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Abstract.
There is an emerging demand on efficiently archiving and (temporal) querying different versions of evolving semantic Web

data. As novel archiving systems are starting to address this challenge, foundations/standards for benchmarking RDF archives
are needed to evaluate its storage space efficiency and the performance of different retrieval operations. To this end, we provide
theoretical foundations on the design of data and queries to evaluate emerging RDF archiving systems. Then, we instantiate
these foundations along a concrete set of queries on the basis of a real-world evolving datasets. Finally, we perform an extensive
empirical evaluation of current archiving techniques and querying strategies, which is meant to serve as a baseline of future
developments on querying archives of evolving RDF data.
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1. Introduction

Nowadays, RDF data is ubiquitous. In less than
a decade, and thanks to active projects such as the
Linked Open Data (LOD) [4] effort or schema.org,
researchers and practitioners have built a continu-
ously growing interconnected Web of Data. In par-
allel, a novel generation of semantically enhanced
applications leverage this infrastructure to build ser-
vices which can answer questions not possible before
(thanks to the availability of SPARQL [21] which en-
ables structured queries over this data). As previously
reported [42,23], this published data is continuously
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undergoing changes (on a data and schema level).
These changes naturally happen without a centralized
monitoring nor pre-defined policy, following the scale-
free nature of the Web. Applications and businesses
leveraging the availability of certain data over time,
and seeking to track data changes or conduct stud-
ies on the evolution of data, thus need to build their
own infrastructures to preserve and query data over
time. Moreover, at the schema level, evolving vocabu-
laries complicate re-use as inconsistencies may be in-
troduced between data relying on a previous version of
the ontology.

Thus, archiving policies of Linked Open Data
(LOD) collections emerges as a novel – and open
– challenge aimed at assuring quality and traceabil-
ity of Semantic Web data over time. While shar-

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved



2 Evaluating Query and Storage Strategies for RDF Archives

ing the same overall objectives with traditional Web
archives, such as the Internet Archive,1 archives for
the Web of Data should additionally offer capabilities
for time-traversing structured queries. Recently, ini-
tial works on RDF archiving policies/strategies [14,46]
are starting to offer such time-based capabilities, such
as knowing whether a dataset or a particular entity
has changed, which is neither natively supported by
SPARQL nor by any of the existing temporal exten-
sions of SPARQL [40,16,35,48].

This paper discusses the emerging problem of eval-
uating the efficiency of the required retrieval demands
in RDF archives. To the best of our knowledge, few
and very initial works have been proposed to systemat-
ically benchmark RDF archives. EvoGen [27] is a re-
cent suite that extends the traditional LUBM bench-
mark [19] to provide a dataset generator for versioned
RDF data. However, the system is limited to a unique
dataset and very constrained synthetic data. The recent
HOBBIT2 H2020 EU project on benchmarking Big
Linked Data is starting to face similar challenges [34].
Existing RDF versioning and archiving solutions focus
so far on providing feasible proposals for partial cover-
age of possible use case demands. Somewhat related,
but not covering the specifics of (temporal) querying
over archives, existing RDF/SPARQL benchmarks fo-
cus on static [1,5,38], federated [30] or streaming data
[10] in centralized or distributed repositories: they do
not cover the particularities of RDF archiving, where
querying entity changes across time is a crucial aspect.

In order to fill this gap, our main contributions are:
(i) We analyse current RDF archiving proposals and

provide theoretical foundations on the design of
benchmark data and specific queries for RDF
archiving systems;

(ii) We provide a concrete instantiation of such
queries using AnQL [48], a query language for
annotated RDF data.

(iii) we present a prototypical BEnchmark of RDF
ARchives (referred to as BEAR), a test suite com-
posed of three real-world datasets from the Dy-
namic Linked Data Observatory [23] (referred to
as BEAR-A), DBpedia Live [22] (BEAR-B) and
the European Open Data portal3 (BEAR-C). We
describe queries with varying complexity, cover-
ing a broad range of archiving use cases;

1http://archive.org/.
2http://project-hobbit.eu/.
3http://data.europa.eu/

(iv) we implement RDF archiving systems on dif-
ferent RDF stores and archiving strategies, and
we evaluate them, together with other existing
archiving systems in the literature, using BEAR.
This evaluation is aimed at establishing an (exten-
sible) baseline and illustrate our foundations.

The paper is organized as follows. First, Section 2
reviews current RDF archiving proposals. We estab-
lish the theoretical foundations in Section 3, formal-
izing the key features to characterize data and queries
to evaluate RDF archives. Section 4 instantiates these
guidelines and presents the proposed BEAR test suite.
In Section 5, we detail the implemented RDF archives
and we evaluate BEAR with different archiving sys-
tems. Finally, we conclude and point out future work in
Section 6. Appendixes A, B and C provide further de-
tails on the BEAR-A, BEAR-B and BEAR-C test suite
respectively.

2. Preliminaries

We briefly summarise the necessary findings of our
previous survey on current archiving techniques for
dynamic Linked Open Data [14]. The use case is de-
picted in Figure 1, showing an evolving RDF graph
with three versions V1, V2 and V3 : the initial version
V1 models two students ex:S1 and ex:S2 of a course
ex:C1, whose professor is ex:P1. In V2, the ex:S2 stu-
dent disappeared in favour of a new student, ex:S3. Fi-
nally, the former professor ex:P1 leaves the course to
a new professor ex:P2, and the former student ex:S2
reappears also as a professor.

2.1. Retrieval Functionality

Given the relative novelty of archiving and querying
evolving semantic Web data, retrieval needs are nei-
ther fully described nor broadly implemented in practi-
cal implementations (described below). Table 1 shows
a first classification [14,39] that distinguishes six dif-
ferent types of retrieval needs, mainly regarding the
query type (materialisation or structured queries) and
the main focus (version/delta) of the query.

Version materialisation is a basic demand in which a
full version is retrieved. In fact, this is the most com-
mon feature provided by revision control systems and
other large scale archives, such as current Web archiv-
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Fig. 1. Example of RDF graph versions.

Focus
Type Materialisation Structured Queries

Single time Cross time

Version Version Materialisation Single-version structured queries Cross-version structured queries
-get snapshot at time ti -lectures given by certain teacher at time ti -subjects who have played the role of student

and teacher of the same course
Delta Delta Materialisation Single-delta structured queries Cross-delta structured queries

-get delta at time ti -students leaving a course between two consec-
utive snapshots, i.e. between ti−1, ti

-largest variation of students in the history of
the archive

Table 1
Classification and examples of retrieval needs.

ing that mostly dereferences URLs across a given time
point.4

Single-version structured queries are queries which
are performed on a specific version. One could expect
to exploit current state-of-the-art query resolution in
RDF management systems, with the additional diffi-
culty of maintaining and switching between all ver-
sions.

Cross-version structured queries, also called time-
traversal queries, must be satisfied across different
versions, hence they introduce novel complexities for
query optimization.

Delta materialisation retrieves the differences
(deltas) between two or more given versions. This
functionality is largely related to RDF authoring
and other operations from revision control systems
(merge, conflict resolution, etc.).

Single-delta structured queries and cross-delta
structured queries are the counterparts of the afore-
mentioned version-focused queries, but they must be
satisfied on change instances of the dataset.

2.2. Archiving Policies and Retrieval Process

Main efforts addressing the challenge of RDF
archiving fall in one of the following three storage
strategies [14]: independent copies (IC), change-based
(CB) and timestamp-based (TB) approaches.

Independent Copies (IC) [25,33] is a basic policy that
manages each version as a different, isolated dataset.

4See the Internet Archive effort, http://archive.org/web/.

It is, however, expected that IC faces scalability prob-
lems as static information is duplicated across the
versions. Besides simple retrieval operations such as
version materialisation, other operations require non-
negligible processing efforts. A potential retrieval me-
diator should be placed on top of the versions, with
the challenging tasks of (i) computing deltas at query
time to satisfy delta-focused queries, (ii) loading/ac-
cessing the appropriate version/s and solve the struc-
tured queries, and (iii) performing both previous tasks
for the case of structured queries dealing with deltas.

Change-based approach (CB) [45,12,47] partially
addresses the previous scalability issue by computing
and storing the differences (deltas) between versions.
For the sake of simplicity, in this paper we focus on
low-level deltas (added or deleted triples).

A query mediator for this policy manages a mate-
rialised version and the subsequent deltas. Thus, CB
requires additional computational costs for delta prop-
agation which affects version-focused retrieving op-
erations. Although an alternative policy could always
keep a materialisation of the current version and store
reverse deltas with respect to this latter [39], such
deltas still need to be propagated to access previous
versions.

Timestamp-based approach (TB) [8,20,48] can be
seen as a particular case of time modelling in RDF,
where each triple is annotated with its temporal va-
lidity. Likewise, in RDF archiving, each triple locally
holds the timestamp of the version. In order to save
space avoiding repetitions, compression techniques
can be used to minimize the space overheads, e.g. us-
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ing self-indexes, such as in v-RDFCSA [8], or delta
compression in B+Trees [46].

Hybrid-based approaches (HB) [39,32,46] combine
previous policies to inspect other space/performance
tradeoffs. On the one hand, Dong-Hyuk et al. [12] and
the TailR [29] archiving system adopt a hybrid IC/CB
approach (referred to as HBIC/CB hereinafter), which
can be complemented with a theoretical cost model
[39] to decide when a fresh materialised version (IC)
should be computed. These costs highly depend on the
difficulties of constructing and reconstructing versions
and deltas, which may depend on multiple and vari-
able factors. On the other hand, R43ples [17] and other
practical approaches [32,43,46] follow a TB/CB ap-
proach (referred to as HBT B/CB hereinafter) in which
triples can be time-annotated only when they are added
or deleted (if present). In these practical approaches,
versions/deltas are often managed under named/virtual
graphs, so that the retrieval mediator can rely on exist-
ing solutions providing named/virtual graphs. Except
for delta materialisation, all retrieval demands can be
satisfied with some extra efforts given that (i) version
materialisation requires to rebuild the delta similarly to
CB, and (ii) structured queries may need to skip irrel-
evant triples [32].

Finally, [41] builds a partial order index keeping a
hierarchical track of changes. This proposal, though, is
a limited variation of delta computation and it is only
tested with datasets having some thousand triples.

3. Evaluation of RDF Archives: Challenges and
Guidelines

Previous considerations on RDF archiving policies
and retrieval functionality set the basis of future direc-
tions on evaluating the efficiency of RDF archives. The
design of a benchmark for RDF archives should meet
three requirements:

– The benchmark should be archiving-policy ag-
nostic both in the dataset design/generation and
the selection of queries to do a fair comparison of
different archiving policies.

– Early benchmarks should mainly focus on sim-
pler queries against an increasing number of
snapshots and introduce complex querying once
the policies and systems are better understood.

– While new retrieval features must be incorpo-
rated to benchmark archives, one should con-
sider lessons learnt in previous recommendations

on benchmarking RDF data management sys-
tems [1].

Although many benchmarks are defined for RDF
stores [5,1] (see the Linked Data Benchmark Coun-
cil project [7] for a general overview) and related ar-
eas such as relational databases (e.g. the well-known
TPC5 and recent TPC-H and TPC-C extensions to add
temporal aspects to queries [24]) and graph databases
[11], to the best of our knowledge, none of them are
designed to address these particular considerations in
RDF archiving. The preliminary EvoGen [27] data
generator is one of the first attempts in this regards,
based on extending the Lehigh University Benchmark
(LUBM) [19] with evolution patterns. However, the
work is focused on the creation of such synthetic
evolving RDF data, and the functionality is restricted
to the LUBM scenario. Nonetheless, most of the well-
established benchmarks share important and general
principles. We briefly recall here the four most impor-
tant criteria when designing a domain-specific bench-
mark [18], which are also considered in our approach:
Relevancy (to measure the performance when per-
forming typical operations of the problem domain, i.e.
archiving retrieval features), portability (easy to im-
plement on different systems and architectures, i.e.
RDF archiving policies), scalability (apply to small
and large computer configurations, which should be
extended in our case also to data size and number of
versions), and simplicity (to evaluate a set of easy-to-
understand and extensible retrieval features).

