it would render semantic reasoning 

feasible on resource-constrained platforms. 

In this regard, our objective is three-fold:  

(1) developing a mobile reasoning benchmark 

framework (called MobiBench) that allows developers 

to evaluate the performance of reasoning on mobile 

platforms (reasoning times, memory usage), for 

specific scenarios and using standards-based rule- and 

datasets. Key features of MobiBench include a 

uniform, standards-based rule and data interface 

across reasoning engines, as well as its extensibility 

and cross-platform nature, allowing benchmarks to be 

applied across multiple platforms; 

(2) optimizing semantic reasoning on mobile 

platforms, by studying the following three OWL2 RL 

rule subset selections: (i) Equivalent OWL2 RL rule 

subset, which leaves out logically equivalent rules; 

i.e., rules of which the results are covered by other 

rules; (ii) Purpose and reference-based subsets, which 

divides rule subsets based on their purpose and 

referenced data; and (iii) Removal of resource-heavy 

rules that have a large performance impact – although 

this will result in missing certain inferences, we feel 

that developers should be able to weigh their utility vs. 

computational cost; and  

(3) performing mobile reasoning benchmarks, which 

measure the performance of the materialization of 

ontology inferences, using the AndroJena and 

RDFStore-JS rule systems loaded with different 

OWL2 RL ruleset selections, as well as three OWL2 

DL reasoners (HermiT, JFact and Pellet). We note 

that, although the proposed OWL2 RL subset 

selections were construed and evaluated in the context 

of resource-constrained platforms, they may be 

applied in any kind of computing environment. 

This paper is built on previous work, which 

presented a clinical benchmark [55] and an initial 

version of the Mobile Benchmark Framework [54], 

which only supplied an API, restricted benchmarking 

to rule-based reasoning, and did not attempt 

optimizations or applications of OWL2 RL. 

The paper is structured as follows. Section 2 

introduces the MobiBench framework, presenting its 

architecture and main components, and Section 3 

discusses how mobile developers can utilize 

MobiBench. In Section 4, we shortly discuss the 

OWL2 RL profile and our reasons for focusing on it, 

and detail its implementation as a ruleset. Section 5 

elaborates on our selection of OWL2 RL rule subsets 

for optimization purposes. Section 6 presents and 

discusses the benchmarks we performed using 

MobiBench. We review related work in Section 7, and 

end with conclusions and future work in Section 8. 

2. Mobile Benchmark Framework 

The goal of the MobiBench benchmark framework 

is to allow studying and comparing reasoning 

performance on mobile platforms, given particular 

application scenarios, including reasoning task, 

process flow and rule- and datasets. An important 

focus lies on extensibility, with clear extension points 

allowing different rule and data formats, tasks and 

flows to be plugged in. Moreover, given the multitude 

of mobile platforms currently in use (e.g., Android, 

iOS, Windows Phone, BlackBerry), MobiBench was 

implemented as a cross-platform system.  

Fig. 1 shows the architecture overview of the 

MobiBench framework. The API supplies third parties 

with direct access to the MobiBench functionality. To 

facilitate developers in running benchmarks, the 

Automation Support allows automating large numbers 

of benchmarks, and comprises (1) a remote 

Automation Client, which generates a set of 

benchmark configurations; and (2) an Automation 

Web Service on the device that invokes the API for 

each configuration. This setup avoids re-deploying 

MobiBench for each benchmark (i.e., with a new hard-

coded configuration); and even allows benchmarking 

without physical access to the device. The Analysis 

Tools aggregates the benchmark results, including 



reasoning times and memory dumps, into CSV files. 

The core of the framework, the Benchmark Engine, 

can perform different reasoning tasks, using different 

process flows, to better align benchmarks with real-

world scenarios. Any Reasoning System can be 

plugged into this component by implementing the 

uniform plugin interface. 

To support OWL2 RL, MobiBench was extended 

with the following services: (a) Uniform Conversion 

Layer, to cope with the myriad of rule (and data) 

formats currently supported by rule-based reasoners; 

(b) Pre-Processing Service, which pre-processes the 

ruleset and ontology if required (e.g., to support n-ary 

rules); and (c) Ruleset Selection Service, which 

automatically applies OWL2 RL subset selections to 

optimize ontology-based reasoning.  

A remote RESTful Web Service, deployed on a 

server (e.g., the developer’s PC), comprises these 

services, and also hosts some utility services to persist 

benchmark output (Persistence Support). A Local 

Proxy component acts as an intermediary between the 

mobile system and the remote Web service. 

For portability across platforms, MobiBench was 

implemented in JavaScript (JS) and deployed using 

Apache Cordova [62] for mobile platforms and JDK8 

Nashorn [68] for PC (this version is used for testing), 

which allows native, platform-specific parts to be 

plugged in. We note that this also allows MobiBench 

to easily benchmark JavaScript reasoners, which are 

usable in mobile websites or cross-platform, 

JavaScript-based apps (e.g., developed using Apache 

Cordova,  Appcelerator Titanium [64]) with a write-

once, deploy-everywhere philosophy. We currently 

rely on Android as the deployment platform, since 

most reasoners are either developed for Android or 

written in Java (which facilitates porting to Android), 

but MobiBench could be easily deployed on other 

platforms as well. The MobiBench framework can be 

found online [51]. 

In the subsections below, we elaborate on the main 

MobiBench components, namely the Uniform 

Conversion Layer (Section 2.1), Ruleset Selection 

Service (Section 2.2), Pre-Processing Service  

(Section 2.3) and Benchmark Engine (Section 2.4); 

 
Fig. 1. MobiBench Framework Architecture. 

 

 

 



and indicate extension points for each component (see 

parts on Extensibility). Section 3 shows how 

developers can utilize the benchmark framework. 

2.1. Uniform Conversion Layer 

The goal of the Uniform Conversion Layer is to 

handle the multitude of rule (and data) formats 

currently supported by rule-based reasoners. It 

supplies a uniform, standards-based resource interface 

across reasoning engines, which dynamically converts 

the input to their supported formats. The major benefit 

of this layer is that it allows developers to re-use a 

single rule- and dataset across different reasoners. 

A range of semantic rule standards are currently in 

use, including the Semantic Web Rule Language 

(SWRL) [24], Web Rule Language (WRL) [3], Rule 

Markup Language (RuleML) [12], and SPARQL 

Inferencing Notation (SPIN) [32]. Some reasoners 

also introduce their own custom formats (e.g., Apache 

Jena) or rely on non-Semantic Web syntaxes (e.g., 

Datalog: IRIS, PocketKRHyper). When 

benchmarking multiple systems, this multitude of 

formats prevents direct re-use of a single rule- and 

dataset. We chose to support SPIN rules and RDF data 

as standard input formats; Section 2.1.1 shortly 

discusses SPIN and our reasons for choosing it. 

Since the only available SPIN API is developed for 

the Java Development Kit (JDK) [31], conversion 

functions are deployed on an external Web service. To 

convert incoming SPIN rules, the SPIN API is utilized 

to generate an Abstract Syntax Tree (AST), which is 

then visited by a Rule Converter to convert the rule. 

Section 2.1.2 discusses our current converters, and 

how new converters can be plugged in. To convert 

incoming RDF data, a Data Converter can utilize 

Apache Jena [4] to query and manipulate the data.  

2.1.1. SPIN 

SPIN is a SPARQL-based rule and constraint 

language, which provides a natural, object-oriented 

way of dealing with constraints and rules associated 

with RDF(S)/OWL classes. In the object-oriented 

design paradigm, classes define the structure of 

objects (i.e., attributes) together with their behavior, 

which includes creating/changing objects (rules) and 

ensuring a consistent object state (constraints). 

Similarly, SPIN allows directly associating locally-

scoped rules and constraints to their related 

RDF(S)/OWL classes, using properties such as 

spin:rule and spin:constraint. 

To serialize rules and constraints, SPIN relies on 

SPARQL [19], a W3C standard with sufficient 

expressivity to represent both queries and general-

purpose rules and constraints. SPARQL is supported 

by most Semantic Web systems, and is well known by 

Semantic Web developers. As such, this rule format is 

more likely to be easily comprehensible to developers. 

Further, relying on SPIN also simplifies support for 

our current rule engines (see below). 

2.1.2. Rule and Data Conversion 

Regarding rule-based reasoners, our choice for 

SPIN greatly reduces conversion effort for systems 

with built-in SPARQL support. RDFStore-JS supports 

INSERT queries from SPARQL 1.1/Update [19], 

which are easy to obtain from SPIN rules in their 

SPARQL query syntax. Both AndroJena and 

RDFQuery support a triple-pattern like syntax, which 

likewise makes conversion from SPIN 

straightforward. Other rule engines lack built-in 

Semantic Web support, and require more significant 

conversion effort. Two systems, namely 

PocketKrHyper and IRIS, accept Datalog rules and 

facts in a Prolog-style input syntax. For these cases, 

we utilize the same first-order representation as in the 

W3C OWL2 RL specification [13], namely T(s, p, o) 

(since predicates may also be variables, a 

representation such as predicate(subject, object) is not 

an option in non-HiLog). 

Currently, our converters support SPIN functions 

that represent primitive comparators (greater, equal, 

etc.) and logical connectors in FILTER clauses. 

Advanced SPARQL query constructs, such as 

(not-)exists, optional, minus and union, are not yet 

supported. None of the OWL reasoners (Section 2.4.1) 

required (data) conversion, since they can consume 

serializations of OWL in RDF out of the box.  

Extensibility To plug in a new resource format, 

developers can create a new converter class 

implementing the uniform converter interface. The 

class is then added to a configuration file (spin2s.txt / 

rdf2s.txt), used by the Web service to dynamically 

load converter class definitions at startup. Each 

converter identifies its own format via a unique ID, 

allowing to match incoming conversion requests to the 

correct converter. 

2.2. Ruleset Selection Service 

To optimize OWL2 RL reasoning on mobile 

platforms, the Ruleset Selection Service automatically 

applies the OWL2 RL ruleset selections presented in 



this paper (Section 5), given one or more selection 

criteria. Indeed, due to its rule-based axiomatization, 

the OWL2 RL profile greatly facilitates applying 

subsets of axioms. In Section 5, we discuss relevant 

selection criteria in detail, such as logical equivalence 

with other rules, and subsets based on purpose and 

reference. As before, since the only available API for 

SPIN (i.e., the input rule format) [31] is developed for 

Java, this component is deployed in the Web service.  

The Default Selection function selects an OWL2 

RL subset, given a list of selection criteria indicating 

rules and axioms to leave out, replace or add. The 

Domain-based Selection function leaves out rules that 

are not relevant to a given ontology – i.e., rules that 

will not yield any additional inferences  

(Section 5.2.2). Typically, a ruleset selection is 

performed once, before reasoning takes place; and in 

case of ontology updates that require re-executing the 

selection (e.g., schema updates; Section 5.2.1). Hence, 

the usefulness of selections will depend on whether 

the ontology is prone to frequent, relevant updates at 

runtime. This is especially true in our current setup, 

where this requires re-invoking the remote service at 

runtime, causing considerable overhead. By deploying 

the service directly on the mobile device, and even 

integrating it with the reasoner, this drawback could 

be mitigated (see future work). 

Extensibility: To support a new selection criterion 

that requires an a priori analysis of the ontology, 

developers can create a new subclass of the 

DomainBasedSelection class. Else, the developer can 

simply add a new subfolder under the owl2rl/ folder in 

MobiBench, which keeps a list of rules and axioms to 

be removed, replaced or added. 

