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Abstract.
Identifying entities in different data sources that describe the same real-world object is a central challenge in the context of the

Web of Data as well as in data integration in general. Due to the importance of the problem, there exists a large body of research
on entity resolution in the Linked Data as well as in the database community. Interestingly, most of the existing research focuses
on entity resolution on dense data, meaning data that does not contain too many missing values. This paper sets a different focus
and explores learning expressive linkage rules from as well as applying these rules to sparse data, i.e. data exhibiting a large
amount of missing values. Such data is a common challenge in the context of the Web as different websites describe entities at
different levels of detail. We propose and compare three entity resolution methods that employ genetic programming to learn
expressive linkage rules from sparse data. First, we introduce the GenLinkGL algorithm which learns groups of linkage rules
and applies specific rules out of these groups depending on which values are missing from a pair of records. Next, we propose
GenLinkSA, which employs selective aggregation operators within rules. These operators exclude misleading similarity scores
(which result from missing values) from the aggregations, but on the other hand also penalize the uncertainty that results from
missing values. Finally, we introduce GenLinkComb, a method which combines the central ideas of the previous two into one
integrated method. We evaluate all methods using six benchmark datasets: three of them are e-commerce product datasets, the
other datasets describe restaurants, movies, and drugs. We show improvements of up to 16% F-measure compared to handwritten
rules, on average 12% F-measure improvement compared to the original GenLink algorithm, 15% compared to EAGLE, and 8%
compared to FEBRL.
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1. Introduction

As companies move to integrate data from even
larger numbers of internal and external data sources
and as more and more structured data is becoming
available on the public Web, the problem of finding
records in different data sources that describe the same
real-world object is moving into the focus within even
more application scenarios.

Due to the relevancy of the problem, there exists
an extensive body of research on entity resolution in
the Linked Data [27] as well as the databases commu-
nity [6, 14]. However, most existing approaches focus
on dense data [8, 17, 28, 29]. This paper sets an alter-
native focus and explores learning expressive linkage
(matching) rules from as well as applying these rules

to sparse data, i.e. data that contains a large amount of
missing values.

An example of an application domain that involves
data exhibiting lots of missing values is e-commerce.
Matching product data from different e-shops is dif-
ficult as the shops publish heterogeneous product
descriptions using proprietary schemata which vary
widely concerning their level of detail [26]. In [34],
we analyzed product data from 32 popular e-shops.
The shops use within each product category (mobile
phones, headphones, TVs) approximately 30 different
attributes to describe items. The subset of the attributes
that is used depends on the e-shop and even on the spe-
cific product. This leaves a data aggregator that col-
lects product data for many e-shops into a rich schema
with lots of missing values.
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In [17], we presented GenLink, a supervised learn-
ing algorithm that employs genetic programming to
learn expressive linkage rules from a set of existing ref-
erence links. These rules consist of attribute-specific
preprocessing operations, attribute-specific compar-
isons, linear and non-linear aggregations, as well as
different weights and thresholds. The evaluation of
GenLink on various benchmark datasets showed that
the algorithm constantly performed in the group of top
methods with F-measures above 95% [17]. As shown
in the evaluation section of this paper, GenLink as well
as other entity resolution methods run into problems
once the data sets to be matched are not dense, but
contain larger amounts of missing values.

In order to overcome the challenge of missing val-
ues, this paper introduces and evaluates three methods
that build on the GenLink algorithm. First, we present
GenLink Group Learning (GenLinkGL), an approach
that groups linkage rules based on product attribute
diversity, thus successfully pivoting around missing
values. Next, we introduce the GenLink Selective Ag-
gregations (GenLinkSA) algorithm which extends the
original approach with selective aggregation opera-
tors that ignore and penalize comparisons that include
missing values. Finally, we introduce GenLinkComb,
an algorithm that combines the central ideas of the pre-
vious two into a integrated method. We evaluate all
methods using six benchmark datasets: three of them
are e-commerce product datasets, the other datasets de-
scribe restaurants, movies, and drugs.

The rest of this paper is structured as follows: Sec-
tion 2 formally introduce the problem of entity resolu-
tion. Section 3 gives an overview of the GenLink al-
gorithm. Section 4 introduces the GenLinkGL, Gen-
LinkSA, and GenLinkComb entity resolution methods
for dealing with sparse data. Section 5 presents the re-
sults of the experimental evaluation in which we com-
pare the methods to existing approaches. Section 6 dis-
cusses the related work.

2. Problem Statement

We consider two datasets, A the source, and B the
target dataset. Each entity ea ∈ A and eb ∈ B con-
sists of a set of attribute-value pairs (properties) ea,b =
{(p1, v1), (p1, v2), . . . , (pn, vn)}, where the attributes
are numeric, categorical or free-text. For instance, an
entity representing a product might be described by the
name, UPC, color, camera properties as shown in Fig-
ure 1. Our goal, is to learn a matching rule that de-

termines whether a pair of entities (ea, eb) represents
the same real world object. Or formally, given the two
datasets A and B, the objective is to find the subset M
consisting of all pairs of entities for which the equality
relation holds and is defined by [15]:

M = {(ea, eb); a = b, ea ∈ A, eb ∈ B} (1)

Additionally, find its complement subset U defined
as:

U = {(ea, eb); a 6= b, ea ∈ A, eb ∈ B} (2)

To infer a rule which specifies the conditions which
must hold true for a pair of entities to be part of M,
we rely on a set of positive correspondences R+ ⊆ M
that contains pairs of entities for which the equality re-
lation is known to hold. Analogously, we rely on neg-
ative correspondences R− ⊆ U that contains pairs of
entities for which the inequality relation is known to
hold.

Given the correspondences, we can define the pur-
pose of the learning algorithm as learning matching
rules from a set of correspondences:

m : 2(A×B) ∗ 2(A×B) → (A× B→ [0, 1]) (3)

The first argument denotes a set of positive reference
links, while the second argument denotes a set of neg-
ative reference links. The result of the learning algo-
rithm is a linkage rule which should cover as many ref-
erence links as possible while generalising to unknown
pairs.

3. Preliminaries

GenLink is a supervised algorithm for learning ex-
pressive linkage rules for a given entity matching task.
As all three algorithms that are introduced in this pa-
per build on GenLink, this section summaries the main
components of the GenLink algorithm. The full details
of the algorithm are presented in [17].

3.1. Linkage Rule Format

GenLink represents linkage rules as a tree built out
of four basic types of operators: (i) property operators,
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Fig. 1. Examples of product specifications sharing only a subset of the employed attributes: (left) Specification from walmart.com, (center) Central product Catalog
and (right) Specification from ebay.com

(ii) transformation operators, (iii) comparison opera-
tors and (iv) aggregation operators. The linkage rule
tree is strongly typed i.e. only specific combinations of
the four basic operators are allowed. Figure 2 shows
two examples of linkage rules for matching data de-
scribing mobile phones.