We next formalize the most important features
to characterize data and queries to evaluate RDF
archives. These will be instantiated in the next section
to provide a concrete experimental testbed.

3.1. Dataset Configuration

We first provide semantics for RDF archives and
adapt the notion of temporal RDF graphs by Gutier-
rez et al. [20]. In this paper, we make a syntatic-sugar
modification to put the focus on version labels instead
of temporal labels. Note, that time labels are a more
general concept that could lead to time-specific oper-
ators (intersect, overlaps, etc.), which is complemen-
tary –and not mandatory– to RDF archives. Let N be
a finite set of version labels in which a total order is
defined.

5http://www.tpc.org/.
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Definition 1 (RDF Archive) A version-annotated
triple is an RDF triple (s, p, o) with a label i ∈ N
representing the version in which this triple holds,
denoted by the notation (s, p, o) : [i]. An RDF archive
graph A is a set of version-annotated triples.

Definition 2 (RDF Version) An RDF version of an
RDF archiveA at snapshot i is the RDF graphA(i) =
{(s, p, o)|(s, p, o) : [i] ∈ A}. We use the notation Vi to
refer to the RDF version A(i).

As basis for comparing different archiving poli-
cies, we introduce four main features to describe the
dataset configuration, namely data dynamicity, data
static core, total version-oblivious triples and RDF vo-
cabulary.
Data dynamicity. This feature measures the number
of changes between versions, considering these dif-
ferences at the level of triples (low-level deltas [47]).
Thus, it is mainly described by the change ratio and the
data growth between versions. We note that there are
various definitions of change and growth metrics con-
ceivable, and we consider our framework extensible in
this respect with other, additional metrics. At the mo-
ment, we consider the following definitions of change
ratio, insertion ratio, deletion ratio and data growth:

Definition 3 (change ratio) Given two versions Vi

and V j, with i < j, let ∆+
i, j and ∆−i, j two sets respec-

tively denoting the triples added and deleted between
these versions, i.e. ∆+

i, j = V j \ Vi and ∆−i, j = Vi \ V j.
The change ratio between two versions denoted by δi, j,
is defined by

δi, j =
|∆+

i, j∪∆−i, j |
|Vi∪V j| .

That is, the change ratio between two versions
should express the ratio of all triples in Vi∪V j that have
changed, i.e., that have been either inserted or deleted.
In contrast, the insertion and deletion ratios provide
further details on the proportion of inserted and add
triple wrt. the original version:

Definition 4 (insertion ratio, deletion ratio) The in-

sertion δ+
i, j =

|∆+
i, j |
|Vi| and deletion δ−i, j =

|∆−i, j |
|Vi| denote

the ratio of “new” or “removed” triples with respect
to the original version.

Finally, the data growth rate compares the number
of triples between two versions:

Definition 5 (data growth) Given two versions Vi and
V j, having |Vi| and |V j| different triples respectively,
the data growth of V j with respect to Vi, denoted by,
growth(Vi,V j), is defined by

growth(Vi,V j) =
|V j|
|Vi|

In archiving evaluations, one should provide de-
tails on three related aspects, δi, j, δ+

i, j and δ−i, j, as
well as the complementary version data growth, for
all pairs of consecutive versions. Additionally, one
important aspect of measurement could be the rate
of changed triples accumulated overall across non-
consecutive versions. That is, as opposed to the (abso-
lute) metrics defined so far, which compare between
the original and the final version only, here we want to
also be able to take all intermediate changes into ac-
count. To this end, we can also define an accumulated
change rate δ∗i, j between two (not necessarily consecu-
tive) versions as follows:

Definition 6 The accumulated change ratio δ∗i, j be-
tween two versions Vi,V j with j = i + h, with h > 0, is
defined as

δ∗i, j =
Σ j

k=iδk,k+1

h

The rationale here is that δ∗i, j should be 1 iff all
triples changed in each version (even if eventually the
changes are reverted and Vi = V j), 0 if Vi = Vk for
each i ≤ k ≤ j, and non-0 otherwise, i.e. measuring
the accumulation of changes over time.

Note that most archiving policies are affected by
the frequency and also the type of changes, that is
both absolute change metrics and accumulated change
rates play a role. For instance, IC policy duplicates the
static information between two consecutive versions
Vi and V j, whereas the size of V j increases with the
added information (δ+

i, j) and decreases with the num-
ber of deletions (δ−i, j), given that the latter are not rep-
resented. In contrast, CB and TB approaches store all
changes, hence they are affected by the general dynam-
icity (δi, j).

Data static core. It measures the triples that are avail-
able in all versions:

Definition 7 (Static core) For an RDF archive A, the
static core CA = {(s, p, o)|∀i ∈ N , (s, p, o) : [i] ∈
A}.
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This feature is particularly important for those
archiving policies that, whether implicitly or explicitly,
represent such static core. In a change-based approach,
the static core is not represented explicitly, but it inher-
ently conforms the triples that are not duplicated in the
versions, which is an advantage against other policies
such as IC. It is worth mentioning that the static core
can be easily computed taking the first version and ap-
plying all the subsequent deletions.

Total version-oblivious triples. This computes the to-
tal number of different triples in an RDF archive inde-
pendently of the timestamp. Formally speaking:

Definition 8 (Version-oblivious triples) For an RDF
archive A, the version-oblivious triples OA =
{(s, p, o)|∃i ∈ N , (s, p, o) : [i] ∈ A}.

This feature serves two main purposes. First, it
points to the diverse set of triples managed by the
archive. Note that an archive could be composed of
few triples that are frequently added or deleted. This
could be the case of data denoting the presence or
absence of certain information, e.g. a particular case
of RDF streaming. Then, the total version-oblivious
triples are in fact the set of triples annotated by tem-
poral RDF [20] and other representations based on an-
notation (e.g. AnQL [48]), where different annotations
for the same triple are merged in an annotation set (of-
ten resulting in an interval or a set of intervals).

RDF vocabulary. In general, we cover under this fea-
ture the main aspects regarding the different subjects
(S A), predicates (PA), and objects (OA) in the RDF
archive A. Namely, we put the focus on the RDF vo-
cabulary per version and delta and the vocabulary set
dynamicity, defined as follows:

Definition 9 (RDF vocabulary per version) For an
RDF archive A, the vocabulary per version is the set
of subjects (S Vi ), predicates (PVi ) and objects (OVi )
for each version Vi in the RDF archive A.

Definition 10 (RDF vocabulary per delta) For an
RDF archive A, the vocabulary per delta is the set of
subjects (S ∆+

i, j
and S ∆−i, j

), predicates (P∆+
i, j

and P∆−i, j
)

and objects (O∆+
i, j

and O∆−i, j
) for all consecutive (i.e.,

j = i + 1) Vi and V j in A.

Definition 11 (RDF vocabulary set dynamicity)
The dynamicity of a vocabulary set K, being K one
of {S , P,O}, over two versions Vi and V j, with i < j,
denoted by vdyn(K,Vi,V j) is defined by

vdyn(K,Vi,V j) =
|(KVi\KV j )∪(KV j\KVi )|

|KVi∪KV j |
.

Likewise, the vocabulary set dynamicity for inser-
tions and deletions is defined by vdyn+(K,Vi,V j) =
|KV j\KVi |
|KVi∪KV j |

and vdyn−(K,Vi,V j) =
|KVi\KV j |
|KVi∪KV j |

respec-
tively.

The evolution (cardinality and dynamicity) of the
vocabulary is specially relevant in RDF archiving,
since traditional RDF management systems use dictio-
naries (mappings between terms and integer IDs) to ef-
ficiently manage RDF graphs. Finally, whereas addi-
tional graph-based features (e.g. in-out-degree, cluster-
ing coefficient, presence of cliques, etc.) are interesting
and complementary to our work, our proposed proper-
ties are feasible (efficient to compute and analyse) and
grounded in state-of-the-art of archiving policies.

3.2. Design of Benchmark Queries

There is neither a standard language to query RDF
archives, nor an agreed way for the more general prob-
lem of querying temporal graphs. Nonetheless, most
of the proposals (such as T-SPARQL [16], stSPARQL
[3], SPARQL-ST [35] and the most recent SPARQ-
LTL [15]) are based on SPARQL modifications.

In this scenario, previous experiences on bench-
marking SPARQL resolution in RDF stores show that
benchmark queries should report on the query type, re-
sult size, graph pattern shape, and query atom selec-
tivity [37]. Conversely, for RDF archiving, one should
put the focus on data dynamicity, without forgetting
the strong impact played by query selectivity in most
RDF triple stores and query planning strategies [1].

Let us briefly recall and adapt definitions of query
cardinality and selectivity [2,1] to RDF archives.
Given a SPARQL query Q, where we restrict to
SPARQL Basic Graph Patterns (BGPs6) hereafter, the
evaluation of Q over a general RDF graph G results
in a bag of solution mappings [[Q]]G, where Ω de-
notes its underlying set. The function card[[Q]]G maps
each mapping µ ∈ Ω to its cardinality in [[Q]]G. Then,
for comparison purposes, we introduce three main fea-
tures, namely archive-driven result cardinality and se-
lectivity, version-driven result cardinality and selec-
tivity, and version-driven result dynamicity, defined as
follows.

6Sets of triple patterns, potentially including a FILTER condition,
in which all triple patterns must match.
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Definition 12 (Archive-driven result cardinality)
The archive-driven result cardinality of Q over the
RDF archive A, is defined by

CARD(Q,A) =
∑

µ∈Ω card[[Q]]A(µ).

In turn, the archive-driven query selectivity accounts
how selective is the query, and it is defined by
S EL(Q,A) = |Ω|/|A|.

Definition 13 (Version-driven result cardinality)
The version-driven result cardinality of Q over a
version Vi, is defined by

CARD(Q,Vi) =
∑

µ∈Ωi
card[[Q]]Vi

(µ),

where Ωi denotes the underlying set of the bag [[Q]]Vi .
Then, the version-driven query selectivity is defined by
S EL(Q,Vi) = |Ωi|/|Vi|.

Definition 14 (Version-driven result dynamicity)
The version-driven result dynamicity of the query Q
over two versions Vi and V j, with i < j, denoted by
dyn(Q,Vi,V j) is defined by

dyn(Q,Vi,V j) =
|(Ωi\Ω j)∪(Ω j\Ωi)|

|Ωi∪Ω j| .

Likewise, we define the version-driven result in-
sertion dyn+(Q,Vi,V j) =

|Ω j\Ωi|
|Ωi∪Ω j| and deletion

dyn−(Q,Vi,V j) =
|Ωi\Ω j|
|Ωi∪Ω j| dynamicity.

The archive-driven result cardinality is reported as
a feature directly inherited from traditional SPARQL
querying, as it disregards the versions and evaluates the
query over the set of triples present in the RDF archive.
Although this feature could be only of peripheral in-
terest, the knowledge of this feature can help in the in-
terpretation of version-agnostic retrieval purposes (e.g.
ASK queries).

As stated, result cardinality and query selectivity are
main influencing factors for the query performance,
and should be considered in the benchmark design and
also known for the result analysis. In RDF archiving,
both processes require particular care, given that the
results of a query can highly vary in different versions.
Knowing the version-driven result cardinality and se-
lectivity helps to interpret the behaviour and perfor-
mance of a query across the archive. For instance, se-
lecting only queries with the same cardinality and se-
lectivity across all version should guarantee that the in-
dex performance is always the same and as such, po-
tential retrieval time differences can be attributed to the
archiving policy. Finally, the version-driven result dy-

namicity does not just focus on the number of results,
but how these are distributed in the archive timeline.