2.3. Pre-Processing Service 

The Pre-processing Service performs pre-

processing of the ruleset and target ontology to 

support OWL2 RL-based reasoning, if required. In 

particular, the service implements 3 solutions to 

support n-ary rules (see Section 4.2.3): (1) instantiate 

the rules, based on schema assertions found in the 

ontology; (2) normalize (or “binarize”) the input 

ontology to only contain binary versions of the n-ary 

assertions, and apply binary versions of the rules; and 

(3) replace each rule by 3 auxiliary rules.  

When applying solutions (1) and (2), pre-

processing needs to occur initially and each time the 

ontology is updated. Solution (3) does not have this 

drawback, but infers n+1 intermediary inferences for 

each “complete” inference for an n-ary assertion, 

which do not follow from the OWL2 RL semantics. 

The choice between these solutions thus depends on 

the scenario, e.g., whether the ontology is prone to 

frequent updates. As before, deploying this service on 

the mobile device could alleviate these drawbacks (see 

future work). Currently, it is deployed on the Web 

service since only a Java SPIN API is available. 

Extensibility: To support a new pre-processing 

mechanism, developers can create a new subclass of 

the PreProcessor class. In case the mechanism 

requires ontology analysis (cfr. solutions (1), (2)), 

OntologyBasedPreProcessor should be subclassed. 

2.4. Benchmark Engine 

The Benchmark Engine performs benchmarks of 

reasoning engines, following a particular reasoning 

setup. A reasoning setup includes a reasoning task and 

process flow. By supporting different setups, and 

allowing new ones to be plugged in, benchmarks can 

be better aligned to real-world scenarios.  

In Section 2.4.1, we elaborate on the currently 

supported reasoning engines. Next, we discuss the 

available reasoning tasks (Section 2.4.2) and process 

flows (Section 2.4.3), as well as the supported 

benchmark measurement criteria (Section 2.4.4). 

2.4.1. Reasoning Engines 

Below, we categorize currently supported engines 

according to their reasoning support. The engines not 

indicated as Android systems, excluding the 

JavaScript (JS) engines, were manually ported to 

Android. In this categorization, we consider rule 

engines as any system that can calculate the deductive 

closure of a ruleset, i.e., execute a ruleset and output 

resulting inferences (not necessarily limited to this). 

Rule-based systems 

AndroJena [61] is an Android-ported version of 

Apache Jena [4]. It supplies a rule-based reasoner, 

which supports both forward and backward chaining, 

respectively based on the RETE algorithm [17] and 

SLG resolution [15].  

RDFQuery [70] is a JavaScript RDF store that 

performs queries using a RETE network, and 

implements a naïve reasoning algorithm.  

RDFStore-JS [71] is a JavaScript RDF store, 

supporting SPARQL 1.0 and parts of SPARQL 1.1. 

We extended this system with naïve reasoning, 

accepting rules as SPARQL 1.1 INSERT queries.  

IRIS (Integrated Rule Inference System) [9] is a 

Java Datalog engine meant for Semantic Web 



applications. The system relies on bottom-up 

evaluation combined with Magic Sets [7]. 

PocketKrHyper [45] is a J2ME first-order theorem 

prover based on a hyper tableaux calculus, and is 

meant to support mobile semantic apps. It supplies a 

DL interface that accepts DL expressions and 

transforms them into first-order logic. 

OWL reasoners 

AndroJena supplies an OWL reasoner, which 

implements OWL Lite (incompletely) and supports 

full, mini and micro modes that indicate custom 

expressivities; and an RDFS reasoner, similarly with 

full, default and simple modes. For details, we refer to 

the Jena documentation [63]. 

The ELK reasoner [27] supports the OWL2 EL 

profile, and performs (incremental) ontology 

classification. Further, Kazakov et al. [26] has 

demonstrated that it can take advantage of multi-core 

CPUs of modern mobile devices. 

HermiT [18] is an OWL2 DL reasoner based on a 

novel hypertableaux calculus, and is highly optimized 

for performing ontology classification.  

JFact [66] is a Java port of the FaCT++ reasoner, 

which implements a tableau algorithm and supports 

OWL2 DL expressivity.  

Pellet [46] is a DL reasoner with sound and 

complete support for OWL2 DL, featuring a tableaux 

reasoner. It also supports incremental classification. 

In Section 6.3, we list the reasoning engines utilized 

in our benchmarks. 

Extensibility: To support a new JS reasoner, the 

developer writes a JS plugin object, which implements 

a uniform reasoner interface and specifies the accepted 

rule and data format, the process subflow (if any) 

dictated by the engine (Section 2.4.3), and its available 

settings (e.g., reasoning scope (OWL, RDFS)). To rule 

out communication, console output, etc. influencing 

measurements, each plugin captures its own fine-

grained result times using our ExperimentTimer API. 

Any required JavaScript libraries, as indicated by the 

plugin, are automatically loaded. Developers register 

their plugins in an engine.json file. 

For native engines, the developer similarly 

implements a native plugin class, and supplies a 

skeleton JS plugin. The system wraps this skeleton 

plugin with a proxy object that delegates invocations 

to the native plugin over the Cordova bridge (see  

Fig. 1). In practice, native (Android) reasoners often 

have large amounts of dependencies, some of which 

may be conflicting (e.g., different versions of the same 

library). To circumvent this issue, we package each 

engine and its dependencies as jar-packaged .dex files, 

which are automatically loaded at runtime. For more 

details, we refer to our online documentation [51]. 

2.4.2. Reasoning Tasks 

Currently, we support three reasoning tasks. Fig. 2 

illustrates the dependencies between these tasks.  

1) Rule-based materializing inference: Computing 

the deductive closure of a ruleset for a dataset, and 

adding all inferences to the dataset. 

2) OWL2 materializing inference: Given an 

ontology, materialize all inferences based on an 

OWL2 expressivity (e.g., OWL2 Full, OWL2 DL, 

OWL Lite, or some other reduced expressivity). This 

task can also be performed by rule engines, e.g., using 

the rules axiomatizing the OWL2 RL semantics.   

Fig. 2 shows two types of OWL inference: “built-in” 

inference of any kind (e.g., OWL2 DL, QL, Lite, etc.), 

which only requires an input ontology; and OWL2 RL 

reasoning, which uses a rule engine and accepts both 

an OWL2 RL ruleset and ontology as input.  

Regarding our choice for materializing inferences 

vs. reasoning per query (e.g., via resolution methods 

such as SLG [15]), we note that each have their 

advantages and drawbacks on mobile platforms. Prior 

to data access, the former involves an expensive pre-

processing step that may significantly increase the 

dataset scale, which is problematic on mobile 

platforms, but then leaves query answering purely 

depending on speed of data access. In contrast, the 

latter incurs a reasoning overhead for each query that 

depends on dataset scale and complexity. Another 

materialization drawback is that inferences need to be 

(re-)computed whenever new data becomes available. 

For instance, Motik et al. [37] combine materialization 

with a novel incremental reasoning algorithm, to 

efficiently update previously drawn conclusions. To 

allow benchmarking such incremental methods, our 

framework supports an “incremental reasoning” 

process flow (Section 2.4.3). For the purposes of this 

paper, we chose to focus on a materialization 

approach, although supporting resolution-based 

reasoning is considered future work. We note that 

many Semantic Web rule-based reasoners, including 

DLEJena [36], SAOR [23], OwlOntDb [16] and 

RuQAR [5], also follow a materialization approach. 

3) Service matching: Checks whether a user goal, 

which describes the services the user is looking for, 

matches a service description. In its rule-based 

implementation, a pre- or post-condition / effect from 

one description (e.g., goal) acts as a rule; and its 

counterpart condition from the other (e.g., service) 



serves as a dataset, which is done by “freezing” 

variables, i.e., replacing them by constants. A match is 

found when rule execution infers the consequent. We 

note that this rule-based task can easily be enhanced 

with ontology reasoning – i.e., by including an OWL2 

RL ruleset with the match rule(s), and relevant 

ontology elements in the match dataset – which is one 

of the additional advantages of utilizing a rule-based 

OWL axiomatization. In mobile settings, service 

matching enables mobile apps to locate useful services 

in a smart environment, with all necessary 

computation taking place on the mobile platform (see 

e.g., [53]). While our benchmarks do not measure the 

performance overhead of service matching, this is 

considered future work. 

 

Fig. 2. Reasoning types. 

 

Extensibility: Reasoning tasks are implemented as 

JS classes, with a hierarchy as shown in Fig. 2. A new 

reasoning task class needs to implement the inference 

function, which realizes the task by either directly 

invoking the reasoner interface (see Section 2.4.1), 

delegating to another task class (e.g., Rule-based 

inference) or to a subflow (see Section 2.4.3 – 

Extensibility). The Reasoning task super class 

provides functions such as checking conformance, 

collecting result times, and logging inferences. A new 

task file should be listed in tasks.json.  

2.4.3. Process Flows 

To better align benchmarks with real-world use 

cases, MobiBench supports several process flows, 

which dictate the times at which operations (e.g., load 

data, execute rules / perform reasoning) are 

performed. From previous work [54], [55], and in line 

with our choice for materializing inferences, we 

identified two useful process flows:  

Frequent Reasoning: in this flow, the system stores 

all incoming facts directly in a data store (which 

possibly also includes an initial dataset). To generate 

new inferences, reasoning is periodically applied to 

the entire datastore. Concretely, this entails loading a 

reasoning engine with the entire datastore each time a 

certain timespan has elapsed, applying reasoning, and 

storing new inferences into the datastore. 

Incremental Reasoning: here, the system applies 

reasoning for each new fact (currently, MobiBench 

only supports monotonic reasoning, and thus does not 

deal with deletions). In this case, the reasoning engine 

is first loaded into memory (possibly with an initial 

dataset). Then, reasoning is (re-)applied for each 

incoming fact, whereby the new fact and possible 

inferences are added to the dataset. Some OWL 

reasoners directly support incremental reasoning, such 

as ELK and Pellet. As mentioned, Motik et al. [37] 

implemented an algorithm to optimize this kind of 

reasoning, initially presented by Gupta et al. [21]. 

Further, we note that each reasoner dictates a 

subflow, which imposes a further ordering on 

reasoning operations. In case of OWL inference 

(implemented via e.g., tableau reasoning), data is 

typically first loaded into the engine, and then an 

inference task is performed (LoadDataPerform-

Inference). Similarly, RDFQuery, RDFStore-JS and 

AndroJena first load data and then execute rules. For 

the IRIS and PocketKrHyper engines, rules are first 

loaded (e.g., to build the Datalog KB), after which the 

dataset is loaded and reasoning is performed 

(LoadRulesDataExecute). For more details, we refer 

to previous work [54]. 

Extensibility: Process flows are implemented as JS 

classes. Each main process flow is listed in flows.json, 

and will call a reason task at certain times (e.g., 

frequent vs. incremental) and with particular 

parameters (e.g., entire dataset vs. new fact). A 

subflow is specific to a particular reasoning task (see 

Section 2.4.2). A Reason task may thus utilize a 

subflow class behind-the-scenes, in case multiple 

subflows are possible. When called, a subflow class 

executes the uniform reasoning functions (e.g., load-

data, execute) in the appropriate order.  

2.4.4. Measurement Criteria 

The Benchmark Engine allows studying and 

comparing the metrics listed below.  

Performance: 

Loading times: time needed to load data and rules, 

ontologies, etc. into the engine.  

Reasoning times: time needed to infer new facts or 

check for entailment.  

Memory consumption: total memory consumed by 

the engine after reasoning. Currently, it is not feasible 



to measure this criterium for non-native engines; we 

revisit this issue in Section 6.4. 