Property operators. Retrieves all values of a specific
property p of each entity. For instance, in Figure 2a
the left most leaf in the tree retrieves the value for the
“phone_type” property from the source dataset.

Transformation operators. Transforms the values
of a set of property or transformation operators. Exam-
ples of common transformation functions include case
normalization, tokenization, and concatenation of val-
ues from multiple operators.

Comparison operators. GenLink offers three types
of comparison operators: The first type of operators are
character-based comparisons: equality, Levenshtein
distance, and Jaro-Winkler distance. The second type
includes token-based comparators: Jaccard similarity
and soft Jaccard similarity. The comparison is done
over a single property or a specific combination of
properties. The third type of comparison operator cal-
culated the similarity of two numbers. Examples of
comparison operators can be seen in Figure 2a as the
parents of the leaf nodes.

Aggregation operators. Aggregation operators com-
bine the similarity scores from multiple comparison
operators into a single similarity value. GenLink im-
plements three aggregation operators: The maximum
aggregation operator aggregates similarity scores by
choosing the maximum score. The minimum aggrega-
tion operator chooses the minimum from the similarity
score. Finally, the average aggregation operator com-
bines similarity scores by calculating their weighted
average.

Note that, these aggregation functions can be nested,
meaning that non-linear hierarchies can be learned.
For instance, in Figure 2a, four different properties are

being compared (“phone_type”, “brand”, “memory”
and “display_size”). Next, two average aggregations
are applied to aggregate scores from phone_type and
brand, and memory and display_size, respectively. Fi-
nally, a third average aggregation is applied to aggre-
gate scores from the previous aggregators.

Compared to other linkage rule formats, GenLink’s
rule format is rather expressive and allows rules to
closely adjust to the requirements of a specific match-
ing situation by choosing a subset of the properties
of the records for the comparison, choosing property-
specific similarity functions, property-specific similar-
ity thresholds, assigning different weights to different
properties, and combining similarity scores using hier-
archies of potentially non-linear aggregation functions.

3.2. The GenLink Algorithm

The GenLink algorithm starts with an initial popula-
tion of candidate solutions which is iteratively evolved
by applying a set of genetic operators.

Generating initial population. The algorithm finds
a list of property pairs which hold similar values be-
fore the population is generated. Based on that, ran-
dom linkage rules are built by selecting property pairs
from the list and building a tree by combining random
comparisons and aggregations.

Selection. The population of linkage rules is bred
and the quality of the linkage rules is assessed by a
fitness function relying on user-provided training data.
The purpose of the fitness function is to assign a value
to each linkage rule which indicates how close the
given linkage rule is to the desired solution. The al-
gorithm uses Matthews correlation coefficient (MCC)
as fitness measure. MCC [23] is defined as the degree
of the correlation between the actual and predicted
classes or formally:

MCC = tp×tn− f p× f n√
(tp+ f p)(tp+ f n)(tn+ f p)(tn+ f n)

(4)
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The training data consists of a set of positive
matches (linking entities identifying the same real
world object) and a set of negative matches (linking
entities identifying different objects). The prediction
of the linkage rule is compared with the positive corre-
spondences, counting true positives and false negatives
and the negative correspondences, counting false pos-
itives and true negatives. In order to prevent linkage
rules from growing indefinitely and potentially over-
fitting to the training data, we penalize linkage rules
based on their number of operators:

f itness = MCC − 0.05 ∗ operatorcount (5)

Once the fitness is calculated for the entire popula-
tion, GenLink selects individuals for reproduction by
employing the tournament selection method. Tourna-
ment selection involves running several "tournaments"
among a few individuals chosen at random from the
population. The winner of each tournament (the one
with the best fitness) is selected for crossover. The
method allows selection pressure to be easily adjusted
by changing the tournament size.

Crossover. There are six types of crossover oper-
ators in GenLink: (i) Function crossover, (ii) Opera-
tors crossover, (iii) Aggregator crossover, (iv) Trans-
formation crossover, (v) Threshold crossover and (vi)
Weight crossover. The function crossover selects one
operator at random in a pair of linkage rules and ex-
changes the functions between the operators. The op-
erators crossover is designed to combine aggregations
from two linkage rules. For this, it selects two aggrega-
tions, one from each linkage rule and combines theirs
comparisons. The comparisons are combined by se-
lecting all comparisons from both aggregations and re-
moving each comparison with a probability of 50%.
In order to learn aggregation hierarchies, the aggrega-
tion crossover operator selects a random aggregation
or comparison operator in the first linkage rule and
replaces it with a random aggregation or comparison
operator from the second linkage rule. The last three
types of crossovers are used to recombine transforma-
tion functions, thresholds and weights for two linkage
rules. An in-depth discussion of the crossover opera-
tors is provided in [17].

4. Approaches

In [33] we have shown that the GenLink algorithm
struggles to optimise property selection for datasets

that contain a lot of missing values: On an e-commerce
data set containing many low-density attributes the al-
gorithm only reached an F-measure of less than 80%,
in contrast to the above 95% results that are often
reached on dense datasets. In the following we pro-
pose three algorithms that build on the GenLink algo-
rithm and enable it to properly exploit sparse attributes.
The GenLinkGL algorithm builds a group of matching
rules for the given matching task (group generation)
and applies the group of matching rules to create new
correspondences (group application). Next we intro-
duce selective aggregations, new operators within the
GenLink algorithm that can better deal with missing
values. Finally, we introduce GenLinkComb, that inte-
grates the central ideas of the previous two methods
into a single combined method.

4.1. The GenLinkGL Algorithm

The GenLink algorithm lacks the capability to op-
timise property selection when dealing with sparse
data. The algorithm will select a combination of dense
properties while sparse properties will rarely be se-
lected. This behavior has negative consequences for
the cases in which values from relatively dense proper-
ties are missing. For instance, when matching product
data describing mobile phones from different e-shops,
the brand, phone type, and memory properties will be
rather important for the matching decisions and these
attributes will also likely be rather dense as they are
provided by many e-shops. Thus, GenLink will focus
on these attributes and due to the penalty on large rules
(compare Equation 5) will not include alternative at-
tribute combinations involving low density properties,
such as gtin number1, display size, or operating sys-
tem. In cases in which a value of one of these im-
portant attributes is missing, the algorithm will likely
fail to discover the correct match, while it could still
have been possible to discover the correct match by ex-
ploiting a combination of alternative attributes which
might be filled in this concrete case. Including all al-
ternative attribute combinations into a single linkage
rule would result in rather large rules containing mul-
tiple alternative branches that encode the different at-
tribute combinations. Due to the penalty for large rules
from Equation 5, only the most important alternative
attribute combinations will be included into the rules

1Global Trade Item Number (GTIN) is an identifier for trade items, devel-
oped by GS1. – www.gtin.info/

www.gtin.info/
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(a)

(b)

Fig. 2. Example of two rules from the group for the phone category together with the coverage of each rule

and combinations having a lower coverage will be left
unused.