In the following, we introduce five foundational
query atoms to cover the broad spectrum of emerging
retrieval demands in RDF archiving. Rather than pro-
viding a complete catalog, our main aim is to reflect
basic retrieval features on RDF archives, which can be
combined to serve more complex queries. We elabo-
rate these atoms on the basis of related literature, with
special attention to the needs of the well-established
Memento Framework [9], which can provide access to
prior states of RDF resources using datetime negotia-
tion in HTTP.

Version materialisation, Mat(Q,Vi): it provides the
SPARQL query resolution of the query Q at the given
version Vi. Formally, Mat(Q,Vi) = [[Q]]Vi .

Within the Memento Framework, this operation is
needed to provide mementos (URI-M) that encapsulate
a prior state of the original resource (URI-R).

Delta materialisation, Di f f (Q,Vi,V j): it provides
the different results of the query Q between the given
Vi and V j versions. Formally, let us consider that the
output is a pair of mapping sets, corresponding to the
results that are present in Vi but not in V j, that is
(Ωi \ Ω j), and viceversa, i.e. (Ω j \ Ωi).

A particular case of delta materialisation is to re-
trieve all the differences between Vi and V j, which cor-
responds to the aforementioned ∆+

i, j and ∆−i, j.

Version Query, Ver(Q): it provides the results of the
query Q annotated with the version label in which each
of them holds. In other words, it facilitates the [[Q]]Vi

solution for those Vi that contribute with results.

Cross-version join, Join(Q1,Vi,Q2,V j): it serves the
join between the results of Q1 in Vi, and Q2 in V j. In-
tuitively, it is similar to Mat(Q1,Vi) 1 Mat(Q2,V j).

Change materialisation, Change(Q): it provides
those consecutive versions in which the given query
Q produces different results. Formally, Change(Q) re-
ports the labels i, j (referring to the versions Vi and V j)
⇔ Di f f (Q,Vi,V j) 6= ∅, j = i + 1.

Within the Memento Framework, change material-
isation is needed to provide timemap information to
compile the list of all mementos (URI-T) for the origi-
nal resource, i.e. the basis of datetime negotiation han-
dled by the timegate (URI-G).

These query features can be instantiated in domain-
specific query languages (e.g. DIACHRON QL [28])
and existing temporal extensions of SPARQL (e.g. T-
SPARQL [16], stSPARQL [3], SPARQL-ST [35], and
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SPARQ-LTL [15]). We include below an instantiation
of these five queries in AnQL [48], as well as a dis-
cussion of how these AnQL queries could be evaluated
over off-the-shelf RDF stores using “pure” SPARQL.
However, since such an approach would typically ren-
der rather inefficient SPARQL queries, in the follow-
ing sections, we focus on tailored implementations us-
ing optimized storage techniques to serve these fea-
tures.

3.3. Instantiation in a Concrete Query Language:
AnQL

In order to “ground” the five concrete query cases
outlined above, we herein propose the syntactic ab-
straction of AnQL [48], a query language that provides
some syntactic sugar for (time-)annotated RDF data
and queries on top of SPARQL. This abstraction helps
us – as a tradeoff between concrete instantiation in
SPARQL as a query language and implementation is-
sues underneath – to illustrate differences between IC,
CB and TB as storage strategies from the viewpoint of
an off-the shelf RDF store.

AnQL is a query language defined as a – rela-
tively straightforward – extension of SPARQL, where
a SPARQL triple pattern t is allowed to be annotated
with a (temporal7) label l as an annotated triple pattern
of the form t : l. In our case, we assume for simplic-
ity that the domain of annotations are simply (consecu-
tive) version numbers, i.e. :s :p :o :[vi] and :s
:p :o :[vi,v j], resp., would indicate that the triple
pattern :s :p :o is valid in version vi or, resp., be-
tween versions vi, v j ∈ N , where s.t. vi ≤ v j .

Moreover, for simplicity, we extend an AnQL BAP
(basic annotated pattern), that is, a SPARQL Basic
graph pattern (BGP) which may contain such anno-
tated triple patterns as follows: Let P be a SPARQL
graph pattern, then we write P : l as a syntactic short
cut for an annotated pattern such that each triple pat-
tern t ∈ P is replaced by t : l.

Using this notation, we can “instantiate” the queries
from above as follows in AnQL.

– Mat(Q, vi):

SELECT *
WHERE {

Q :[vi]
}

7Note that in [48] we also discuss various other annotation do-
mains.

– Di f f (Q, vi, v j):

SELECT *
WHERE {

{ {{Q :[vi]} MINUS {Q :[v j]}}
BIND (vi AS ?V )

}
UNION
{ {{Q :[v j] } MINUS {Q :[vi]}}
BIND (v j AS ?V )

}
}

Here, the newly bound variable ?V is used to
show which solutions appear only in version ?V
but not in the other version, which is a simple way
to describe the changeset [26].

– Ver(Q):

SELECT *
WHERE {

Q :?V
}

– Join(Q1, vi,Q2, v j):

SELECT *
WHERE {

{Q1 :[vi]}
{Q2 :[v j]}

}

– Change(Q):

SELECT ?V1 ?V2
WHERE {

{ {Q :?V1} MINUS {Q :?V2}}
FILTER( ?V2=?V1+1 )

}

Based on these queries, a naive implementation of
IC, TB and CB on top of an off-the-shelf triple store
could now look as follows:

3.3.1. IC.
All triples of each instance/version would be stored

in named graphs with the version name being the
graph name and respective metadata about the ver-
sion number on the default graph. That is, a triple
(:s :p :o) in version vi would result in the re-
spective graph being stored in the named graph
:version_v1 along with a triple (:version_v1
:version_number vi) in the default graph.

Then, each annotated pattern P:l in the AnQL
queries above could be translated into a native
SPARQL graph pattern as:

GRAPH ?Gl { P } {?Gl :version_number l }
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3.3.2. TB.
All triples appearing in any instance/version could

be stored as a single reified triple, with additional
meta-information in which version the triple is true in
disjoint from-to ranges to indicate the version ranges
when a particular triple was true. That is, a triple (:s
:p :o) which was true in versions vi until v j coud be
represented as follows:

[ :subj s ; :pred p ; :obj o ;
:valid [:start vi ; :end v j ]].

Note that this representation allows for a compact
representation of several disjoint (maximal) validity
intervals of the same triple, thus causing less overhead
than the graph-based representation discussed for IC.
The translation for annotated query patterns P : l in the
AnQL syntax could proceed by replacing each triple
pattern t = (s p o) in P as follows, where ?t_start
and ?t_end are fresh variables unique per t:

[ :subj s ; :pred p ; :obj o ;
:valid [:start ?t_start ; :end ?t_end ]].

FILTER( l >= ?t_start && l <= ?t_end)

Unfortunately, this “recipe” does not work for
Ver(Q) and Change(Q), since it would result in l be-
ing an unbound variable in the FILTER expression.
Thus we provide separate translations for Ver(Q) and
Change(Q), where both would use the same replace-
ment, but without the FILTER expression per triple
pattern.

As for Ver(Q), the overall result only holds in case
the intersection of all [?t_starti,?t_endi] inter-
vals is non-empty for any binding returned for the resp.
BGP Q = {t1, . . . , tn}. So, an overall FILTER, which
checks this condition needs to be added for the whole
BGP Q. To this end, we first translate each triple pat-
tern ti = (si pi oi) with 1 ≤ i ≤ n in Q separately
as before, to the following pattern (without the single
FILTER per triple):

[ :subj si ; :pred pi ; :obj oi ;
:valid [:start ?t_starti ; :end ?t_endi ]].

Let us call the BGP translated this way Q′; then
Ver(Q) could be realized with the following combina-
tion of BIND and FILTER clauses:8

8Note that, unfortunately, strictly speaking the function min() and
max() used here exist in SPARQL only as aggregates for subqueries

SELECT ?t_start ?t_end
WHERE {

Q′

BIND(max(?t_start1 ,...,?t_startn ) AS ?t_s)
BIND(min(?t_end1 ,...,?t_endn ) AS ?t_e)
FILTER ( ?t_s <= ?t_e)

}

Analogously, Change(Q) could in turn (in a naive
implementation just demonstrating expressive feasibil-
ity) re-use this implementation of Ver(Q) to determine
between which exact versions the result has actually
changed: in fact that is the case, exactly before and
after the ?t_start and ?t_end labels returned by
Ver(Q). That is, using Ver(Q) as a subquery you could
formulate Change(Q) as follows:

SELECT DISTINCT ?before ?after
WHERE {

{ Ver(Q)
BIND (?t_s-1 AS ?before)
BIND (?t_s AS ?after)

}
UNION
{

Ver(Q)
BIND (?t_e AS ?before)
BIND (?t_e+1 AS ?after)

}
}

Note that this works because Ver(Q) just returns the
(maximum) intervals where query Q returned the same
results. Therefore, each time before or after such an in-
terval, some change in the result of Q must have oc-
curred. Note further that we need the UNION of start
nd end of these intervals, since Ver(Q) might actu-
ally leave gaps, i.e. there might be intervals in between
where there are no results fo Q at all.

Finally, let us note that the implementation sketched
here only works for Q being a BGP (as we originally
assumed). As for more complex patterns such as OP-
TIONAL, MINUS, NOT EXISTS or patterns involv-
ing complex FILTERS or even aggregations, a simple
translation like the one sketched here would not return
correct results in the general case.

and not as functions over value lists, but for instance an expres-
sion BIND(min(x1, ...xn) AS ?X) can be easily emu-
lated using a combination of IF and BIND, as follows:

BIND( IF(x1 < x2,x1,x2) AS ?X2)
BIND( IF(?X2 < x3,?X2,x3) AS ?X3)
...
BIND( IF(?Xn−1 < xn,?Xn−1,xn) AS ?X)
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3.3.3. CB.
We emphasize that a change-based storage of RDF

triples has no trivial implementation in an off-the
shelf RDF store. Again, change -deltas (triple addi-
tions and deletions between versions could be stored
in separate graphs, starting with an original graph
:version_v0_add and separate graphs labelled,
e.g. :version_vi_add and :version_vi_del
per new version, plus again metadata triples in the de-
fault graph, e.g.:

:version_vi_add :version_number vi ;
a :Addition.

:version_vi_del :version_number vi ;
a:Deletion.

Then the validity of a triple pattern t in a particular
version vi can be checked as follows, intuitively testing
whether the triple has been added in a prior version and
not been removed since:

{ GRAPH ?GAdd { t }
{

?GAdd :version_number ?va;
a :Addition.

FILTER( ?va <= vi )
} FILTER NOT EXISTS {

GRAPH ?GDel { t }
{?GDel:version_number ?vd; a :Deletion.
FILTER( ?vd >=?va && ?vd<= vi )

}
}

}

The translation of whole AnQL queries in the case
of CB is therefore, by no means trivial, as this covers
only single triple patterns. Whereas we do not provide
the full translation for CB here, we hope that the sketch
here, along with the translations for IC and TB above,
have served to illustrate that an implementation of
RDF archives and queries in off-the-shelf RDF stores
and using SPARQL is a non-trivial exercise – even
the translated patterns for CB and IC sketched above
would likely not scale to large archives of dynamic
RDF data and complex queries. Therefore, in our cur-
rent evaluation (Section 5), we focus on tailored im-
plementations using efficient, optimized storage tech-
niques to implement these features, using rather sim-
ple triple pattern queries and joins of triple patterns, as
opposed to full SPARQL BGPs.

