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Abstract

The field of Complex Event Processing (CEP) relates to the techniques and tools developed to efficiently process pattern-based
queries over data streams. The Semantic Web, through its standards and technologies, is in constant pursue to provide solutions
for such paradigm while employing the RDF data model. The integration of Semantic Web technologies in this context can handle
the heterogeneity, integration and interpretation of data streams at semantic level. In this paper, we propose and implement a
new query language, called SPAsEQ, that extends SPARQL with new Semantic Complex Event Processing (SCEP) operators
that can be evaluated over RDF graph-based events. The novelties of SPAseqQ includes (i) the separation of general graph pattern
matching constructs and temporal operators; (ii) the support for RDF graph-based events and multiple RDF graph streams; and
(iii) the expressibility of temporal operators such as Kleene+, conjunction, disjunction and event selection strategies; and (iv) the
operators to integrate background information and streaming RDF graph streams. Hence, SPAsEQ enjoys good expressiveness
compared with the existing solutions. Furthermore, we provide an efficient implementation of SPAsEQ using a non-deterministic
automata (NFA) model for an efficient evaluation of the SPAsEQ queries. We provide the syntax and semantics of SPAseQ and
based on this, we show how it can be implemented in an efficient manner. Moreover, we also present an experimental evaluation
of its performance, showing that it improves over state-of-the-art approaches.

Keywords: Complex Event Processing, Query Language, Semantic Web, SPARQL, RDF streams, Automata Model, Query
Optimisation

1. Introduction streaming applications: each data item within a data

. i ) stream is considered as an event and predefined tem-
Stream processing has become an important paradigm

for processing data at high speed and large scale, where
query operators such as selection, aggregation, filter-
ing of data are performed in a streaming fashion [1,2].
Complex Event Processing (CEP) systems, however, nancial trading, security monitoring, healthcare, so-
provide a different view and additional operators for cial and sensor network analysis [3,4,5]. In general,

poral patterns are used to generate actions to the sys-
tems, people and devices. CEP systems have demon-
strated utility in a variety of applications including fi-
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CEP denotes algorithmic methods for making sense of
events by deriving higher-level knowledge, or complex
events from lower-level events in a timely fashion. CEP
applications commonly involve three requirements:

(i) complex predicates (filtering, correlation);
(ii) temporal, order and sequential patterns; and
(iii) transforming event(s) into more complex struc-
tures [0,7].

The past several years have seen a large number of CEP
systems and query languages being developed by both
academic and industrial worlds [5,8,9,10,11,12,13,14].
However, most of the existing CEP systems consider
a relational data model for streams and their proposed
languages and optimisations are also tightly coupled
with such model. Hence, the issues of integration and
analysis of data coming from diverse sources — with
varying formats — are not covered under this model and
requires a radical change in their approach.

Following the trend of using RDF as a unified data
model for integrating diverse data sources across het-
erogeneous domains, Semantic CEP (SCEP) employs
the RDF data model to handle and analyse complex
relations over RDF graph streams. In addition, it can
also employ the static background information (static
RDF datasets or ontologies) to reason upon the context
of detected events. Thus, the events within streams are
enriched with semantics, which in turn can lead to new
applications that tackle the variety and heterogeneity
of data sources.

The design of an efficient SCEP system requires care-
fully marrying the temporal operators with the RDF
data model and the additional characteristic of event
enrichment. Even though SCEP can be evolved from
the common practice of stitching heterogeneous tech-
niques and systems, a well organised query language is
a vital part of SCEP: it not only allows users to specify
known queries or patterns of events in an intuitive way,
but also to showcase the expected answers of a query
while hiding the implementation details.

While there does not exist a standard language for
expressing continuous queries over RDF streams, a few
options have been proposed. In particular, a first strand
of research focuses on extending the scope of SPARQL
to enable the stateless continuous evaluation of RDF
triple streams called RDF Stream Processing (RSP) lan-
guages. These query languages include CQELS [15],
C-SPARQL [16], SPARQLSgeam [17]: they are used to
match query-defined graph patterns, aggregates and fil-
tering operators against RDF triple streams, i.e. a se-

quence of RDF triples (subject, predicate, object), each
associated with a timestamp 7. Most of these languages
do not provide any explicit temporal pattern matching
operator and thus cannot be classified under the SCEP
languages.

The second strand of research focused on SCEP
languages to extend SPARQL with stateful operators,
where few options have been proposed [18,19,20]. EP-
SPARQL [ 8]—withits expressive language and frame-
work — is the primary player in this field with other
works focusing on a subset of operators and function-
alities. EP-SPARQL extends SPARQL with sequence
constructs that allow temporal ordering over triple
streams and its semantics are derived from the ETALIS
language [13]. Although EP-SPARQL is a pioneering
work in the field of SCEP, it suffers from drawbacks
such as mixing of sequence and graph pattern matching
operators, single triple stream model, lack of explicit
Kleene+, and event selection operators.

Considering these shortcomings, our contribution in
this paper is twofold. First, we present a novel query
language and system, called SPAsEQ, to enable com-
plex event processing over multiple streams using the
RDF graph model. Second, we present an efficeint
framework to process SPAsEQ queries. SPASEQ covers
the aforementioned shortcomings of existing languages
and systems, and provides a unified language for SCEP
over RDF graph streams, while introducing expressive
explicit temporal operators. The use of explicit opera-
tors lets the users specify complex queries at high level
and enables the appropriate implementation details and
optimisations at the domain specific level. The main
features of the SPASEQ query language are summarised
as follows:

— The most important feature of SPAsEQ is that it
clearly separates the query components for de-
scribing temporal patterns over RDF graph events,
from specifying the graph pattern matching over
each RDF graph event. This result in language
reusability and expressiveness. This separation
distinguishes SPAseqQ from other SCEP query lan-
guages.

— It provides an RDF graph stream model to sup-
port streaming of graphs instead of triples. This al-
lows to structure more complex events in a stream.
Furthermore, it provides event processing over
multiple RDF graph streams, while following the
SPARQL specification of named datasets [21].

— It is equipped with expressive temporal opera-
tors such as Kleene+, disjunction, conjunction and
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event selection strategies over events from multi-
ple streams.

— It provides explicit operators to join background
knowledge and RDF graph streams.

These features stem from the general specifications
described by the W3C RSP community group [22] and
the use cases for the CEP [23,24,10,8,25,26].

As our second contribution, we provide an execu-
tional framework for SPAsEQ using a non-deterministic
finite automata (NFA) model called NFA .. Although
a large number of techniques exist to process tempo-
ral operators [5,13,11], the NFA model offers higher
expressiveness required for SPAseq. Hence, leverag-
ing the automata-based techniques, SPAsEQ queries are
compiled over equivalent NFAs: the compiled NFA is
processed to incrementally produce the partial matches
before a full match of the query is produced. Moreover,
we employ various optimisation techniques on top of
our system. It includes indexing and partitioning of in-
coming streams by run id; pushing the stateful pred-
icates and query windows; and lazy evaluation of the
disjunction and conjunction operators.

Our main contributions are summarised as follows:

— We present the design and syntax of a novel SCEP
query language, called SPAsEQ, through intuitive
examples.

— We provide the detailed semantics of SPAseQ and
its main operators.

— We provide the NFA-based framework to effi-
ciently compile and evaluate SPAsEQ queries.

— We provide system and operator-level optimisa-
tion strategies for SPAsEQ queries.

— Using real-world and synthetic datasets, we show
the effectiveness of our optimisation strategies and
our experimental evaluations show that they out-
perform existing systems for the same use cases
and datasets.

The rest of the paper is structured as follows. Sec-
tion 2 presents the motivational examples to showcase
the requirements for a SCEP language. Section 3 re-
views the related work. Section 4 presents the data
model and syntax of SPAsgQ. Section 5 presents the
semantics of the SPAseqQ language. Section 6 presents
the details about the compilation of SPAsEQ queries
onto the NFA .., model, the evaluation of NFA ., au-
tomata and the design of the SPAsEQ query engine.
Section 7 presents the optimisations techniques used
for the SPAsEQ query engine. Section 8 provides ex-
perimental evaluations of the SPAsEqQ query engine.
Section 9 concludes the paper.

2. Motivational Examples and Requirements

In the following, we use various use cases to show
the kind of expressiveness and flexibility needed for a
SCEP query language.

UC 1 (Smart Grid Monitoring) A smart grid moni-
toring application processes events from multiple dis-
tributed streams with the aim to notify the users of an
online service to take a decision to improve the power
usage when a defined pattern is detected [27,28]. An ex-
ample of it is to notify the user to switch to a renewable
power source instead of fuel-based power source, if the
system observes the following pattern: (A) the price
of electricity generated by a fuel-based power source
is greater than a certain threshold; (B) weather con-
ditions are favourable for renewable energy produc-
tion (one or more events); and (C) the price of storage
source attached to the renewable power source is less
than the fuel-based power source. Moreover, a back-
ground knowledge-base (KB) containing information
about the homes’ addresses, owners and measurement
units, etc., can be used to further enrich the matched
events.

UC 2 (Trajectory Classification) Trajectory classifi-
cation involves in determining the sequence of objects
movement (trajectories) to determine their types [23,

]. For instance, finding the fishing boat by discover-
ing the trajectory of a boat over some time interval. An
example pattern to determine the trajectory of fishing
boats represents the following pattern: A: vessel leaves
the harbour, B: vessel travels by keeping steady speed
and direction (one or more events), C: vessel arrives
at the fishing area and stops. The information about
the owner of the vessels, shipping company a vessel is
operating under, address of the fishing area, etc., can
be used from a background KB to enrich the matched
events.

UC 3 (Fraud Management) Fraud management has
become a central aspect in today’s world, and it cov-
ers a large variety of domains. The goal in credit card
fraud management is to detect fraud within 25 millisec-
onds, in order to prevent the financial loss [24]. An
important pattern in this context is to detect the "Big
after Small” fraudulent transaction [24,30]. That is, an
attacker withdraws one or or a series of small amounts
from a credit card after withdrawing a large sum of
money. The SCEP query in this context detects the fol-
lowing pattern: (A) the withdrawn amount gradually
increases; (B) until it is considerably less than the ear-
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lier withdrawn (one or more events). Furthermore, a
background KB containing the cards’ owner names, is-
suing banks, etc., can further enrich the context of the
matched events.

UC 4 (Stock Market Analytics) A stock market ana-
Iytics platform processes financial transactions to de-
tect the patterns that signify the emergence of profit
opportunities [10,8,25]. Examples of such pattern are
head-and-shoulders [31], V-shaped [S8,32], and W-
shaped [206] patterns. From the set of these patterns, the
head and shoulder pattern is defined as follows: A the
left shoulder (increase in the stock price) that is formed
by an uptrend; B detect the head being a peak higher
than the left shoulder (one or more events); C the right
shoulder that shows an increase but fails to take out the
peak value of the head. Moreover, background KB con-
taining the company related information, such as ad-
dress, CEO, type, etc., can be joined with the matched
events to extract the contextual information.

UC 5 (Traffic Management) With the growing popu-
larity of Internet of Things (IoT) technologies, more and
more cities are leaning towards the initiative of smart
cities to provide robust traffic management [33,34]. A
key use case in this context is to be proactive against
the traffic jams due to an accident or a social event.
Hence taking actions to keep the traffic jams as lo-
cal as possible and stop its effect propagation to the
main roads of the city [341]. A query for such use case
would be: A If a road segment is congested followed
by B (at least) one of its connected road segments is
also congested then traffic should be directed to other
directions. The information about the road segments’
congestion is gathered from a set of streams, each from
a sensor located at a road segment. Further contextual
information such as the exact location of the sensors,
the type of the road, etc., can be extracted from an static
background KB.

Using the aforementioned use cases, we identify the
set of requirements for a SCEP.

2.1. RDF Graph-based Events

All the use cases discussed above provide events that
contain multiple observations and hence require RDF
graph-based event model instead of RDF triples. This
allows to structure more complex events in a stream, as
opposed to plain triples. For instance, a weather event
requires multiple triples to describe the current weather
conditions such as temperature, humidity, wind speed,

SEQ (A, B, C)
ay b, cq a ag b, [
o >
1 2 3 4 5 6 7
timeline
(a)
Strict Contiguity Skip-till-Next Skip-till-Any

. M;={ay, by,cy} | My={ay, by,cq}
My={2q, Dy, Cq}
M2={32, bza Co} M2=(a1‘ b2’02)

Mg={ag, by, Gy} | Ms={ap by Co}

M,={ag D Cp}

(b)

Figure 1. (a) Pattern to be matched and the input stream, (b) the table
showcase all the set of matches that can be extracted from the input
stream using different event selection strategies

etc. Another reason to provide RDF graph-based events
is the flexibility in timestamping, i.e. using source or
system timestamp. This can only be possible if times-
tamps can be attached to an event structure. That cannot
be achieved with plain triples [22,20].

2.2. Multiple Streams

The integration of multiple streams is essential in
UC 1, 2 and 5. For instance, UC 1 detects patterns
over events coming from a fuel-based power stream, a
weather stream and a power-storage stream, while in 5
we employ multiple streams each for a road segment.
Although one could merge all the streams together be-
fore processing, this would introduce the practical prob-
lems as described for RDF reification [21], where a
pure triple data model is not adequate enough to rep-
resent meta-information about the RDF data [21,35].
In SPARQL, the RDF reification problem is addressed
with the introduction of named graphs[21]. Further-
more, named graphs enforce the blank node scoping
rules [36] with the global assumption that blank nodes
cannot be shared between named graphs. Considering
this, the SCEP should allow the definition of multiple
named streams to provide the scope on the graph-based
events. A similar approach is used in the existing RSP
query languages, such as CQELS and C-SPARQL, and
this can be achieved by extending the FROM NAMED
clause of SPARQL.
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2.3. Expressive Temporal Operators

The main aim of an SCEP language is to provide
temporal operators on top of standard SPARQL graph
pattern matching constructs. Thus, the list of temporal
operators introduced for the CEP over relational mod-
els [4,9,37] should be supported in a SCEP language.
The two main operators, apart from the traditional se-
quence operator, that are required in all the aforemen-
tioned use cases are Kleene+ and event selection strate-
gies. They are described as follows.

Kleene+ Operator. This is a widely used operator in
the CEP languages [5,38,8]. It is used to extract fi-
nite yet unbounded number of events with a particular
property from the input streams. Most, if not all, of the
aforementioned use cases cannot be expressed to its
core without this operator. For example, UC | requires
Kleene+ to select one or more events that represent
favourable weather conditions; UC 2 requires Kleene+
on activity events of the vessels; UC 3 requires one or
more lower withdrawn amounts using Kleene+.

Event Selection Strategies. In general, the sequence
temporal patterns between events detect the occurrence
of an event followed-by another. However, a deeper look
reveals that it can represent various different circum-
stances using different event selection strategies [38,4].
Event selection strategies determines how the selected
events for a pattern follow each other, hence mix-
ing the relevant and irrelevant events from the input
streams [38]. The three main event selection strategies
described in the CEP literature [4,8,25] are strict con-
tiguity, skip-till-next and skip-till-any. The first selec-
tion strategy states that the events for a match should
be contiguous in the input stream, the second relaxes
this by skipping the irrelevant events until the next rel-
evant event arrives, while the third one selects all the
possible patterns by skipping both relevant and irrel-
evant events. Figure 1 (a) shows the input stream and
the pattern to be matched, while the table in Figure 1
(b) shows all the matches for the pattern for each event
selection strategy. Note how having the same sequence
pattern but different event selection strategies results
in diverse outputted matches. The importance of these
operators can also be inferred from the aforementioned
use cases. For instance, in UC 1, weather-related events
generally repeat the observed values and can be skipped
to find the most relevant event to be matched; in UC 4,
we need to select the relevant events by ignoring local
price fluctuations to preserve opportunities of detect-
ing longer and thus more reliable patterns. Providing

event selection strategies at the query level would en-
able the users to determine the semantic differences
between them and tailor their usage according to the
targeted use cases [20]. Furthermore, these operators
are also described at the query level for most of the
CEP languages [38,8].