Conformance:  

The Benchmark Engine allows to automatically 

compare inferences to the expected output for 

conformance checking (Section 5.4). As such, 

MobiBench allows investigating the completeness and 

soundness of inference as well (cfr. [20]).  

Other related works focus on measuring the fine-

grained performance of specific components [34], 

such as large joins, Datalog recursion and default 

negation. In contrast, MobiBench aims to find the 

most suitable reasoner on a mobile platform given an 

application scenario (e.g., reasoning setup, dataset). 

Our performance metrics support this objective.  

We further note that the performance of the 

remotely deployed services, i.e., the Uniform 

Conversion Layer (Section 2.1), Ruleset Selection 

(Section 2.2) and Pre-Processing (Section 2.3) 

services are not measured. The Uniform Conversion 

Layer will not be included in actual reasoning 

deployments since it only aims to facilitate 

benchmarking; e.g., for production systems, rulesets 

can be converted a priori and then stored locally. 

Regarding the Ruleset Selection and Pre-Processing 

services, we note that these services are invoked once, 

before reasoning takes place; and then each time a 

relevant ontology update (e.g., schema update) occurs 

at runtime, i.e., which requires re-executing the 

operation. In scenarios where such updates may take 

place, we currently do not utilize selections or pre-

processing options that would require re-invoking the 

service (see Section 5.2.1) at runtime. Therefore, and 

in light of future work to improve these services (e.g., 

by directly integrating them with the reasoner), we do 

not measure their performance.  

Finally, we note that this paper focuses in particular 

on performance times and memory consumption on 

mobile platforms. Clearly, battery usage is an 

important aspect on mobile platforms as well. In the 

state of the art, a recent study [39] reported a near 

linear relation between consumed energy and OWL 

reasoning time, meaning that energy usage estimates, 

based on our captured performance times, could 

already be realistic. Nevertheless, future work 

involves supporting battery measurements as well. 

3. Using MobiBench for Benchmarking 

While the previous section indicated how 

MobiBench can be extended by third-party 

developers, this section describes how developers can 

utilize MobiBench for benchmarking. Developers 

may run benchmarks programmatically (Section 3.1) 

or use the automation support (Section 3.2). To 

aggregate benchmark results into summary CSV files, 

developers can utilize the analysis tools (Section 3.3). 

For more detailed instructions, we refer to our online 

documentation [51]. 

3.1. Programmatic Access 

To execute benchmarks programmatically, 

developers call the MobiBench’s execBenchmark 

function with a configuration object, specifying 

options for reasoning and resources. Below, we show 

an example (Code 1): 

config: { 
  engine: 'androjena', nrRuns: 10, warmupRun: true, 
 dumpHeap: true, 
  reasoning: { 
    task: ‘ontology_inference', 
    mechanism: { 
      ontology_inference: { 
        type: 'owl2rl', dependency: 'rule_inference' 
      }, 
      rule_inference: { 
        mainFlow: 'frequent', 
        subFlow: 'load_data_exec_rules'  
      } } }, 
  resources: { 
    ontology: { 
      path: 'res/owl/data/0.nt', 
      type:'data', format:'RDF', syntax:'N-TRIPLE'  
    }, 
    owl2rl : { 
      axioms: { 
        path: 'res/owl/owl2rl/full/axioms.nt', 
        type:'data', format:'RDF', syntax:'N-TRIPLE'  
      }, 
      rules: { 
        path: 'res/owl/owl2rl/full/rules.spin', 
        type: 'rules', format: 'SPIN' }, 
 preprocess: 'inst-rules', 
 selections: [ 'inf-inst', 'entailed' ] 
 }, 
 confPath: 'res/owl/conf/ontology_inference/0.nt' 
 outputInf: 'res/output/ontology_inference/...' 
  id: '...' } 

Code 1. Example benchmark configuration object. 

This object specifies the unique engine id, the 

number of experiment runs, possibly including a 

“warmup” run (not included in the collected metrics), 

and whether memory usage should be measured 

(dumpHeap). The reasoning part indicates the high-

level reasoning task (i.e., ontology_inference) and 

concrete mechanism (i.e., owl2rl), as well as details on 

dependency tasks (i.e., rule_inference), including its 

main and sub process flow.  

The resources section lists the resources to be used 

in the benchmark; in this case, an ontology and OWL2 

RL axioms and rules. Further, the section specifies 



that the inst-rules pre-processing method (i.e., 

instantiate rules; Section 4.2.3, (1)) should be applied, 

as well as selections inf-inst (i.e., inference-instance 

subset) and entailed (i.e., leaving out logically 

redundant rules) (Section 5). Both involve calling the 

respective services on the Web service. It may also 

indicate the path for storing inferences (outputInf); as 

well as the expected reasoning output (confPath), to 

allow for automatic conformance checking. 

3.2.  Automation Support 

Due to the potential combinatorial explosion of 

configuration options, including engines and their 

possible settings, resources and OWL2RL subsets, 

manually writing configurations quickly becomes 

impractical. For that purpose, we implemented an 

Automation Support component. 

This solution includes an Automation Client, 

deployed on a server or PC, which generates a set of 

benchmarks based on an automation configuration; 

and communicates these benchmarks over HTTP with 

the Automation Web Service on the mobile device, 

which locally invokes the MobiBench API and returns 

the benchmark results. In the Automation Client code, 

developers specify ranges of configuration options, 

whereby each possible combination will be used to run 

a benchmark. Code 2 shows (abbreviated) example 

code for running a set of OWL2 RL benchmarks: 

1.  OWL2RLRunConfig config = new OWL2RLRunConfig(); 
2.  config.setTask("owl_inference", "owl2rl"); 
3.  config.select({ "entailed" },  

  { "inf-inst", "entailed", "domain-based" }); 
5.  config.addDataset("ore", 0, 188); ... 

Code 2. Example automation configuration. 

In this case, one subset leaves out entailed, logically 

redundant rules (entailed), and the second applies the 

inf-inst (i.e., inference-instance subset), entailed and 

domain-based (i.e., selecting a domain-based subset) 

selections. Both rulesets are applied on all benchmark 

ontologies, creating a total of 378 benchmarks. 

3.3. Analysis Tools 

To deal with large amounts of benchmark results, 

the MobiBench Analysis Tools assemble benchmark 

results into a CSV file. This file lists the performance 

results and memory usages per configuration; 

including process flow and reasoning task, rule 

subsets, engine-specific options, and datasets.  

Further, the Analysis Tools include a utility function 

to easily compare performance times of two reasoning 

configurations (e.g., different OWL2 RL subsets), and 

output both the individual (i.e., per benchmark 

ontology) and total (i.e., aggregated) differences in 

performance. The Analysis Tools are available both as 

source code and a command line utility. See our online 

documentation [51] for more information. 

4. OWL2 RL Realization 

We argue that OWL2 RL is a promising solution for 

ontology-based reasoning on resource-constrained 

devices, as it targets scalability at the expense of 

expressivity; while its rule-based axiomatization also 

provides unique opportunities for optimization, as 

discussed in Section 5. Although its reduced 

expressivity leads to a lack of completeness of TBox 

reasoning [37] and places syntactic restrictions on 

ontologies, we find this trade-off acceptable if it would 

lead to ontology-based reasoning becoming feasible 

on resource-constrained platforms. 

 In this section, we discuss our realization of the 

OWL2 RL profile. First, we shortly discuss the OWL2 

RL profile (Section 4.1), and then elaborate on our 

practical implementation (Section 4.2).  

4.1. OWL2 RL Profile 

The OWL2 Web Ontology Language Profiles 

document [13] introduces three OWL2 profiles, 

namely OWL2 EL, OWL2 QL and OWL2 RL. By 

restricting ontology syntax and reducing expressivity, 

these profiles can more efficiently handle specific 

application scenarios. The OWL2 RL profile is aimed 

at balancing expressivity with reasoning scalability, 

and presents a partial, rule-based axiomatization of 

OWL2 RDF-Based Semantics. Reasoning in OWL2 

RL has been found to be decidable, in particular, 

PTIME-complete with regards to data and taxonomic 

complexity, and co-NP-complete (PTIME-complete 

for atomic class expressions) regarding combined 

complexity [14]. Using OWL2 RL, reasoning systems 

can be implemented using standard rule engines. The 

W3C specification [13] presents the OWL2 RL 

axiomatization as a set of universally quantified, first-

order implications over a ternary predicate T, which 

stands for a generalization of RDF triples. In addition 

to regular inference rules, OWL2 RL includes rules 

that are always applicable (i.e., without antecedent), 

and consistency-checking rules (i.e., with consequent 

false). Below, we exemplify each type of rules 

(namespaces omitted for brevity) for later reference. 



Code 3 shows a “regular” inference rule that types 

resources based on the subClassOf construct: 

𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2), 𝑇(? 𝑥, 𝑡𝑦𝑝𝑒, ? 𝑐1) → 𝑇(? 𝑥, 𝑡𝑦𝑝𝑒, ? 𝑐2) 

Code 3. Rule classifying resources (#cax-sco). 

The second type of rule lacks an antecedent and is 

thus always applicable. E.g., the rule in Code 4 

indicates that each built-in OWL2 RL annotation 

property has the owl:AnnotationProperty type: 

𝑇(? 𝑎𝑝, 𝑡𝑦𝑝𝑒, 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

Code 4. Rule typing annotation properties (#prp-ap). 

Thirdly, the consistency-checking rule in Code 5 

checks whether an instance of a restriction, indicating 

a maximum cardinality of 0 on a particular property, 

participates in said property. If so, the ontology is 

flagged as inconsistent. 

𝑇(? 𝑥, 𝑚𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦, 0), 𝑇(? 𝑥, 𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝), 
𝑇(? 𝑢, 𝑡𝑦𝑝𝑒, ? 𝑥), 𝑇(? 𝑢, ? 𝑝, ? 𝑦) → 𝑓𝑎𝑙𝑠𝑒 

Code 5. Rule based on maxCardinality restriction to check 
consistency (#cls-maxc1). 

4.2. Practical Realization of OWL2 RL  

To implement the OWL2 RL axiomatization for 

general-purpose rule engines, where no particular 

internal support can be assumed, three types of rules 

may pose problems: 1) rules that require internal 

datatype support; 2) rules that are always applicable; 

and 3) rules referring to lists of elements. Below, we 

present these issues and our solutions, and we end with 

a description of our final ruleset implementation. 

4.2.1. Rules requiring datatype support 

The datatype inference rule #dt-type2 (Code 6) 

requires literals with data values from a certain value 

space to be typed with the datatype of that value space 

(e.g., typing an integer “42” with xsd:int): 

𝑇(? 𝑙𝑡, 𝑡𝑦𝑝𝑒, ? 𝑑𝑡) 

Code 6. Rule typing each literal with its corresponding datatype 

(#dt-type2). 

Similarly, a second rule (#dt-not-type) flags an 

inconsistency when a literal is typed with the wrong 

datatype. Two other datatype rules (#dt-eq and #dt-

diff) indicate equality and inequality of literals based 

on their values; which requires differentiating literals 

from URIs, to avoid these rules to fire for URI 

resources as well. These four rules thus require built-

in support for RDF datatypes and literals, meaning 

they cannot be consistently implemented across 

arbitrary rule engines. Therefore, we chose to leave 

these rules out of our OWL2 RL ruleset. Related work, 

including DLEJena [36], the SPIN OWL ruleset by 

Knublauch [30] and OWLIM OWL2 RL ruleset [8]  

also do not include datatype rules. 