4. BEAR: A Test Suite for RDF Archiving

This section presents BEAR, a prototypical (and ex-
tensible) test suite to demonstrate the new capabili-

ties in benchmarking the efficiency of RDF archives
using our foundations, and to highlight current chal-
lenges and potential improvements in RDF archiving.
BEAR comprises three main datasets, namely BEAR-
A, BEAR-B, and BEAR-C, each having different char-
acteristics. We first detail the dataset descriptions and
the query set covering basic retrieval needs for each
of these datasets in Sections 4.1–4.3. In the next sec-
tion (5) we will evaluate BEAR on different archiving
systems. The complete test suite (data corpus, queries,
archiving system source codes, evaluation and addi-
tional results) is available at the BEAR repository9.

4.1. BEAR-A: Dynamic Linked Data

The first benchmark we consider provides a realistic
scenario on queries about the evolution of Linked Data
in practice.

4.1.1. Dataset Description
We build our RDF archive on the data hosted by

the Dynamic Linked Data Observatory10, monitoring
more than 650 different domains across time and serv-
ing weekly crawls of these domains. BEAR data are
composed of the first 58 weekly snapshots, i.e. 58 ver-
sions, from this corpus. Each original week consists
of triples annotated with their RDF document prove-
nance, in N-Quads format. In this paper we focus on
archiving of a single RDF graph, so that we remove
the context information and manage the resultant set of
triples, disregarding duplicates. The extension to mul-
tiple graph archiving can be seen as future work. In ad-
dition, we replaced Blank Nodes with Skolem IRIs11

(with a prefix http://example.org/bnode/ ) in order to
simplify the computation of diffs.

We report the data configuration features (cf. Sec-
tion 3) that are relevant for our purposes. Table 2 lists
basic statistics of our dataset, further detailed in Fig-
ure 2, which shows the figures per version and the vo-
cabulary evolution. Data growth behaviour (dynamic-
ity) can be identified at a glance: although the num-
ber of statement in the last version (|V57|) is more than
double the initial size (|V0|), the mean version data
growth (growth) between versions is almost marginal
(101%).

A closer look to Figure 2 (a) allows to identify that
the latest versions are highly contributing to this in-

9https://aic.ai.wu.ac.at/qadlod/bear.
10http://swse.deri.org/dyldo/.
11https://www.w3.org/TR/rdf11-concepts/#section-skolemization
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versions |V0| |V57| growth δ δ− δ+ CA OA

58 30m 66m 101% 31% 32% 27% 3.5m 376m

Table 2
BEAR-A Dataset configuration
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Fig. 2. Dataset description.

crease. Similarly, the version change ratios12 in Table 2
(δ, δ− and δ+) point to the concrete adds and delete op-
erations. Thus, one can see that a mean of 31% of the
data change between two versions and that each new
version deletes a mean of 27% of the previous triples,
and adds 32%. Nonetheless, Figure 2 (b) points to par-
ticular corner cases (in spite of a common stability),
such as V31 in which no deletes are present, as well as
it highlights the noticeable dynamicity in the last ver-
sions.

Conversely, the number of version-oblivious triples
(OA), 376m, points to a relatively low number of dif-
ferent triples in all the history if we compare this
against the number of versions and the size of each ver-
sion. This fact is in line with the δ dynamicity values,
stating that a mean of 31% of the data change between

12Note that δ = δ∗1,n, so we use them interchangeably.

two versions. The same reasoning applies for the re-
markably small static core (CA), 3.5m.

Finally, Figures 2 (c-e) show the RDF vocabulary
(different subjects, predicates and objects) per version
and per delta (adds and deletes). As can be seen, the
number of different subjects and predicates remains
stable except for the noticeable increase in the latests
versions, as already identified in the number of state-
ments per versions. However, the number of added and
deleted subjects and objects fluctuates greatly and re-
main high (one order of magnitude of the total num-
ber of elements, except for the aforementioned V31 in
which no deletes are present). In turn, the number or
predicates are proportionally smaller, but it presents a
similar behaviour.

4.1.2. Test Queries
BEAR-A provides triple pattern queries Q to test

each of the five atomic operations defined in our foun-
dations (Section 3). Note that, although such queries
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do not cover the full spectrum of SPARQL queries,
triple patterns (i) constitute the basis for more com-
plex queries, (ii) are the main operation served by
lightweight clients such as the Linked Data Fragments
[44] proposal, and (iii) they are the required operation
to retrieve prior states of a resource in the Memento
Framework. For simplicity, we present here atomic
lookup queries Q in the form (S??), (?P?), and (??O),
which are then extended to the rest of triple patterns
(SP?), (S?O), (?PO), and (SPO)13. For instance, List-
ing 1 shows an example of a materialization of a basic
predicate lookup query in version 3.

Listing 1 Materialization of a (?P?) triple pattern in version 3.
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT * WHERE {
?s dc:language ?p : 3 }
}

As for the generation of queries, we randomly se-
lect such triple patterns from the 58 versions of the
Dynamic Linked Data Observatory. In order to pro-
vide comparable results, we consider entirely dynamic
queries, meaning that the results always differ between
consecutive versions. In other words, for each of our
selected queries Q, and all the versions Vi and V j (
i < j), we assure that dyn(Q,Vi,V j) > 0. To do so, we
first extract subjects, predicates and objects that appear
in all ∆i, j.

Then, we follow the foundations and try to minimise
the influence of the result cardinality on the query per-
formance. For this purpose, we sample queries which
return, for all versions, result sets of similar size,
that is, CARD(Q,Vi) ≈ CARD(Q,V j) for all queries
and versions. We introduce here the notation of a ε-
stable query, that is, a query for which the min and
max result cardinality over all versions do not vary
by more than a factor of 1 ± ε from the mean car-
dinality, i.e., max∀i∈N CARD(Q,Vi) ≤ (1 + ε) ·∑
∀i∈N CARD(Q,Vi)

|N | and min∀i∈N CARD(Q,Vi) ≥ (1 −

ε) ·
∑
∀i∈N CARD(Q,Vi)

|N | .
Thus, the previous selected dynamic queries are ef-

fectively run over each version in order to collect the
result cardinality. Next, we split subject, objects and
predicate queries producing low (QS

L , QP
L , QO

L ) and
high (QS

H , QP
H , QO

H) cardinalities. Finally, we filter
these sets to sample at most 50 subject, predicate and

13The triple pattern (???) retrieves all the information, so no sam-
pling technique is required.

QUERY SET lookup position CARD dyn #queries

QS
L -ε=0.2 subject 6.7 0.46 50

QP
L -ε=0.6 predicate 178.66 0.09 6

QO
L -ε=0.1 object 2.18 0.92 50

QS
H -ε=0.1 subject 55.22 0.78 50

QP
H -ε=0.6 predicate 845.3 0.12 10

QO
H -ε=0.6 object 55.62 0.64 50

Table 3
Overview of BEAR-A lookup queries

object queries which can be considered ε-stable for a
given ε. Table 3 shows the selected query sets with
their epsilon value, mean cardinality and mean dynam-
icity. Although, in general, one could expect to have
queries with a low ε (i.e. cardinalities are equivalent
between versions), we test higher ε values in objects
and predicates in order to have queries with higher car-
dinalities. Even with this relaxed restriction, the num-
ber of predicate queries that fulfil the requirements is
just 6 and 10 for low and high cardinalities respec-
tively.

Section 5 provides an evaluation of (i) version ma-
terialisation, (ii) delta materialisation and (iii) version
queries for these lookup queries under different state-
of-the-art archiving policies. Appendix A extends the
lookup queries to triple patterns (SP?), (S?O) and
(?PO). We additionally sample 50 (SPO) queries from
the static core.

4.2. BEAR-B: DBpedia Live

Our next benchmark, rather than looking at arbitrary
Linked Data, is focung on the evolution of DBpedia,
which directly reflect Wikipedia edits, where we can
expect quite different change/evolution characteristics.

4.2.1. Dataset Description
The BEAR-B dataset has been compiled from

DBpedia Live changesets14 over the course of
three months (August to October 2015). DBpe-
dia Live [22] records all updates to Wikipedia
articles and hence re-extracts and instantly up-
dates the respective DBpedia Live resource de-
scriptions. The BEAR-B contains the resource
descriptions of the 100 most volatile resources
along with their updates. The most volatile resource
(dbr:Deaths_in_2015) changes 1,305 times,
the least volatile resource contained in the dataset

14http://live.dbpedia.org/changesets/
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granularity versions |V0| |Vlast| growth δ δ− δ+ CA OA

instant 21,046 33,502 43,907 100.001% 0.011% 0.007% 0.004% 32,094 234,588
hour 1,299 33,502 43,907 100.090% 0.304% 0.197% 0.107% 32,303 178,618
day 89 33,502 43,907 100.744% 1.778% 1.252% 0.526% 32,448 83,134

Table 4
BEAR-B Dataset configuration

(dbr:Once_Upon_a_Time_(season_5))
changes 263 times.

As dataset updates in DBpedia Live occur instantly,
for every single update the dataset shifts to a new ver-
sion. In practice, one would possibly aggregate such
updates in order to have less dataset modifications.
Therefore, we also aggregated these updates on an
hourly and daily level. Hence, we get three time gran-
ularities from the changesets for the very same dataset:
instant (21,046 versions), hour (1,299 versions), and
day (89 versions).

Detailed characteristics of the dataset granularities
are listed in Table 4. The dataset grows almost contin-
uously from 33,502 triples to 43,907 triples. Since the
time granularities differ in the number of intermediate
versions, they show different change characteristics: a
longer update cycle also results in more extensive up-
dates between versions, the average version change ra-
tio increases from very small portions of 0.011% for
instant updates to 1.8% at the daily level. It can also
be seen that the aggregation of updates leads to omis-
sion of changes: whereas the instant updates handle
234,588 version-oblivious triples, the daily aggregates
only have 83,134 (hourly: 178,618), i. e. a reasonable
number of triples exists only for a short period of time
before they get deleted again. Likewise, from the dif-
ferent sizes of the static core, we see that triples which
have been deleted at some point are re-inserted after a
short period of time (in the case of DBpedia Live this
may happen when changes made to a Wikipedia article
are reverted shortly after).

4.2.2. Test Queries
BEAR-B allows one to use the same sampling

methodology as BEAR-A to retrieve dynamic queries.
Nonetheless, we exploit the real-world usage of DB-
pedia to provide realistic queries. Thus, we extract the
200 most frequent triple patterns from the DBpedia
query set of Linked SPARQL Queries dataset (LSQ)
[36] and filter those that produce results in our BEAR-
B corpus. We then obtain a batch of 62 lookup queries,
mixing (?P?) and (?PO) queries, evaluated in Section
5. The full batch has a CARD=80 in BEAR-B-day and
BEAR-B-hour, and CARD=54 in BEAR-B-instant. Fi-

nally, we build 20 join cases using the selected triple
patterns, such as the join in Listing 2. Further statistics
on each query are available at the BEAR repository.

Listing 2 Example of a join query in BEAR-B
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbo: <http://dbpedia.org/ontology/>
{

?film dbo:director ?director .
?director dbp:name ?name .

}

4.3. BEAR-C: Open Data portals

The third dataset is taken from the Open Data Por-
tal Watch project, a framework that monitors over
260 Open Data portals in a weekly basis and per-
forms a quality assessment. The framework harvests
the dataset descriptions in the portals and converts
them to their DCAT representation. We refer to [31]
for more details.

4.3.1. Dataset Description
For BEAR-C, we decided to take the datasets de-

scriptions of the European Open Data portal15 for 32
weeks, or 32 snapshots respectively. Table 5 and Fig-
ure 3 show the main characteristics of the dataset. Each
snapshot consists of roughly 500m triples with a very
limited growth as most of the updates are modifica-
tions on the metadata, i.e. adds and deletes report sim-
ilar figures as shown in Figure 3 (a-b). Note also that
this dynamicity is also reflected in the subject and ob-
ject vocabulary (Figures 3 (c-d)), whereas the meta-
data is always described with the same predicate vo-
cabulary (Figure 3 (e)), in spite of a minor modifica-
tion in version 24 and 25. An excerpt of the RDF data
is shown in Listing 7 (Appendix C). Note that, as in
BEAR-A, we also replaced Blank Nodes with Skolem
IRIs.