2.4. Separation of Query Constructs

A SCEP query language has to express graph pat-
terns to match events’ content and temporal operators
to determine the temporal relations between events.
Hence, a separation of these two orthogonal constructs
would enable language reusability and ease in imple-
mentation. This way, constructs for graph patterns can
be borrowed directly from SPARQL, and temporal op-
erators from the CEP literature. For example, in UC 1,
the price and weather conditions for events can be
matched using the constructs from SPARQL 1.1, while
the sequencing and Kleene+ operators can be used to
determine the defined sequences.

2.5. Background Knowledge

One of the main properties of the SCEP is to provide
extra knowledge about the situation of interest. Since
the streams traditionally do not include the static infor-
mation, such information can be used as a background
knowledge. Hence a SCEP query language should pro-
vide operators to directly enrich events through a static
background knowledge. For example, in UC1, user pro-
files and detailed information about the power sources;
in UC 2, detailed information about the shipping ves-
sels; in UC 4, detailed information about the company
whose stock events are in question, etc. The operators
for the background knowledge-base at the query-level
also provide the control over which background infor-
mation is required for a query, i.e. joining only the rel-
evant information. For the same reason, existing RSP
solutions [39,40] provide such operators at the query-
level.

In this section, we pointed out various general re-
quirements of a SCEP query language. In the next sec-
tion, using them as a yardstick, we outline the limita-
tions of existing languages.

3. Related Work

Existing languages for RDF stream processing sys-
tems differ from each other in a wide range of aspects,
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which include the executional semantics, data models
and targeted use cases. In this section, we adopt the
same classification criteria as used in [41], and divide
the systems into two classes: RDF Stream Processing
(RSP) systems, and Semantic Complex Event Process-
ing (SCEP) systems. Their details are discussed as fol-
lows.

3.1. RDF Stream Processing (RSP) Systems

The standardisation of the RSP is still an ongoing
debate and the W3C RSP community group [22] is an
important initiative in this context. Most of the RSP
systems [15,16,17,42] inherit the processing model
of Data Stream Management Systems (DSMSs), but
consider a semantically annotated data model, namely
RDF triple streams. Query languages for these sys-
tems are inspired from CQL [43], where a contin-
uous query is composed from three classes of op-
erators, namely stream-to-relation (S2R), relation-to-
relation (R2R), and relation-to-stream (R2S) operators.
C-SPARQL [16] and CQELS [15] are among the first
contributions, and often cited as a reference in this field.
They support timestamped RDF triples and queries are
continuously updated with the arrival of new triples.
The query languages for both systems extend SPARQL
with operators such as FROM STREAM and WINDOW to
select the operational streams, and the most recent
triples within sliding windows. They also support the
integration of background static data to further enrich
the incoming RDF triples. Unlike the aforementioned
systems, recently, we proposed a system called SPEC-
TRA [44] to process RDF graph streams. It provides
various system and operator level optimisations and
continuously processes the standard SPARQL queries
over RDF graph streams.

All the aforementioned systems and various others
[17,42] are mainly developed as real-time monitoring
systems: the states of the events are not stored to im-
plement temporal pattern matching among a set of
events. For the same reason, their query languages do
not provide any operators for temporal pattern match-
ing. Although, the sequence-based query is partially
supported in C-SPARQL through a timestamp func-
tion in Filter, the query construction and results are
cumbersome.

3.2. Semantic CEP Systems

Semantic CEP (SCEP) systems are evolved from the
classical rule-based CEP systems, i.e. by integrating

high-level knowledge representation and background
static knowledge. To the best of our knowledge, EP-
SPARQL is the only system that provides a unified lan-
guage and executional framework for processing se-
mantically enriched events with the temporal order-
ing. Hence, it is the most relevant work w.r.t ours. EP-
SPARQL extends SPARQL 1.0 with a set of four binary
temporal operators: SEQ, EQUALS, OPTIONAL-SEQ, and
EQUALS-OPTIONAL. Using these operators, complex
events in EP-SPARQL are defined as basic graph pat-
terns. Since this technique is similar to the UNION and
OPTIONAL operators in SPARQL, events are not first
class citizens.

Although EP-SPARQL is a pioneering work in the
field of SCEP, it lacks various important features. These
limitations are discussed as follows:

— Triple-based Events: EP-SPARQL only support
triples as events annotated with time-intervals.
This restricts to structure more complex events as
discussed before.

— Single Stream: EP-SPARQL data model is based
on a single stream model and all the triples within
a defined window are merged into a default graph
and then queried for matches. Hence the meta-
information os triples, such as the source and oc-
curring time, cannot be captured. Furthermore,
it raises several questions about the treatment of
blank nodes: being part of the RDF specification,
blank nodes are now a core aspect of Semantic
Web technology and they are featured in several
W3C standards, a wide range of tools, and hun-
dreds of datasets across the Web [36].

— Temporal Operators: EP-SPARQL only supports
a small subset of temporal operators. Operators
such as Kleene+ or event selection strategies are
not supported. These operators are, however, im-
portant for many SCEP applications as discussed
before. Moreover, the conjunction and disjunc-
tion operators in EP-SPARQL are inspired from
SPARQL (UNION and AND). These operators do
not provide the nesting over a set of events as de-
scribed for CEP systems [5,37]. This leads to a
design where the semantics of temporal operators
and SPARQL graph patterns are mixed, hence it
can be devious to extend it and construct advanced
event processing patterns [46].

— Enriching Events with Background Knowledge:
The static background knowledge is used to ex-
tract further implicit information from events. As
a query language, EP-SPARQL does not provide
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Properties of the

Table 1
Existing SCEP Systems

CEP Systems Input Model

EP-SPARQL [ 18] Triple Streams

STARQL [19]
RSEP-QL [20]

Triple Streams
Graph Streams

CQELS-CEP [45] Graph Streams

Operators Available Implementation
Sequence, Conjunction, v

Disjunction, Optional

Sequence X

Sequence, Event Selec- X

tion Strategies

Sequence,Optional, X

Negation

any explicit operator to join graph patterns de-
fined on an external knowledge and incoming RDF
events. It, however, employs Prolog rules or RDFS
rules within an ETALIS engine. This results in
expensive reasoning process for each incoming
event and user is not able to select only the specific
required information [41].

Apart from EP-SPARQL, recently, some other works
also provide the intuition of SCEP. Some of these works
are presented mainly for the purpose of theoretical anal-
ysis instead of practical implementation, while others
take an approach for transforming queries over ontolo-
gies into relational ones, via ontology-based data ac-
cess (OBDA) with temporal reasoning. Table 1 shows
the properties of these systems. STARQL [47] uses the
OBDA technique to determine Abox sequencing with
a sorted first order logic on top of them. It provides
simple formalism/mapping to SQL for sequence op-
erators and all the other operators (such as Kleene+,
conjunction, disjunction, event selection strategies) are
not part of its framework. Furthermore, it is not a
freely available system and it does not provide operators
for explicitly referencing different points in time [19].
CQELS recently proposed in [45] the integration of se-
quence and path negation operators inspired from EP-
SPARQL. However, its sequence clause is evaluated
over a single stream and its syntax and semantics does
not include event selection strategies. RSEP-QL [20]
is a reference model to capture the behaviour of exist-
ing RSP solutions and to capture the semantics of EP-
SPARQL’s sequence operator. It is based on the RDF
graph model; however, its main focus is to capture the
event selection strategies and other complex operators
are currently not supported. It defines the semantics of
the three main event selection strategies supported by
the ETALIS engine. It includes recent, chronological
and unrestricted. The recent selection strategy can be
mapped to the strict contiguity, while chronological and

unrestricted are different variations of the skip-till-next
strategy. However, due to the time-interval semantics
these selection strategies cannot be directly mapped to
ours.

4. The SPAseq Query Language

Considering the shortcomings of existing languages,
we propose a new language called SPAsEQ. The design
of SPAsEQ is based on the following main principles:
(1) support of an RDF graph stream model; (2) clear
separation between the temporal and RDF graph opera-
tors; (3) adequate expressive power, i.e. not only based
on core SPARQL constructs but also including general
purpose temporal operators (inspired from the common
CEP operators); (4) genericity, i.e. independent of the
underlying evaluation techniques; (5) compositionality,
i.e. the output of a query can be used as an input for
another one. Hence SPAsEQ provides all the required
features as discussed in Section 2.

The most important feature of SPAsEq is that it
clearly separates the query components for describing
temporal patterns over RDF graph events, from speci-
fying the graph pattern matching over each RDF graph
event. This enables SPAsEQ to employ expressive tem-
poral operators, such as Kleene+, disjunction, conjunc-
tion and event selection strategies over RDF graph-
based events from multiple streams. In the following,
we start with the data model over which SPAsEQ queries
are processed and then provide the details regarding its
syntax and semantics.

4.1. Data Model

In this section, we introduce the structural data model
of SPAsEeq that captures the concept of RDF graph
events: this serves as the basis of our query language.
We use the RDF data model [48] to model an event.
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That is, we assume three pairwise disjoint and infinite
sets of IRIs (Z), blank nodes (15), and literals (£). An
RDF tripleis atuple (s, p,0) € (ZUB)xZx(ZUBUL)
and an RDF graph is a set of RDF triples. Based on
this, the concepts of RDF graph event and stream are
defined as follows.

Definition 1 An RDF graph event (G, ) is a pair (1,G)
where G is an RDF graph, and T is an associated times-
tamp that belongs to a one-dimensional, totally ordered
metric space.

We do not make explicit what timestamps are be-
cause one may rely on, e.g., UNIX epoch, which is a
discrete representation of time, while others could use
xsd:dateTime which is arbitrarily precise.

In our setting, streams are sets of RDF graph events
defined as follows:

Definition 2 An RDF graph event stream S is a pos-
sibly infinite set of RDF graph events such that, for any
given timestamps T and 7', there is a finite amount of
events occurring between them, and there is at most
one single graph associated with any given timestamp.

An RDF graph event stream can be seen as a se-
quence of chronologically ordered RDF graphs marked
with timestamps. The constraints ensure that it is always
possible to determine what unique event immediately
precedes or succeeds a given timestamp. Without the
first restriction, it would be possible to define a stream
{(£,G) | n # 0 an integer} where there is no event
immediately succeeding 0. In order to handle multiple
streams, we identify each using an IRI and group them

in a data model we call RDF streamset.

Definition 3 A named stream is a pair (u, S) where
u is an IRI, called the stream name, and S is an RDF
graph event stream. An RDF graph streamset X is a
set of named streams such that stream names appear
only once.

In the rest of the paper, we simply use the terms graph
for RDF graph, event for RDF graph event, stream
for RDF graph stream, and streamset for RDF graph
streamset.

Example 1 Recall UC 1, here we extend it with our
data model using three named streams. The first named
stream (u1,S1) provides the events about the power-
related sources from a house, the second named stream
(u2, S2) provides the weather-related events for house,
and the third named stream (ug, S3) provides the power

storage-related events. Figure 2 illustrates the general
structure of the events from each source. An exemplary
content of a named stream (uy,S1) is describe as fol-
low:

| time | graph ‘

:H1 :loc :L1
:H1 :pow :Pwl

10 :Pwl :source ‘solar’
:Pwl :fare 5
:Pwl :watt 20
:H2 :loc :L2
:H2 :pow :Pw2

15 :Pw2 :source ‘wind’
:Pw2 :fare 6
:Pw2 :watt 20

Note that the above table describe the named stream
in an informative way, in practice RDF 1.1 Trig or an
NQaud format is used to represent such streams.

4.2. Syntax of SPASEQ

This section defines the abstract syntax of SPAsEQ,
where SPASEQ queries are meant to be evaluated over
a streamset, and each query is built from the two
main components: graph pattern matching expression
(GPM) for specifying the SPARQL graph patterns over
events; and sequence expression for selecting the se-
quence of a set of GPM expressions. For this discus-
sion, we assume that the reader is familiar with the def-
inition and the algebraic formalisation of SPARQL in-
troduced in [49]. In particular, we rely on the notion of
SPARQL graph pattern by considering operators AND,
OPT, UNION, FILTER, and GRAPH.

Definition 4 The syntax of a SPAseo SELECT query is
a tuple Q = (V, w, SeqExp), where V is a set of vari-
ables, w is a duration, and SeqExp is a sequence ex-
pression defined according to the following grammar:

SeqExp ::= Arom | SeqExp ‘,” Atom | SeqExp ‘3’ Atom
| SeqExp ‘:” Atom

Atom :=GPM | GPM‘+’ | BOp
BOp 5= GPM((‘'&'|1))GPM
GPM = (u, P) | (u, P) Graph (u,Pp)

where u is an IRI, P is a SPARQL graph pattern,
(u, P) is called a graph pattern matching expression
(GPM), and Pp is a SPARQL graph pattern defined for
a static RDF graph, i.e. an external knowledge-base.
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(a) b)

©

Figure 2. Structure of the Events from three Named Streams, (2a) (u1,S1) Power Event, (2b) (u2, S2) Weather Event, (2¢) (u3, S3) Power

Storage Event

The concrete syntax of SPAsEqQ is illustrated in
Query 1 which includes syntactic sugar that is close
to SPARQL. It contains three GPM expressions each
identified with a name (A, B, and C), which allows one
to concisely refer to GPMs and to the named streams.
These names are employed by the sequence expression
to apply various temporal operators. The sequence ex-
pression in Query 1 is presented at line 9; the streams
are described at lines 3-5; the GPM expressions on
these streams start at lines 11, 19 and 27.

SELECT ?house ?frl ?fr2 ?house2 ?city ?oname

WITHIN 30 MINUTES

FROM STREAM S1 <http://smartgrid.org/mainSource>
FROM STREAM S2 <http://smartgrid.org/weather>

FROM STREAM S3 <http://smartgrid.org/storageSource>

WHERE {
SEQ (A; B+, C)

DEFINE GPM A ON S1 {
?house :loc 71.
?house :pow :Pw.
:Pw :source "fuel".
:Pw : fare 7frl.
FILTER(?frl > 20).

GRAPH <http://smartgrid.org/db> {
?house :locatedIn ?city.
?house :nearBy ?7house2.
?house :ownerNAme ?oname.
}
}

DEFINE GPM B ON S2 {

?wther :loc ?1.

?wther :value :VI.

Hal :light ?1t.

:V1 :windsp ?sp.

FILTER (?sp > 3 && 71t > 40).
}

DEFINE GPM C ON S3 {
?storage :loc ?1.
?storage :pow :Pw.

:Pw :source "solar".
:Pw :fare 7fr2.
FILTER (?fr2 < 7frl).
}
}

Query 1: A Sample SPAseQ Query for the UC 1

One of the main properties of the SPAseQ language
is depicted in Query 1, i.e. the separation of sequence
and GPM expressions. Herein, we first study how the
sequence expression interacts with the graph pattern
to enable temporal ordering between matched events.
We start with the brief description of unary operator
({*+’}), the event selection strategies ({*,", 3", ‘" }) and
binary operators ({‘&’, /|'}). The details of these op-
erators are covered during the description of their se-
mantics in Section 5. Furthermore, we also present the
Graph operator for the SPAsEQ query language.