4.2.2. Always-applicable rules  

A number of OWL2 RL rules lack an antecedent, 

and are thus always applicable. One subset of these 

rules lack variables (e.g., specifying that owl:Thing 

has type owl:Class), and may thus be directly 

represented as axiomatic triples to accompany the 

OWL2 RL ruleset. A second subset comprises 

“quantified” variables in the consequent; e.g., stating 

that each annotation property has type 

owl:AnnotationProperty (Code 4). Likewise, these 

were implemented by axioms that properly type each 

annotation property (built-in for OWL2 [22]) and 

datatype property (supported by OWL2 RL [13]). 

4.2.3. Rules referencing element lists 

This set of rules includes so-called n-ary rules, 

which refer to a finite list of elements. A first  

subset (L1) of these rules lists restrictions on 

individual list elements (#eq-diff2, #eq-diff3, #prp-

adp, #cax-adc, #cls-uni). For instance, rule #eq-diff2 

flags an ontology inconsistency if two equivalent 

elements of an owl:AllDifferent construct are found.  

In contrast, rules from the second subset (L2) 

include restrictions referring to all list elements (#prp-

spo2, #prp-key, #cls-int1), and a third ruleset (L3) 

yields inferences for all list elements (#cls-int2, #cls-

oo, #scm-int, #scm-uni). E.g., for (L2), rule #cls-int1 

infers that y is an instance of an intersection in case it 

is typed by each intersection member class; for (L3), 

for any union, rule #scm-uni (Code 8) infers that each 

member class is a subclass of that union. 

To support rulesets (L1) and (L3), we added two 

list-membership rules (Code 7) that recursively link 

each element to preceding list cells, eventually linking 

the first cell to all list elements: 

𝑇(? 𝑙, 𝑓𝑖𝑟𝑠𝑡, ? 𝑚) → 𝑇(? 𝑙, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚)  a) 

 𝑇(? 𝑙1, 𝑟𝑒𝑠𝑡, ? 𝑙2), 𝑇(? 𝑙2, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚) →
𝑇(? 𝑙1, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚)  b) 

Code 7. Two rules for inferring list membership. 

Using these rules, #scm-uni (L3) may be formulated 

as follows (Code 8):  

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑙), 𝑇(? 𝑙, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙) 

→ 𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐) 

Code 8. Rule inferring subclasses based on union membership 
(#scm-uni). 

Since the supporting rules (Code 7) eventually link 

all list elements to the first list cell (i.e., ?l) using 

hasMember assertions, the rule yields inferences for 

all union member classes. 



However, extra support is required for (L2). For 

these kinds of n-ary rules, we supply three solutions, 

each with their own advantages and drawbacks: 

(1) Instantiate the rules based on n-ary assertions 

found in the ontology. Per OWL2 RL rule, this 

generates a separate rule for each related n-ary 

assertion, by constructing a list of the found length and 

instantiating variables with concrete schema 

references. E.g., a property chain axiom 𝑃 with 

properties 𝑃1−3 will yield the following rule (Code 9): 

𝑇(? 𝑢1, 𝑃1, ? 𝑢2), 𝑇(? 𝑢2, 𝑃2, ? 𝑢3), 𝑇(? 𝑢3, 𝑃3, ? 𝑢4)
→ 𝑇(? 𝑢1, 𝑃, ? 𝑢4) 

Code 9. Instantiated rule supporting a specific property chain axiom 
(#prp-spo2). 

Some related works apply this approach (a.k.a. 

“rule-templates”) for any n-ary rule [38], or even all 

(applicable) OWL2 RL rules [5], [36], [37].  

A drawback of this approach is that it requires pre-

processing the ruleset for each ontology, and 

whenever it changes. Although our selections also 

include a pre-processing option (Section 5.2), this is 

only needed for optimization. Of course, the severity 

of this drawback depends on the frequency of 

ontology updates. In addition, it yields an extra rule 

for each relevant assertion, potentially inflating the 

ruleset. On the other hand, instantiated rules contain 

less variables, and may also reduce the need for joins, 

as for #prp-spo2 (see also [37]). Further, in case no 

related assertions are found, no rules will be added the 

ruleset. Future work includes studying the application 

of this approach to all rules (Section 8). 

(2) Normalize (or “binarize”) the input ontology to 

only contain binary versions of relevant n-ary 

assertions. E.g., an n-ary intersection can be converted 

to a set of binary intersections as follows (Code 10), 

with 𝐼 representing the original, n-ary intersection; 𝐼𝑖  

representing a binary intersection; and 𝐶𝑖 standing for 

a constituent class of the original n-ary intersection: 

𝐼 = 𝐶1 ∩ 𝐶2 ∩ … ∩ 𝐶𝑛 ≡  
𝐼 = 𝐶1 ∩ 𝐼2 ∧ 𝐼2 = 𝐶2 ∩ 𝐼3 ∧  … ∧  𝐼𝑛−1 = 𝐶𝑛−1 ∩ 𝐶𝑛 

Code 10. Binary version of an n-ary intersection.  

With the binary version of #cls-int1 (Code 11): 

𝑇(? 𝑐, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑓, ? 𝑥1), 𝑇(? 𝑥1, 𝑓𝑖𝑟𝑠𝑡, ? 𝑐1), 𝑇(? 𝑥1, 𝑟𝑒𝑠𝑡, ? 𝑥2), 
𝑇(? 𝑥2, 𝑓𝑖𝑟𝑠𝑡, ? 𝑐2), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐1), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐2) 

→ ? 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐) 

Code 11. Binary version of rule #cls-int1. 

This rule may be considered recursive, since it both 

references and infers the same kind of assertion (i.e., 

𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)). Applying this rule on a set of binary 

assertions 𝐼, 𝐼2, … , 𝐼𝑛−1 (see Code 10) yields the 

following for any resource R (Code 12), with 𝑅𝑡 

representing the resource’s set of all types, and, as 

before, 𝐼𝑖  representing a binary intersection and 𝐶𝑖 

standing for a constituent intersection class: 

{

{𝐶𝑛−1, 𝐶𝑛} ⊂ 𝑅𝑡  → 𝑅𝑡 =  R𝑡 + 𝐼𝑛−1                              
{𝐶𝑖−1, 𝐼𝑖} ⊂ 𝑅𝑡   → 𝑅𝑡 = 𝑅𝑡 + 𝐼𝑖−1   (𝑛 − 1 ≥ 𝑖 ≥ 1)
{𝐶1, 𝐼2} ⊂ 𝑅𝑡  → 𝑅𝑡 = 𝑅𝑡 + 𝐼                                           

 

Code 12. Inferences when applying binary #cls-int1. 

In doing so, the rule travels up the chain of binary 

intersections, until it finally infers type I for R. 

It is not hard to see how this approach only works 

for recursive rules. Rule #prp-key is not a recursive 

rule, since it infers equivalence between resources but 

does not refer to such relations. So, this approach only 

works for rules #prp-spo2 and #cls-int1 from (L2). 

Another drawback is that, similar to (1), it requires 

pre-processing for each ontology and its updates. In 

particular, each relevant n-ary assertion needs to be 

replaced by 𝑛 − 1 binarized versions. Further, to 

support a complete, single n-ary inference, this 

solution generates a total of 𝑛 − 1 inferences. While 

these are sound inferences, they may be considered to 

“crowd” (i.e., expand) the dataset. 

(3) Replace each rule from (L2) by 3 auxiliary 

rules. Bishop et al. [8] suggested this solution for 

OWLIM, based on a W3C note [41]. In this solution, 

a first auxiliary rule starts at the end of any list, and 

infers an intermediary assertion for the last element 

(cell n). Starting from the first inference, a second rule 

travels up the list structure by inferring the same kind 

of assertions for cells 𝑖 (𝑛 > 𝑖 ≥ 0). In case the first cell 

is related to a relevant n-ary assertion (e.g., 

intersection, property chain), a third auxiliary rule 

generates the original, n-ary inference. See Bishop et 

al. [8] or our online documentation [51] for details. 

A distinct advantage of this approach is that, in 

contrast to (1) and (2), it does not rely on pre-

processing. However, each complete, single n-ary 

inference requires a total of n+1 inferences, and these 

do not follow from OWL2 RL semantics (instead, they 

ensue from custom, auxiliary rules). As such, they can 

be considered to not only “crowd” but also “pollute” 

the dataset with unsound inferences. Bishop et al. [8] 

internally flag these inferences so they are skipped in 

query answering. Developers may want to support a 

similar mechanism when adopting this solution. 

4.2.4. OWL2 RL Realization Outcome 

Based on all observations from Section 4, we 

collected an OWL2 RL ruleset implementation written 

in the SPARQL Inferencing Notation (SPIN), based 

on an initial ruleset created by Knublauch [30]. This 



initial ruleset relies on built-in Apache Jena functions 

to implement the rules from Section 4.2.3. Such built-

in support cannot be assumed for arbitrary rule 

engines, which are targeted by our ruleset. Also, it 

does not specify axioms (Section 4.2.2). Our ruleset 

contains 69 rules and 13 supporting axioms, and can 

be found in Appendix A. This ruleset includes the two 

list-membership rules (Code 7) for n-ary rules from 

sets (L1) and (L3) (Section 4.2.3). To add support for 

a particular solution for (L2), our Web service needs 

to be contacted (Section 2.3) to pre-process the 

necessary rules or ontology, and/or add the rules (e.g., 

binary versions, auxiliary rules) to the ruleset. Note 

that our evaluation does not compare the performance 

of these n-ary rule solutions; this is future work. 

In Section 5.4, we discuss options for checking 

conformance with OWL2 RL semantics. 

5. OWL2 RL Optimization 

This section discusses OWL2 RL ruleset selections 

with the goal of optimizing ontology-based reasoning. 

We note that, while this solution was construed and 

evaluated for resource-constrained platforms, it may 

be applied in any kind of computing environment. We 

consider three selections: leaving out redundant rules 

(Section 5.1), dividing the ruleset based on rule 

purpose and references (Section 5.2), and removing 

resource-heavy rules (Section 5.3). We note that most1 

selections represent a best-effort in reducing the size 

of the OWL2 RL ruleset, and do not necessarily 

optimize the ruleset for all types of systems. Although 

the total number of rules is reduced, some selections 

involve removing or replacing specific rules by more 

general rules, which could negatively impact 

performance. Our evaluation (Section 6) compares the 

effects of each subset selection. 

For the purpose of these selections, we introduce 

the terms owl2rl-schema-completeness and owl2rl-

instance-completeness, to indicate when a selection 

respectively derives all schema inferences and 

instance inferences covered by the OWL2 RL 

axiomatization. Although OWL2 RL reasoning infers 

all ABox inferences over OWL2 RL-compliant 

ontologies, it does not cover all TBox inferences 

dictated by the OWL 2 semantics [33], [37], hence our 

introduction of these specialized terms. Further, we 

                                                           
1 Aside from the selection presented in Section 5.3, as it 

focuses in particular on leaving out resource-heavy rules. 

discuss conformance with the OWL2 RL W3C 

specification (Section 5.4). 

5.1. Equivalent OWL2 RL subset 

As mentioned by the OWL2 RL specification [13], 

the presented ruleset is not minimal, as certain rules 

are implied by others. The stated goal of this 

redundancy is to make the semantic consequences of 

OWL2 constructs self-contained. Although this is 

appropriate from a conceptual standpoint, this 

redundancy is not useful when optimizing reasoning.  