15http://data.europa.eu/euodp/en/data/
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granularity versions |V0| |Vlast| growth δ δ− δ+ CA OA

portal 32 485,179 563,738 100.478% 67.617% 33.671% 33.946% 178,484 9,403,540

Table 5
BEAR-C Dataset configuration
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Fig. 3. Dataset description.

4.3.2. Test Queries
Selected triple patterns in BEAR-A cover queries

whose dynamicity is well-defined, hence it allows
for a fine-grained evaluation of different archiving
strategies (and particular systems). In turn, BEAR-
B adopts a realistic approach and gather real-word
queries from DBpedia. Thus, we provide complex
queries for BEAR-C that, although they cannot be re-
solved in current archiving strategies in a straightfor-
ward and optimized way (as discussed in Section 3.3
for the CB approach), they could help to foster the de-
velopment and benchmarking of novel strategies and
query resolution optimizations in archiving scenarios.

With the help of Open Data experts, we created
10 queries that retrieve different information from
datasets and files (referred to as distributions, where
each dataset refers to one or more distributions) in the
European Open Data portal. For instance, Q1 in List-
ing 3 retrieves all the datasets and their file URLs. Ap-
pendix C includes the full list of queries.

Listing 3 BEAR-C Q1: Retrieve portals and their files.
PREFIX dcat: <http://www.w3.org/ns/dcat#>
{

?dataset rdf:type dcat:Dataset .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .

}

Note that queries are provided as group graph pat-
tern, such that they can be integrated in the AnQL no-
tation16(see Section 3.3).

5. Evaluation of RDF archiving systems

We illustrate the use of our foundations to evalu-
ate RDF archiving systems. To do so, we built two
RDF archiving systems using the Jena’s TDB store17

(referred to as Jena hereinafter) and HDT [13], con-

16BEAR-C queries intentionally included UNION and OP-
TIONAL to extend the application beyond Basic Graph Patterns.

17https://jena.apache.org/documentation/tdb/, v3.2.0.
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sidering different state-of-the-art archiving policies
(IC, CB, TB and hybrid approaches HBIC/CB and
HBT B/CB). Then, we use our prototypical BEAR to
evaluate the influence of the concrete store and policy.

Note that we considered these particular open RDF
stores given that they are (i) easy to extend in or-
der to implement the suggested archiving strategies,
(ii) representative in the community and (iii) useful
for potential archiving adopters. Jena is widely used
in the community and can be considered as the de-
facto standard implementation of most W3C efforts
in RDF querying (SPARQL) and reasoning. In turn,
HDT is a compressed store that considerably reduces
space requirements of state-of-the-art stores (e.g. Vir-
tuoso), hence it perfectly fits space efficiency require-
ments for archives. Furthermore, HDT is the underly-
ing store of potential archiving adopters such as the
crawling system LOD Laundromat18, which generates
new versions in each crawling process19.

We implemented the different policies in Jena as fol-
lows. For the IC policy (referred to as Jena-IC), we
index each version in an independent TDB instance.
Likewise, for the CB policy (Jena-CB), we create an
index for each added and deleted statements, again
for each version and using an independent TDB store.
In the TB policy (Jena-TB), we indexed all triples in
one single TDB instance, using named graphs to in-
dicate the versions of each triple. Listing 4 shows an
example (in TriG notation [6]) with a triple (_:Jon
foaf:name "Doe") in versions 1 and 2 and a triple
(:Jon foaf:email "j@example.org") in versions 1 and
3. The graph http://example.org/versions lists the con-
crete version label of each named graph.

Then, we implemented the hybrid HBT B/CB ap-
proach (Jena-HBT B/CB) following the approach of [43,
17] and indexed all deltas using two named graphs per
version (adds and deletes) in one single TDB instance.
Last, we implemented the HBIC/CB approach (Jena-
HBIC/CB), then the system can manage a set of IC and
CB stores for the same dataset.

We follow the same strategy to develop the IC and
CB strategies in HDT [13] (referred to as HDT-IC,
HDT-CB and HDT-HBIC/CB), which provides a com-
pressed representation and indexing of RDF. The TB
and HBT B/CB policies cannot be implemented as cur-

18http://lodlaundromat.org/.
19LOD Laundromat only serves the last crawled version of a

dataset.

Listing 4 Example of realization of a TB approach.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ex: <http://example.org/> .

ex:version_1_2
{
_:Jon foaf:name "Doe" .

}
ex:version_1_3

{
_:Jon foaf:email "j@example.org" .

}
ex:versions
{

ex:version_1_2 owl:versionInfo 1, 2 .
ex:version_1_3 owl:versionInfo 1, 3 .

}

rent HDT implementations20 do not support quads,
hence triples cannot be annotated with the version.

In addition, we compare these systems with three
state-of-the-art RDF archiving systems: R43ples [17]
(v. 0.8.721), which follows a hybrid TB/CB approach
that stores deltas22 in named graphs on top of Jena, v-
RDFCSA [8] (v. 2016 and the vpt sampling=64 as de-
fault configuration), a pure TB strategy that makes use
of compression notions similarly to HDT, and TailR
[29] (v. Dec-201623), which archives Linked Data de-
scriptions (RDF triples of a given subject) using a hy-
brid IC/CB approach and implements the Memento
protocol.

Tests were performed on a computer with 2 x In-
tel Xeon E5-2650v2 @ 2.6 GHz (16 cores), RAM 171
GB, 4 HDDs in RAID 5 config. (2.7 TB netto stor-
age), Ubuntu 14.04.5 LTS running on a VM with QE-
MU/KVM hypervisor. We report elapsed times in a
warm scenario, given that all systems are based on disk
except for HDT and v-RDFCSA, which perform on
memory.

5.1. RDF Storage Space Results

Table 6 shows the required on-disk space for the
raw data of the corpus, the GNU diff of such data, and
the space required by the Jena and HDT24 archiving
systems under the different implemented policies. We
also include the space requirements of the existing v-
RDFCSA, R43ples and TailR systems, whose archiv-

20We use the HDT C++ libraries at http://www.rdfhdt.org/.
21https://github.com/plt-tud/r43ples
22R43ples stores the recent version fully materialized, and previ-

ous versions can be queried by applying deltas in a reverse way.
23https://github.com/SemanticMultimedia/tlr
24We include the space overheads of the provided HDT indexes

to solve all lookups.
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Dataset
RAW DATA DIFF DATA JENA TDB HDT V-RDFCSA R43PLES TAILR

(gzip) (gzip) IC CB TB IC CB (TB) (HBT B/CB) (HBIC/CB)

BEAR-A 23 GB 14 GB 230 GB 138 GB 83 GB 48 GB 28 GB 7.0 GB NA NA
BEAR-B-instant 12 GB 0.16 GB 158 GB 7.4 GB - 63 GB 0.33 GB NA 0.42 GB 0.28 GB
BEAR-B-hour 475 MB 10 MB 6238 MB 479 MB 3679 MB 2229 MB 35 MB 36 MB 149 MB 19 MB
BEAR-B-day 37 MB 1 MB 421 MB 44 MB 24 MB 149 MB 7 MB 5 MB 63 MB 9 MB
BEAR-C 243 MB 205 MB 2151 MB 2271 MB 2012 MB 421 MB 439 MB 313 MB 8339 MB 1607 MB

Table 6
Space of the different archiving systems and policies.

Dataset
JENA TDB HDT

IC CB HB IC CB HB
HBIC/CB

S HBIC/CB
M HBIC/CB

L HBT B/CB HBIC/CB
S HBIC/CB

M HBIC/CB
L

BEAR-A 230 GB 138 GB 163 GB 152 GB 143 GB 353 GB 48 GB 28 GB 34 GB 31 GB 29 GB
BEAR-B-instant 158 GB 7.4 GB 9.7 GB 7.7 GB 7.4 GB 0.10 GB 63 GB 0.33 GB 1.4 GB 0.46 GB 0.36 GB
BEAR-B-hour 6238 MB 479 MB 662 MB 563 MB 529 MB 54 MB 2229 MB 35 MB 103 MB 69 MB 52 MB
BEAR-B-day 421 MB 44 MB 137 MB 90 MB 65 MB 23 MB 149 MB 7 MB 43 MB 25 MB 15 MB
BEAR-C 2151 MB 2271 MB 2356 MB 2286 MB 2310 MB 3735 MB 421 MB 439 MB 458 MB 444 MB 448 MB

Table 7
Space of Jena and HDT Hybrid-Based approaches (HB).

ing policies (TB, HBT B/CB and HBIC/CB respectively)
are predefined and inherent to each system.

Several comments are in order. As expected, the diff
data take much less space than the raw gzipped data,
and the space savings are highly affected by the dy-
namicity of the data. For example, Both BEAR-A and
BEAR-C are highly dynamic (δ = 31% and δ = 67%,
respectively) and the diff data saves 40 and 15% of
the space respectively (i.e. the more changes, the less
space savings in the diff ). In contrast, changes between
versions are more limited in the aggregation of days,
hours and instants in BEAR-B (with δ < 2% in all
cases), hence the diff data only take 3%, 2% and 1%
of the original size respectively.

A comparison of these figures against the size of
the different systems and policies allows for describ-
ing their inherent overheads. First, Jena-CB and HDT-
CB highly reduce the space needs of their IC counter-
parts, following the same tendency as the diff, i.e., CB
policies achieve better space results in less dynamic
(i.e. small δ) datasets. For instance, in BEAR-B-day,
Jena-CB only takes 10% the space of IC, and only
5% in BEAR-B-instant. The only exception is BEAR-
C where data are so dynamic that the additional in-
dex overhead in CB (for adds and deletes) produces
slightly bigger sizes than IC, both in Jena and HDT.
Interestingly, R43ples shows a similar behaviour given
its HBT B/CB policy, which only stores changing triples
in add and delete named graphs. Thus, R43ples effec-
tively manage dataset with low dynamicity (i.e. small

δ) such as BEAR-B, but is is highly penalized in others
such as BEAR-C. In fact, R43ples was unable to load
the bigger BEAR-A dataset and cannot be included in
the analysis.

TailR shares similar remarks: for those indexed
datasets, TailR shows very competitive performance
in space in datasets with low dynamicity, given that
it makes use of a HBIC/CB policy. In fact, it achieves
better results than HDT in BEAR-B-hour and instant.
Also, note that TailR groups all the triples of a given
subject (following a Linked Data philosophy), hence
it particularly excels in BEAR-B, with few different
subjects. In contrast, TailR reports poor performance
in BEAR-C, where the dataset is more dynamic.

In turn, the IC policy is highly affected by the num-
ber of versions. In BEAR-A and BEAR-C, both com-
prising a reasonable number of versions (less than 60),
the IC policy indexing in Jena requires roughly ten
times more space than the raw data, mainly due to the
data decompression and the built-in Jena indexes. In
turn, the compact HDT indexes in the IC policy just
double the size of the gzipped raw data, serving the re-
quired retrieval operations in such compressed space.
In contrast, in BEAR-B Jena-IC and HDT-IC are both
penalized by the increasing number of versions. For
instance, in BEAR-B instant, Jena-IC takes 13 times
the space of the raw gzipped data, while HDT requires
5 times such space. It is worth noting that both Jena
and HDT have structures with a minimum fixed size,
then the IC strategy has a fixed minimum increase dis-
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regarding the small size of each version, such as in
BEAR-B-instant.