4.2.1. SPAseo Unary Operators

The sequence expression SeqExp in SPAsEQ is used
to determine the sequence between the events matched
to the graph pattern P. The symbol {‘+’, } corresponds
to the Kleene+ operator. It determines the occurrence
of one or more events of the same kind. This means a
series of events can be matched using this operator.

4.2.2. SPAseg Event Selection Strategies

The event selection strategies overload the sequence
operator with the constraints to define how to select
the relevant events from an input stream, while mix-
ing relevant and irrelevant events (as described in Sec-
tion 2.3). The symbols {,’, 3’, “:’} are binary opera-
tors which describe the interpretations of the sequence
between events. That is, ‘,’ represents strict contiguity,

‘3’ represents skip-till-next, ‘:’ represents skip-till-any.

4.2.3. SPAseQ Binary Operators

Conjunction and disjunction defined over the event
streams constitute the binary operators. In SPASsEQ,
these operators are introduced within the sequence ex-
pression through symbols (‘&’) and (‘|") respectively.
They provide the intuitive way of determining if a set
of events happen at the same time (conjunction) or at
least one event among the set of events happens (dis-
junction).
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Example 2 Consider the SPAseo Query 1, which il-
lustrates the UC 1. The sequence expression SEQ(A;
B+, ) illustrates that the query returns a match: if
an event of type A defined on a stream S1 matches the
GPM expression A followed-by one or more events (us-
ing skip-till-next operator (‘y’) and (‘+’)) from stream
S2 that match the GPM expression B, and finally im-
mediately followed-by (using strict contiguity operator
(‘y)) an event from stream S3 that matches the GPM
expression C. Notice that a GPM expression mainly
utilises SPARQL graph patterns for the evaluation of
each event.

4.2.4. SPAseg Graph, Window and Stream Operator

The combination of streaming information in the
form of RDF graph streams and other information from
the static knowledge base can lead to novel seman-
tics and information rich CEP. The Graph operator in
SPAsEqQ is designed to take advantage of static infor-
mation available in the form of an RDF graph. Thus,
a graph pattern Pp defined over the static RDF graph
Gp is first evaluated and then the results are matched
with the incoming stream S. This leads to a SCEP sys-
tem, where detailed information regarding a context
can be revealed with the help of already available static
datasets. For instance, consider the SPAseQ Query 1,
where we use static background knowledge about the
house owners, their neighbours and city to have better
understanding of the matched events.

In SPAsEQ, the sequence expression is defined over
a streamset. Thus, we use the FROM STREAM clause to
define a set of streams. For instance, in Query | we use
three streams identified as S1, S2 and S3 (lines 3-5).
These stream names are used within the defined GPM
expressions. Furthermore, since the sequence over a set
of events is constrainted by the temporal window, we
use the WITHIN clause to define the temporal windows
(line 2 in Query 1). In SPAsEQ, windows can be defined
in seconds, minutes and hours. For instance, in Query |
we use a 60 MINUTES window.

In this section, we presented the syntax of SPAsSEQ
query language with a query for the UC 1. The queries
for the remaining use cases are described in Ap-
pendix A. Using the defined syntax, we present the
semantics of SPAsEQ in the proceeding section.

5. Formal Semantics of SPAsEQ

To formally define the semantics of SPAsEQ queries,
we reuse concepts from the semantics of SPARQL as

defined in [49]. A mapping is a partial function from a
set of variables to RDF terms (BUZUL). The domain of
amapping y, denoted dom(u), is the set of variables that
have an image via y. We say that two mappings ¢ and
(' are compatible if they agree on all shared variables,
ie. if p(x) = p/(x) for all x € dom(u) N dom(y').
For a graph pattern P, we denote by vars(P) the set of
variables appearing in P and u(P) is the graph pattern
obtained by replacing each variable v € vars(P) by
u(v) whenever defined.

We repeat the definitions of join (x), union (U),
minus (\), left outer-join () and evaluation of graph
patterns as in [49].

Definition 5 Let Q)1 and Q9 be sets of mappings:

W ™ Qo= {1 Upa | 1 € Qu, o € Qo, p1 and py compatible}

QlLJQg:{,u|,u€§210r,uGQQ}

D\ Qo= {1 € Q1 | forall us € Qo, w1 and ps not compatible}

QllleQ = (Ql X QQ) U (Ql \ QQ)

Definition 6 Ler t be a triple pattern, P, P1, P> graph
patterns and G an RDF graph, then the evaluation [-]¢
is recursively defined as follows:

[flc = {u|dom(u) = vars(r) and p(r) € G}

[P1 AND P5]; = [P1]e¢ x[P2]c
[P1UNION Py = [Pi]6 U[P:2]6

[P1 OPTIONAL P3] = [P1]¢ > [P2]e

[P FILTER R]¢ ={p € [P]¢ | w(R) is true }

In this section, we define the semantics of SPASEQ
in a bottom-up manner, where we start with the seman-
tics of GPM expressions by integrating the temporal
aspects of events and streams. Note that, for the sake
of brevity, we show the evaluation of GPM expressions
over a streamset and the aspects of evaluating Graph
operator (over RDF dataset) within GPM expressions
are discussed later. This will aid us in highlighting the
decisions we took to define the semantics of SPASEQ
operators.

5.1. Evaluation of Graph Pattern Matching
Expressions

In SPAsEQ, Graph Pattern Matching expressions are
evaluated against a streamset over a finite time interval
that “tumbles” as time passes. Consequently, we con-
strain the evaluation function to a temporal boundary
(i.e. a window), with a start time (7;) and an end time
(t.). In addition, we use the notation ¥(u) to select a
stream of name u from a streamset, such that

E(u):{s if S)ex

@ otherwise
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In order to define the evaluation of a GPM expres-
sion, we introduce a pair (1, [P]g) which represents a
set of mappings annotated with a timestamp 7 of the
matched event. The evaluation of a GPM expression is
defined as follows.

Definition 7 The evaluation of a GPM expression
(u, P) over the streamset Y. for the time boundaries
[Tp, Te] 1s:

[, P2 = {(r. [P6) | (+.G) € Z(u)A
TbSTSTe)/\[[Pﬂ(;#@}

The evaluation of the GPM expression (u, P) over an
event within a streamset results in a pair (7, [P]g) In
the absence of a match, no results are returned for the
considered timestamp.

Example 3 Consider a GPM expression (u1,Py) =
(u1, {(?h, pow, ?p), (?h, loc, ?1)}) and a power-related
named stream (u1,S1) € X with events as follows:

| time | graph ‘
10 :H1 :pow :Pwl
:H1 :loc :L1
15 :H2 :pow :Pw2
:H2 :loc :L2
25 :H3 :pow :Pw3
:H3 :loc :L3

The evaluation of (u1, P1) over X for the time bound-
aries [5,15], i.e. [(u1, Pl)]]g’m], is described as fol-
lows:

[time [ 2n [ 7p | 71 |
10 :H1 :Pwl ;L1
15 :H2 | :Pw2 | :L2

Notice that since the end time of the window is re-
stricted at t = 15, only the events att = 10 andt = 15
are included in the result. The event at T = 25 is outside
the window and thus is not included in the results.

In order to define the semantics of sequence expres-
sions, we use the notion of BOp expressions from Def-
inition 4 for conjunction and disjunction operators. A
BOp expression does not contain Kleene+ or event se-
lection operators.

5.2. Evaluation of Binary Operators

Herein, we define the semantics of binary operators
provided for SPAsEQ, i.e. conjunction and disjunction
of events.

Definition 8 Given two BOp expressions V1, Uy the
evaluation of the conjunction operator over the
streamset Y. and for the time boundaries [tp, T, is de-
fined as follows:

[0 & W] =
(n.X % Y) | (1.X) € [¥ ] A
(1Y) € [Ua] 2™ A X ¥ £ 0

The conjunction operator detects the presence of two
or more events that match the defined GPM expressions
and occur at the same time, i.e. containing the same
timestamps.

Example 4 Consider the following, a GPM expression
(u1,P1) = (u1, {(?h, pow,?p), (?h,loc,?)}) and a
power-related named stream (u1,S1) € X as follows:

| time | graph ‘
10 :H1 :pow :Pwl
:H1 :loc :L1
25 :H2 :pow :Pw2
:H2 :loc :L2

Now consider a GPM expression (us,P3) :=
(ua, {(?w, value, v), (Tw,loc,?1)}) and a weather-
related named stream (uz, S2) € X as follows:

| fime | graph |
10 ;W1 :value :V11
:W1 :loc :L1

(W2 :value :VI12

20 (W2 :loc :L1

The evaluation of the conjunction operator over the
aforementioned GPM expressions and named streams
([(u1,P1) & (uz, P3) [210’25])f0r the time boundaries

[10,25] will result in the following sets of mappings.

[time | ?n [ 72p [ 21 [ 2w | ?v |

l 10 [ :H1 [ :Pwl [ :L1 [ :Wll :Vll‘




12 S. Gillani et al. / A Query Language for Semantic Complex Event Processing: Syntax, Semantics and Implementation

‘We now define the disjunction operator. It detects the
occurrence of events that match to a GPM expression
within the set of defined ones.

Definition 9 Given two BOp expressions V1 and Vo,
the evaluation of the disjunction operator over the
streamset Y. and for the time boundaries [ty, T,] is de-
fined as follows:

[91 1 @)™ = @] U @,

Example 5 Consider the two GPM expressions (u1, P1)

and (uz, P2), and the two named streams (u1, S1), (uz2, S2) €

Y from Example 4.

The evaluation of the disjunction sequence operator
Jorthe sequence expression [((u1, P1) | (u2, P2)))]
and for the time boundaries [10,25] is as follows:

[time | 7n [ 7p [ 721 [ 7w [ ?v |
10 :H1 :Pwl ;L1
10 :L1 W1 :V11
15 ;L1 W1 :V11
20 ;L1 (W2 | :v12
25 :H2 | :Pw2 | :L2

Notice that the disjunction operator may generate
several sets of mappings for the same timestamp, as we
can see at time 10 in the example.

5.3. Evaluation of Event Selection Operators

Herein we present the semantics of the three event
selection strategies namely strict contiguity, skip-till-
next and skip-till-any.

Let o be a sequence with a set of GPM expressions
and binary/unary operators. The evaluation of the skip-
till-any operator is defined as follows:

Definition 10 Given a sequence o and an BOp ex-
pression U, the evaluation of the skip-till-any (“:’) se-
quence operator over a streamset X for the time bound-
aries [tp, T, is defined as follows:

Lo w5 =

,XXY I, (,Y) € [P [ro7e]

( )| 5
(7,X) € [[0'}][;”7“] AT <TAXXY#D

From the above definition, the evaluation of the skip-
till-any operator is simply the join between the mapping
sets from o and the GPM expression. Its evaluation is
explained in the following example.

[10,25]
E i)

Example 6 Consider the following, a GPM expression
(u1, P1) = (u1, {(?h, pow,?p), (?h,loc,?l)}) and a
power-related named stream (u1,S1) € X as follows:

| time | graph ‘
10 :H1 :pow :Pwl
:H1 :loc :L1
15 :H2 :pow :Pw2
:H2 :loc :L1

A GPM expression as follows:
(ug, Pa) := (ua, {(?w,value, ?v), (Tw, loc, 1) })

and a weather-related named stream (uz,S2) € ¥ as
follows:

| time | graph ‘
15 W1 :value :V11
W1 :loc :L2
2 W1 :value :V11
(W1 :loc :L1
25 W2 :value :VI12
(W2 :loc :L1

Then for the evaluation of the skip-till-any oper-
ator on these GPM expressions for the time bound-
aries [10,25], i.e. [(u1,P1);(uz, P2) [5025], we have
the mappings as given below.

[time [ ?h | 7p [ 721 2w | ?v |
20 :H1 | :Pwl | L1 (W1 | :V11
25 :H1 :Pwl | L1 W2 | :v12
20 :H2 | :Pw2 | L1 :Wi :V11
25 :H2 | :Pw2 | L1 tWi :V11

Notice that there are four matches sequences: both
the first and seconds events (at T = 10 and T = 15)
from the power-related named stream matched with
both events (t = 20 and v = 25) in the weather-
related named stream. This is due to the skip-till-any
operator and all the possible combinations of matches
are produced.

The following definition shows the evaluation of the
skip-till-next operator.
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Definition 11 Given a sequence o and an BOp expres-
sion U, the evaluation of the skip-till-next (;’) se-
quence operator over a streamset X for the time bound-
aries [tp, T, is defined as follows:

[osw]E ™ =
(mXmY) | 3, (¢, X) € o] A <A
(r.Y) € O] AX w Y #£0
vz ((.2) € [ A (7 < < 7))
=XxZ=1

Example 7 Consider the GPM expressions (uy, P1),
(ug, P2) and the streams from Example 6. Then for
the evaluation of the skip-till-next operator on these
GPM expressions for the time boundaries [10,25],
i.e. [(u1, P1); (uz, P2)ﬂ[210,25], we have the mappings as
given below.

[time [ 2n [ 72p | 721 [ 2w | ?v |
20 :H1 :Pwl L1 W1 :V11
20 ‘H2 | :Pw2 | :L1 | :W1 | :V11

Due to the skip-till-next operator, there are only two
matches in the aforementioned example. Both events
(at T = 10 and T = 15) from the power-related stream
match with just one event (at T = 20) from the weather-
related stream.

We now define the semantics of the strict contiguity
operator, where U is a set of stream names within a
streamset ..

Definition 12 Given a sequence o and a BOp expres-
sion U, the evaluation of the strict contiguity (,’) se-
quence operator over a streamset X for the time bound-
aries [tp, T, is defined as follows:

[ w15 =
(mXxY) | 3, (7. X) € [o]5™IA
nY) e [O] ™ AT <t AX MY £DA
Yuvt’' VG ((77,G) e Z(u) AT > )= 1" > 1

The semantics of the strict contiguity operator fol-
lows the semantics of the skip-till-next operator, how-
ever with one important difference: the contiguity be-
tween the matched events. That is, an event is contigu-
ous to another, only if there can be no other events
between the two selected ones.

Example 8 Consider the GPM expressions and the
named streams defined in Example 6. Then the evalua-

tion of the strict contiguity operator ([[(u1, P1), (ua, P2) [;0’25])
for time boundaries [10,25], will result in a single
sequence match with the following mappings.

5

[time | ?h [ 7p | 71 [ 2w | ?v |

[ 20 [ :H2 [ :Pw2 [ :L1] :W1 ] :VlI |

This is due to the strict ordering of the strict con-
tiguity operator. That is, for first event (at T = 10) in
power-related stream, there is no immediately followed-
by event in the weather-related stream.