Aside from rules that are entailed by other rules 

(Section 5.1.1), opportunities also exist to leave out 

specialized rules by introducing extra axioms  

(Section 5.1.2) or replacement by generalized rules 

(Section 5.1.3). Some inference rules may also be 

considered redundant at the instance level, since they 

do not contribute to inferring instances (Section 5.1.4).  

5.1.1. Entailments between OWL2 RL rules 

A first set of rules is entailed by #cax-sco (see  

Code 3), each time combined with a second inference 

rule. For instance, #scm-uni (see Code 8) indicates that 

each class in a union is a subclass of that union. 

Together, these two rules entail the #cls-uni rule  

(Code 13). This rule infers that each instance of a 

union member is an instance of the union itself: 

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑥), 𝑇(? 𝑥, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙), 
𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐𝑙) → 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐) 

Code 13. Rule that infers membership to OWL unions  
(#cls-uni). 

Code 14 shows that the rule #cls-uni, for each 

instantiation of the input variables, is covered by 

#scm-uni + #cax-sco: 

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑥), 𝑇(? 𝑥, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙) →
𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐)  a) 

𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐𝑙) →
𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)  b) 

Code 14. Entailment of #cls-uni by #scm-uni, #cax-sco. 

Applying #scm-uni on two premises from #cls-uni 

returns inference (a). Then, #cax-sco is applied on the 

remaining premise, together with (a). This yields the 

inference in (b), which equals the #cls-uni consequent. 

As such, this rule may be left out without losing 

expressivity. Similarly, it can be shown that rules #cls-

int2, #cax-eqc1 and #cax-eqc2 are entailed by #cax-

sco, each time combined with a schema-based rule.  



A second set of inference rules is entailed by the 

#prp-spo1 rule, each time combined with rules that 

indicate equivalence between owl:equivalent 

[Class|Property] and rdfs:sub[Class|Property]Of. 

Similar to #cax-sco, #prp-spo1 (Code 15) infers that 

resources related via a sub property are also related via 

its super property:  

𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦) → 𝑇(? 𝑥, ? 𝑝2, ? 𝑦) 

Code 15. Rule that infers new resource relations (#prp-spo1). 

E.g., the #scm-eqp1 (Code 16) rule indicates that 

two equivalent properties are also sub properties: 

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2) 
→ 𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑝2, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝1) 

Code 16. Rule inferring sub properties (#scm-eqp1). 

These two rules collectively entail the rule #prp-

eqp1 (Code 17). This rule infers that, for two 

equivalent properties, any resources related via the 

first property are also related via the second property: 

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦)
→ 𝑇(? 𝑥, ? 𝑝2, ? 𝑦) 

Code 17. Rule for property membership (#prp-eqp1). 

This entailment is shown by Code 18: 

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2) →
𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2)  a) 

𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦) →
𝑇(? 𝑥, ? 𝑝2, ? 𝑦)  b) 

Code 18. Entailment of #prp-eqp1 by #scm-eqp1,#prp-spo1. 

By applying #scm-eqp1 on the first premise from 

#prp-eqp1, the inference from (a) is returned. 

Applying #prp-spo1 on this inference and the 

remaining premise yields (b), which equals the #prp-

eqp1 consequent. This rule may thus be left out. Rule 

#prp-eqp2 is similarly equivalent to these two rules.  

Other rules are covered by single rule. The #eq-

trans rule (Code 19) indicates the transitivity of 

owl:sameAs: 

𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦), 𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧) → 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧) 

Code 19. Rule indicating transitivity of owl:sameAs (#eq-trans) 

This rule is entailed by #eq-rep-o (Code 20), which 

indicates that, for any triple, subject resources are 

related to any resource equivalent to the object: 

𝑇(? 𝑜, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑜2), 𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝, ? 𝑜2) 

Code 20. Rule inferring new relations via owl:sameAs (#eq-rep-o) 

By partially materializing the premise of #eq-rep-o, 

Code 21 shows how this rule entails #eq-trans: 

𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧), 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦) 

→ 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧) 

Code 21. Entailment of #eq-trans by #eq-rep-o. 

When executing the #eq-rep-o rule on suitable data, 

the ?p variable is instantiated with owl:sameAs, thus 

covering each possible inference of #eq-trans. 

Finally, we note that some rules could potentially 

be removed, depending on type assertions found in the 

dataset. Rules #cls-maxqc4 & #cls-svf2 support 

restrictions that apply to owl:Thing, and thus do not 

require objects to be typed with the restriction class 

(since each resource is implicitly already an 

owl:Thing). Related rules #cls-maxqc3 & #cls-svf2 

support restrictions that apply to a particular class, and 

thus require related objects to be typed with the 

restriction class. Since owl:Thing is the supertype of 

each class (#scm-cls rule), and each instance is typed 

by its class’s supertype (#cax-sco rule, Code 3), any 

instance will be typed as owl:Thing. Therefore, 

executing the second ruleset on restrictions relating to 

owl:Thing could produce the same inferences. 

However, #cax-sco requires each instance to be 

explicitly typed, which often is not the case in practice. 

Therefore, we opted to leave these rules in the ruleset. 

We note that our online documentation [51] 

discusses all rule equivalences in detail. In total, this 

selection involved leaving out 7 redundant rules. 

5.1.2. Extra supporting axiomatic triples  

In other cases, extra axiomatic triples can be 

introduced to allow for entailment by existing rules. 

For instance, the rule #eq-sym (Code 22) explicitly 

encodes the symmetry of the owl:sameAs property: 

𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦) → 𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑥) 

Code 22. Rule indicating owl:sameAs symmetry (#eq-sym). 

By adding an axiom stating that owl:sameAs has 

type owl:SymmetricProperty, Code 23 shows that any 

inferences generated by the #eq-sym rule are covered 

by the #prp-symp rule: 

𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦), 𝑇(? 𝑥, ? 𝑝, ? 𝑦) 
→ 𝑇(? 𝑦, ? 𝑝, ? 𝑥) 

 𝑇(𝑠𝑎𝑚𝑒𝐴𝑠, 𝑡𝑦𝑝𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

Code 23. Rule implementing property symmetry (#prp-symp) and 
supporting axiom. 

Similarly, #prp-inv2 is entailed by #prp-symp with 

an extra axiom, together with the #prp-inv1 rule. 

Rules #scm-spo and #scm-sco, implementing the 

transitivity of rdfs:subPropertyOf and 

rdfs:subClassOf, respectively, are entailed by #prp-trp 

with supporting axioms (Code 24): 

𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦), 𝑇(? 𝑥, ? 𝑝, ? 𝑦), 
𝑇(? 𝑦, ? 𝑝, ? 𝑧) → 𝑇(? 𝑥, ? 𝑝, ? 𝑧) 

 𝑇(𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

   𝑇(𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 
Code 24. Transitivity rule (#prp-trp) and supporting axioms. 



In doing so, 4 rules can be left out, at the expense 

of adding 4 new supporting axioms. 

5.1.3. New generalized OWL2 RL rules 

Opportunities also exist to generalize multiple rules 

into a single rule, combined with supporting axioms. 

We observe that rules #eq-rep-p (Code 25) and #prp-

spo1 (see Code 15) are structurally very similar:  

𝑇(? 𝑝, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑝2), 𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝2, ? 𝑜) 
Code 25. Rule inferring new relations via owl:sameAs  

(#eq-rep-p). 

Therefore, both rules can be generalized into a 

single rule, with accompanying axioms (Code 26): 

𝑇(? 𝑝1, ? 𝑝, ? 𝑝2), 𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑆𝑢𝑏𝐿𝑖𝑛𝑘), 
𝑇(? 𝑠, ? 𝑝1, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝2, ? 𝑜) 

            𝑠𝑎𝑚𝑒𝐴𝑠  𝑡𝑦𝑝𝑒  𝑆𝑢𝑏𝐿𝑖𝑛𝑘 . 
           𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓  𝑡𝑦𝑝𝑒  𝑆𝑢𝑏𝐿𝑖𝑛𝑘 .  

Code 26. Rule covering #eq-rep-p and #prp-spo1 (#prp-sl) and 

supporting axioms. 

In fact, several rules are structurally very similar, 

and may be pairwise generalized into a single rule with 

supporting axioms: rules #scm-hv and #scm-svf2; 

#scm-avf1 and #scm-svf1; #eq-diff2 and #eq-diff3; 

#prp-npa1 and #prp-npa2; and #cls-com and #cax-dw 

(see [51] for details). We note that the same solution 

could also be applied for rule #prp-eqp1 (Code 17) but 

this rule had already been removed (Code 18). In 

doing so, we left out 12 specialized rules while adding 

6 general rules and 12 supporting axioms. After 

applying these selections, 52 rules remain and  

16 axioms are added.  

5.1.4. Equivalence with instance-based rules 

So-called “stand-alone” schema inferences, which 

extend the ontology but do not impact the set of 

instances, may also be considered redundant, at least 

at the instance level.  E.g., #scm-dom1 (Code 27) 

infers that properties also have as domain the super 

types of their domains: 

𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐1), 𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2) 

→ 𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐2) 

Code 27. Rule inferring super class domains (#scm-dom1). 

Although this information may be a useful addition 

to the ontology, the new schema element will not 

result in new instance inferences. Code 28 shows that 

its resulting instance inferences are already covered by 

rules #prp-dom (a) and #cax-sco (b): 

 𝑇(? 𝑠, ? 𝑝, ? 𝑜), 𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐1) → 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐1) a)

 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐1), 𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2) 

                                                           
2 These rule subsets both include the two membership rules 

(Section 2.2.3), making them cumulatively larger. 

→ 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐2)        b) 

Code 28. Two rules yielding same instances as #scm-dom1. 

Thus, any variable ?s will already be typed with 

super classes of the property’s domain, regardless of 

the inferences generated by #scm-dom1. Similarly, 

rules #scm-rng1, #scm-dom2 and #scm-rng2 will not 

yield any new instances. By leaving out these 4 rules, 

this selection retains owl2rl-instance-completeness 

but clearly breaks owl2rl-schema-completeness. 

5.2.   Purpose- and reference-based subsets 

In this section, we discuss selections based on 

purpose and reference. We differentiate between 

selections independent of the domain (Section 5.2.1) 

and that leverage domain knowledge (Section 5.2.2). 

5.2.1. Domain-independent ruleset selection  

Many (e.g., context-aware [37]) scenarios only 

involve adding or updating ABox (instance) 

statements at runtime, meaning that TBox reasoning 

may be restricted to design/startup time and whenever 

the ontology changes, with ABox reasoning being re-

applied when new instances are added. Reflecting this, 

most OWL2 RL reasoners focus on separating TBox 

from ABox reasoning [5], [16], [23], [36], [37]. 

Further, data generated by the system may have a 

smaller likelihood of being inconsistent, thus reducing 

(or even removing) the need for continuous 

consistency checking as well. 

Consequently, an opportunity exists to divide our 

OWL2 RL ruleset into 2 major subsets according to 

purpose; 1) inference ruleset, comprising inference 

rules (53 rules), and 2) consistency-checking ruleset, 

containing rules for checking consistency (18 rules2). 

The inference ruleset can further be subdivided along 

both purpose and reference, into 1.1) instance ruleset, 

consisting of rules inferring only instance assertions, 

while referring to both instance and schema elements 

(32 rules); and 1.2) schema ruleset, comprising rules 

only referencing schema elements (23 rules2). Since 

the consistency-checking ruleset only contains rules 

referring to both instance and schema elements, it 

cannot be further subdivided. 

In this approach, inference-schema is applied on the 

ontology, initially and whenever the ontology 

changes, to materialize all schema inferences. When 

new instances are added, only inference-instance is 

applied on the instance assertions and materialized 



schema. As shown in our evaluation (Section 6), 

executing only inference-instance has the potential to 

improve performance. Below, we show that this 

process still produces a complete materialization.  