Finally, the TB policy in Jena and v-RDFCSA re-
ports overall good space figures, as it stores each
triple once (i.e. the final size depends on the version-
oblivious triples OA), using the named graph to de-
note the versions as previous explained (see example
in Listing 4). In fact, v-RDFCSA reports the best space
results in all datasets (except for a small difference in
BEAR-B-hour). However, note that TB approaches in-
troduce overheads at increasing number of versions,
as the forth named-graph component must be also in-
dexed to speed up queries. In fact, Jena-TB shows poor
performance in BEAR-B- hour, with 1,299 versions,
and both Jena-TB and v-RDFCSA even failed to load
BEAR-B-instant, with 21046 versions. Thus, the nota-
tion for graphs and versions in TB can present scala-
bility challenges at larger number of versions (even if
each of them is of a limited size). This limitation is par-
tially overcome by the hybrid HBT B/CB policies, such
as the one implemented in R43ples.

Table 7 shows the space for the selected hybrid ap-
proaches in HDT and Jena, i.e., HBIC/CB

S in HDT and
Jena, and HBT B/CB in Jena. For the first one, we evalu-
ated three different archives, with a small (S), medium
(M) and large (L) gap between ICs: HBIC/CB

S , HBIC/CB
M

and HBIC/CB
L stand for a policy in which an IC version

is stored after 4, 8 and 16 CB versions respectively. For
the case of BEAR-B-hour, we use a gap of 32, 64 and
128 versions, and for BEAR-B-instant we use 64, 512
and 2048 versions respectively.

Results firstly show that Jena-HBT B/CB keeps the
aforementioned remarks for R43ples, as it also uses
named graphs to store the delta in each version, hence
it effectively manage dataset with low dynamicity such
as BEAR-B. In this particular case, it outperforms all
Jena approaches, and it even improves HDT in BEAR-
B-instant (due to the aforementioned fixed minimum
size per index in HDT). In contrast, HBT B/CB shows
the worst results in highly dynamic datasets such as
BEAR-A and BEAR-C. Note that, although CB and
TB policies manage the same delta sets, TB uses a
unique Jena instance and stores named graph for the
triples, so additional “context” indexes are required.

Finally, the HBIC/CB
S policies behave as expected,

i.e., the shorter is the gap (e.g. in HBIC/CB
S ), the more

IC copies are present and thus the size is similar than
the pure IC strategy, and the larger is the gap, more CB
copies are present (e.g in HBIC/CB

L ), and the closer is
the final size to the pure CB approach.

These initial results confirm current RDF archiving
scalability problems at large scale, where specific RDF
compression techniques such as HDT and RDFCSA
emerge as an ideal solution [14]. For example, Jena-
IC requires overall almost 4 times the size of HDT-IC,
whereas Jena-CB takes more than 10 times the space
required by HDT-CB. Results also point to the influ-
ence of the number of versions and the dynamicity of
the dataset, considered in our δ metrics, in the selec-
tion of the proper strategy (as well as an input for hy-
brid approaches in order to decide when and how to
materialize a version).

5.2. Retrieval Performance

From our foundations, we consider the five afore-
mentioned query atoms: (i) version materialisation, (ii)
delta materialisation , (iii) version queries, (iv) cross-
version joins and (v) change materialisation. As stated,
we focus on evaluating the well-described triple pat-
terns in the selected BEAR-A queries (see Section
4.1.2) and the real-world patterns in BEAR-B queries
(see Section 4.2.2). In both cases, each triple pattern
act as the target query Q in the version materialisa-
tion, delta materialisation, version queries and change
materialisation. The evaluation of cross-version joins
makes use of the joins defined for BEAR-B.

In general, our evaluation confirmed our assump-
tions about the characteristics of the policies (see Sec-
tion 2), but also pointed out differences between the
archiving systems. The IC, TB and CB/TB policies
show a very constant behaviour in all our tests, while
the retrieval times of the CB and IC/CB policies in-
crease if more deltas have to be queried. Next, we
present and discuss selected plots for each query oper-
ation. For the sake of clarity, we present below only the
results for the subject lookup queries (with high num-
ber of results) in BEAR-A, and the selected queries in
BEAR-B-hour. Results for the rest of queries show a
very similar tendency, and are presented in Appendix
A (for BEAR-A) and Appendix B (for BEAR-B).

Version materialisation. Figure 4 reports, for each
version, the average query time (in ms and logarith-
mic sale in Y axis) over all queries in the selected
query set. Figures 4 (a-c) show the results for subject
lookup queries in BEAR-A, for v-RDFCSA, R43ples
and the pure IC, CB and TB approaches in Jena and
HDT (Figure 4a), hybrid approaches in HDT (Fig-
ure 4b) and hybrid approaches in Jena (Figure 4c).
Likewise, Figures 4 (d-f) focus on BEAR-B-hour. Note
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Fig. 4. Query times for Mat queries.

that the v-RDFCSA system currently only supports
subject and object lookups [8] and TailR only resolves
subject lookups. In order to provide additional evalua-
tion for these systems, we extend the BEAR-B queries
to measure subject lookup (presented below). In turn
R43ples and TailR are reported for BEAR-B, as we
failed to load BEAR-A. Also, it is worth mentioning

that R43ples is accessed via a SPARQL interface with
an extended syntax to support versioning (called revi-
sions in R43ples). Although the interface is queried lo-
cally, the SPARQL protocol might introduce a mini-
mum overhead which is not considered in other sys-
tems (Jena, HDT and v-RDFCSA) that provide a direct
API to the versioned triple store.
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Fig. 5. BEAR-B QS Mat queries.

First, we can observe from Figure 4 (a) that v-
RDFCSA, which implements a TB policy, outperforms
any of the other systems, remaining close to HDT with
an IC policy. In practice, v-RDFCSA makes use of
fast and self-compresses indexes to represent both the
triples and their annotated versions, hence it speeds
up materialisation queries irrespective of the concrete
retrieved version. Appendix A shows that HDT is
slightly faster than v-RDFCSA in object lookups, al-
though it remains competitive in any case. In turn, as
shown in Figure 4 (d), R43ples is significantly slower
than any of the other systems, in particular when ini-
tial versions are demanded, making its use imprac-
tical with a large number of versions. In fact, given
its delays, we report only sampled versions (0, 200,
400,...,1200,1298) in order to show the tendency of its
performance. Note that R43ples materializes the latest
version, and previous versions can be queried by ap-
plying the deltas in reverse order. Thus, R43ples per-
forms faster at more recent versions as it requires less
materializations of deltas, while it quickly degrades at
older versions. Nonetheless, R43ples allows for mate-
rializing some intermediate versions (at the cost of in-
creasing the size of the archive), which can emulate an
hybrid IC/CB system. Further inspection on this trade-
off is devoted to future work.

In turn, Figures 4 (a) and (d) show that the HDT
archiving system generally outperforms Jena. In turn,
in both systems, the IC policy provides the best and
most constant retrieval time. In contrast, the CB pol-
icy shows a clear trend that the query performance de-
creases if we query a higher version since more deltas
have to be queried and the adds and delete information
processed. The degradation of the performance highly
depends on the system and the type of query. For in-

stance, HDT-CB seems to degrade faster in BEAR-A
than Jena-CB but, conversely, the performance degra-
dation is more skewed in Jena-CB in BEAR-B-hour
(Figure 4 d), due to the large number of versions.
In turn, the TB policy in Jena performs worse than
IC, as TB has to query a single but potentially large
dataset (and Jena indexes are not as optimized as in
v-RDFCSA). This causes the remarkable poor perfor-
mance of Jena-TB in BEAR-A (cf. Figure 4 (a)), where
the volume of data is high. In contrast, Jena-TB can
outperform Jena-CB in BEAR-B when the number of
versions is large.

Then, Figures 4 (b) and (e) show the behaviour
of hybrid IC/CB approaches in HDT for the se-
lected BEAR-A and BEAR-B datasets respectively.
As expected, the performance degrades as soon as the
archive has to query the CB copies, while it drops
to the IC time when the fully materialized version is
available.

Figures 4 (c) and (f) present the hybrid IC/CB ap-
proaches in Jena, which share a similar behaviour as
discussed above, and compare the hybrid TB/CB ap-
proach. For this latter, it is interesting to note that
it first retrieve all results matching the query, or-
dered by named graphs (adds and deletes per version
[43,17]), and then process the graphs in order to ap-
ply the changes. Nonetheless, this latter is negligible
with respect to the first operation (in particular in large
datasets), hence the time is almost stable at incremen-
tal number of versions. As such, the performance is
always worse than IC, but it can highly improve CB
in the presence or a large number of versions, such as
BEAR-B (cf. Figure 4 (f)).

Finally, in order to test the performance of TailR
(and v-RDFCSA), with limited subject lookup re-
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Fig. 6. Query times for Di f f queries with increasing intervals.

trieval, we extend the real-world BEAR-B queries
and we consider lookups of its 100 different subjects,
named QS . Figure 5 (a) reports the average time per
Mat query (for such subjects) in BEAR-B-day. Figure
5 (b) shows the same value for BEAR-B-hour, but tak-
ing some representative versions in order to show the
tendency of the performance. Results show that TailR

is competitive with the HDT and Jena archiving sys-
tems, specially in BEAR-B with a large number of
versions and low dynamicity (δ). Although it can be
one level of magnitude slower than an HDT approach,
the performance of TailR remains below 100ms in any
case. Results of Mat queries in both datasets also show
that v-RDFCSA is again the fastest approach, also
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scaling to the large number of versions managed in
BEAR-B-hour.

Delta materialisation queries. We performed diffs
between the initial version and increasing inter-
vals of 5 versions, i.e., di f f (Q,V0,Vi) for i in
{5, 10, 15, · · · , n}. Figure 6 shows again the plots for
selected query sets in BEAR-A (a-c) and BEAR-B (d-
f), while additional results can be found in Appendixes
A and B.

As expected, the TB policy in v-RDFCSA and Jena
behaves similarly than the Mat case given that TB al-
ways inspects the full store. Thus, v-RDFCSA is again
the fastest system for its currently supported queries,
i.e., restricted to subject and object lookups. Then,
R43triples is also the slower approach in BEAR-B,
shown in Figure 6 (d), even if it stores the deltas in
named graph, given that the system first materializes
the versions, and then it performs the diff similarly to
the AnQL syntax for di f f (Q, vi, v j) in Section 3.3.
Jena and HDT report the expected constant retrieval
performance of the IC policy (cf. Figure 6 (a) and (d)),
which always needs to query only two version to com-
pute the delta in-memory. In contrast, the query time
increases for the CB policy if the intervals of the deltas
are increasing, given that more deltas have to be in-
spected. Thus, the CB policy is always slower than IC
at increasing versions. Interestingly, HDT outperforms
Jena under the same policy (IC or CB), i.e. HDT im-
plements the policy more efficiently. However, an IC
policy in Jena can be faster than a CB policy in HDT.
For instance, Jena-IC outperforms HDT-CB after the
5th version in BEAR-A (Figure 6 (a)).

Last, the hybrid approaches reported in Figures 4 (b-
f) show a similar behaviour than in mat queries. The
only consideration is that the performance of IC/TB
highly depends on the particular two versions in the
diff, and they report the expected IC or CB times de-
pending on which of the versions is already material-
ized (IC).

Version queries. Table 8 reports the average query
time over each ver(Q) query. Similarly to the previous
operations, we summarize our findings by presenting
the results for subject lookup queries (with high num-
ber of results) in BEAR-A, and queries in BEAR-B-
hour, while Appendixes A and B show all results.

As can be seen, v-RDFCSA is again the fastest ap-
proach in BEAR-A (1-2 order of magnitude faster),
while the HDT archiving system clearly outperforms
Jena in all scenarios, taking advantages of its efficient
indexing. Nonetheless, the policies plays an important

role: As opposed to the previous Mat and Diff oper-
ations, Jena-CB outperforms Jena-IC in these version
queries, being even more noticeable in BEAR-B with
a large number of versions. The explanation of such
behaviour is that, in version queries, all versions have
to be queried, hence the query of a version Vi in CB
can leverage the already materialized version for the
previous version Vi−1 (note that, in contrast, the IC ap-
proach has to perform two queries over the full Vi−i

and Vi versions). For the same reason, HDT-CB out-
performs HDT-IC in BEAR-B. The only exception in
BEAR-A, where the efficiency of indexes in HDT (in
a case with few but very large versions) still predomi-
nates over the aforementioned gain in CB. In turn, all
the HBIC/CB

S policies follow the same behaviour, with
a compromise between the CB benefit and the number
of IC versions.