5.4. Evaluation of Kleene+ Operator

We now move towards the definitions of the unary
operator, namely Kleene+. We first define its semantics
in a standalone manner and then recursively define it
with the help of sequence o

Definition 13 The evaluation of the standalone Kleene+
operator over the streamset Y. and for the time bound-
aries [ty,7,) is defined using auxiliary constructs - for
integers k > 0 as follows:

[ P15 = [ Y™
[t P15 = [, ¥, P
[t P11 = | PG

keN*

The Kleene+ operator groups all the matched events
with the defined GPM expression. Notice that the evalu-
ation will not only match the longest sequence of match-
ing patterns, but will also provide results for the shorter
sequences (using the skip-till-next operator (‘;”). The
case of the Kleene+ operator with sequence o using
additional skip-till-next and strict contiguity is defined
as follows:

SIS

Definition 14 Let e denote any of ,’, *;’, or :’. Given a
sequence expression o, the evaluation of the Kleene+
operator in a sequence over the streamset >, and for
the time boundaries [y, T,] are defined as follows:

o e (. P)'T™) = [or o (u, PIE™
o o P = lr o (. PY (. DI

[[O'o(uP—i—ﬂ[TbT“] U[[a'o (u, P)* T”e]
keN*

Example 9 Consider the following, a GPM expression
(u1,P1) = (u1,{(?h, pow,?p), (?h,loc,?)}) and a
power-related named stream (u1,S1) € 3 as follows:
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| time | graph ‘
10 :H1 :pow :Pwl
:H1 :loc :L1
25 :H2 :pow :Pw2
:H2 :loc :L2

A GPM expression
(ug, Pa) := (ua, {(?w,value, ?v), (Tw, loc, 71)})

and a weather-related named stream (u3,S2) € 3 as
follows:

| time | graph ‘
15 W1 :value :VI11
:W1 :loc :L1
2 :W2 :value :V12
W2 :loc :L1

The evaluation of the sequence [(u1, P1); (u2, P2)+]s;
with the Kleene+ and skip-till-next operators for the
time boundaries [10,20] is as follows:

[time | 7n [ 7p [ 721 [ 7w [ ?v |
15 :H1 :Pwl ;L1 tW1 :V11
20 :H1 :Pwl ;L1 (W2 | :vi2

Notice that the Kleene+ operator collects one or
more matches for (us, Po) from the weather-related
named stream.

5.5. The Graph Operator

The Graph operator within GPM expressions allows
one to query both static data and streams. In the previ-
ous sections, we omitted this construct because it need-
lessly makes the notations cumbersome: it would re-
quire adding an RDF dataset (in addition to a streamset)
as a parameter of the evaluation function.

However, for completeness, we present the definition
of the evaluation of the Graph operator. Now similarly
to the Definition 7, we use a function I'(«) to select an
RDF graph of name u from an RDF dataset D, such
that:

if u is not a graph name in D

(%]
L) = {GD if (u,Gp)eD

[10,20]

Definition 15 Let D be an external RDF dataset and
(v, Pp) be a graph pattern. Let (u, P) be the GPM ex-
pression defined over the streamset ¥, and [t},7.] be
the time boundaries. The evaluation of the GPM ex-
pression and the Graph operator is defined as follows:

[(u, P) Graph (v, PD)]][T” fvl) -
{( ,[Plc [[PD}]GD) | 3(r.G) € (u) A}

EGDGF(V) N1 <T<T,

Example 10 Consider the same GPM expression
(u1, P1) and power-related named stream (11, S1) € X
presented in Example 9. Now consider a graph pattern
(up, Pp) = (up,{(?h,owner,n), (*h,address, ?a)})
defined over an external RDF graph D as follows:

Gp
:H1 :owner :john
:H1 :address :paris
:H2 :owner :smith
:H2 :address :lyon

The evaluation of the GPM expression and the Graph

operator [(uy, P1) Graph (up, Pp)] Elzo,%o)] is as follows:

[time [ ?2n [ 72p | 721 | 7n [ 7a |

l 10 [ :H1 [ :Pwl [ :L1 [ :joh.n[ :paris ‘

5.6. Evaluation of SPAseg Queries

In the previous sections, we outline the semantics of
temporal operators and Graph operator of the SPAsSEQ
query language. Herein, to sum it up, we present the
evaluation of complete SPAseqQ SELECT queries.

Definition 16 Let €2 be a mapping set, nty, be the stan-
dard SPARQL projection on the set of variables V, and
w be the duration of the window. The evaluation of
SPAseo SELECT query Q = (V, w, SeqExp) issued at
time t, over the streamset Y. is defined as follows:

(rmv(€) |

Q \ = { w W
[[ ]]Z kg T Q E [[SCqEXp]] [l‘-‘rk l+(k+1) ]
where

() = M| Fug pr Ups € QA dom(uy) € VA
vy dom(us) NV =@

The evaluation of the SPAsEQ queries follows a push-
based semantics, i.e. results are produced as soon as
the sequence expression matches to the set of events
within the streamset. Thus, the resulting set of map-
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pings takes the shape of a stream of mappings, where
the order within the mappings depends on the underly-
ing executional framework. Note that the definition of
[Q]% is the intended one. It could be possible to define
a continuous version of the query evaluation but we
want to stay agnostic to how the solutions are provided.
For instance, the evaluation could be performed on a
static file with time series, possibly including future
previsions; or the solutions could be provided in bulks
every w time units.

Example 11 Recall the two GPM expressions from Ex-
ample 6, (u1, P1) := (u1, {(?h, pow, ?p), (?h,loc,?1)})
and (ug, P2) := (ua, {(?w,value,?v), (Tw,loc,?1)}).
Now consider the power-related and weather-related
named streams (u1,S1), (u2,S2) € ¥ respectively as
Jollows:

| time | graph ‘
10 :H1 :pow :Pwl
:H1 :loc :L1
25 :H2 :pow :Pw2
:H2 :loc :L2
| time | graph
15 :W1 :value :VI11
W1 :loc :L1
40 W2 :value :V12
W2 :loc :L2

Then the evaluation of a SPAsSEQ query

0 = ({?h,7p, v}, 50, ((u1, P1) 5 (u2, P2)))

with the skip-till-next operator at time T = 20 over the
streamset %, i.e. [Q] 220, can be described as follows:

ltime[ ?h[ ’p [ ?V‘
l 15 [:Hl[ :Pwll :Vll‘

In this section, we presented the detailed semantics
of SPAsEQ operators. Based on this, we also present
some details how SPAsEqQ can be extended for opera-
tors such as negation and optional. Such details can be
referred from Appendix B. The implementation details
of SPAsEQ operators are provided in the proceeding
section.

6. Implementing the SPAseQ Query Engine

In this section, we move from the theory to the prac-
tical implementation of the SPAsEQ query engine. We
first present the NFA .., model that is utilised to com-
pile SPAsEQ queries, and then provide details regarding
the various system’s blocks and optimisations used for
the SPASEQ query engine.

In general, for a CEP language, the set of defined
temporal operators are evaluated against the incoming
events in a progressive way. That is, before a compos-
ite or complex event is detected through a full pattern
match, partial matches of the query patterns emerge
with time. These partial matches require to be taken into
account, primarily within in-memory caches, since they
express the potential for an imminent full match. There
exists a wide spectrum of approaches to track the state
of partial matches, and to determine the occurrence of a
complex event. In summary, these approaches include
rule-based techniques [13] that mostly represent a set
of rules in a prolog like languages, tree structures [50,5]
where the pattern are parsed as join trees, graph-based
representations [51,25] to merge all the rules within a
single structure, and finally Finite State Machine repre-
sentations, in particular Non-deterministic Finite Au-
tomata (NFA) [8,52]. The choice of these representa-
tions is motivated not only by their expressiveness mea-
sures, but also on the performance metrics that each ap-
proach tries to enhance. For instance, ETALIS [13], a
rule-based engine, mostly focuses on how the complex
rules are mapped and executed as Prolog objects and
rules, while SASE+ [4,8], Zstream [5] and lazy evalua-
tion [53] of NFAs focus on query-rewriting, predicate-
related optimisations and memory management tech-
niques.

Due to the separation of constructs, SPASEQ queries
can be easily mapped to various different models. For
instance, a query tree can be constructed from a SPAsEQ
query, where the GPM expression are mapped at the
leaves of the tree and the matched results are propa-
gated to the root of the tree to extract a full match.
However, consider the following points, we opt to use
an NFA-based compilation and execution model for
SPAseQ queries: (i) given the semantic similarity of
SPASEQ’s sequence expressions to the regular expres-
sions, NFA would appear to be the natural choice; (ii)
NFAs are expressive enough to capture all the com-
plex patterns in SPAsEQ; (iii) NFAs retain many attrac-
tive computational properties of Finite State Automata
(FSA) on words, hence, by translating SPAsEQ queries
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into NFAs, we can exploit several existing optimisation
techniques [8,52].

In addition to the NFA-based model, we use various
optimisation techniques to evaluate GPM expressions
proposed by our system SPECTRA [44]: since SPAsEQ
employs an RDF graph model, it not only requires the
efficient management of temporal operators, but also
the efficient evaluation of graph patterns. In the follow-
ing, we first describe the NFA ., model for SPAsEQ,
and later present how SPAsEQ queries are compiled and
evaluated using NFA .. The optimisation techniques
for the execution of SPAsEQ queries are provided in
Section 7.

6.1. The NFA.., Model for SPAsEQ

We extend the standard NFA model [38,54] in three
ways. First, given that SPAseQ matches events with
GPM expressions, we associate each automaton edge
with a predicate, and for an incoming event, this edge
is traversed iff the GPM expression is satisfied by this
event. Second, in order to handle statefulness between
GPM expressions (shared variables), we store in each
automaton instance the mappings of those events that
have contributed to the state transition of this instance.
Third, we map all the SPAseQ operators (conjunction,
disjunction, Kleene+, event selection strategies, etc.)
on the NFA model: in the existing works [8,10], the
mapping for the NFA model are only shown for a sub-
sets of these operators and all the operators are not
mapped onto a single model. We call such an automaton
model as NFA ., and it is defined as follows:

Definition 17 An NFA,., automaton is a tuple A =
(X, E, ©, ¢, x,, xy), where

— X: a set of states;

— E: a set of directed edges connecting states;

— ©: is a set of state-transition predicates, where
each 8 € ©, 0 = (U,op,P) is a tuple; U is a set
of stream names, op € { ‘&’, +’, 1, 5’} U {2}
is a temporal operator, and P is a graph pattern;

— @: is a labelling function ¢ : E — O that maps
each edge to the corresponding state-transition
predicate;

- X,: X, € X is an initial or starting state;

- Xy Xy € X is a final state or acceptation state.

We define three types of states: initial (x,), ordinary
(x) and final (xy) states. These state types are analogous
to the ones used in the traditional NFA models to im-
plement the operators such as sequence, Kleene+, etc.

Each state, except the final state, has at least one forward
edge. Note that, we use a structure H = (6;,.4;,Q2) to
store the set of mappings 2 corresponding to the state-
transition predicate 6; and the automaton instance .A;.
Hence, when an event makes an automaton instance
traverse an edge, the mappings in that event are properly
referenced.

Example 12 Figure 3 shows the compiled NFA ., for
the SPAseo Query 1 with the sequence expression
SEQ(A, B+, C). It contains four states, each having a set
of edges labelled with the state-transition predicates.
The state-transition predicate (U, op, P) consists of
three parameters: graph pattern P for the events with
stream names (U); op describes the type of operator
mapped to an edge, for instance edges of state x, con-
tain the Kleene+ operator. The description of mapping
from the SPAseg Query I to the NFAy,, in Figure 3 is
as follows:

— The SPAseo Query | contains the sequence ex-
pression SEQ(A, B+, C), which produces one ini-
tial state, two ordinary states and a final state.

— State xg has one edge with state-transition predi-
cate ( called as GPM A in Query 1) (us,, &, Pa),
where Uy, = {S1} and P, is the graph pattern.
Since the sequence expression in Query I only
contains the immediately followed-by operator,
the NFA ., can simply transit to the next state on
matching the state-transition predicate.

— State x1 maps GPM B with Kleene+. Therefore, it
has two edges each with a state-transition predi-
cate (Uy,, +, Pp), one with the destination state
X9, and other with itself as destination (x1) to
consume one or more same kind of events; where
U,, = {S2} and Pg is the graph pattern.

— State xo has one edge, which is used to transit to
the next state if an event matches the defined state-
transition predicate (Ug,, &, Pc); where U, =
{S3} and Pc is the graph pattern.

State-transition predicates are used to determine the
action taken by a state to transit to another. For in-
stance, in Figure 3 the state x( transits to xp, if (1)
the incoming event is from the defined stream name
U, , (2) the evaluation of the graph pattern P4 does not
produce an empty set. Furthermore, the event selec-
tion strategy also determines if there is a followed-by
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sy s +,PB)

Wy, @, Ps) (Usy o4+ P) sy, 9, Pc)

()

Figure 3. Compiled NFA ;. for SPAseqQ Query 1 with SEQ(A,B+,C)
expression

or immediately followed-by relation between the pro-
cessed events. Note that, in the presence of the Kleene+
operator, NFA,.,, will exhibit a non-determinism be-
haviour, since the state-transition predicates will not be
mutually exclusive.

Considering the vocabulary from existing NFA
works [8,52], we say that each instance of an NFA .,
or a partial match is called a run. A run depicts the
partial matches of defined patterns, and contains the set
of selected events. Each run has a current active state.
A run whose final state has reached is a matched run,
hence denoting that all the defined patterns are matched
with the set of selected events. We call the output of
the matched run as a query match.

6.2. Compilation of SPAseQ Queries

As discussed earlier, the two main components of the
SPAsEQ language are sequence and GPM expressions.
Due to the separation of these components, one can
provide multiple different techniques to compile and
process them. The compilation process of graph pat-
terns using the traditional relational operators (e.g., se-
lection, projection, cartesian product, join, etc.) within
each GPM expression is borrowed from our earlier
work [44]. Herein, we focus on the sequence expression
and show how the temporal operators are mapped onto
the NFA ..

The sequence expression sorts the execution of GPM
expressions according to its entries. Moreover, the tem-
poral operators determine the occurrence criteria of
such GPM matches and the event selection strate-
gies are utilised to select the relevant events. These
constraints or properties are mapped on the NFA.,
through the compiled state-transition predicates, while
the window constraints are computed during the eval-
uation of each automaton run.

Let (u1, P1) and (us, P2) be two GPM expressions,
the compilation of SPAseQ temporal operators onto an
NFA .., automaton is described as follows.

— Simple GPM expression: The NFA ., for a sim-
ple GPM expression with a sequence expression
forms a state which transits to the next one with
the match of the GPM expression mapped at the
state’s edge. The NFA ., automaton for a GPM
expression (u1, P1) is presented in Figure 4.

{u1},2,P1)

()

Figure 4. Example of Compilation of the GPM Expression (u1, P1)

— Kleene+: The Kleene+ operator selects a set of
events if they match to the defined GPM expres-
sion. Its automaton is constructed using two edges
with one edge having the same source and desti-
nation state. Thus, it can detect one or more con-
secutive events. The corresponding NFA,,, for
((u1, P1)+) is illustrated in Figure 5.

Hur },+,P1)

Hur}, 4+, P

Figure 5. Example of Compilation of the Kleene+ Operator
((u1, P1)+)

— Strict Contiguity Operator: The construction of
NFA ., for this operator is similar to the com-
pilation of a simple GPM expression, where a
single edge for the corresponding state — having
different source and destination states — is con-
structed. The corresponding NFA,.., automaton
for ((u1, P1) 5 (u2, P2)) is illustrated in Figure 6.

— Skip-Till-Next and Skip-Till-Any Operators: These
operators require the irrelevant events to be
skipped. Thus, two different edges emanate from
the corresponding state. One has the same source
and destination states: this transition matches any
kind of event. The second edge is destined for
the next state with the defined state-transition
predicate. Note that the construction of both of
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{ur},2,P1) ({uz}, @, P2)

Figure 6. Example of Compilation of the Strict Contiguity Operator
((u1, P1) 5 (uz, P2))

these selection strategies is the same with the
difference how they are evaluated at the run
time. The corresponding NFA ., automaton for
((u1, P1) 3 (uz2, P2))is presented in Figure 7, where
U = {uy,us} is the set of stream names.