Definition 1. We define 𝑆 as the set of all schema 

assertions (i.e., TBox) and 𝐼 the set of all instance 

assertions (i.e., ABox) with 𝑆 ∩ 𝐼 = ∅, and 𝐴 = 𝑆 ∪ 𝐼 

the set of all assertions. We further define schema 

ruleset 𝛼 and instance ruleset 𝛽 as follows, with 𝐼𝑅 =
𝛼 ∪ 𝛽 the set of all inference rules in OWL2 RL: 

 

𝛼 = { 𝑟 | ∀𝑐 ∈ 𝑏𝑜𝑑𝑦(𝑟),             (1) 

∀𝑎 ∈ 𝐴 ∶ 𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑐) → 𝑎 ∈ 𝑆 } 

𝛽 = { 𝑟 | ∀𝑖 ∈ 𝑖𝑛𝑓𝑒𝑟(𝑟, 𝐴): 𝑖 ∈ 𝐼 }         

     

Where r is a rule from the OWL2 RL ruleset, 

𝑏𝑜𝑑𝑦(𝑟) returns all clauses in the body of rule 𝑟, 

𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑐) returns true if assertion 𝑎 matches a body 

clause 𝑐, and 𝑖𝑛𝑓𝑒𝑟(𝑟, 𝐴) returns all inferences yielded 

by rule 𝑟 on the set of assertions 𝐴. In other words, 

ruleset 𝛼 includes rules for which each body clause is 

only matched by assertions from 𝑆, and ruleset 𝛽 

includes rules that only infer assertions from 𝐼. These 

conditions can be easily confirmed for our OWL2 RL 

rulesets [51]. Further, 𝑘∗(𝑋) denotes the deductive 

closure of ruleset 𝑘 on assertions 𝑋 (i.e., returning 𝑋 

extended with any resulting inferences). 

Theorem 1. The deductive closure of 𝐼𝑅 on the 

union of any ontology schema 𝑂 (𝑂 ⊆ 𝑆) and dataset 

𝐷 (𝐷 ⊆ 𝐼) is equivalent to the deductive closure of 𝛽 

on the union of materialized schema 𝛼∗(𝑂) (i.e., 

including schema inferences) and dataset D: 

 

(𝛼 ∪ 𝛽)∗(𝑂 ∪ 𝐷) ≡ 𝛽∗(𝛼∗(𝑂) ∪ 𝐷)            (2) 

 

It is easy to see why this equivalence holds. 

Compared to the left operand, the set of assertions on 

which ruleset 𝛼 is applied no longer includes 

inferences from 𝛽 (since its deductive closure is now 

calculated separately), nor assertions from D. But this 

does not affect the deductive closure of 𝛼, since 𝛼 only 

matches assertions from 𝑆 with 𝑆 ∩ 𝐼 = ∅, whereas 

𝐷 ⊆ 𝐼 and 𝛽 only infers 𝑖 ∈ 𝐼 (see Definition 1). ∎  

In the same vein, the consistency-checking ruleset 

needs to be applied on a dataset with all inferences 

materialized using the inference ruleset. It can be 

similarly shown that applying only consistency-

checking on such a dataset will not result in losing any 

consistency errors. We note that related work often 

uses a separate OWL reasoner for materializing the 

schema [5], [16], [36]. Although this is a viable 

approach, we argue that this is not optimal for mobile 

platforms as it requires deploying two resource-heavy 

components (i.e., an OWL reasoner and rule engine).  

At the same time, it is clear that the utility of 

separately applying these subsets depends on the 

frequency of ontology (schema) updates, since each 

update requires re-materializing the (schema) 

inferences. Although ontology changes are typically 

infrequent compared to instance data, this depends on 

the concrete scenario. In general, we define an 

ontology as stable when (a) it is not subject to relevant 

changes at runtime, i.e., changes that require re-

executing the selection; or (b) these changes occur so 

infrequently that it remains advantageous to apply the 

selection. We note that the “relevancy” of a change, as 

well as what constitutes a “re-execution” of the 

selection, depends on the ruleset selection. In case of 

inference-instance, a relevant change involves a 

schema update, which requires re-materializing the 

ontology schema at runtime. In case an ontology is not 

stable in the context of a ruleset selection, it should not 

be applied. An ontology is considered volatile when it 

is not stable. Bobed et al. use a similar definition for 

static ontology properties [10].  

5.2.2. Domain-based ruleset selection 

By leveraging domain (i.e., ontology) knowledge, 

rules that do not reference the ontology and will thus 

not yield any inferences, may be left out as well, 

yielding a domain-based rule subset.  

Manually determining such a domain-based ruleset 

is quite cumbersome and error-prone. Firstly, one can 

clearly not just check whether constructs referenced 

by the rule are present; e.g., the ontology may contain 

owl:subClassOf constructs, but the premise of #scm-

eqc2 requires two classes to be subclasses of each 

other, which is less likely. Secondly, some rules may 

be indirectly triggered by other rules, meaning that 

checking inferences per individual rule is insufficient.  

Consequently, Tai et al. [48] describe a “selective 

rule loading” algorithm to determine this ruleset. As a 

type of naïve forward-chaining algorithm, it executes 

each rule sequentially on the initial dataset, adding any 

inferences. In case a rule yields results, it is added to 

the selective ruleset. This process continues until no 

more inferences are generated. We implemented this 

algorithm in the MobiBench framework (Section 2.2). 

Similar to before, the applicability of this ruleset 

selection depends on the “stability” of the ontology. In 

this case, relevant changes not only include schema 

updates but also insertions of certain data patterns, i.e., 



sets of instance assertions (e.g., reciprocal 

owl:subClassOf relations would make the #scm-eqc2 

rule relevant); these will require re-calculating the 

ruleset (with its associated overhead) at runtime. 

5.3. Removal of inefficient rules  

Rule #eq-ref (Code 29), inferring that each resource 

is equivalent to itself, greatly bloats the dataset: 

𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑠),  
𝑇(? 𝑝, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑝), 𝑇(? 𝑜, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑜) 

Code 29. Rule inferring that each unique resource is equivalent to 
itself (#eq-ref). 

For each unique resource, this rule creates a new 

statement indicating the resource’s equivalence to 

itself. Consequently, 3 new triples are generated for 

each triple with unique resources, resulting in a worst-

case 4x increase in dataset size (!). One could argue 

that there is limited practical use in materializing these 

statements; and it is unlikely that their absence will 

affect other inferences (there is one case where this 

may happen; see [51]). If needed, the system could 

e.g., be adapted to support them virtually. Therefore, 

we feel that developers should at least be allowed to 

weigh the utility of this rule versus its computational 

cost. We note that some production-strength OWL 

reasoners, such as SwiftOWLIM, have configuration 

options available to disable such rules as well [25]. 

After applying all selections cumulatively (aside 

from purpose- and reference-based subsets), this 

leaves a ruleset of 51 rules; 18 rules less than the 

original ruleset. Our evaluation (Section 6) studies the 

performance of separately and cumulatively applying 

these selections. 

5.4. Conformance testing 

To check the conformance of our original OWL2 

RL ruleset and its subset selections (Sections 5.1–5.3), 

standard OWL2 RL conformance tests should be 

applied. However, many test cases listed on the W3C 

OWL2 Web Ontology Language Conformance page 

for the OWL2 RL profile [47] are not actually covered 

by OWL2 RL (as confirmed by one of its major 

contributors on the W3C mailing list [72]). Therefore, 

we used the OWL2 RL conformance test suite 

presented by Schneider et al. [43]. We note that some 

of these tests had to be left out, either due to the 

limitations of the original OWL2 RL ruleset  

(Section 4.2; e.g., lack of datatype support), or due to 

difficulties testing conformance. We detail these cases 

in our online documentation [51]. 

The original OWL2 RL ruleset (Section 4.2), as 

well as its conformant subsets (Sections 5.1.1–5.1.3), 

pass this conformance test suite. As a sanity-check 

regarding domain-independent ruleset selection 

(Section 5.2.1), the result of sequentially applying 

inference-schema rules, inference-instance rules and 

consistency-checking rules also passes the 

conformance tests. As expected, the selections 

presented in Section 5.1.4 (Equivalence with instance-

based rules) loses owl2rl-schema-completeness, and 

Section 5.3 (Removal of inefficient rules) fully breaks 

conformance with the test suite. Finally, we note that 

conformance of the domain-based ruleset selection 

(Section 5.2.2) cannot be checked using this test suite, 

since this subset only includes rules specific to the 

domain ontology (while the test suite clearly checks 

all OWL2 RL rules). Instead, conformance of this rule 

subset was tested by collecting the inferences of the 

full ruleset (when applied on our evaluation 

ontologies; Section 6), and comparing them to the 

output of the domain-based rule subset. 

6. Mobile Reasoning Benchmark Results 

This section presents the benchmark results for 

materializing ontology inferences on mobile 

platforms, obtained using MobiBench.  

6.1. Reasoning Task  

Our benchmarks cover OWL2 materializing 

inference. We note that, although rule-based reasoning 

is not benchmarked separately, it is used to implement 

this task (Section 2.4.2). Our goals include: 

1) Measuring the performance impact of our OWL2 

RL subset selections (Section 5). To that end, we 

utilize two rule-based systems (Section 6.3).  

2) Using the best performing OWL2 RL rulesets, 

benchmarking the best-effort performance of the two 

rule-based systems under different orthogonal cases: 

“stable” vs. “volatile” ontologies (Section 5.2); and 

OWL2 RL-conformant vs. non-conformant rulesets. 

In addition, we benchmark three OWL2 DL reasoners 

(Section 6.3) and compare the benchmark results.  

Currently, we chose to only apply the Frequent 

Reasoning process flow; since most systems either 

support incremental reasoning only partially (e.g., 

Pellet: only incremental classification), or not at all. 

This means they will have virtually identical 

performance for incremental reasoning steps. 



6.2. Benchmark Resources  

To benchmark our reasoning task, we rely on the 

validated resources listed below (available for 

download at our online documentation [51]), 

including OWL ontologies (Section 6.2.1) and rulesets 

for OWL2 RL reasoning (Section 6.2.2). 

6.2.1.  OWL2 Ontologies 

OWL 2 RL Benchmark Corpus [35]: Matentzoglu 

et al. extracted this corpus from repositories including 

the Oxford Ontology repository [69], the Manchester 

OWL Corpus (MOWLCorp) [67], and BioPortal [49], 

a comprehensive repository of biomedical ontologies. 

The corpus contains ontologies from clinical and 

biomedical fields (ProPreo, ACGT, SNOMED), 

linguistic and cognitive engineering (DOLCE) and 

food and wine domains (Wine), thus covering a range 

of use cases for ontology-based reasoning.  

To suit the constrained resources of mobile 

platforms, we extracted ontologies with  

500 statements or less from this corpus, resulting in 

189 benchmark ontologies (total size: ca. 9Mb). By 

focusing on OWL2 RL ontologies, all ontology 

constructs are supported by all evaluated reasoners, 

i.e., OWL2 RL and DL. 

In Section 6.6, benchmark ontologies are ordered 

0–188, with an ontology’s cardinal number indicating 

its relative OWL2 RL reasoning performance. 

6.2.2. OWL2 RL Rulesets 

To study the effects of OWL2 RL subset selections 

on performance (Section 5), we created multiple 

benchmark rulesets using our Ruleset Selection 

Service (Section 2.2). We summarize each selection 

below, and indicate their label used in the benchmark 

results. Note that, when discussing the benchmark 

results, the “+” symbol indicates applying one or more 

selections on the OWL2 RL ruleset. 