A way to deal with this problem could be to loosen
the size penalty in Equation 5. With GenLink Group
Learning (GenLinkGL), we choose an alternative ap-
proach: Instead of trying to grow very large rules that
cover different attribute combinations, we try to learn
sets of rules in which each rule is optimized for a spe-
cific property combination. This way, we more clearly
separate the issue of avoiding overfitting rules while
still be able to cover multiple property combinations.
By combining multiple combinations of properties in
a group, the learning algorithm is given the freedom to
optimize matching rules not only for the most common
attribute combinations but also for less common com-
binations involving sparse properties, thus increasing
the overall recall. In the following, we describe how
GenLinkGL combines rules into groups and later se-
lects a rule from the group in order to match a pair of
records having a specific property combination.

Group generation. The basic idea of the first al-
gorithm, presented in Algorithm 1, is that by group-
ing different linkage rules with different properties we
could circumvent the missing values in the data. The
initial group is populated with the top fitness individ-
ual from the population generated by GenLink. Sub-

Algorithm 1 Generating a group

Input:
Group← rule top fitness matching rule
P ← Rules All matching rules in the available pop-
ulation
Output:
The top fitness group
for all i ∈ P do

if i.properties 6⊂ Group.properties then
PotentialGroup← insert(Group, i)
if f itness(PotentialGroup) > f itness(Group)
then

Group = PotentialGroup
end if

end if
end for
return G

sequently, an initial fitness for this group is computed
using the MCC (compare Equation 4).

Motivated by the GenLink algorithm, our algorithm
builds a group that maximises fitness. To do that at
each learning iteration, the algorithm iterates through
the entire population of linkage rules and combines
their individual fitness. We restrict the combination to
linkage rules whose properties are not a subset of the



6 Learning Expressive Linkage Rules from Sparse Data

properties of the group and include a linkage rule that
has at least one new property that is not present in the
group. We combine the fitness of the linkage rules by
summing the number of correctly predicted instances
in the training set, calculating for each individual the
percentage of the coverage of training examples in
the group. Once the correctly predicted instances are
summed the current fitness function is applied to the
group. If the fitness of that combination is greater than
the current top fitness group, the new group becomes
the best group. As an output the algorithm gives the
top fitness group.

Algorithm 1 can potentially lead to groups con-
taining a large number of rules, up to the complete
population of learned rules. In such case the algo-
rithm is prone to overfitting, since the population might
capture the entire training set. In order to prevent
this, we penalize groups containing a large number
of rules: f itness = MCC − c ∗ rulecount. Where,
c = (0.001, 0.003, 0.005) is a small constant, which
strictly depends on the number of individuals in the
population. Namely, the larger the population, the big-
ger the chance for overfitting. Therefore, the constant
should be higher for larger populations in order to pe-
nalise the fitness more. By penalizing the fitness by the
number of members in the group we ensure that there
will be no unneeded bloating of the learned group.

For example, let the linkage rule in Figure 2a be the
top fitness individual after the n− th learning iteration
of the algorithm. The initial group contains this linkage
rule. The group would not be able to correctly predict
correspondences that could only have been matched
by a combination of the gtin, phone_type and memory
properties. At the first iteration we combine the group
with the linkage rule in Figure 2b containing the gtin
property. As a result, the correspondences above could
be captured by the group leading to better fitness.

Group application. As an input the second algo-
rithm, presented in Algorithm 2, takes the output of
Algorithm 2 and a set of pairs to be matched. The indi-
viduals in the input group are sorted by the percentage
of coverage. Sorting enables the Algorithm 2 to find
the more influential individual rules in less iterations.
For each pair the algorithm iterates through the group
of matching rules. If the pair to be matched contains
the same properties as in the matching rule, the match-
ing rule is picked. If there is no matching rule which
has the exact properties as the instances, the top match-
ing rule is picked. For instance, when matching (a) the
specification from walmart.com with the product cat-
alog and (b) the specification from ebay.com with the

Algorithm 2 Applying a group to set of pairs for
matching

Input:
G ← group of matching rules
Pairs← pairs for matching
Output:
Linked instances
Result← nil
for all pair ∈ Pairs do

for all rule ∈ G do
if pair.properties ≡ rule.properties then

Result← match(pair, rule)
break

end if
end for
if 6 ∃match then

Result← match(pair,G.top)
end if

end for
return Result

product catalog from Figure 1, the algorithm would
use the first rule from Figure 2 for the a pair, but use the
second matching rule from Figure 2 for the b pair since
in b one of the specifications does not have a value for
the display_size attribute, however it contains a gtin
attribute.

Property diversity is an underlying factor behind this
method. Since the prime goal is to enlarge the com-
bination of properties that are used for matching, it is
imperative that the dataset contains a diverse range of
properties. More precisely, if the dataset has a smaller
number of properties, the number of combination of
properties that can be made by grouping linkage rules
is smaller. Therefore, this approach would not improve
much upon the GenLink when dealing with datasets
with smaller number of properties.

4.2. The GenLinkSA Algorithm

An alternative to learning groups of small rules spe-
cializing on a specific property combination each is
to learn larger rules covering more properties and ap-
ply a penalty for the uncertainty that arises from val-
ues missing in these properties. For instance, a larger
rule could rely on five properties for deciding whether
two records match. If two of the five properties have
missing values, the remaining three properties can still
be used for the matching decision. Nevertheless, a de-
cision based on three properties should be considered
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less certain than a decision based on five properties.
In order to compensate for this uncertainty, we could
require the values of the remaining three properties to
be more similar than the values of the five properties
in the original case in order to decide for a match. The
GenLink Selective Aggregations (GenLinkSA) algo-
rithm implements this idea by changing the behavior
of the comparison operators as well as the aggregation
operators in the original GenLink algorithm.

Null-enabled Comparison Operators. The original
GenLink algorithm does not distinguish between a pair
of different values and a pair of values containing a
missing value. In both cases, the algorithm assigns the
similarity score 0. This is problematic when similarity
scores from multiple comparison operators are com-
bined using the aggregation function average or mini-
mum, as the resulting similarity score will be unnatu-
rally low for the case of missing values. In order to deal
with this problem, GenLinkSA amends the compari-
son operators with the possibility to return the value
null: A GenLinkSA comparison operator will return
null if one or both values are missing. If both values
are filled, the operator will apply its normal similarity
function and return a value in the range [0, .., 1].