Hur,uz2},;,2)

Figure 7. Example of Compilation of the skip-till-next (or skip-til-
l-any) operator ((u1, P1) 3 (u2, P2))

— Conjunction Operator: This operator detects the
simultaneous occurrence of two or more events.
Thus, there are two edges for the conjunction state,
each destined for the same destination state. The
NFA .., automaton for ((u1, P1)&(uz, P2)) is il-
lustrated in Figure 8, where the conjunction state
has multiple edges, each having different state-
transition predicates.

({u1},&,P1)

()

({uz},&,P2)

Figure 8. Example of Compilation of the Conjunction Operator
((u1, P1)&(u2, P2))

— Disjunction operator: This operator forms a simi-
lar automaton structure as that of conjunction op-
erator, however with the difference of how it is
executed for an active run. That is, only one edge
has to be matched with the incoming event. The
NFA ., automaton for ((u1, P1)|(u2, P2)) is illus-
trated in Figure 9.

Hur}, ], P10

()

Huz},],P2)

Figure 9. Example of Compilation of the Disjunction Operator
((u1,P1)l(u2, P2))

In the aforementioned discussion, we show the com-
pilation of SPAseQ operators independently. For the
full SPAsEQ query, these operators can be combined
together to form a complex NFA, automaton. In or-
der to show this, let o be a sequence with a set of GPM
expression and binary/unary operators. The compila-
tion of sequence expression (o-; (u, P)+) with the addi-
tional skip-till-next and Kleene+ operators is presented
in Figure 10. Notice from Figure 10 how the concate-
nating process is simply the mapping of the last state of
sequence o onto the initial state of the GPM expression
(u, P)+.

Hul,+. P
o {u},+. P

U}, 9

Figure 10. Example of Compilation of the Sequence Expression
(o5 (u, P)+)

To conclude, this section presented the mapping of
SPAsEQ queries onto equivalent NFA ., automata. In
the next section, we show how NFA,., automata are
executed while considering the window constraints de-
fined within a query.

6.3. Evaluation of NFA., Automaton

The compiled NFA,., automaton represents the
model that a matched sequence should follow. Thus, in
order to match a set of events emanating from a stream-
set, a set of runs is initiated at run-time. This set of runs
contains partially matched sequences and a run that
reaches to its final state represents a matched sequence.
When a new event enters the NFA ., evaluator, it can
result in several actions to be taken by the system. We
describe them as follows:
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Algorithm 1: Processing streamset with NFA .,

Algorithm 2: ProcessEVENT with NFA .,

Input: X: streamset, A: NFA ., Automaton, w:
time window
R < {}: list of active runs
H < {}: cache history
D < {}: conjunction edge-timestamp map
foreach event G, € ¥ do
get the initial state xy from A
get the final state x; from A
get the stream name u from the event G,
PROCESSEVENT (G, u, x0, X¢, H, R, D, A, w)

R NN R W N

— New runs can be created, or new runs are dupli-
cated (cloned) from the existing ones in order to
cater the Kleene+ operator, thus registering mul-
tiple matches.

— If the newly arrived events match with state-
transition predicates () of the active states, exist-
ing runs transit from one active state to another.

— Existing runs can be deleted, either because the ar-
rival of a new event invalidates the constraints de-
fined in the NFA ., model such as event selection
strategies, conjunction, etc. or the selected events
in those runs are outside the defined window.

These conditions can be generalised into an algo-
rithm that (i) keeps track of the set of active runs (R),
(ii) starts a new run or deletes the obsolete ones, (iii)
chooses the right event for the state-transition predi-
cates (6 € ©), (iv) calls the GPM evaluator to match
an event with the graph pattern (P) which is provided
in the state-transition predicate (), and (v) keeps track
of the mappings of matched events with a structure H.

Algorithm 1 presents the initialisation process of var-
ious data structures and how a streamset X is processed
against the NFA ., automaton 4. The initialised data
structures include (i) a list of currently active runs (R),
where each run stores partial matches; (ii) a history
cache H to store the mappings of matched events; (iii)
an edge-timestamp map D to store the mapping of
events and their timestamps that are matched at a con-
junction operator’s state (lines 1-3). The algorithm se-
lects the initial state xp and final state x; of automa-
ton A, and the stream name u of the event to be pro-
cessed (lines 5-6). This information along-with the ini-
tialised structures is passed to the PROCESSEVENT func-
tion (see Algorithm 2), where each incoming event G,
is matched with the active automaton’s runs.

In Algorithm 2, we present the general execution of
SPAsEQ operators with the arrival of an event. Algo-

Input: G,: Graph Event, u: stream name, x¢:
initial state, x;: final state, H: cache
history, R: list of active runs, D:
conjunction edge-timestamp map, A:
NFA .., Automaton, w: time window
1 Function
PROCESSEVENT(G,, U, X9, X¢, H, R, D, A, w)

2 foreach runr € R do

3 if w > initialising time of r then

4 remove r from the list of active runs R
5 continue

6 X; <~ GETACTIVESTATE(r)

7 E < GETEDGESET(x;)
get 0 for an edge e € E s.t 6 # € and
0 = (Ug, 0pa, Py)

9 if opg = ‘+’ then

10 L KLEENEPLUS (G, u, x5, H, R, 1, x;, E)

11 else if opy = ;" or opy = '@’ then

12 EvENTSELECTION (G, u, x5, H, R, 1,
X, E)

13 else if opy = ‘&’ then

14 ConyuncTIoN(G,, U, X5, H, R, D, r,
X, E)

15 else if opy = ‘|’ then

16 DisiuncTtIoN(G,, u, xr, H, R, r, xi,

L E)

// Check if an event G, can create
a new run from the initial state
X0

17 Ey < GETEDGESET(X()

18 get 0 for the edge e € Ej s.t 6 # € and

6= (U@, Opg, Pg)

19 if u € Uy and Gprm (G,, Py, H) then

20 initiate a new run r; of A with
21 active state xy
22 R+ RUFK

rithm 2 begins by iterating over the list of active runs.
The list of active runs R is used to determine if (i) the
existing runs are expired or not, i.e. their initialisation
time is outside the window boundary, and hence to be
deleted (lines 2-5); (ii) the active state of the active run
can be matched with the newly arrived event (lines 9-
16). The algorithm starts by comparing the initialising
time of the run  under evaluation and the defined time
window. The run r is deleted if its outside the defined
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window (line 3). The algorithm then extracts the cur-
rent active state of the run, and according to the mapped
operators it selects the appropriate function for the cor-
responding operator. In the end, the algorithm checks
if the incoming event can start a new run or not (lines
19-22). That is, it matches the initial state’s (xg) edge
of the automaton A with the incoming event G, using
the Gpm function (line 22) '. In case of a match and if
the event is from the same stream the edge is waiting
for (u € Uy), it initiates a new run 7; of the automaton
A with the active state x1, i.e. it proceeds to the next
state (line 23). This new run is then added to the list of
active runs R (line 24).

The aforementioned general algorithm gives an over-
all view of how SPAsEQ queries are executed. To keep
the discussion brief, the evaluation details of SPASEQ
temporal operators are provided in Appendix C. Note
that, herein, we only provide the implementation of
strict contiguity and skip-till-next event selection strate-
gies, since skip-till-any operator results in a exponential
time complexity [52] and may not be suitable for some
real-world applications. The optimised implementation
of the skip-till-any operator will be the subject of dis-
cussion for our future endeavours.

6.4. Design of the SPAseQ Query Engine

Having provided the details of compiling the SPAsEQ
queries onto NFA ., automata and their evaluation
strategies, herein we provide an overview of the system
architecture of SPASEQ query engine.

Figure 11 shows the architecture of the SPAseQ query
engine. Its main components are input manager, queue
manager, query optimiser, NFA evaluator, and an RDF
graph processor in GPM evaluator. In the following,
we briefly discuss these components.

The queue and input managers do their usual job
of feeding the required data into the NFA evaluator.
Since our system employs streamsets, there are multiple
buffers to queue the data from a set of streams. More-
over, the newly constructed events for SPASEQ queries
can also be fed back to the queue manager for further
processing. The incoming data from streams are first
mapped to the numeric IDs using dictionary encoding?.

Herein, for sake of brevity, we only show the simple option where
the complex operators are not mapped at the initial state. However, in
practice, it is implemented using the function for the defined operator

at the initial state.
2
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Figure 11. Architecture of the SPAseqQ Query Engine

The input manager also utilises an efficient parser3:# to
parse the RDF formatted data into the internal format
of the system.

At the heart of SPAsEQ query engine, the GPM eval-
uator uses the GPM expressions, events, cache his-
tory and edge-timestamp mappings (see Appendix C)
to match the defined graph pattern with the incoming
events. We employ our SPECTRA GPM engine [44]
for this task. SPECTRA is a main memory graph pat-
tern processor but uses specialised data structures and
indexing techniques suitable for the optimised evalua-
tion of RDF graph events. We employ two main oper-
ators of SPECTRA for SPAseQ and they are described
as follow:

— The SumMARYGRAPH operator enables the sys-
tem to avoid storing all the triples within an event
by exploiting the structure of the graph patterns.
That is, the graph pattern P is used to prune all
the triples within an event that do not match the
subjects, predicates or objects defined in P. The
pruned set of triples within an event, called Sum-
mary Graph, are materialised into a set of verti-

Dictionary encoding is a usual process employed by a variety
of RDF-based systems [55,560]. It reduces the memory footprints
by replacing strings with short numeric IDs, and also increases the
system performance by using numeric comparisons instead of costly
string comparisons.

3

We employ the performance intensive NxParser, which is a non-
validating parser for the Nx format, where x = Triples, Quads, or any

other number.
4

NxParser: https://github.com/nxparser/nxparser, last
accessed: November, 2017.
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cally partitioned tables called views. Each view,
a two-column table (s, 0) stores all the triples for
each unique predicate in a summarised event.

— The QueryProcEssor employs the set of views to
implement multi-join operations using incremen-
tal indexing. That is, for each view a sibling list is
used to incrementally determine the set of joined
subject/objects that belong to a specific branch
within a graph. This results in an incremental so-
lution, where the creation and maintenance of the
indexes are the by-product of the join executions
between views, not of updates within a defined
window.

The use of specialised indexing techniques and data
structures enables SPECTRA to outperform existing
RSP systems up to an order of magnitude [44]. Thus,
employing such optimisations also aids the evaluation
of GPM expressions in SPAseqQ. Furthermore, the eval-
uated events can also be enriched using the static RDF
data, where such data are loaded into the memory using
the vertically partitioned tables.

Next comes the NFA evaluator of SPAseQ. It con-
tains the compiled NFA,., automata and employs
the GPM evaluator to compute the GPM expressions
mapped on the state-transition predicates. Its subcom-
ponent, the cache manager stores the mappings of
matched events and mappings for the conjunction op-
erator, i.e. cache history () and conjunction edge-
timestamp map (D). Finally, the query optimiser em-
ploys various techniques to reduce the load for GPM
evaluator and the number of active runs. The detailed
description of query optimiser is presented in the pro-
ceeding section.

7. Query Optimisations

The two main resources in question for processing
CEP queries are CPU usage, and system memory: effi-
cient utilisation of CPU and memory resources is crit-
ical to provide a scalable CEP system. As discussed in
Section 6, many different strategies have been proposed
to find an optimal way of utilising CPU and memory in
CEP systems. One of the main benefits of using an NFA
model as an underlying execution framework is that we
can take advantage of the rich literature on such tech-
niques. These optimisation techniques can be borrowed
into the design of SCEP, while customising them for
RDF graph streams. In this section, we describe how
such techniques are applicable for SCEP, and also pro-

pose new ones considering the query processing over
a streamset. First, we review the evaluation complexity
for the main operators of the SPAseQ query language.

7.1. Evaluation Complexity of NFA .,

The evaluation complexity of NFA., provides a
quantitative measure to establish the cost of various
SPAsEeQ operators. Herein, we first describe the cost
of temporal operators in terms of GPM evaluation
function, and later provide the upper bound of time-
complexity in terms of number of active runs.

Incoming events are matched to the GPM expres-
sions mapped on the state’s edges and such evaluation
decides if a state can transit to the next one. Given n
number of events in a streamset, the cost of comparing
a graph pattern P with an n events for unary operators
and event selection strategies is described as follows:

cost, = Z Eval(P,G),

i=1

where Eval(P,G") represents the cost of matching a
graph pattern P with a RDF graph-based event G'. For
aBGP Eval(P,G.) = |P|- |G| from Theorem 1 in [57].
Now we extend this cost to include the cost of the binary
operators (Bop). Given n events and k Bop operators,
the cost function is extended as follows:

n k
cost,k1 = Z Z Eval(P;, G),

i=1 j=1

Notice that due to the k number of Bop operator, each
event in worst case scenario has to be matched with all
the defined GPM expressions for the Bop operators.

Prior works analysing the complexity of NFA eval-
uation often consider the number of runs or partial
matches created by an operator and employ upper
bounds on its expected value [8,52]: since each event
has to traverse the list of partial matches to find the
complete matches. We adopt the same approach for
analysing the complexity of NFA,,, evaluation. Given
an NFA,,, and streamset, for each incoming event the
system has to check all the active runs to determine
if the newly arrived event results in (i) state transition
from the current active state to the next one, (ii) du-
plication of a new run, (iii) deletion of the active run.
Query operators that result in creating new runs or those
which increase the number of active runs are consid-
ered to be the most expensive ones. In order to simplify
the analysis, we make the following assumptions:
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1. Weignore the cost of evaluating a GPM expression
over each event, i.e the Eval function.

2. We ignore the selectivity measures of the state-
transition predicates, i.e. the events that are not
matched are either skipped or result in deleting a
run of an NFA,,, automaton. Hence, our focus is
on the worst-case behaviour.

Based on this, let us consider that there are n number
of events with a window and a new event arrive at a
current active state of a run, where the active state may
contain the following set of operators: strict contiguity,
skip-till-next, Kleene+, conjunction and disjunction.

Theorem 1 The upper bound of evaluation complexity
of event selection strategies, i.e. strict contiguity and
skip-till-next, is linear-time O(n), where n is the total
number of runs generated for the n input events within
a window.

Proof Sketch. None of the operators described in The-
orem | duplicate runs from the existing ones. Each has
only one GPM expression to be matched with the in-
coming events. Let us consider the case of event selec-
tion operators. Given a sequence expression ((u;, P;)
op (uj, P;)), where op = { *,, “;’}, mapped to states
x; and x;. With the arrival of an event G, at T, where
an event selection operator is mapped at state x;, it can
result in the following actions: (i) the run will transit
to the next state, (ii) the event will be skipped due to
skip-till-next operator, and (iii) the run will be deleted.
Since we are considering the worst-case behaviour, let
us dismiss the situations (ii) (iii). In situation (i) there
be will no extra run created for the above mentioned
operators, and each incoming event will be matched
to only one GPM expression. Thus the evaluation cost
remains linear and for n number of events there can be
only n runs. (I

Although the upper bound of the operators described
in Theorem | has the same evaluation complexity, there
exists discrepancies when considering the real-world
scenarios [52]. Due to the skipping nature of skip-till-
next operator, the life-span of its runs can be longer on a
streamset. In particular, those runs that do not produce
matches, and instead loop around a state by ignoring
incoming events until the defined window expires. On
the contrary, the expected duration of a run is shorter
for the strict contiguity operator, since a run fails im-
mediately when it reads an event that violates its re-
quirements. Such difference in their evaluation cost is
visible in our experimental analysis (Section 8).