All selections from (1) guarantee OWL2 RL 

conformance, i.e., they are complete under the OWL2 

RL semantics (Section 5.4); whereas the inst-ent 

selection from (2) still guarantees owl2rl-instance-

completeness (Section 5.1.4), i.e., ensuring all 

instances are inferred under the OWL2 RL semantics. 

(1) Conformant selections 

- entailed: leave out logically redundant rules  

(Section 5.1.1); 

- extra-axioms: add extra supporting axioms, which 

allows leaving out specific rules (Section 5.1.2); 

- gener-rules: add generalized rules, each replacing 

two or more specialized rules (Section 5.1.3); 

- inf-inst: retain inference rules referring to both 

instance and schema elements (Section 5.2.1); 

- inf-schema: retain inference rules referring only to 

schema elements (Section 5.2.1); 

- consist: retain only consistency-checking rules 

(Section 5.2.1); 

- domain-based: leave out rules not referenced by 

the ontology (Section 5.2.2). 

(2) Non-conformant selections  

- inst-ent: leave out schema-based rules not yielding 

extra instance inferences (Section 5.1.4); 

- ineff: leave out inefficient rules (Section 5.3). 

To support n-ary rules from (L2) (Section 4.2.3) we 

chose to only apply solution (1), i.e., instantiating the 

ruleset. This was done for all benchmarks, i.e., all 

benchmark results were obtained with a ruleset that 

can deal with any n-ary rule. Since the benchmark 

ontology corpus (Section 6.2.1) only contains  

18 intersections in total (with no property-chain or 

has-key assertions), we chose a solution that leaves out 

these rules in case no related n-ary assertions are 

found. Due to the low number of relevant assertions in 

this corpus, comparing the performance impact of 

different solutions would not make much sense (this is 

future work). We also note that ontologies with 

intersections were manually extended with relevant 

instance assertions, so inferences would be made 

based on the (instantiated) #cls-int1 rule.  

6.3. Benchmarked Systems 

In order to focus on our main goals (Section 6.1), 

namely studying the performance impact of the 

proposed OWL2 RL rule subsets and best-effort 

performances in light of the proposed optimizations, 

we limit ourselves to benchmarking only two rule-

based systems (AndroJena, RDFStore-JS). An 

exhaustive comparison of all systems would warrant 

its own paper and is thus considered out of scope. For 

this purpose, we chose the best-performing native 

Android system (AndroJena) and JavaScript system 

(RDFStore-JS). Our reason for including a JavaScript 

system is because they are interesting from a 

development perspective; i.e., they can be directly 

used by cross-platform, JavaScript-based mobile apps 

(e.g., deployed using Apache Cordova). We put these 

results side-by-side with performance results for 

Hermit, JFact, and Pellet, the only three OWL2 DL 

reasoners currently supported by our framework. 



6.4. Benchmark Measurements 

Benchmarks capture the metrics discussed in 

Section 2.4.4, including loading and reasoning times 

and memory consumption. Regarding memory, 

Android Java heap dumps are used to accurately 

obtain memory usage of native Android engines. 

However, regarding JavaScript engines, heap dumps 

can only capture the entire memory size of the native 

WebView (used by Apache Cordova to run JavaScript 

on native platforms), not individual components. 

Although Chrome DevTools [65] is more fine-

grained, it only records memory inside the mobile 

Chrome browser. Therefore, memory measurements 

were only possible for native Android reasoners. 

6.5. Benchmark Hardware 

To perform the benchmarks, we used an LG  

Nexus 5 (model LG-D820), with a 2.26 GHz Quad-

Core Processor and 2Gb RAM. This device runs 

Android 6, which grants Android apps 192Mb of heap 

space. During the experiments, the device was 

connected to a power supply. 

6.6. Benchmarking Results and Discussion 

This section presents and discusses the benchmarks 

for OWL materializing inference. We show the results 

for individually benchmarking OWL2 RL ruleset 

selections for AndroJena (Section 6.6.1) and 

RDFStore-JS (Section 6.6.2), and summarize these 

results in Section 6.6.3. In Section 6.6.4, we present 

the best performing OWL2 RL rule subsets, given 

different requirements and scenarios, and set them 

side by side with benchmarks of OWL2 DL reasoners 

(HermiT, JFact and Pellet). Unless indicated 

otherwise, result times include ontology loading, 

reasoning, and inference collection. 

6.6.1. AndroJena Benchmarking Results 

Figures 3-5 show the performance of OWL2 RL 

ruleset selections for AndroJena. Fig. 3 shows that 

leaving out logically redundant rules (+entailed, i.e., 

applying the entailed selection) has a slight positive 

impact on performance (avg. ca. -180ms), whereas 

also replacing specific rules by extra axioms and 

general rules (+ entailed, extra-axioms, gener-rules) 

performs slightly worse (avg. ca. +180ms). This was a 

                                                           
3 Some figures chop off peaks to avoid skewing the graph. 

The full average results can be found at [51]. 

possibility, since this selection introduces more 

general, i.e., less constrained, rules (e.g., less able to 

leverage internal data indices). Applying a domain-

specific ruleset (+entailed, domain-based) supplies a 

much larger performance gain (avg. ca. -0,78s). The 

inf-inst selection improves performance even more 

(avg. ca. -1s). The ineff selection loses completeness 

but shows the highest cumulative gain (avg. ca. -1,3s).  

 

 

 

Fig. 3. AndroJena: OWL2 RL selections (full)3. 

 

Although the inf-inst selection shows promise, it 

requires materializing schema inferences using the inf-

schema subset, initially and in case of ontology 

updates. Also, when consistency needs to be checked, 

the consist ruleset needs to be separately executed. 

Next, we discuss the performance of inf-schema and 

consist, and the effect of ruleset selections on inf-inst.  

Fig. 4 shows the performance of materializing 

schema inferences (inf-schema). As was the case 

before, ruleset selections may be applied on this 

subset. Similar to the full case, replacing specific rules 

with extra axioms and general rules (+extra-axioms, 

gener-rules) reduces performance (avg. ca. +250ms, 

compared to inf-schema). For inf-schema, a non-

conformant selection is leaving out rules inferring 

schema inferences that do not yield extra instances 

(inst-ent, Section 5.1.4), which slightly improves 

performance (avg. ca. -80ms). Since entailed and ineff 

do not include schema-only rules, they cannot be 

applied here. Applying domain-based, alone and when 

combined with inst-ent (+inst-ent, domain-based), 



similarly improves performance slightly (avg. ca.  

-50ms and -100ms, respectively).  

 

 

 

Fig. 4. AndroJena: OWL2 RL selections (inf-schema). 

 

 

 

Fig. 5. AndroJena: OWL2 RL selections (inf-inst). 

 

However, we note that when applying domain-

based on the inf-schema subset, the domain-based 

selection would need to reconstruct the inf-schema 

ruleset for each ontology update; and the ruleset is 

then utilized only once4, i.e., to materialize schema 

inferences in the updated ontology. Its suitability here 

thus depends on the performance of the domain-based 

selection, which is not measured as part of these 

benchmarks as it is deployed on a Web service5. 

                                                           
4 Except for scenarios where e.g., the ontology needs to be 

re-materialized at each startup. 

After materializing the ontology with schema 

inferences, instance-related rules (inf-inst) are applied 

whenever new instances are added. When consistency 

needs to be checked, the consist ruleset selection is 

applied on a materialized set of schema and instance 

assertions (avg. ca. 420ms). We note that the only 

applicable selection for consist, i.e., gener-rules, 

results in very similar performance (avg. ca. 430ms). 

Fig. 5 shows that, similar to the full case, leaving 

out redundant rules (+entailed) results in small 

improvements (avg. ca. -145ms, compared to inf-inst). 

Additionally replacing specific rules by extra axioms 

and general rules (+ entailed, extra-axioms, gener-

rules) similarly leads to performance loss (avg. ca. 

+0,5s), while selecting a domain-based subset 

(+entailed, domain-based) results in gains (avg. ca.  

-0,5s). Regarding non-conformant cases, a first option 

is to execute the rule subset when the ontology schema 

is instead materialized by inst-ent, which is smaller 

since it lacks some schema elements (i.e., not yielding 

extra instances). This scenario (+ entailed, inst-ent) 

improves performance by avg. ca. -340ms. Also 

removing inefficient rules (+ entailed, inst-ent, ineff) 

increases performance by avg. ca. -1,3s. Combining 

all selections yields reductions of avg. ca. -1,5s. 

6.6.2. RDFStore-JS Benchmarking Results 

Figures 6-8 show OWL2 RL subset performances 

for RDFStore-JS. Fig. 6 shows that, similar to 

AndroJena, entailed yields only slightly better 

performance (avg. ca. -100ms), whereas entailed, 

extra-axioms and gener-rules collectively result in 

worse performance (avg. ca. +0,85s). At the same 

time, compared to AndroJena, also applying domain-

based yields much higher performance gains (avg. ca. 

-5,8s), while inf-inst (avg. ca. -1,3s) and ineff (avg. ca. 

-1,9s) have a smaller comparative impact. 

Fig. 7 shows the performance of materializing 

schema inferences (inf-schema). As for AndroJena, 

replacing specific rules (+extra-axioms, gener-rules) 

reduces performance (avg. ca. +380ms, compared to 

inf-schema), while leaving out “instance-redundant” 

rules (inst-ent) improves performance to a larger 

extent (avg. ca. -270ms). As before, we note that 

entailed and ineff are not applicable here. Utilizing 

domain-based, individually and combined with inst-

ent (+inst-ent, domain-based) results in the largest 

improvements in performance (avg. ca. -0,46s and  

5 Future work involves studying mobile deployment, see 

Section 8. 



-0,5s, respectively), although, as mentioned, the 

suitability of domain-based could be questioned here. 

Fig. 8 shows the results of the inf-inst rule subsets, 

applied on an ontology materialized with schema 

inferences. In contrast to AndroJena and the full case 

for RDFStore-JS, collectively applying entailed, 

extra-axioms and gener-rules improves performance 

(avg. ca. -0,8s), and thus exceeds the performance 

gained by only +entailed (avg. ca. -180ms). Similar to 

full (Fig. 6), the domain-based selection (+entailed, 

domain-based) performs much better (avg. ca. -4,5s).  

Considering non-conformant selections, applying 

the rule subset when instead materializing the 

ontology schema using inst-ent (+entailed, inst-ent) 

increases performance by avg. ca. -430ms (compared 

to inf-inst). Also applying the ineff selection 

(+entailed, inst-ent, ineff) significantly improves 

performance (avg. ca. -3,8s). Combining all selections 

reduces reasoning times by avg. ca. -5,5s. Finally, the 

consist ruleset yields a performance of avg. ca. 2,1s, 

with +gener-rules (only applicable selection) 

performing slightly better (avg. ca. -160ms). 

6.6.3. Benchmarking Results Summary 

Overall, we observe that the entailed selection has 

a relatively small performance impact, with reductions 

from -1,2% (rdfstore-js: full) to -8% (androjena: inf-

inst). Utilizing extra-axioms and gener-rules typically 

results in (slightly) worse performance; which is not 

wholly unexpected, seeing how it replaces specific 

rules with more general ones (e.g., with more joins and 

less ability to leverage internal data indices). In some 

cases however, these selections perform better: i.e., 

when executing inf-inst (-21%) on RDFStore-JS. 