Selective Aggregation Operators. The GenLink ag-
gregation operators calculate a single similarity score
from the similarity values of multiple comparison
operators using a specific aggregation function such
as weighted average, minimum, or maximum. Gen-
LinkSA adjusts the aggregation operators to apply the
aggregation function only to non-null values. In order
to compensate the uncertainty that results from miss-
ing values (comparison operators returning the value
null), the similarity score that results from the aggrega-
tion in reduced by constant factor α for each compari-
son operators that returns a null value. In this way, all
non-null similarity scores are aggregated and a penalty
is applied for each property pair containing missing
values. Formally, a GenLink aggregation is defined by
the following equation:

S a : (S ∗ × N∗ × Fa)→ S

(s̄, w̄, f a)→ ((ea, eb)→ f a(se,w))

with se : (s1(ea, eb), s2(ea, eb), .., sn(ea, eb))

(6)

Given the aggregation operators, we can now define
GenLinkSA’s selective aggregation operators as:

S a : (S ∗ × N∗ × Fa)→ S

(s̄, w̄, f a)→ ((ea, eb)→ f a(se,w))− υ

with se : (s1(ea, eb), s2(ea, eb), .., sn(ea, eb)),

υ = β∗ | { si(ea, eb) | si(ea, eb)→ null ∧ si ∈ se } |

(7)

Where the uncertainty factor υ is defined as the
number of null values multiplied by a small valued
constant factor β = (0.01, 0.03, 0.05). The uncertainty
factor serves to penalize the rule for each null similar-
ity operator. As the overall similarity score is reduced
by the uncertainty factor, the values of the non-null
properties must be more similar in order to reach the
same similarity score as for a pair in which all proper-
ties are filled.

For example, let the rule that was learned by the
GenLinkSA algorithm be the one shown in Figure 3
and let instances for matching be (a) the specifica-
tion from walmart.com that should be matched with
the product catalog and (b) the specification from
ebay.com to be matched with the product catalog from
Figure 1. When matching (a) only a small penalty
will be applied since for five out of six comparisons
a non-null similarity score will be returned and only
the comparison for one property (comp_os) will be pe-
nalised. On the other hand, the pair (b) will be heav-
ily penalized since four of the six comparisons will re-
turn null values. Evidently, this method will discour-
age high similarity scores in the presence of missing
values and will thus refrain from considering border-
line cases with missing values as matches, resulting in
a higher precision.

4.3. The GenLinkComb Algorithm

Both GenLinkGL and GenLinkSA tackle the issue
of missing values differently. Namely, GenLinkGL
strives to group matching rules exploiting different
combinations of properties and thus be able to apply
alternative rules given that values of important prop-
erties are missing. By being able to exploit alternative
property combinations, GenLinkGL is tailored to im-
proving recall. On the other hand, by penalizing com-
parisons with missing values, GenLinkSA incentives
learning matching rules that include more properties
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Fig. 3. GenLink SA learned rule for the Phone category

and substantially lowers the similarity scores of uncer-
tain pairs, and by that improves precision. As the ba-
sic ideas behind GenLinkGL and GenLinkSA do not
exclude each other but are complementary, a combina-
tion of both methods into a single integrated method
could combine the advantages of both methods: Opti-
mize rules for alternative attribute combinations while
at the same time dealing with the uncertainty that
arises from missing values inside the rules. The Gen-
LinkComb algorithm achives this by combining the
GenLinkSA and the GenLinkGL algorithms as fol-
lows: GenLinkComb uses the GenLinkSA algorithm
to evolve the population of linkage rules. In each it-
eration of the learning process, GenLinkComb groups
the learned rules together using the GenLinkGL algo-
rithm. By being able to deal with missing values either
inside the rules using the selective aggregation opera-
tors or within the grouping of rules, the GenLinkComb
learning algorithm has a higher degree of freedom in
searching for a good solution.

5. Evaluation

Evaluation of the aforementioned methods was
conducted using six benchmark datasets: three e-
commerce product datasets, and thee other datasets
describing restaurants, movies, and drugs. Beside
of comparing GenLinkGL, GenLinkSA, and Gen-
LinkComp with each other, we also compare the ap-
proaches to existing systems including FEBRL, EA-
GLE, COSY, MARLIN, ObjectCoref, and RiMOM.
The following section will describe the six benchmark
datasets, give details about the experimental setup, and
present and discuss the results of the matching experi-
ments.

5.1. Datasets

Product Matching Datasets. We use three different
product datasets for the evaluation:

Abt-Buy dataset: The dataset includes correspon-
dences between 1081 products from Abt.com and
1092 from Buy.com. The full input mapping con-
tains 1.2 million correspondences, from which
1000 are annotated as positive correspondences
(matches). Each entity of the dataset might con-
tain up to four properties: product name, descrip-
tion, manufacturer and price. The dataset was in-
troduced in [19]. Since the content of the prod-
uct name property is a short text listing various
product features rather than the actual name of the
product, we extract the product properties shown
in Table 1 from the product name values using the
dictionary-based method presented in [35]. We
choose the Abt-Buy dataset because it is widely
used to evaluate different matching systems[5, 9].

Amazon-Google dataset: The dataset includes corre-
spondences between 1363 products from Amazon
and 103,226 from Google. The full input map-
ping contains 4.4 million correspondences, from
which 1000 are annotated as matches. Each entity
of the dataset contains the same properties as the
Abt-Buy dataset. This dataset is presented in [19].
We perform the same extraction of properties as
in the Abt-Buy dataset. The Amazon-Google data
set has also been widely used as benchmark data
set [19].

WDC Product Matching Gold Standard: This gold
standard [34] for product matching contains cor-
respondences between 1500 products (500 each
from the categories headphones, mobile phones,
and TVs), collected from 32 different websites
that provide schema.org annotations and a uni-
fied product catalog containing 150 products with
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Table 1

Properties together with their density in the Abt-Buy and Amazon-Google
datasets.

Dataset Property Density (A / B) %

Abt-Buy

Original Attributes
Product Name 100

Description 63
Manufacturer 48

Price 36
Extracted Attributes

Model 91
Brand 72

Amazon-Google

Original Attributes
Product Name 100

Description 70
Manufacturer 52

Price 31
Extracted Attributes

Model 88
Brand 76

the following distribution: (1) Headphones-50,
(2) Phones-50, and (3) TVs-50. The data in the
catalog has been scraped from leading shopping
services, like Google Shopping, or directly from
the vendor’s website. The gold standard con-
tains 500 positive correspondences (matches) and
more than 25000 negative correspondences (non-
matches) per category. Compared to the Amazon-
Google and Abt-Buy datasets, the WDC Product
Matching Gold Standard is more heterogeneous
as the data has been collected from different web-
sites. The gold standard also uses a richer schema
containing about 10 properties per product cate-
gory.