The case of conjunction and disjunction operators
is slightly different, and therefore has a different upper
case bound. That is, for each conjunction/disjunction
operator: (i) more than one edge has different source
and destination states with distinct GPM expressions,
(ii) the edges do not have an e-transition. Thus, in
worst case each incoming event has to match to the
complete set of state-transition predicates. Hence, for k
such edges of a conjunction/disjunction operator, and
n events within a window, we can provide the upper
bound on the complexity of these operators as follows:

Theorem 2 The upper bound of evaluation complexity
of conjunction and disjunction is O(n - k), where n is
the total number of events within a window and k is
number of GPM expressions mapped to the edges of a
state.

Proof Sketch. For the conjunction and disjunction op-
erators no new runs are initiated from old ones. If an
event arrives at active state x, it either matches to the set
of edges defined and moves to the next state, or it stays
at the current active states and waits for new events (in
case of the conjunction operator). However, for both
operators, each incoming event can end up traversing
the whole set of kK mapped edges. Thus, even if the num-
ber of active runs remains the same, each event may
have to be matched with a number of GPM expressions
mapped at the state’s edges. For k such edges and n
events, in worst case the cost will be O(n - k). O

Theorem 3 The upper bound of evaluation complexity
of each Kleene+ operator is quadratic-time O(n?) for
n events within a window.

Proof Sketch. Consider the following sequence ex-
pression ((u;, P;)+), which is mapped onto the state
x; with the Kleene+ operator . Let us consider that x;
is an active state. If an event G, arrives at time 7, and if
it matches the GPM expression of the state-transition
predicate, it will duplicate the current active run and
append the duplicated one to the list of active runs.
Thus, for each newly matched event at a Kleene+ state,
a new run is added to the active list, and for n such
events, there will be in total n? runs to be generated
considering all the events are matched to the GPM ex-
pression of the state x;, i.e. worst case behaviour. ]

The Kleene+ operator is the most expensive in the
lot, in terms of number of active runs. Based on the ob-
servations in Theorems 1, 2 and 3, we adopt some of the
optimisation strategies previously proposed, and also
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propose some new ones. We divide these techniques
into two classes from the view point of operators and
system: local, and global levels. Local-level optimisa-
tion techniques are targeted at the specific operators
considering their attributes, while the global-level opti-
misation are for all the operators, and are implemented
at the system level. In the following section, we present
these techniques in details.

7.2. Global Query Optimisations

The evaluation of an NFA ., automaton is driven by
the state-transition predicates being satisfied (or not)
for an incoming event. The number of active runs of an
NFA ., automaton, and the number of state-transition
predicates that each run could potentially traverse can
be very large. Therefore, the aim of global optimisa-
tion is to reduce the total number of active runs by (i)
deleting, as soon as possible, the runs that cannot pro-
duce matches, and (ii) indexing the runs to collect the
smaller number of runs that are actually affected by an
event.

7.2.1. Pushing Windows and Stateful Predicates
Pushing the defined windows and stateful predicates
are usually employed by the CEP systems to evict, as
soon as possible, the events that are outside the window
or cannot produce matches for the defined predicates [,
]. Hence, we employ the same technique of pushing
window to efficiently delete runs that are outside the
time window. In Algorithm 2 (lines 3-5), we push the
window check before iterating over the active runs list.
For the stateful predicates, we customised our GPM
evaluator. That is, we use the FILTER expression in the
GPM construct to first determine if the incoming event
can match the defined mapping without first evaluating
the initiating the complete GPM process. This results in
pruning the irrelevant events and reducing the load over
the GPM evaluator. As an example of this, consider
the SPAseQ Query 1. Its GPM expressions share the
stateful variables of location (?1) and electricity fare
(?£r). Pushing these two joins, we can easily ignore the
events that would not contain the expected mappings of
these variables, and consequently the system does not
have to process the complete GPM expressions (GPM B
and C) for such events.

7.2.2. Indexing Runs by Stream Names

SPAseQ queries are evaluated over a streamset,
where the edges from each state contain the stream
name which is used to match the graph patterns. There-
fore, each active state waits for a specific type of event
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Figure 12. Partitioning Runs by Stream Names

from a specific stream, and later invokes the GPM eval-
uator. This means we can use such property of stream-
set to extract the set of runs, from active run list, that
can be affected by the incoming event. Based on this,
we index each run by the stream name of its active
state (see Figure 12). More precisely, the index takes
the stream name as a key and the corresponding run as
the value. These indexes are simple hash tables, and for
each incoming event it essentially returns a set of runs
that can be affected by the incoming event. These in-
dices proved to be a useful feature for processing events
from a streamset. Note that the naive implementation
using a single list of runs would be inefficient in this
case: each incoming event would iterate over all the
active runs, and initiate the matching process for each
of them.

Example 13 Figure 12 shows a set of streams em-
ployed by a set of active runs. The active runs ri, 15
are waiting for an event from stream with name uo,
the active run ro is waiting for an event from stream
with name us, and active runs rs and ry are waiting for
the events from the stream with name uy. Hence these
runs are evaluated only for the events coming from the
desired stream.

7.2.3. Memory Management

The memory requirements usually grow in propor-
tion to the input stream size or the matched results [52].
For our system, the three main data structures that re-
quire tweaking are the cache manager, the result buffer
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and the indexed active run list. In this context, our first
step is to use the buy bulk design principle. That is, we
allocate memory at once or infrequently for resizing.
This complies to the fact that the dynamic memory al-
location is typically faster when allocation is performed
in bulk, instead of multiple small requests of the same
total size. Second, since the cache manager and the
result buffer are indexed with the dynamically gener-
ated run ids, we use the expired runs — which either is
complete or not — to locate the exact expired runs to be
deleted. These runs are added to a pool: when a new
runs is created, we try to recycle the memory from such
pool. This limits the initialisation of new runs and re-
duces the load over the garbage collector [8]. Note that
we use hash-based indexing for all the data structures,
which means the position of expired runs can be found
in theoretically constant time.

7.3. Local Query Optimisation

Local query optimisation is devised for the conjunc-
tion and disjunction operators, where the chief problem
is how to select the GPM expression from a set of edges
and how to reduce the load on the GPM evaluator. The
knowledge of the runs affected by an incoming event
is not sufficient, we also have to determine which edge
these runs will traverse. These issues are not catered
by the existing NFA models since they (i) work on sin-
gle stream mode; (ii) most of them do not provide the
evaluation techniques for disjunction and conjunction
operators.

To better illustrate the problem, let us start by ex-
amining the sequence expression ((u1,P1) | (u1, P2)
| (u1, P3) | (u1,Py4)) for the disjunction operator. Fig-
ure 13 shows the related NFA .., automaton. Now con-
sider an input stream u;, and an event Gé at time T;
arrives at the state x;. The basic sequential way of pro-
cessing Gi would be to first match with Py then Ps,
P53 and finally with P,: since all the graph patterns are
waiting for an event from the stream u;. Now the ques-
tion is how to choose the less costly graph pattern to
be selected first by the state, such that if it matches the
automaton moves to the next state, hence complying to
the optional operator.

The optimal way of processing the disjunction opera-
tor would be to sort the graph patterns according to their
cost, and select the cheapest one for the first round of
evaluation. That s, if ¢(P;, G}) is the cost of matching a
graph pattern with an event G', then we require a sorted
list such that ¢(P;,G.) < ¢(Py,G%) < -+ < ¢(Py, GL).

Hur}ysfiy |, P1)

()
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Figure 13. Compilation of Disjunction Operator for ((u1,P1) |
(u1, P2) | (u1, P3) | (u1, Ps))

The question is how to determine the cost of GPM
evaluation. There can be two different ways to it.

1. Use the selective measures and structure of the
graph patterns. That is, how much the GrRAPH-
SuMmaRy operator be handy for them (see Sec-
tion 6.4).

2. Adaptively gather the statistics about the cost of
matching a specific graph pattern, and sort the
graph pattern accordingly.

Let us focus on the first approach. As according to
Theorem 1 in [58], the cost of matching a graph pat-
tern and an event is directly proportional to each of
their sizes. That is, if there are more triple patterns
tp € P, then there will be more join operations on dif-
ferent vertically-partitioned views: this can give us a
fair bit of idea about the costly graph patterns. Further-
more, due to the presence of filters, the GRAPHSUM-
MARY operator can prune most of unnecessary triples,
and consequently reduce the cost of the GPM opera-
tion. Following this reasoning, we keep a sorted set of
graph patterns (P1, Ps, ..., Py) within the state which
mapped the conjunction/disjunction operator, each as-
sociated with a stream name u;. This set is sorted by
checking the number of triple patterns, and the selec-
tivity of subjects, predicates and objects within a graph
pattern during the query compilation [44]. The state
can utilise this set to first inspect the less costly graph
patterns for the incoming events. This can lead to a less
costly disjunction operator with few calls to the GPM
evaluator.

The second approach is based on the statistics mea-
sures. That is, the system during its life-span observes
which graph pattern has been utilised successfully in
the past and is less costly compared with others. This
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Figure 14. Compilation of Conjunction Operator for ((u1,P1) &
(u1, P3) & (u1,P3))

approach can be built on top of the technique discussed
above. Herein, the implementation of such optimisation
technique is considered as future work.

The conjunction operator, however, contains an ad-
ditional challenge on top of the one discussed above.
To illustrate this, let us consider a sequence expression
((u1,P1) & (u1,P2) & (u1, P3)) for the conjunction
operator. Figure 14 shows the NFA,., automaton for
it. Hence, for the state x; to proceed to the next state, it
has to successfully match all the defined state-transition
predicates, such that events satisfying them should oc-
cur at the same time. Thus, if an event G. arrives and
matches to one of the state-transition predicate, the
automaton buffers its result, timestamp, and waits for
the remaining events. Now consider a situation, where
events Gi, and Gi arrive at 71 and match with the GPM
expressions (u1, P1) and (u1, P3) respectively. Then
the automaton waits for an event to satisfy GPM ex-
pression (u1, P3). Now consider an event G' arrives at
To. It results into two constraints to be examined (i) if
T1 = To, and (ii) if G¥' matches with the GPM expres-
sion (u3, P3). Here, if any of the above mentioned con-
straints would not match, then it means the run has to
be deleted and all the previous GPM evaluations were
useless: the process of matching an event with a graph
pattern is expensive and it stresses the CPU utilisation.

Our approach to address this issue is to employ a lazy
evaluation technique. Conceptually, it delays the eval-
uation of graph patterns until it gets enough evidence
that these matches would not be useless. Its steps are
described as follow:

1. Buffer the events from streams until the number
of events with the same timestamps is equal to the
number of edges (with distinct GPM expressions)
going out from the state that maps conjunction
operator.

2. After the conformity of the above constraint,
choose graph patterns according to their costs (as
discussed for disjunction operator).

The main idea underlying our lazy evaluation strat-
egy is to avoid unnecessary high cost of the GPM, and
to start the GPM process when it is probable enough
that it would return the desired results. The idea of lazy
batch-based processing is the reminiscent of work [5]
on buffering the events and processing them as batches.
To keep the discussion brief, the detailed algorithm for
our lazy evaluation is described in Appendix D

In this section, we presented various strategies to op-
timise the evaluation of SPAseqQ temporal operators. In
the next section, we present the quantitative analysis of
the SPAseq operators and the effect of our optimisation
strategies.

8. Experimental Evaluation

In this section, we present the experimental evalua-
tion that examines (i) the comparative analysis against
state-of-the-art systems, (ii) the complexity of various
SPAsEQ temporal operators, and (iii) the effect of vari-
ous optimisation strategies. We first describe our exper-
imental setup, and later we analyse the system perfor-
mance in the form of questions. We have implemented
SPAsEQ in Java. To support the reproducibility of ex-
periments, it is released under an open source license>.
All the experiments were performed on Intel Xeon E3
1246v3 processor with 8MB of L3 cache. The system is
equipped with 32GB of main memory and a 256Go PCI
Express SSD. The system runs a 64-bit Linux 3.13.0
kernel with Oracle’s JDK 8ul12.

8.1. Experimental Setup

Datasets. 'We used four real-world datasets and their
associated queries for our experimental evaluation.

The Stock Market Dataset (SMD) is a real-world
dataset [59,25] from the New York Stock Exchange. It
contains 225k transaction records of 10 companies in 1
sector during 12 hours. Each event in the dataset carries
company, sector, and transaction identifiers, volume,
price, time stamp, and type (sell or buy). We replicate
this dataset 10 times with adjusted company, sector, and

SPAseQ: https://github.com/Gillani®/spaseq, last ac-
cessed: November, 2017.
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transaction identifiers such that the resulting data set
contains transactions for 110 companies in 11 sectors.
No other attributes except identifiers were changed in
the replicas compared to the original. This dataset is
then mapped to RDF N-Triples format, where each at-
tribute of the stock event is mapped as a triple and a
whole event (set of triples) refer to an RDF graph.

The UMass Smart Home Dataset (SHD) [60] is a
real-world dataset and provides power measurements
that include heterogeneous sensory information, i.e.
power-related events for power sources, weather-related
events from sensors (i.e. thermostat) and events for re-
newable energy sources. We use a smart grid ontology
[27] to map the raw eventual data into N-Triples format
for three different streams: the power stream (S7), the
power storage stream (Ss) and the weather stream (S3).
In total the dataset contains around 30 million triples,
8 million events.

The Credit Card Dataset (CCD) is a real dataset of
credit card transactions [61,24]. In this dataset, each
event is a transaction accompanied by several argu-
ments, such as the time of the transaction, the card
ID, the amount of money spent, etc. The total num-
ber of transactions in this summary dataset was around
1.5 million. We mapped the dataset to the RDF N-
Triples format, where each attribute of the transaction
is mapped as a triple and a whole transaction refer to
an RDF graph.

The Traffic Dataset (TD) is areal traffic dataset gath-
ered from sensors deployed within the city of Aarhus,
Denmark [33]. Traffic data are collected by observ-
ing the vehicle count between two points over a dura-
tion of time. The dataset includes the average vehicle
speed, vehicle count, estimated travel time and conges-
tion level between the two points set over each seg-
ment of road. The dataset is then mapped to the sensor
network ontology as provided by the CityBench [33].

Queries. We evaluate the workload of four main
queries and their variations for the above mentioned
datasets. That is, the queries for the UC 1 (SHD dataset
and Q1 from Section 4), UC 3 (CCD dataset and Q2
from Appendix A) UC 4 (SMD dataset and Q3 and Q4
from Appendix A) and UC 5 (TD dataset and Q5 from
Appendix A). The properties of these queries are de-
scribed as follows: Q1 uses the multistreams and pro-
vides a sequence using three GPM clauses with state-
less or constant filters; Q2 provides a sequence over two
GPM clauses using stateful or variable filters; Q3 and
Q4 employ three to seven GPM clauses for V-shaped

and head-and-shoulder patterns with stateful filters; Q5
uses multistreams and provides a sequence with con-
junction over three GPM clauses using stateless or con-
stant filters.