In case of a stable ontology, additional conformant 

optimizations exist. Executing the inf-inst ruleset on a 

materialized ontology results in performance increases 

from -17% (rdfstore-js) to -36% (androjena) compared 

to the full ruleset. Here, applying the best-performing, 

conformant selection (i.e., inf-inst+entailed+domain-

based) yields huge optimizations, up to -72% 

(rdfstore-js) compared to the non-selection case. 

When dropping the conformance requirement, 

utilizing the inst-ent selection yields slight 

improvements in performance for inf-schema; 8% 

(androjena) and 15% (rdfstore). Re-using the smaller 

materialized ontology optimizes the inf-inst selection 

as well, up to -12% (androjena). Putting it all together, 

selection +inf-inst, entailed, inst-ent, domain-based, 

ineff yields dramatic improvements, as much as -90% 

(androjena) compared to the full case. 

  

Fig. 6. RDFStore-JS: OWL2 RL selections (full). 

 

 

Fig. 7. RDFStore-JS: OWL2 RL selections (inf-schema). 

 

 

Fig. 8. RDFStore-JS: OWL2 RL selections (inf-inst). 



6.6.4. Best Overall Performance 

Table 1 shows the best-effort performances of the 

rule engines: for the full, original OWL2 RL ruleset 

(original, for reference); when applying best-

performing conformant (conformant) and non-

conformant (non-conformant) rule subsets; and for 

cases where the domain ontology frequently faces 

changes (volatile ontology) that rule out certain 

selections, and cases where such changes are not likely 

to occur (stable ontology) (Section 5.2.1). For brevity, 

we only consider a single “volatile” case, i.e., where 

frequent ontology updates rule out both the domain-

based selection and separation of inf-inst, inf-schema 

and consist selections. For the “stable” case, times for 

a priori materializing the schema (inf-schema), 

inferring new instances (inf-inst), and consistency 

checking times (consist) are shown. Based on results 

from the previous section, we chose the best-

performing ruleset selections for each case (see table). 

Both total times and constituent loading and reasoning 

times are indicated. Further, the table sets these results 

side by side with the overall performance of HermiT, 

Pellet and JFact, well-known OWL2 DL reasoners. 

These systems perform reasoning with higher 

complexity (OWL2 DL), which yields extra schema 

(TBox) inferences not covered by the OWL2 RL rule 

axiomatization [33], [37]. We confirmed that the 

OWL2 RL and OWL2 DL reasoners infer the same 

ABox inferences. Clearly, any comparison should take 

this schema incompleteness issue into account. 

In line with expectations, the table shows that 

AndroJena, as a native Android system and featuring 

a non-naïve, RETE-based forward chainer, greatly 

outperforms RDFStore-JS, which we manually 

outfitted with naïve reasoning (Section 2.4.1). As 

shown before, the ruleset selection suiting volatile 

ontologies and guaranteeing conformance (entailed) 

performs only slightly better. However, if the ontology 

is considered stable, the conformant inf-inst selection 

supplies huge relative gains (avg. ca. 1,6s (55%) – 5,8s 

(72%)) compared to the original case, respectively for 

AndroJena and RDFStore-JS (percentage indicates the 

proportion of time gained w.r.t. original). At the same 

time, inf-schema yields a comparatively lower, but 

certainly not negligible, overhead, which is incurred 

for each ontology update. As mentioned, since 

applying the domain-based selection on inf-schema 

would not be advantageous in most scenarios, it is not 

Table 1. Best overall performances (avg) (ms) 

OWL2 RL* OWL2 DL** 

AndroJena 

original 2819 (88 | 2731)  

Hermit 21111 

 volatile ontology stable ontology 

conformant 

full inf-schema inf-inst consist 

2639 (90 | 2549) 

 + entailed 
1001 (69 | 932) 

1245 (187 | 1058) 

+ entailed,  

domain-based 

418  

(195 | 223) 

non-conformant 

full inf-schema inf-inst 

Pellet 6978 
1547 (93 | 1455) 

+ entailed, ineff 

919 (65 | 854) 

inst-ent 

272 (165 | 106) 

+ entailed, domain-

based, ineff, inst-ent 

RDFStore-JS 

original 8120 (618 | 7502)  

 volatile ontology stable ontology 

JFact 7034 

conformant 

full inf-schema inf-inst consist 

8022 (620 | 7402) 

+ entailed 
1831 (536 | 1296) 

2304 (566 | 1738) 

+ entailed,  

domain-based 

1947  

(1282 | 665) 

non-conformant 

full inf-schema inf-inst 

6168 (583 | 5586) 

+ entailed, ineff 

1561 (511 | 1050) 

+ inst-ent 

1255 (1080 | 176) 

+ entailed, domain-

based, ineff, inst-ent 

* : [total-time] ([load-time] | [reason-time] ; applied selections are shown, if any. 

**: total-time  

 

 



applied here. In contrast, the best-performing 

conformant inf-inst ruleset requires the domain-based 

ruleset selection, which needs to be re-calculated for 

each ontology update and thus adds an extra overhead 

(not included here). Hence, we only apply this 

configuration for stable ontologies, i.e., not faced by 

frequent updates that would require such re-

calculations at runtime. Similarly, the cost of consist 

is not negligible; the frequency of applying the ruleset 

depends on the scenario. 

When dropping conformance, we find significant 

performance improvements even for volatile 

ontologies (avg. ca. 1,3s (45%) – 1,9s (24%)). For 

non-conformant reasoning in stable ontologies, the 

performance gain of inf-inst is tremendous (avg. ca. 

2,5s (90%) – 6,9s  (85%)). Regarding OWL2 DL 

reasoners, Pellet and JFact have comparable 

performance (around avg. ca. 7s) with HermiT being 

a clear outlier (avg. ca. 21s). 

Table 2 shows memory usage for each engine (aside 

from the JavaScript-based RDFStore-JS; see  

Section 6.4). JFact uses the least amount of memory, 

i.e., only 585Kb, making it a suitable choice overall 

(see Table 1) for mobile platforms. Nevertheless, all 

memory usages appear acceptable (at least on 

Android), seeing how each Android app receives a 

192Mb max. heap. 

 
Table 2: Memory usage (Kb) 

AndroJena HermiT Pellet JFact 

6242 13543 12832 585 

7. Related Work 

In the state of the art on rule-based OWL reasoning, 

most works focus on separating TBox from ABox 

reasoning [5], [16], [23], [36], [37]. In most cases, a 

separate OWL reasoner is utilized to compute and 

materialize schema inferences [5], [16], [36]. 

However, this is inadvisable on mobile platforms, 

since it necessitates deploying two (resource-heavy) 

reasoner systems, i.e., an OWL reasoner and rule 

engine. After this separate schema reasoning step, 

some works [5], [36], [37] proceed with a rule-

template approach; where OWL2 RL rules are 

instantiated based on the materialized input ontology. 

In particular, multiple instantiated rules are created for 

each rule, replacing schema variables by concrete 

schema references. We support a similar solution to 

support certain n-ary rules, and applied it in our 

benchmarks. Implementing and benchmarking this as 

an optimization for all rules is considered future work. 

Tai et al. [48] propose a selective rule loading 

algorithm, which composes an OWL2 RL ruleset 

depending on the input ontology. In our benchmarks, 

we found that this domain-based rule selection can 

significantly improve performance.  

Bobed et al. [11] presented a set of comprehensive 

benchmarks on Android devices for a number of DL 

reasoners, focusing on classification and consistency 

checking in the OWL2 DL and OWL2 EL profiles. 

The authors manually ported the OWL reasoners to 

Android and detailed their porting efforts. It was found 

that reasoning on PC was between 1.5 and 150 times 

faster than on Android, with the number of out-of-

memory errors increasing on Android as well. 

Similarly, Kazakov et al. [26] found orders of 

magnitude difference between PC and Android 

reasoning times. Nonetheless, Bobed et al. found some 

promising trends: reasoners on the new Android 

RunTime (ART), which features ahead-of-time 

compilation, can be around 2 times faster than in 

Dalvik. In prior work [57], the same team also found 

a performance increase of ca. 30% between Android 

devices only 1 year apart. 

While the benchmarks presented by Bobed et al. are 

comprehensive and informative, our work goes 

beyond the benchmarking of existing reasoners by 

presenting 1) a freely available, cross-platform 

benchmark framework for evaluating mobile reasoner 

performance, so others may perform detailed 

benchmarks given their application scenarios; and  

2) selections of OWL2 RL rule subsets to optimize 

mobile reasoning, accompanied by comprehensive 

benchmarks that show their performance effects. 

As mentioned, Patton et al. [39] reported that due to 

the single-threaded nature of most reasoners, a near 

linear relation exists between energy usage and 

computing time for OWL inferences on mobile 

systems. As such, energy usage estimates, based on 

reasoning times, could be realistic. Regardless, future 

work involves measuring battery usage as well. 

8. Conclusion and Future Work 

This paper presented the following contributions:   

-  The MobiBench cross-platform, extensible 

mobile benchmark framework, for evaluating mobile 

reasoning performance. Given a reasoning setup, 

including process flow, reasoning task, ruleset (if any) 

and ontology, developers can use MobiBench to 

benchmark reasoners on mobile platforms, and thus 



find the best system for the job. The large differences 

in performance between reasoners and scenarios, as 

observed in our benchmarks, clearly point towards the 

need for such a framework. To facilitate the 

developer’s job, the framework includes a uniform 

conversion layer, ruleset selection and pre-processing 

services, as well as automation and analysis tools. We 

indicated the extensibility for each component, 

allowing developers to easily plug in new variants.  

- A selection of OWL2 RL subsets, with the goal of 

optimizing reasoning performance on mobile systems. 

Orthogonally, these methods include OWL2 RL-

conformant vs. non-conformant selections; and 

selections suiting “stable” vs. “volatile” ontologies. 

Our benchmarks showed that, depending on ontology 

volatility and need for conformity, these selections can 

greatly improve performance.  

- Mobile benchmarks, which measure reasoning 

performance when materializing ontology inferences; 

focusing on the impact of different OWL2 RL ruleset 

selections, as well as the computational cost of best-

performing OWL2 RL rulesets for particular scenarios 

and systems. We put these performance results side-

by-side with the performance of 3 OWL2 DL 

reasoners. Depending on the scenario, we found that 

OWL2 RL reasoning can be greatly optimized.  

Despite the presented work, as well as 

advancements reported in the state of the art, scalable 

mobile performance remains elusive. A huge gap still 

looms between PC and mobile reasoning times. 

Therefore, future work includes integrating additional 

optimization methods into MobiBench, such as 

utilizing rule templates for all rules. Optimizing and 

porting domain-specific rule selection to the mobile 

platform, in light of its positive impact on 

performance, is also an avenue of future work. 

Similarly, we aim to deploy pre-processing solutions 

for n-ary rules directly on the mobile device, and 

compare their performance on an ontology corpus 

featuring large amounts of n-ary assertions. Measuring 

energy consumption, an important aspect for mobile 

systems, is also part of future work.  

Our major focus in this paper was on materializing 

ontology inferences. Reasoning per query (via e.g., 

SLG) may also have its merits on mobile platforms, 

since it does not require a priori materialization. 

Studying its performance on mobile systems is 

considered a major avenue of future work. We also 

aim to study the utility of semantically enhancing 

service matching, one of the supported reasoning tasks 

(Section 2.4.2), by weighting the extra found matches 

against the ensuing performance overhead. Finally, 

identifying additional OWL2 RL rule subsets for 

particular reasoning tasks (such as instance checking 

and realization) is also viewed as future work. 
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