Other Entity Resolution Datasets. In order to be
able to compare our approaches to more reference sys-
tems, as well as to showcase the ability of our algo-
rithms to perform on datasets from other domains than
products we use three more benchmark datasets used
in [17]:

Restaurant dataset: The dataset contains correspon-
dences between 864 restaurant entities from the
Fodor’s and Zagat’s restaurant guides. Specifi-
cally, there have been identified 112 duplicate
records.

Sider-Drugbank dataset: The dataset contains cor-
respondences between 924 drug entities in the
Linked Data version of the Sider dataset and 4772
drug entities in the Linked Data version of the
Drugbank dataset. Specifically, there have been
identified 859 duplicate records.

Table 2

Properties and property density of the WDC Product Matching Gold Standard,
Restaurants, Sider-Drugbank and LinkedMDB datasets.

Dataset Property Density (A / B) %

WDCPr Gold Standard

Headphones
Brand 97 / 100

Product Name 87 / 100
MPN 60 / 86
Color 56 / 96

Sensitivity 53 / 88
Impedance 53 / 92
Cup Type 47 / 38

Form Factor 43 / 77
Magnet Mat. 27 / 51
Diaphragm 25 / 35

Phones
Product Name 91 / 100

Memory 87 / 95
Brand 86 / 100
Color 79 / 43

Display Size 71 / 92
Rear Cam. Res. 70 / 85

OS 64 / 64
Display Res. 48 / 53

Processor 28 / 36
Front Cam. Res. 20 / 66

TVs
Brand 100 / 100

Product Name 91 / 100
Display Type 81 / 85
Display Size 65 / 96
Display Res 55 / 87

Tot. Size 51 / 74
Ref. Rate 50 / 96

Img. Asp. Rat. 38 / 60
Connectivity 35 / 61
Resp. Time 10 / 25

Restaurant

Name 100
Address 100
Contact 100

Type 100

Sider-Drugbank
Name 100 / 100

Indication 100 / 93

LinkedMDB

Name 100 / 100
Director 100 / 100
Rel Date 100 / 100
Studio 95 / 97

LinkedMDB dataset This dataset contains 100 cor-
respondences between 373 movies. The authors
note that special care was taken to include rel-
evant corner cases such as movies which share
the same title but have been produced in different
years.

Tables 1 and 2 give an overview of densities of
properties in the six evaluation datasets. If the den-
sity of a property differs in the source (A) and the tar-
get (B) dataset, both densities are reported. For the
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Abt-Buy and Amazon-Google datasets, we show all
original property densities as well as the density of
the extracted properties. As stated before, the prod-
uct datasets exhibit more sparsity. The Abt-Buy and
Amazon-Google datasets follow a similar distribution
in which only the product name property has a density
of 100%. It is worth to be noted that the product name
property in these datasets is actually a short description
of the product mentioning different properties rather
than the actual product name. WDC Product Matching
Gold Standard contains a small set of properties with
a density above 90% while most properties belong to
the long tail of rather sparse properties [34].

5.2. Experiment Setup

The GenLinkGL, GenlinkSA, GenLinkComb algo-
rithms were implemented on top of the Silk Frame-
work2. The source code of the original GenLink im-
plementation3 as well as the source code of Gen-
LinkGL, GenlinkSA, GenLinkComb algorithms4 is
publicly available, so all results presented in the pa-
per can be replicated. Table 3 gives an overview of
the aggregation, comparison, and transformation func-
tions the algorithms could choose from within the ex-
periments. To be noted that for each aggregation oper-
ator there exists also a selective aggregation operator.
Table 4 summarises the parameters that were used for
GenLink and its variants in the experiments. All exper-
iments are run 10 times and the results are averaged.

In order to set the GenLink results into context, we
also ran the WDC Gold Standard experiments with
EAGLE [31], a supervised matching system that also
employs genetic programming5 and FEBRL [9]6, an
entity resolution system that internally employs an
SVM. GenLink and its variants as well as EAGLE
were trained on a balanced data set consisting of 66%
matching correspondences and the same number non-
matching correspondences. The systems were evalu-
ated afterwards using the remaining 33% of the cor-
respondences. For training FEBRL, we calculated TF-
IDF scores and cosine similarity for all pairs given in
the dataset. As with GenLink and EAGLE, FEBRL
was trained on 66% of the data and evaluated on the

2www.silkframework.org
3https://github.com/silk-framework/silk. To be noted that the 2.6.0 version

was used for the experiments.
4https://github.com/petrovskip/silk.2.6-GenLinkSA and https:

//github.com/petrovskip/silk.2.6-GenLinkGL
5http://aksw.org/Projects/LIMES.html
6https://sourceforge.net/projects/febrl/

Table 3

Available aggregation comparison and transformation functions. The transfor-
mation functions are used only for non-product datasets

Comparison Aggregation Transformations
Exact Similarity Average Tokenize

Levenstein Distance Maximum Lower Case
Jaccard Similarity Minimum Concatenate
Number Similarity

Table 4

GenLink (GL/SA/Comb) Parameters

Parameter Value
Population size 1000

Maximum iterations 100
Selection method Tournament selection
Tournament size 10

Probability of Crossover 50%
Probability of Mutation 50%

Stop Condition F-measure = 1.0
Matching Rule Penalty 0.03
Uncertainty constant 0.05

rest. For the experiments on the Abt-Buy and Amazon-
Google datasets, all systems were trained using the
original as well as the extracted attribute-value pairs.

The restaurants, movies, and drugs datasets have a
original density of over 90%. In order to use them
to evaluate how the different approaches perform on
sparse data, we systematically removed 25%, 50% and
75% of the values. More precisely, we first randomly
sample 50% of properties (not including the name
property) and for those we randomly select 25%, 50%
and 75% of the values and removed the rest, thus intro-
ducing greater percentage of null values in the datasets.
We do not remove values from all properties since
we want to recreate the sparseness as in the product
datasets as close as possible.