Methodology. To show the efficiency of our ap-
proach, we compare our system with EP-SPARQL. EP-
SPARQL is the only system which provide a SCEP
language and its implementation. SPAseq and EP-
SPARQL differ w.r.t each other in terms of semantics
and data model. Hence, they may produce different re-
sults for the same query. Therefore, the aim of our com-
parative analysis is to employ the same use case, its
queries and dataset to measure the performance differ-
ences between the two. This strategy is mostly utilised
by the information retrieval systems [62]. Although EP-
SPARQL doe not provide any event selection strate-
gies at the query level, its underlying system ETALIS
provides various event selection strategies. We use the
recent (EPSPARQL-R) and unrestricted (EPSPARQL-
UR) strategy from ETALIS for our experiments, where
the recent strategy can be mapped to the strict con-
gruity (SPAseQ-SC) and unrestricted to skip-till-next
(SPAsEQ-STN). Note that we also use C-SPARQL for
our set of experiments. Although C-SPARQL provides
a time function to allow simple sequences over the RDF
triple streams, it does not perform well on the selected
datasets and queries, and takes several hours to process
windows of moderate sizes. Hence, the results could
not fit properly in our charts and are not included. Note
that the GPM process of SPAsEQ is based on our previ-
ous work called SPECTRA [44]. The readers are en-
couraged to refer to our previous work for the detailed
comparison between the GPM of SPECTRA and other
RSP systems. Moreover, for multiple streams, we use
events from the streams in the order defined within the
queries. This enables us to get the maximum number
of matches and compare systems under heavy work-
loads. For all the sets of experiments, we use time and
event-based windows. For the time window, we use the
event’s source timestamps. We measured a common
metric [8,25,52,63] for streaming system, namely av-
erage CPU time over the windows. Average CPU time
is measured in seconds and milliseconds as the sum of
total elapsed time in all windows divided by the number
of windows. We execute each experiment three times
and report their average results here.
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8.2. Results and Analysis

We start our analysis by first providing the compar-
ative analysis with the existing SCEP systems for the
same datasets and use cases.

Comparative Analysis

Question 1. How does the SPAseQ engine perform
w.r.t. the EP-SPARQL engine?

Fig. 15 showcases the CPU time of both SPAsEQ
and EP-SPARQL for the two event selection strategies
over the four selected datasets using various window
sizes. From Fig. 15, SPAsEq using the SC and STN
event selection strategies outperforms EP-SPARQL for
R and UR event selection strategies. The details of these
results are as follows.

EP-SPARQL. In general, EP-SPARQL uses a
Prolog-wrapper based on the event driven backward
chaining rules (EDBC), and schedules the execution via
a declarative language using backward reasoning. This
first results in an overhead of object mappings. Second,
each time a new consequent of a rule is matched, the
entire rule set is searched to see what else can be con-
cluded. Hence resulting in high computation costs. The
CPU time of both EP-SPARQL-R and EP-SPARQL-
UR grows with size of the window. However, since
EP-SPARQL-R provides a strict sequence over the in-
coming events, only the most recent rules are selected
to produce the matches. This results in less computa-
tion cost compared with EP-SPARQL-UR. While EP-
SPARQL-UR skips the irrelevant events and a broad
set of rules is selected and processed. This results in
considerable high computational cost for each incom-
ing event. Hence the CPU time for EP-SPARQL-UR
increases quadratically with the increase in the win-
dow size. Furthermore, the CPU costs for both EP-
SPARQL-R and EP-SPARQL-UR have similar mea-
sures for all the datasets and queries. This is because
of evaluating the backward chaining rules, where the
defined constant filters in the queries are not taken
into account beforehand and the system does not prune
the irrelevant rules before starting the complete rule
matching procedure. Moreover, EP-SPARQL uses a
goal-based memory management technique, i.e. peri-
odic pruning of expired goals using alarm predicates,
which is expensive for large window sizes.

SPAsEQ. The CPU time of SPAseQ-SC and SPAsEQ-
STN also increases with the increase of the window
size. However, it performs much better than its coun-
terpart. The reasons are as follows. SPAseqQ employs
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Figure 15. Comparison of SPAseqQ (Strict Contiguity (SC) and
Skip-Till-Next (STN)) with EP-SPARQL (Recent (R) and Unre-
stricted (UR)) over the four selected datasets (SMD, CCD, TD and
SHD).

the NFA,.,, model with various optimisation strate-
gies to reduce the cost of evaluating GPM and the
state-transition predicates. It utilises efficient “right-
on-time” garbage collection for the deceased runs, and
optimisations such as pushing temporal windows and
stateful joins, and incremental indexing from SPEC-
TRA - SPAseQ’s underlying GPM engine — reduce
the average computation overheads and life-span of
an active run. Due to these optimisation strategies,
SPAseQ has different CPU cost for different datasets
and queries. For the CCD and SMD queries (Q2 and
Q3), the initial NFA,, state (GPM expression) has
variable or stateful filters. Hence, each incoming event
can potentially start a new NFA,., run or a partial
match. This results in a large number of runs to be
evaluated for each incoming event. This effect, how-
ever, is not evident for SPAseEQ-SC, since it expects a
strict sequence of events and it deletes runs as soon as
the incoming events violate it. For the SPAseQ-STN,
events that are not matched are skipped and the runs
life-times are much longer, hence the size of total active
runs. This means, for each incoming event, the system
has to go through a larger list of runs to be matched.
This behaviour of event selection strategies is in line
with our theoretical analysis in Section 7. For the SHD
and TD queries (Q1 and QY), the initial NFA,,, state
(GPM expression) has static or stateless filters. Hence,
only specific events can start a new run. This results in
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a small number of active runs to be produced and pro-
cessed for an incoming event. For the same reason, on
TC and SMD datasets, both SPAseQ-SC and SPASEQ-
STN have similar CPU costs. From Fig. 15 (c), we can
also see that the conjunction operator of SPAsEQ per-
forms much better than EP-SPARQL for the two event
selection strategies. This is due to the lazy evaluation
of the conjunction operator, where the GPM process is
started only when we have enough events that can pro-
duce a match. In summary, on all the datasets, SPAsEQ-
SC is two orders of magnitude less costly that EP-
SPARQL-R, and SPAseQ-STN is two to three orders of
magnitude less costly than EP-SPARQL-UR.
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Figure 16. Comparison of SPAseq (Strict Contiguity (SC) and
Skip-Till-Next (STN)) with EP-SPARQL (Recent (R) and Unre-
stricted (UR)) by increasing the number of sequence clause for SMD
dataset and queries over a window of 40 minutes.

To further consolidate our comparison analysis, we
showcase the performance of both systems by increas-
ing the number of sequence clauses over windows of
size 40 minutes. We use the SMD dataset and cre-
ate a set of queries (extensions of Q3 and Q4), since
SMD is much costly than other datasets and queries.
From Fig. 16, the CPU cost of both EP-SPARQL-R
and EP-SPARQL-UR increases with the number of se-
quence clauses. However, the cost of SPAseQ-SC and
SPAsEQ-STN provides similar measures. This is due
to the fact that the CPU cost of SPAseQ depends on
the number of active runs, since they result in large
number of GPM evaluation operations. Increasing the
number of sequences would not increase the number of
active runs but the active life of runs. Hence, this does
not increases the CPU cost drastically compared with
EP-SPARQL. For EP-SPARQL, increasing the number
of sequence clauses results in more complex backward
chain reasoning for incoming event; hence the increase
in the CPU cost.

Question 2. How does EP-SPARQL and SPAsEQ per-
form using the background knowledge base (KB)?

To analyse the CPU cost by using the background
KB, we use the the SMD and CCD datasets and their
respective queries. We generated the simulated back-
ground KB for these datasets. The background KB of
SMD contains information about the company name,
address, URL, phone number, while the background
KB of CCD contains information about the cardholder
name, issuing bank, bank address and type of the card.
We increase the size of the background KB from 10K
to IM triples. We do not use show the CPU time for EP-
SPARQL-UR for this set of experiments, since it does
not perform well with the integration of background
KB.

Fig. 17 shows the performance comparison of both
systems. From Fig. 17, the CPU cost of EP-SPARQL-R
increases quadratically with the increase in the number
of triples for background KB. The reasons are as fol-
lows. EP-SPARQL bases its reasoning process on the
ETALIS engine, where the background KB is used to
map the complete set of inference rules before starting
the event processing. With the arrival of a new event,
not only the defined sequences are matched, but also
all the inference rules are triggered at the same time.
Hence, EP-SPARQL spends considerable amount of
time on matching the events with a large set of rules,
even for the events that would not produce matches.
SPAsEQ, on the other hand, employs an optimised way
of processing background information due to its sepa-
ration of the query constructs. That is, the evaluation of
sequence clauses in a SPAsSEQ query is separated from
the evaluation of the background KB. Hence, triples
from the background KB are joined only when a com-
plete match is produced and unnecessary computation
costs are saved. For this reason, the CPU cost of SPASEQ
increases in a sub-linear manner by increasing the num-
ber of triples in the background KB. The results from
this set of experiments also highlights the importance
of providing explicit constructs for the background KB,
rather than using it at the implementation level.

8.3. General Analysis of the SPAseg Query Engine

In this section, we present the general analysis of
SPASEQ’s query evaluation strategies and the cost of its
temporal operators. We start by describing the cost of
its internal operations.
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Figure 17. Comparison of EP-SPARQL and SPAsEeqQ over the back-
ground KB using SMD and CCD datasets and queries

Question 3. What is the cost of various operations for
the SPAsEQ engine?

The analysis of the cost of various SPAseQ opera-
tions would not only aid us in discovering the bottle-
necks of the systems, but also how it can be compared
with the relational-based CEP systems. For this set of
experiments we use SMD dataset and query Q3, since
it is the most expensive from our previous analysis.
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-X- GPM
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Figure 18. Cost analysis (in milliseconds) of various SPASEQ opera-
tions using the SMD and STN event selection strategy.

Fig.18, shows the cost of three main operations of
the SPAsEQ query engine, namely parsing time, GPM
evaluation time and automaton evaluation time. The
parsing time is the time to parse the incoming set of
triples in N3 form to the internal representation of the
SPAseqQ engine. The GPM evaluation time is the total
time to match each incoming event with the defined
GPM expressions mapped at the automaton states. The
automaton evaluation time determines the time to (i)
create new automaton runs, and (ii) transit from one
state to another. From Fig.18, it is evident the GPM
evaluation is the most expensive operation compared
with parsing and automaton evaluation. However, this

is expected since the RDF data model — which requires
GPM - provides much more expressiveness than the
traditional relational data model and is at the backbone
of the Semantic Web. The cost of the automaton eval-
uation is the standard one, since we need to create new
runs to start a new partial match and we proceed to the
next state to produce the full matches. Hence, even for
a CEP system this cost would remains the same. The
parsing time is proportional to the number of parsed
events and is quite less than the other operations. How-
ever, since we are parsing the URIs for the RDF data
model — compared to the tuples for relational CEP —
the parsing time would be higher than the traditional
CEP systems.

The cost of SPAseQ operations shows us that opti-
mising the GPM evaluation has direct effect on the over-
all cost of a SCEP system. Since we use SPECTRA [44]
as our underlying GPM engine — which outperforms
existing RSP systems — the SPAsEQ engine provides an
optimised performance. Furthermore, the gap between
SCEP and CEP is based on the GPM evaluation and
RDF data model. However, this cannot be consider as
a shortcoming of the SCEP, since it provides higher
expressiveness than traditional CEP systems. Next we
determine the effect of our optimisation strategy on the
performance of the SPAsEQ engine.

Question 3. How does the cost of a simple sequence
clause compare with the cost of the Kleene+ Operator?
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Figure 19. Cost analysis (in milliseconds) of various SPAseQ opera-
tions for Kleene+ operator and simple sequence operators using the
SMD and STN event selection strategy.

In this set of experiments, we compare the CPU cost
of GPM and automaton evaluation for the Kleene+ op-
erator and simple sequence clause using SMD and its
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respective queries. We do not compare the parsing time
since it is the same for both queries. From Fig. 19, we
can see that Kleene+ operator results in an increase of
the GPM and automaton evaluation costs’. This is be-
cause the number of runs generated for a query with a
simple sequence clause is relatively proportional to the
number of events that result in starting a new run from
its initial state xg. However, the same is not the case
with the Kleene+ operator. If an event matches to the
Kleene+ operator, the system duplicates an additional
run and adds it to the active runs list; hence to match the
one or more relations over event streams. This means,
following the same intuition from earlier, each newly
arrived event has to process a large number of active
runs. This results in an extra cost for the Kleene+ oper-
ator to process an event. Nevertheless, our system pro-
vides good performance measures for the expressive
operators such as the Kleene+. The experimental cost
of the Kleene+ operator is in line with our theoretical
analysis in Section 7.

Question 4. How does the strategy for indexing runs
by stream names affect the performance of the system?
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Figure 20. Analysis of the cost of indexing runs by stream names
using SHD dataset and its query.

In order to determine the effectiveness of indexing
runs by stream names, we employ the SHD and QI
for UC 1 with STN event selection strategy, since it is
costly compared with the SC strategy. Recall from Sec-
tion 7.2, we index runs by stream name, thus when an
event arrives, only the runs whose active state is waiting
for such an event are used. Consequently, it reduces the
overhead of going through the whole list of available
active runs. Fig. 20 shows the results of our evaluation
with variable window sizes. According to the results,
the performance differences between the indexed and
non-indexed approach is not evident at smaller win-
dows with less number of events. This is due to the

fact that small numbers of runs are produced/remain
active for the smaller windows, hence indexing of runs
does not results in a comparatively smaller set of runs
to be probed for each event. However, the effectiveness
of the indexing technique becomes quite clear with the
increase in the window size. That is, a large number of
runs is produced with a smaller set of them waiting for
an event from a specific stream.

Question 4. How does the lazy evaluation affect the
performance of the conjunction operator?
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Figure 21. Analysis of eager and lazy evaluation strategies for con-
junction operator using TD dataset and its query.

For this set of experiments, we employ the TC dataset
and its respective query Q5 with conjunction opera-
tor and STN event selection strategy. Fig. 21 shows
the results of the conjunction operator with lazy and
eager evaluation strategies. Recall from Section 7.3,
lazy evaluation delays the computation of all the state-
transition predicates until the number of the events with
the same timestamp is equal to the number of state-
transition predicates. As shown in Fig. 21, the lazy
evaluation strategy performs much better on smaller
windows and relatively better on larger ones: the eager
evaluation results in a larger number of useless calls
to the GPM evaluator, while lazy evaluation performs
a batch-based call to the GPM evaluator. Thus, with
lazy evaluation, a set of events is evaluated against a
set of GPM expressions, only if all the buffered events
(for a conjunction state) has the same timestamp. For
the smaller window, if the number of buffered events
is not equal to the number of edges from a conjunction
state, the GPM evaluator is not invoked. Hence, with
the expiration of the window, the runs are deleted with-
out matching events and without using the additional
resources. Contrary to this, the eager evaluation strat-
egy calls the GPM evaluator for each incoming event
and a large number of such calls proved to be useless
for smaller windows.
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9. Conclusion

In this paper, we presented the syntax, semantics
and implementation of a SCEP query language called
SPAseQ. We provided the motivation behind SPAsEQ
and pointed out various qualitative differences between
other SCEP languages. Such analysis showcased the
usability and expressivity of the SPAseQ query lan-
guage. During the design phase of our language, we
carefully consulted existing CEP techniques and the
lessons learned. Thus, a suitable compromise between
the expressiveness of a SCEP language and how it can
be implemented in an effective way is made possible.
We also proposed an NFA (., model to map the SPAsEQ
operators and showed how they can be evaluated over a
streamset. Furthermore, we also provided multiple op-
timisation techniques to evaluate SPASEQ operators in
an optimised manner. Lastly, while utilising real-world
datasets we showcased the usability and performance of
SPAsEQ query engine. Our future endeavours include:
extension of the language with new operators, a through
semantic comparative analysis with the EP-SPARQL,
further optimisation strategies for the Kleene+ oper-
ator and the evaluation of the SPAseQ operators in a
distributed environment. We believe that SPASEQ can
ignite the SCEP research community and will open the
doors for the new insights and optimisation techniques
in this field.
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Appendix
A. SPAseq By Examples

In this section, we provide the SPAsEQ queries for
the use cases described in Section 2

PREFIX pred: <http://example/>
SELECT ?vessel ?n ?cname
WITHIN 30 MINUTES
FROM STREAM S1 <http://creditCard.org/boats>
WHERE {
SEQ (A, B+)

DEFINE GPM A ON S1 {
?card pred:id ?idl.
?card pred:amount ?amountl.
?card pred:loc ?loc.
FILTER (?sl > 0)
}

DEFINE GPM B ON S1 {
?card pred:id ?7idl.
?card pred:amount ?amount2.