Note that R43ples shows poor performance in
ver(Q) queries as the current system forces to specify
a revision via a REVISION(i) keyword (i.e. perform-
ing the query at the given version i), hence all versions
(called revisions) have to be materialized at query
time. Thus, queries in BEAR-B-hour were stopped af-
ter a timeout of 6 hours. As shown in Appendix B,
R43ples managed to complete these queries in BEAR-
B-day (with smaller number of versions), taking an av-
erage of 20 minutes, which is in any case inefficiency
compared to any other approach.

Finally, it is worth mentioning that the Jena-
HBT B/CB

S approach emerges as the fastest approach for
version queries, as it only requires a query over the
full store and then it splits the results by version. In
contrast, the pure Jena-TB approach is seriously com-
promised by the fact that it needs to query and iterate
through all the occurrences on the results in all graphs
(which is potentially large given the Jena indexes).

Cross-version join queries.
We make use of the joins defined in BEAR-B to

test the performance of the systems that support cross-
version joins, namely HDT and Jena under different
archiving policies, and RDF43ples. In order to con-
struct the cross-version join, we split the joins in two
triple patterns, tp1 and tp2, matching the first one in
the initial version and the second one at increasing in-
tervals of 5 versions, i.e., join(tp1,V0, tp2,Vi) for i in
{5, 10, 15, · · · , n− 5, n}. Listing 5 depicts an example
of such join using the AnQL notation.



22 Evaluating Query and Storage Strategies for RDF Archives

Query set
JENA TDB HDT V-RDFCSA R43PLES

IC CB TB HB IC CB HB TB HBT B/CB

HBIC/CB
S HBIC/CB

M HBIC/CB
L HBT B/CB HBIC/CB

S HBIC/CB
M HBIC/CB

L

BEAR-A QS
H 101 72 56693 76 75 89 44 4.98 7.98 10.94 13.59 18.32 0.49 NA

BEAR-B-hour 1189 120 6473 147 138 132 24 111.61 2.49 18.60 17.26 20.45 NA >21600000

Table 8
Average query time (in ms) for ver(Q) queries
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Fig. 7. Query times for join queries with increasing intervals.

Listing 5 Example of a cross-version join query in BEAR-B
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbo: <http://dbpedia.org/ontology/>
{
?film dbo:director ?director : [v0] .
?director dbp:name ?name : [vi].

}

Figure 7 (a) shows the plots for the selected joins
in BEAR-B-hour for all supported systems, whereas
Figure 7 (b) and (d) reports the HDT and Jena hy-
brid approaches, respectively. The figures show simi-
lar tendency as Mat queries, where HDT remains the
fastest approach, building on top of fast triple pat-

tern resolution. In turn, R43ples and CB approaches
pay the price of materializing the deltas. As ex-
pected, given the reverse delta approach, R43ples
improves with more recent versions. Finally, in or-
der to test R43ples in the most favourable condi-
tion, we perform and additional test in BEAR-B-
hour, where one triple pattern is fixed to the lat-
est version. Thus, we measure join(tp1,Vn, tp2,Vi) i
in {0, 200, 400, · · · , 1200, 1298}, shown in Figure 7
(c). Results point out that, even in a favourable case,
R43ples is still penalized (in particular with older ver-
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sions) and can only compete with a Jena-CB policy.

Change materialisation queries.
Finally, we evaluate the performance of change(Q)

queries in all systems except for v-RDFCSA and
TailR, which do not support this type of query. As
we explained, change(Q) queries can be implemented
using di f f (Q) queries for each version, but we de-
cide here to look at specific, tailored optimizations for
change(Q) queries. Thus, in R43ples and Jena using
a hybrid TBCB approach, we translate these queries
to make intensive use of the added and deleted named
graphs, hence change queries are speed up by avoiding
materialization. Listing 6 shows an example of a query
in R43ples that efficiently inspects changes in film di-
rectors. To do so, we resolve the given triple pattern
in all added and deleted graphs (i.e. deltagraph in the
example), whose metadata is stored in a particular re-
vision graph (http://example.org/r43ples-revisions).

Listing 6 Example of a change query in R43ples
PREFIX rmo: <http://eatld.et.tu-dresden.de/rmo#>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?revNumber
WHERE {
GRAPH <http://example.org/r43ples-revisions> {

?r rmo:revisionNumber ?revNumber .
?r ?predDelta ?deltagraph .
?r rmo:revisionOf <http://example.org> .
FILTER (?predDelta=rmo:deltaAdded || ?predDelta

=rmo:deltaRemoved)
}
GRAPH ?deltagraph {

?film dbo:director ?director .
}

}

In turn, in all HDT and Jena cases, we optimize the
resolution by marking a change between two versions
as soon as we find the first different result between two
versions, hence we avoid a full inspection of the ∆+

and ∆− sets. In HDT, the resolution can be improved
as soon as we find discrepancies in the RDF vocabu-
lary (see Definition 9 in our metrics).

Table 9 reports the average query time over each
change(Q) query, for subject lookup queries (with
high number of results) in BEAR-A, and queries in
BEAR-B-hour. Appendixes A and B show all results.
As in Ver(Q) queries, results show that the CB ap-
proach generally outperforms IC, given that changes
can be quickly detected in CB by inspecting the added
and deleted sets. Interestingly, the hybrid IC/CB ap-
proaches, in particular in Jena, pay the price of mate-
rializing some versions. In particular, when inspecting

changes between versions Vi and Vi+1, if version Vi is
stored as a delta and Vi+1 is a fully materialized ver-
sion, then Vi has to be fully materialized in order to
inspect the differences. In turn, the Jena-TB approach
is again compromised as it needs to iterate trough all
the occurrences. Finally, it is worth mentioning that the
aforementioned TBCB optimizations improve the per-
formance significantly: Jena-HBT B/CB

S outperforms all
strategies in Jena, and R43ples is much more competi-
tive in comparison with other query atoms such as ver-
sion materialisation.

6. Conclusions and Future Work

RDF archiving is still in an early stage of research.
Novel solutions have to face the additional challenge
of comparing the performance against other archiv-
ing policies or storage schemes, as there is not a stan-
dard way of defining neither a specific data corpus for
RDF archiving nor relevant retrieval functionalities. To
this end, we have provided foundations to guide future
evaluation of RDF archives. First, we formalized dy-
namic notions of archives, allowing to effectively de-
scribe the data corpus. Then, we described the main
retrieval facilities involved in RDF archiving, and have
provided guidelines on the selection of relevant and
comparable queries. We provide a concrete instanti-
ation of archiving queries using AnQL [48] and in-
stantiate our foundations in a prototypical benchmark
suit, BEAR, composed of three real-world and well-
described data corpus and query testbeds. Finally, we
have implemented state-of-the-art archiving policies
using independent copies (IC), change-based (CB),
timestamp (TB) and hybrid (HB) approaches in two
stores (Jena TDB and HDT). We use BEAR to evaluate
our implementations as well as existing state-of-the-art
archiving systems (v-RDFCSA, TailR, R43ples). Re-
sults clearly confirm challenges (in terms of scalabil-
ity) and strengths of current archiving approaches, and
highlight the influence of the number of versions and
the dynamicity of the dataset in order to select the right
strategy (as well as an input for hybrid approaches in
order to decide when and how to materialize a version),
guiding future developments. In particular, in terms of
space, CB, TB and hybrid policies (such as TB/CB
in R43ples and IC/CB in TailR) achieve better results
than IC in less dynamic datasets, but they are penalized
in highly dynamic datasets due to index overheads. In
this case, the TB policy reports overall good space fig-
ures but it can be penalized at increasing number of
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Query set
JENA TDB HDT R43PLES

IC CB TB HB IC CB HB
HBT B/CB

HBIC/CB
S HBIC/CB

M HBIC/CB
L HBT B/CB HBIC/CB

S HBIC/CB
M HBIC/CB

L

BEAR-A QS
H 151 143 63543 212 307 730 49 24.15 6.93 41.33 29.66 22.80 NA

BEAR-B-hour 1690 196 12295 4569 7182 13546 88 1876.81 3.73 127.32 104.61 95.29 487

Table 9
Average query time (in ms) for change(Q) queries

versions. Regarding query resolution performance, the
evaluated archiving policies excel at different opera-
tions but, in general, the IC, TB and CB/TB policies
show a very constant behaviour, while CB and IC/CB
policies degrade if more deltas have to be queried. Re-
sults also show that specific functional RDF compres-
sion techniques such as HDT and RDFCSA emerge
as promising solutions for RDF archiving in terms of
space requirements and query performance.

We currently focus on exploiting the presented
benchmark to build a customizable generator of evolv-
ing synthetic RDF data which can preserve user-
defined characteristics while scaling to any dataset size
and number of versions. We also work on extending
the benchmark for multiple versioned graphs in a fed-
erated scenario.
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Appendix

A. BEAR-A Performance Results

This appendix comprises the performance results for all subject, predicate and object lookups (S??, ?P? and ??O
respectively) in BEAR-A (see Section 4.1 for a description of the corpus), and the corresponding triple patterns
(SP?), (S?O), (?PO) and (SPO). Figures 8&9 show the results for Mat queries with pure IC, CB and TB approaches
in HDT and Jena. Figures 10&11 compare such results with hybrid IC/CB approaches with HDT, whereas Figures
12&13 perform the comparison with IC/CB and TB/CB approaches. Diff queries are presented in Figures 14-19.
Finally, Tables 10&11 report the results for the Ver query, and Tables 12&13 show the Change queries.
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Fig. 8. BEAR-A: Query times for Mat queries in lookups (S??, ?P? and ??O).
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Fig. 9. BEAR-A: Query times for Mat queries for different triple patterns (SP?, ?PO, S?O and SPO).
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Fig. 10. BEAR-A: Query times for Mat queries in Hybrid approaches in HDT for lookups (S??, ?P? and ??O).
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Fig. 11. BEAR-A: Query times for Mat queries in Hybrid approaches in HDT for different triple patterns (SP?, ?PO, S?O and SPO).
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Fig. 12. BEAR-A: Query times for Mat queries in Hybrid approaches in Jena for lookups (S??, ?P? and ??O).
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Fig. 13. BEAR-A: Query times for Mat queries in Hybrid approaches in Jena for different triple patterns (SP?, ?PO, S?O and SPO).
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Fig. 14. BEAR-A: Query times for Di f f queries with increasing intervals for lookups (S??, ?P? and ??O).
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Fig. 15. BEAR-A: Query times for Di f f queries with increasing intervals for different triple patterns (SP?, ?PO, S?O and SPO).
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Fig. 16. BEAR-A: Query times for Di f f queries with increasing intervals in Hybrid approaches in HDT for lookups (S??, ?P? and ??O).
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Fig. 17. BEAR-A: Query times for Di f f queries with increasing intervals in Hybrid approaches in HDT for different triple patterns (SP?, ?PO,
S?O and SPO).
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Fig. 18. BEAR-A: Query times for Di f f queries with increasing intervals in Hybrid approaches in Jena for lookups (S??, ?P?, ??O).
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Fig. 19. BEAR-A: Query times for Di f f queries with increasing intervals in Hybrid approaches in Jena for different tripe patterns (SP?, ?PO,
S?O and SPO).
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Query set
JENA TDB HDT V-RDFCSA