5.3. Product Matching Results

Table 5 gives an overview of the matching results
on the WDC Product Matching Gold Standard dataset.
As baselines, we repeat TF-IDF cosine similarity and
Paragrph2Vec experiments presented in [34]. The first
baseline, considers pair-wise matching of product de-
scriptions for which TF-IDF vectors are calculated us-
ing the bag-of-word feature extraction method. The
second baseline, considers building a Paragraph2Vec
model [21] for product names using 50 latent fea-
tures and the Distributed Bag-of-Words model. More-
over, we compare results from: (i) handwritten match-
ing rules, (ii) the GenLink algorithm, (iii) GenLinkGL,
(iv) GenLinkSA and (v) GenLinkComb.

www.silkframework.org
https://github.com/silk-framework/silk
https://github.com/petrovskip/silk.2.6-GenLinkSA
https://github.com/petrovskip/silk.2.6-GenLinkGL
https://github.com/petrovskip/silk.2.6-GenLinkGL
http://aksw.org/Projects/LIMES.html
https://sourceforge.net/projects/febrl/
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Table 5

Matching results per category for the WDC Product Matching Gold Standard

Headphones
Precision Recall F-measure

Baseline TF-IDF Cosine 0.622 0.559 0.588
Baseline Pargraph2vec 0.667 0.685 0.675
Handwritten Rule 0.841 0.838 0.839
EAGLE [31] 0.661 0.905 0.763
GenLink [17] 0.692 0.946 0.799
FEBRL [9] 0.884 0.837 0.850
GenLinkGL 0.837 0.924 0.888
GenLinkSA 0.922 0.925 0.923
GenLinkComb 0.920 0.961 0.940

Phones
Precision Recall F-measure

Baseline TF-IDF Cosine 0.385 0.676 0.491
Baseline Pargraph2vec 0.497 0.624 0.553
Handwritten Rule 0.656 0.722 0.687
EAGLE [31] 0.699 0.672 0.685
GenLink [17] 0.708 0.715 0.712
FEBRL [9] 0.792 0.748 0.776
GenLinkGL 0.742 0.894 0.808
GenLinkSA 0.813 0.737 0.773
GenLinkComb 0.815 0.886 0.849

TVs
Precision Recall F-measure

Baseline TF-IDF Cosine 0.661 0.474 0.554
Baseline Pargraph2vec 0.654 0.553 0.572
Handwritten Rule 0.782 0.716 0.747
EAGLE [31] 0.722 0.674 0.697
GenLink [17] 0.790 0.711 0.748
FEBRL [9] 0.807 0.747 0.775
GenLinkGL 0.791 0.875 0.819
GenLinkSA 0.864 0.745 0.810
GenLinkComb 0.863 0.815 0.838

The handwritten rules are composed using six prop-
erties for each product category and are written by an
expert in the field of matching and similarity func-
tions. Additionally, we compare to two state-of-the-art
matching systems for this dataset: (i) EAGLE [31] and
(ii) FEBRL [19] as explained above.

As expected both baselines perform poorly for each
product category. Specifically, TF-IDF could not cap-
ture enough details of a given entity. Paragaph2Vec,
improves on the TF-IDF baseline by including the se-
mantic relations between the words of a given record.
However, the semantic relationships do not prove to
be sufficient. EAGLE [31] and GenLink [17] improve
on the baselines since they have the ability to opti-
mise the thresholds for comparisons and the weights
within aggregations. However, EAGLE [31] has sig-
nificantly lower results on each category than GenLink
[17]. Both methods have comparable results with the
handwritten rules. The first method that shows a better
performance than the handwritten rules for all product

categories is FEBRL [9]. Because of FEBRL’s SVM
implementation is optimized for entity resolution, the
system seems to be able to capture more nuanced re-
lationships between data points than the handwritten
rules. The main difficulty of the FEBRL is recall. In
addition, the method has problems with matching cor-
ner cases.

All of the GenLinkGL, GenLinkSA, and Gen-
LinkComb consistently outperform or show compara-
ble results to FEBRL and the handwritten rules. For
instance, when comparing FEBRL to the GenLinkGL
algorithm, we can notice significantly worse recall re-
sults. The GenLinkGL algorithm decreases the num-
ber of false negatives by learning sets of rules in which
each rule is optimized for a specific property combi-
nation. Hence, the algorithm is successfully pivoting
around missing values, and in turn exhibits a jump
in recall. Correspondingly, the GenLinkSA algorithm
gives comparable results in F-measure compared to
FEBRL, mostly due to the jump in precision. The pre-
cision jump happens since the selective aggregation
operators substantially lower matching scores of un-
certain pairings due to the uncertainty factor. Due to
this penalty, pairs with missing values which otherwise
would have borderline similarity will not be consid-
ered matches. Both the jump in recall of GenLinkGL
and the jump in precision of GenLinkSA contribute to
improve the matching and the algorithms have compa-
rable results in F-measure. Finally, the GenLinkComb
algorithm shows significantly better performance in F-
measure than the rest of the tested field, due to the fact
that the combination method is able of both preserving
precision by penalising borderline cases with missing
values and preserving recall by successfully exploiting
alternative attribute combinations.

Category wise, the headphones category shows with
94% F-measure the best results by a significant mar-
gin (9%). Headphones have a smaller number of dis-
tinct properties and therefore e-shops tend to more
consistently describe products with the same attributes
compared to the other two categories. The TVs and
phones category reach similar F-measures of 83.8%
and 84.9% respectively.

Comparison of the learned matching rules. In or-
der to explain the differences in the results of Gen-
LinkSA, GenLinkGL, and GenLinkCombm, we ana-
lyze and compare the rules that were learned by the
three algorithm for matching mobile phones. Figure 3
shows the GenLinkSA rule that was learned. As we can
see, the rules uses six properties which are combined
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using a hierarchy of average aggregations. Within the
hierarchy, more weight is put onto branch containing
four properties, as well as on the properties brand and
phone_type within this branch. The GenLinkGL al-
gorithm has learned a group consisting of 12 match-
ing rules that use 15 distinct properties for matching
phones. Table 6 shows the top five rules from the Gen-
LinkGL approach sorted by their coverage. More than
50% of the rules contain the model (phone_type) and
the display size (disp_size) attributes. It is interesting
to examine the coverage of the learned rules: The first
rule was applied to match 80% of the pairs in the train-
ing data. The second rule was only used for 5% of the
cases, the next rule for 2% and so on, meaning that
the data contained one dominant attribute combination
(the one exploited by the first rule) while by special-
izing on alternative combinations (like the second rule
involving the gtin property) still improved the over-
all result. Furthermore, most of the learned matching
rules use similar combinations of aggregation func-
tions (average aggregation). The only exception is the
second rule which uses the property gtin. Namely, the
gtin property by itself is enough to identify the spe-
cific product, thus the maximum aggregation function
is used. For matching phones, the GenLinkComb al-
gorithm has learned a group that only consists of five
matching rules which use 10 distinct properties. Mean-
ing that it achieves a better F1-performance using less
rules and less properties as GenLinkGL. Table 7 shows
the rules that were learnt by the GenLinkComb al-
gorithm, again sorted by coverage. Interestingly, the
rules have a more homogenous coverage distribution
than the GenLinkGL rules. Instead of generating low-
coverage rules for exotic property combinations as
GenLinkGL does, GenLinkComb generate less groups
which exploit more properties each and uses the selec-
tive aggregations and the uncertainty penalty to deal
with missing values within these properties. The prop-
erty composition also supports this argument: The ro-
bust property composition of GenLinkComb suggests
that the learned matching rules in the group contain
more nuanced differences, while GenLinkGL has more
irregular property composition.

Amazon-Google and Abt-Buy Results. In order to
also evaluate the algorithms on datasets having lower
number of distinct properties (see Table 1), we applied
the algorithms to the Amazon-Google and Abt-Buy
datasets. The results of these experiments are given in
Table 8 and Table 9). As reference systems, apart of
FEBRL, the best performing approaches found in lit-

Table 6

Property, Comparisons, Aggregations and Training example coverage for the
top 5 rules in the learned group for phone category learned by GenLinkGL

Properties Comps. 1st 2nd Coverage
Agg. Agg.

phone_type Exact
Avg

Avg 0.800
brand Levens.
dips_size Levens.

Avg
memory Levens.
gtin Exact

Max
0.053memory Levens.

Avg
phone_type Levens.
phone_type Exact

Avg
Avg 0.020

brand Levens.
proc_type Exact

Avg
core_count Exact
phone_type Exact

Avg
Avg 0.017

comp_os Levens.
rear_cam_res Jaccard

Avg
front_cam_res Jaccard
disp_size Exact

Avg
Avg 0.013

brand Exact
rear_cam_res Jaccard

Avg
disp_res Jaccard

erature are listed. Table 8 gives results on the match-
ing experiment done on the Amazon-Google dataset.
Conversely, GenLinkComb outperforms a commercial
system [19] based on manually set attribute-level sim-
ilarity thresholds. The commercial system [19] de-
rives matching rules similar to the handwritten rules in
WDC Product Matching Gold Standard and therefore
is inferior to the GenLinkComb. While GenLinkGL
underperforms on this dataset, due to the low number
of distinct properties, it still able to fit the dataset and
achieves the best recall score.

Table 9 gives results on the matching experiment
done on the Abt-Buy dataset. As with previous datasets
GenLinkComb shows the best performance in terms
of F-Measure. Both, FEBRL’s SVM classifier [9] and
MARLIN [5]7 give comparable results to both Gen-
LinkSA and GenLinkGL. This is to be expected, as the
features for both FEBRL and MRLIN were manually
engineered for the given datasets whereas our methods
select features automatically. Moreover, the SVM’s for
both FEBRL and MARLIN were trained with larger
feature sets than our approaches (five matchers on two
properties).

When comparing the results of the experiments with
WDC Product Matching Gold Standard to the results
of the Abt-Buy and Amazon-Google datasets it be-
comes evident that the GenLink variants perform bet-
ter on datasets containing a large number of properties

7Results from experiments with FEBRL and MARLIN are published in [19]
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Table 7

Property, Comparisons, and Training example coverage and Normalized
threshold mean for the top 5 rules in the learned group for phone category
learned by GenLinkComb

Properties Comps. 1st 2nd 3rd Coverage
Agg. Agg. Agg.

phone_type Levens.
Avg

Min
0.492

brand Levens.

Avg
memory Jaccard

Avg
dips_size Jaccard
memory Exact.

Min
phone_type Levens.
phone_type Exact

Min

0.221
memory Exact.

Min
rear_cam_res Jaccard

Avg
memory Levens.

Avg
dips_size Levens.
phone_type Exact

Avg
Avg

Avg 0.215

brand Levens.
memory Levens..

Avg
rear_cam_res Jaccard
dips_size Jaccard

Avg
comp_os Levens.
phone_tupe Exact

Min
Min

Avg
0.037

memory Levens.
phone_type Levens.
proc_type Exact
phone_type Levens.

Min

Min 0.035

memory Exact
memory Levens.

Min
Avg

front_cam_res Jaccard
disp_res Jaccard

Avg
phone_type Jaccard

Table 8

Product matching results for the Amazon-Google dataset

Precision Recall F-measure
GenLink [17] 0.493 0.571 0.513
GenLinkGL 0.501 0.813 0.604
GenLinkSA 0.691 0.632 0.643
GenLinkComb 0.690 0.651 0.669

Reference Systems F-measure
FEBRL [9] 0.601
COSY [19] 0.622

than on dataset containing only a smaller number of
properties.

5.4. Other Domains Results

Generally, for all datasets we can conclude that our
methods find it difficult to find the correct matches
when dealing with severely sparse data (25%). Ad-
ditionally, GenLinkComb and GenLinkSA have sim-
ilar performance and both tend to outperform Gen-
LinkGL for every dataset for the sparser settings. Con-
trarily, when the datasets have 75% property density,
our methods perform close to the results of reference

Table 9

Product matching results for the Abt-Buy dataset

Precision Recall F-measure
GenLink [17] 0.632 0.694 0.661
GenLinkGL 0.650 0.833 0.730
GenLinkSA 0.721 0.714 0.717
GenLinkComb 0.723 0.798 0.758

Reference Systems F-measure
FEBRL [9] 0.713
MARLIN [5] 0.708

Table 10

Results for the Restaurants dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [17] 0.651 0.654 0.909
GenLinkGL 0.642 0.661 0.905
GenLinkSA 0.654 0.660 0.938
GenLinkComb 0.653 0.664 0.936

Reference Systems on 100% density F-measure
GenLink [17] 0.993
Carvalho et al.[7] 0.980

systems achieved on the datasets with more than 90%
property density.

Table 10 gives results on the matching experiment
done on the Restaurant dataset. GenLinkSA and Gen-
LinkComb perform closest to the reference systems,
while GenLinkGL does not show any improvement on
this dataset. Due to low number of properties that this
dataset has GenLinkComb and GenLinkGL show lit-
tle improvement compared to the other methods. Con-
sequently, GenLInkComb and GenLinkGL cannot find
enough matching rules with alternative attributes to
group, making GenLinkComb to boil down to Gen-
LinkSA and GenLinkGL to boil down to GenLink.
Density wise, all three methods follow the same down-
ward trend when the dataset is more sparse, keeping
the relative improvements of GenLinkSA and Gen-
LinkGL in comparison to GenLink.

Table 11 gives results on the matching experiment
done on the Sider-Drugbank dataset. Even though
we systematically lowered the quality of the dataset,
GenLink still outperforms the state-of-the-art [16, 37]
systems for the case of 75% property density. With
that said, GenLinkGL and GenLinkSA reach consid-
erably better results in recall and precision respec-
tively. When the data become severely sparse, like in
the case of 25% our methods show an increase of
5% in F-measure compared to GenLink. Similarly to
the Restaurant dataset the GenLinkComb does not im-
prove over GenLinkSA as again the grouping algo-
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Table 11

Results for the Sider-Drugbank dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [17] 0.345 0.388 0.837
GenLinkGL 0.399 0.424 0.875
GenLinkSA 0.401 0.422 0.871
GenLinkComb 0.402 0.422 0.872

Reference Systems on 100% density F-measure
ObjectCoref [16] 0.464
RiMOM[38] 0.504
GenLink [17] 0.970

Table 12

Results for the LinkMDB dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [17] 0.540 0.587 0.873
GenLinkGL 0.550 0.627 0.911
GenLinkSA 0.559 0.624 0.920
GenLinkComb 0.611 0.658 0.952

Reference Systems on 100% density F-measure
EAGLE [31] 0.941
GenLink [17] 0.999

rithm could not find any suitable rules with alternative
attributes for grouping.