IC CB TB HB IC CB HB TB
HBIC/CB

S HBIC/CB
M HBIC/CB

L HBT B/CB HBIC/CB
S HBIC/CB

M HBIC/CB
L

QS
L 66 24 42732 24 31 32 7 1.54 1.91 2.30 2.47 2.64 0.22

QS
H 101 72 56693 76 75 89 44 4.98 7.98 10.94 13.59 18.32 0.49

QP
L 437 77 49411 115 130 115 79 42.88 13.79 30.97 29.03 31.71 NA

QP
H 809 205 54246 383 411 302 210 116.96 46.62 101.05 88.41 101.55 NA

QO
L 67 23 49424 23 23 45 6 1.44 2.36 2.96 2.85 2.91 0.15

QO
H 99 67 58114 80 74 74 54 7.12 11.73 14.28 16.40 20.18 3.49

Table 10
BEAR-A: Average query time (in ms) for ver(Q) queries in lookups (S??, ?P? and ??O)

Query set
JENA TDB HDT

IC CB TB HB IC CB HB
HBIC/CB

S HBIC/CB
M HBIC/CB

L HBT B/CB HBIC/CB
S HBIC/CB

M HBIC/CB
L

QS P
L 53 15 55283 15 15 16 1 0.83 1.02 1.07 1.15 1.13

QS P
H 67 50 57720 45 50 50 17 1.75 3.88 4.48 4.69 5.59

QPO
L 57 21 56151 20 20 21 3 1.32 2.04 2.01 2.03 2.15

QPO
H 136 116 59831 113 107 121 92 11.58 20.91 24.82 29.74 38.39

QS O
L 55 16 45193 19 17 18 1 1.36 1.78 2.02 1.73 1.73

QS PO 54 17 50393 16 17 17 1 18.35 3.37 11.14 9.17 8.00

Table 11
BEAR-A: Average query time (in ms) for ver(Q) queries in different tripe patterns (SP?, ?PO, S?O and SPO)

Query set
JENA TDB HDT

IC CB TB HB IC CB HB
HBIC/CB

S HBIC/CB
M HBIC/CB

L HBT B/CB HBIC/CB
S HBIC/CB

M HBIC/CB
L

QS
L 37 32 59759 60 80 118 11 7.41 6.49 13.85 11.88 14.40

QS
H 151 143 63543 212 307 730 49 24.15 6.93 41.33 29.66 22.80

QP
L 809 102 68335 503 634 881 88 22.73 5.36 160.72 80.77 50.54

QP
H 2114 479 82382 1902 2336 3145 275 3.99 3.99 552.39 240.56 145.68

QO
L 59 33 87018 48 69 104 7 11.50 14.18 19.92 16.07 19.37

QO
H 149 135 64042 210 346 557 83 25.81 18.58 56.01 37.84 37.76

Table 12
Average query time (in ms) for change(Q) queries in lookups (S??, ?P? and ??O)

Query set
JENA TDB HDT

IC CB TB HB IC CB HB
HBIC/CB

S HBIC/CB
M HBIC/CB

L HBT B/CB HBIC/CB
S HBIC/CB

M HBIC/CB
L

QS P
L 55 70 68651 104 140 222 22 10.14 13.23 21.94 24.59 19.92

QS P
H 19 18 164933 32 48 85 1 4.03 3.08 10.00 10.11 8.98

QPO
L 229 237 72853 319 520 892 176 36.54 30.09 92.61 67.83 52.04

QPO
H 24 25 100538 45 57 90 5 9.80 14.89 18.84 17.69 18.17

QS O
L 21 22 121483 38 52 79 1 5.41 13.65 14.46 15.67 13.80

QS PO
H 22 29 49 43 68 90 1 15.25 23.06 17.07 37.23 28.22

Table 13
Average query time (in ms) for change(Q) queries in lookups (SP?, ?PO, S?O and SPO)
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B. BEAR-B Queries

This appendix shows the performance results of BEAR-B (see Section 4.2 for a description of the corpus).
We focus here on reporting BEAR-B-day and BEAR-B-hour results, whereas current systems were unable to
efficiently query the 21,046 versions in BEAR-B-instant and a report can be found in the BEAR repository
(https://aic.ai.wu.ac.at/qadlod/bear).

Figures 20-22 show the results for Mat queries with pure IC, CB and TB approaches, hybrid IC/CB approaches
with HDT and hybrid IC/CB and TB/CB approaches in Jena, respectively. Figures 23-25 present Diff queries, and
Figure 26 report join performance. Last, Table 14 reports the results for the Ver query and Table 15 shows the results
for Change queries.
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Fig. 20. BEAR-B: Query times for Mat queries.
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Fig. 21. BEAR-B: Query times for Mat queries in Hybrid approaches in HDT.
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Fig. 22. BEAR-B: Query times for Mat queries in Hybrid approaches in Jena.
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Fig. 23. BEAR-B: Query times for Di f f queries with increasing intervals.
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Fig. 24. BEAR-B: Query times for Di f f queries with increasing intervals in Hybrid approaches in HDT.
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Fig. 25. BEAR-B: Query times for Di f f queries with increasing intervals in Hybrid approaches in Jena.

Dataset
JENA TDB HDT R43PLES

IC CB TB HB IC CB HB
HBT B/CB

HBIC/CB
S HBIC/CB

M HBIC/CB
L HBT B/CB HBIC/CB

S HBIC/CB
M HBIC/CB

L

BEAR-B-day 83 19 1775 32 25 23 6 6.57 0.43 3.64 2.43 1.78 1211019
BEAR-B-hour 1189 120 6473 147 138 132 24 111.61 2.49 18.60 17.26 20.45 >21600000

Table 14
BEAR-B: Average query time (in ms) for ver(Q) queries
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(b) BEAR-B-day; Hybrid approaches in HDT.
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(c) BEAR-B-day; Hybrid approaches in Jena.
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(e) BEAR-B-hour; Hybrid approaches in HDT.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  200  400  600  800  1000  1200

q
u
er

y
 t

im
e 

in
 m

s 
(l

o
g
sc

al
e)

join(q,0,t) 

Jena-IC

Jena-CB

Jena-HB4

Jena-HB8

Jena-HB16

Jena-HB
CB/TB

(f) BEAR-B-hour; Hybrid approaches in Jena.

Fig. 26. Query times for join queries with increasing intervals.

Query set
JENA TDB HDT R43PLES

IC CB TB HB IC CB HB
HBT B/CB

HBIC/CB
S HBIC/CB

M HBIC/CB
L HBT B/CB HBIC/CB

S HBIC/CB
M HBIC/CB

L

BEAR-B-day 164 55 296 146 182 204 22 25.88 0.35 28.01 18.07 11.75 58
BEAR-B-hour 1690 196 12295 4569 7182 13546 88 1876.81 3.73 127.32 104.61 95.29 487

Table 15
Average query time (in ms) for change(Q) queries
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C. BEAR-C Queries

This appendix lists the 10 selected queries for BEAR-C (see Section 4.3 for a description of the corpus). First,
listing 7 shows an excerpt from the corpus (in RDF turtle25). Then, the queries are described in Listings 8-17.

Listing 7 Excerpt from BEAR-C: the European Open Data portal.
@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix ode: <http://open-data.europa.eu/en/data/dataset/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

<http://open-data.europa.eu/> dcat:dataset ode:0009a499-27a4-424e-8a43-a7cd8410121f .

ode:0009a499-27a4-424e-8a43-a7cd8410121f rdf:type dcat:Dataset;
dc:issued "2015-10-16T12:42:44.565211"^^xsd:dateTime ;
dc:modified "2016-06-10T09:37:26.235832"^^xsd:dateTime ;
dc:title "Life expectancy at birth by sex and NUTS 2 region" ;
dcat:contactPoint <http://example.org/bnode/10f0848c46635047048b461ce5e78ab1f2cd2bae> ;
dcat:distribution <http://open-data.europa.eu/en/data/dataset/0009a499-27a4-424e-8a43-

a7cd8410121f/resource/f77f9f71-8c71-46d7-8bfd-43b60113b30d> .

<http://open-data.europa.eu/en/data/dataset/0009a499-27a4-424e-8a43-a7cd8410121f/resource/f77f9f71-8
c71-46d7-8bfd-43b60113b30d> dc:description "Download dataset in TSV format";

dc:issued "2016-06-10T11:37:26.795354"^^xsd:dateTime ;
dc:license <http://ec.europa.eu/geninfo/legal_notices_en.htm> ;
dcat:accessURL <http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing?

file=data/tgs00101.tsv.gz> ;
dcat:mediaType "application/zip" .

<http://example.org/bnode/10f0848c46635047048b461ce5e78ab1f2cd2bae> rdf:type vcard:Organization ;
vcard:fn "Eurostat, the statistical office of the European Union" .

Listing 8: Q1: Retrieve portals and their files.

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{
?dataset rdf:type dcat:Dataset .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .

}

Listing 9: Q2: Retrieve the modified data of portals.

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{

?dataset rdf:type dcat:Dataset .
?dataset dc:modified ?modified_date .

}

Listing 10: Q3: Get contact points of portals.

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{
?dataset rdf:type dcat:Dataset .
?dataset dcat:contactPoint ?contact .
?contact vcard:fn ?name.
OPTIONAL{

?contact vcard:hasEmail ?email .
}

}

Listing 11: Q4: Filter portals with a title including ’re-
gion’ and their files with a particular license.

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX eu: <http://ec.europa.eu/geninfo/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{

?dataset rdf:type dcat:Dataset .
?dataset dc:title ?title .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .
?distribution dc:license eu:legal_notices_en.htm .
FILTER regex(?title, "region")

}

25https://www.w3.org/TR/turtle/
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Listing 12: Q5: Filter files with "Austria" or "Ger-
many".

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{
{

?dataset rdf:type dcat:Dataset .
?dataset dc:title ?title .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .
?distribution dc:description "Austria" .

}
UNION
{

?dataset rdf:type dcat:Dataset .
?dataset dc:title ?title .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .
?distribution dc:description "Germany" .

}
}

Listing 13: Q6: Find datasets with the same issued and
modified date.

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{

?dataset rdf:type dcat:Dataset .
?dataset dc:title ?title .
?dataset dc:issued ?date .
?dataset dc:modified ?date .

}

Listing 14: Q7: Find files of all datasets older than 2015

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{
?dataset rdf:type dcat:Dataset .
?dataset dc:title ?title .
?dataset dc:issued ?date .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .
FILTER (?date>"2014-12-31T23:59:59"^^xsd:dateTime)

}

Listing 15: Q8: Get all CSVs files.

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{

?dataset rdf:type dcat:Dataset .
?dataset dc:title ?title .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .
?distribution dcat:mediaType "text/csv" .
?distribution dc:title ?filetitle .
?distribution dc:description ?description .

}

Listing 16: Q9: Get portals that distribute both CSVs
and TSVs files.

### GET ALL with CSV and PDF
PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{
?dataset rdf:type dcat:Dataset .
?dataset dc:title ?title .
?distr1 dcat:distribution ?dataset .
?distr1 dcat:accessURL ?URL1 .
?distr1 dcat:mediaType "text/csv" .
?distr1 dc:title ?titleFile1 .
?distr1 dc:description ?description1 .
?distr2 dcat:distribution ?dataset .
?distr2 dcat:accessURL ?URL2 .
?distr2 dcat:mediaType "text/tab-separated-values"

.
?distr2 dc:title ?titleFile2 .
?distr2 dc:description ?description2 .

}

Listing 17: Q10: Retrieve limited information of portals
and files.

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
{

?dataset rdf:type dcat:Dataset .
?dataset dc:title ?title .
?dataset dcat:distribution ?distribution .
?distribution dcat:accessURL ?URL .
?distribution dcat:mediaType ?mediaType .
?distribution dc:title ?filetitle .
?distribution dc:description ?description .

}
ORDER BY ?filetitle
LIMIT 100 OFFSET 100