Table 12 gives results on the matching experiment
done on the LinkMDB dataset, which contains more
properties compared to the other two datasets. In this
case GenLinkComb outperforms other variations of
GenLink even when data spareness is severe. Un-
like with the Restaurants and Sider-Drugbank datasets
GenLinkComb successfully finds rules with alternative
attributes to group and thus increasing F-measure by
5% compared to GenLinkSA.

6. Related Work

Entity resolution has been extensively studied un-
der different names such as link discovery [27], record
linkage [1, 8, 29], reference reconciliation [13], coref-
erence resolution [22, 28]. In the following, we discuss
different entity resolution approaches with respect to
their ability to deal with missing values, while we refer
the reader to the existing surveys [6, 10, 14, 27, 37] for
a more comprehensive comparison of the approaches.

Distance-based entity resolution approaches focus
on learning a pairwise distance metric between enti-
ties and then either set a distance threshold or build
a pairwise classifier to determine which entities are

merged. Such pairwise classifiers can be categorised
into threshold based boolean classifiers and linear clas-
sifiers. One of the first generic approaches for entity
resolution based on boolean classifiers is presented at
[2]. The approach is based on the assumption that the
entity resolution process consists of iterative match-
ing and merging which results in a set of merged
records that cannot be further matched or merged with
each other. The authors also assume that matching and
merging can be done if similar values exits, therefore
their approach would not be able to match or merge
records with missing values.

One of the most popular method to model distance-
based entity resolution approaches is with linear clas-
sifiers. There are two popular applications of SVMs to
entity matching MARLIN (Multiply Adaptive Record
Linkage with INduction) [5] and FEBRL (Freely Ex-
tensible Biomedical Record Linkage) [9]. While there
are numerous studies that propose approaches for han-
dling missing values in SVMs, for instance [32], these
optimizations are often expensive and to our knowl-
edge are not used in matching approaches.

An important use cases of entity resolution is match-
ing of product data. Following the same trend from
above various studies show optimization approaches
of linear classifiers for product resolution. For in-
stance, Kannan et al. [18] learn a logistic regression
model on product attributes extracted from a dictio-
nary model. Similarly, in [20] the authors extend the
FEBRL approach from [19] with more detailed fea-
tures. Finally, in [35], the authors compare various
classifiers for product resolution (SVMs, Random For-
est, Naive Bayes) with features extracted from a dictio-
nary method and multiple Conditional Random Fields
(CRFs) models.

The entire process of entity resolution can be unsu-
pervised [11, 24], supervised [28, 29], or a hybrid of
these two [8, 17]. LIMES [29] and Silk [17] are ex-
amples of supervised entity resolution systems that fo-
cus on combining expressive comparisons with good
run-time behavior. Both LIMES and Silk learn link-
age rules employing similar genetic programming ap-
proaches, i.e EAGLE [31] and GenLink [17] respec-
tively. As shown throughout this paper, both algo-
rithms do not handle missing values well.

Contrary to the above, in Ngomo et al. [30], the au-
thors present RAVEN - an entity resolution approach
based on perceptron learning. Namely, RAVEN treats
the discovery of link specifications as a classification
problem. It discovers link specifications by first find-
ing class and property mappings between knowledge
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bases. Afterward, it computes linear and boolean clas-
sifiers that can be used as link specifications. However,
similar to FEBRL, a limitation of RAVEN is that only
linear and boolean classifiers can be learned, mean-
ing that the potential of non-linear similarity aggrega-
tion [17] is not exploited.

There is another direction of work that is focused on
collective entity resolution approaches. For instance,
Bhattacharya and Getoor [4] proposed a novel rela-
tional clustering algorithm that uses both property and
relational information between the entities of same
type for determining the underlying entities. However,
the defined cluster similarity measure depends primar-
ily on property value similarity, thus missing values
will have effect on the cluster similarity measure. An-
other collective entity resolution approach is intro-
duced in [3] where the authors use an extended LDA
model to perform entity resolution for authors and pub-
lications simultaneously.

In contrast, [25, 36] use probabilistic model for cap-
turing the dependence among multiple matching deci-
sions. Specifically, CRFs have been successfully ap-
plied to the entity resolution domain [25] and is one of
the most popular approaches in generic entity resolu-
tion. On another hand, a well-founded integrated solu-
tion to the entity-resolution problem based on Markov
Logic is proposed in [36]. However the approach ap-
ply the closed-world assumption, i.e., whatever is not
observed is assumed to be false in the world.

CoSum [39] and idMesh [12] are two representa-
tive unsupervised graph based entity resolution ap-
proaches. CoSum and idMesh are both treating en-
tity resolution are graph summarisation problem, i.e.
building complex “super-nodes" as entity identifiers,
based on the equality of various properties. The ap-
proaches would potentially have problems dealing
with missing values when multiple “key” properties
are sparse, since they depend on calculating equality
between various properties.

7. Conclusion

This paper introduced three entity resolution meth-
ods for sparse data. Firstly, our approach introduces
learning groups of matching rules that are intended to
enlarge the property combination usage and thus in-
creasing efficiency. Moreover, we presented a new op-
erator to the GenLink algorithm: selective aggregation
operator. This, enables lower matching scores in pair-
ings with missing values which in turn boosts preci-

sion. Finally, we presented a method that integrated the
central ideas from the previous two methods into one
combination method. We evaluate these three meth-
ods on six different datasets, three of them are of the
e-commerce domain (as one of the representative do-
mains of sparse datasets), and the other three datasets
are existing benchmark datasets. We show improve-
ments of up to 16% F-measure compared to handwrit-
ten rules, up to 12% F-measure compared to the Gen-
Link algorithm and up to 8% F-measure compared to
standard machine learning techniques optimized for
entity resolution (FEBRL). Additionally, we show that
the method using group matching rules improves re-
call up to 15%, while selective aggregation operators
mostly improve precision of up to 16%. The combi-
nation that encompasses these methods allows for im-
provement of up to 5% F-measure compared to the
GenLinkGL and GenLinkSA themselves.

As a general conclusion, the high gains in F-
measure clearly show that identity resolution systems
should take the use case of sparse data into account and
not only focus on dense datasets. When benchmark-
ing and comparing systems, it is important to not only
to use dense evaluation datasets, but also test on data
exhibiting varying attribute density, such as the WDC
Product Matching Gold Standard [34].
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