FILTER (?amount2 *10 >= ?7amountl)
GRAPH <http://creditcard.org/db> {
?id :cardHolder ?name.

?id :holderAdrress ?address.

}

}

Query 2: Credit Card Fraud Detection, Big after Small:
SPAsEQ query

PREFIX pred: <http://example/>

SELECT ?company ?pl ?p2 ?p3 ?p4 ?p5 ?p6 ?p7 ?voll ?vol2
?vol3 ?vol4 ?vol5 ?vol6 ?vol7

WITHIN 60 MINUTES

FROM STREAM S1 <http://stockmarket.org/stocks/google>

WHERE {
SEQ (A, B, C, D, E, F, G)

DEFINE GPM A ON S1 {
?company pred:price ?pl.
?company pred:volume ?voll.

3

DEFINE GPM B ON S1 {
?company pred:price ?7p2.
?company pred:volume ?vol2.
FILTER (?p2 > ?pl)

}

DEFINE GPM C ON S1 {
?company pred:price ?p3.
?company pred:volume ?vol3.
FILTER (?p3 < ?p2 && ?p3 > ?pl).
}

DEFINE GPM D ON S1 {
?company pred:price ?p4.
?company pred:volume ?vol4.
FILTER (?p4 > ?p2).

}

DEFINE GPM E ON S1 {
?company pred:price ?p5.
?company pred:volume ?7vol5.
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FILTER (?p5 < ?p4 && ?p5 > 7?p3).
}

DEFINE GPM F ON S1 {
?company pred:price ?p6.
?company pred:volume ?vol6.
FILTER (?p6 > ?p5 && ?p6 < ?p4).
}

DEFINE GPM G ON S1 {
?company pred:price ?7p7.
?company pred:volume ?vol7.
FILTER (?p7 < ?p6 && ?p7 > ?p5).
}
}

?traffic sao:hasValue ?v3.

FILTER (?v3 > 3)
}

Query 5: Traffic Management: SPASEQ query

Query 3: Head and Shoulders Pattern: SPAsEQ query

PREFIX pred: <http://example/>

SELECT ?company ?pl ?p2 ?p3 ?voll ?vol2 ?vol3

WITHIN 60 MINUTES

FROM STREAM S1 <http://stockmarket.org/stocks/google>

WHERE {
SEQ (A, B, C,)

DEFINE GPM A ON S1 {
?company pred:price ?pl.
?company pred:volume ?voll.

3

DEFINE GPM B ON S1 {
?company pred:price ?7p2.
?company pred:volume ?vol2.
FILTER (?p2 > ?pl)

}

DEFINE GPM C ON S1 {
?company pred:price ?7p3.
?company pred:volume ?vol3.
FILTER (?p3 < ?p2 ).

}

}

N AW — OO0 ~JN N B LN —

Query 4: V-Shaped Pattern: SPAseQ query

PREFIX pred: <http://example/>

SELECT ?vessel ?n ?cname

WITHIN 30 MINUTES

FROM STREAM S1 <http://harbour.org/boats>

WHERE {
SEQ (A, B+, C©)

DEFINE GPM A ON S1 {
?vessel pred:speed ?sl.
?vessel pred:location "harbour".
?vessel pred:direction ?dirl.
FILTER (?sl1l > 0)

}

DEFINE GPM B ON S1 {
?vessel pred:speed ?s2.
?vessel pred:location ?1.
?vessel pred:direction ?7dirl.
FILTER (?s2 > ?sl)

}

DEFINE GPM C ON S1 {
?vessel pred:speed 0.
?vessel pred:location "fishingarea".
?vessel pred:direction ?7dir3.

GRAPH <http://harbour.org/db> {
?vessel :name ?n.
?vessel :operatedBy ?company.
?company :name ?cname.
}
}
}

PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

PREFIX sao: <http://purl.oclc.org/NET/sao/ssn#>

SELECT ?vessel ?n ?cname

WITHIN 30 MINUTES

FROM STREAM S1 <http://www.insight-centre.org/dataset/
SampleEventService#AarhusTrafficDatal82955>

FROM STREAM S2 <http://www.insight-centre.org/dataset/
SampleEventService#AarhusTrafficDatal95578>

FROM STREAM S3 <http://www.insight-centre.org/dataset/

SampleEventService#AarhusTrafficDatal95446>

WHERE {
SEQ (A; (B&C))

DEFINE GPM A ON S1 {
?traffic ssn:observedProperty ?pl.
?traffic sao:hasValue ?vl.
FILTER (?vl > 3)

}

DEFINE GPM B ON S2 {
?traffic ssn:observedProperty 7pl.
?traffic sao:hasValue ?v2.

FILTER (?v2 > 3)
}

DEFINE GPM C ON S3 {
?traffic ssn:observedProperty 7?pl.

Query 6: Trajectory Classification: SPAsEQ query

B. A Note on the Extension of SPASEQ

As discussed earlier, the design of SPAseqQ encour-
aged the extensibility of the language with new opera-
tors. Herein, we present two operators and discuss how
they can be integrated into the SPAsEQ query model
and their effects on the semantics of SPASEQ.

B.0.1. The case of Negation Operator

Negation is a unary operator and is used to describe
the non-occurrence of certain events. The standalone
semantics of the negation operator can easily be de-
fined. However, discrepancies arise when it is used
with the event selection strategies. For instance, the
evaluation of the negation operator for a GPM expres-
sion (u, P) over a streamset X and the time boundaries
[Ty, T.] can be described as follows:
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[, P[5 = {(r.2) | 3. S) € LA Y7 (1.G) € S,
[Ple=2A 1, <t<7.}

Thus, for each event that does not match with the
GPM expression, the evaluation of the negation oper-
ator returns an empty set associated with a timestamp.
The use of the negation operator in conjunction with
the skip-till-next or skip-till-any operator results in dis-
crepancies, where it is difficult to differentiate between
the results of a negation operator and the results of a
simple GPM evaluation in case of non-occurrence of
an event. Therefore, the negation operator requires a
new structure such that we can differentiate between
the empty set from the evaluation of GPM expressions
and the GPM expressions with the negation operator.
That is, contrary to the natural join of mappings with
empty set @ X Q = Q x @ = @, for the negation
operator we need a structure such that

TXON=0x7=0Q

An identity element from a commutative monoid
family can be employed to showcase the aforemen-
tioned behaviour of the negation operator.

B.0.2. The case of Optional Operator

The optional operator selects an event if it matches
to the defined GPM expression; otherwise it ignores
the event. Since it corresponds to the zero or at-most
one occurrence of an event, it suffers from the same is-
sues as discussed for the negation operator. Hence, the
remedies for the negation operator can directly be ap-
plied to define its semantics. For instance, let us denote
the optional operator with ‘?’; then its evaluation can
be described using the results of the negation operator
as follows:

[, PY2IE ™ = [ PYIE™ U [, P

The above discussion highlights what kinds of is-
sues arise with the integration of the negation and op-
tional operators in SPAseQ and point-outs some of the
remedies. In this paper, we do not present the complete
semantics of these operator to keep the discussion fo-
cused on the core operators of SPAseq. However, in
Appendix C.4, we present some of the techniques to
implement these operators. The description of their de-
tailed semantics will be the topic of our future endeav-
ours.

C. Evaluation of SPASEQ Operators

Herein, we present the details how SPAsEQ operators
are evaluated using the NFA .., model.

C.1. Evaluation of the Kleene+ Operator

Previously we show the generic execution for
NFA,,., automaton for a sequence expression. Herein,
we present how the unary operator, i.e. Kleene+, is
evaluated. The evaluation of Kleene+ operator is de-
scribed in Algorithm 3 with details as follows.

Algorithm 3: Evaluation of the Kleene+ Operator

1 Function KLEeNEPLUS(G,, u, Xy, H, R, 1, x;, E)
2 get @ for an edge e € E s.t § = (Uy, opg, Py)
3 if u € Uyand Grm (G,, Py, H) then

4 clone a new run r, from r with active state
as Xx;

5 SETACTIVESTATE(r,, X;+1) Where
Xiy1 # Xi

// If it is the final state

6 if x; = xy of r. then
7 a query match has been found
8 remove r from the list of active runs R
9 else
10 | R<RUr
11 else if u ¢ Uy or -~ Grm (G,, Py, H) then
12 L remove r from the list of active runs R

The evaluation of the Kleene+ operator is an inter-
esting one, since the state-transition predicates of the
two edges are not mutually exclusive. Thus, to cater the
non-determinism of the Kleene+ operator, a new run
is duplicated/cloned from the existing one in case of a
match. Algorithm 3 presents the evaluation of Kleene+
operator. It first uses an edge from the active state to
employ the comparison of stream names to make sure
the event is from the stream the edge is waiting for (/ine
3). The algorithm then uses event G, graph pattern Py
and history cache H to execute the GPM process (line
3). If the newly arrived event G, is matched with the
graph pattern Py: (i) a new run r, is cloned from the run
under evaluation with the same active state x; (line 4);
(ii) the cloned run transits to the next state x; 1 (line
5); (iii) if the new active state of the cloned run is the
final state then a query match has been found (lines
6,7); (iv) otherwise the cloned run is added to the list
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1
G(‘ Gﬂs
X0 > » X; query match
WUy, ,9,Pa) Wsg,9,Pc)
G?
» Xy query match
(Usg,9,Pc)

Figure 22. Execution of NFA ., runs for the SPAseQ Query 1, as described in Example 14

of active runs R (line 9). It then skips to the next run in
R, hence the run under the evaluation stays at the same
state. Otherwise, in case of no match, it removes the
run r from the list of active runs R (lines 10-11). This
way the system can keep track of one or more matched
events of the same kind (see Figure 22).

Example 14 Consider Figure 22. In this example,
ri represents run I, Xo, X1, X2, and Xy represent
the states using sequence expression SEQ (A,B+,C)
(From SPAseo Query 1), and G* represents an event
that occurred at time k. The arrival of GL results in a
new run r1 and the automaton transits from state xg
to x1 if Gt matches (Uy,,2,P4). Now considering the
next event G? matches (Us,,~+,Pg); the automaton re-
sults in a non-deterministic move due to the Kleene+
operator at the state xo. Hence, the algorithm creates
a new run ry with active state as xs, i.e. transiting from
X1, while ry stays at the same state x1. When Gg’ arrives
and matches to (Uy,,D,Pc), r2 moves to the final state
and the match for ry is complete with events G, G>
and G2, while ry remains active to consume for future
events . Finally, after the arrival and match of events
G* and G? with the corresponding GPM expressions,
r1 reaches the final state with a match using events G,

G2 and G3.

C.2. Evaluation of the Event Selection Operators

This section presents the evaluation of event selec-
tion strategies. Algorithm 4 shows the evaluation of
strict contiguity and skip-till-next. Herein, we only dis-
cuss the implementation of the skip-till-next operator.
The optimised implementation of skip-till-any operator
will be the topic of our future endeavours.

Algorithm 4: Evaluation of the Event Selection
Strategies

1 Function EVENTSELECTION(G,, 4, X;, H, R, 1,

xi, E)
get 0 for an edge e € E s.t 0 = (Ug, opy, Py)
if u € Uy and Gprm (G,, Py, H) then

SETACTIVESTATE(r, Xi41)

// If it is the final state

if x; = x; then

a query match has been found
L remove r from the list of active runs R

8 else if opy = ;' and u ¢ Uy or ~Gprm (G,,

Py, H) then
9 ‘ skip the event for the followed-by operator
10 else
11 L remove r from the list of active runs R

C.2.1. Strict Contiguity Operator

The evaluation of the strict contiguity operator is
rather simple due to the strictness of how an event
should follows other. That is, the incoming event is
compared with the state-transition predicate and if there
is a match the run transits to the next state; otherwise it
is deleted. Therefore, Algorithm 4 first gets the set of
edges for the active state and selects the state-transition
predicate (line 2). It then compares the stream names
and the incoming event G, with the graph pattern Py
using the Gpm function (line 3). If there is a match, the
current active state x; transits to the next state (line 4).
In case the transited state is the last state a query match
is found (lines 5-6). Otherwise the run under evaluation
is deleted from R (line 11).
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C.2.2. Skip-Till-Next Operator

From our earlier discussion, the skip-till-next opera-
tor skips the irrelevant events util a query match is com-
pleted for the defined sequence expression. This ex-
tended functionality is described in Algorithm 4 (lines
8-9). That is, it first compares the stream names. If the
event is from the same stream, the state’s edge is wait-
ing for, i.e. u € Uy, it employs the same procedure as
described for the immediately followed-by operator. In
case the arriving event is from a different stream, i.e.
u ¢ Uy (line 8) or the event is not matched, the algo-
rithm skips the event (line 11). Hence, the run stays
at the same state. Algorithm 4 can be extended for the
skip-till-any configuration by initiating a new run each
time an event is matched with the graph pattern Py.
However, this will result in a exponential time complex-
ity and will not be suitable for real-world applications.

Algorithm 5: Evaluation of the Conjunction Oper-
ator
1 Function Conyunction(G,, u, xs, H, R, D, r, x;,
E)

2 7 < GETTIMESTANMP (G, )
3 AME <+ {} // Already Matched Edges
4 foreach each edge e € E do
5 if (r, x;,e) € D then
6 L | AME < AME Ue
7 get timestamp 7,y for a € AME using D
8 if T # 7,,; then
9 L remove r from the list of active runs R
10 else
11 E+ E\AME
12 foreach edge e € E do
13 get 6 from the edge e s.t
6= (Ug, Opy, Pg)

14 if u € Uyand Gpm (G,, Py, H) then
15 insert (r, x;,¢) and 7 in D
16 L AME = AME Ue
17 E < GETEDGESET(x;)
18 if |AME| = |E| then
19 SETACTIVESTATE(Y, Xi4+1)

// If it is the final state
20 if x; = xy then
21 a query match has been found
22 remove r from the list of active

runs R

C.3. Evaluation of the Binary Operators

Finally, we present how the conjunction and disjunc-
tion operators are evaluated in an NFA ., automaton.
Algorithms 5 and 6 show the execution of these opera-
tors.

C.3.1. Conjunction Operator

The case of the conjunction operator is rather com-
plicated: there are two or more outgoing edges — each
with a distinct state-transition predicate — and the run
should move to the next state if all the state-transition
predicates are matched with the consecutive events hav-
ing the same timestamp. This means we need to track
the edges of a conjunction state that are already been
matched and their timestamps. Therefore, we use a
mapping structure (D) to store the mapping between a
tuple (r, x, e) and a timestamp 7 of the matched events;
where r is the run, x is state with conjunction operator
and e is the edge of the state that is matched with an
event having timestamp 7. The evaluation of the con-
junction operator is presented in Algorithm 5. Its main
evaluation starts by: (i) obtaining the timestamp 7 of
the newly arrived event (line 2) and (ii) initialising a
set (AME) to store already matched edges (line 3). It
then iterates over the set of edges E and checks if any
of the edges have already been matched or not, using
the mapping structure D, while adding the matched
edges to the AME set (lines 4-6). It then extracts the
timestamp 7,;; from an element in AME set using the
mapping structure D (line 7). This timestamp 7, is
used to check if the newly arrived event has the same
timestamp 7. Otherwise, the algorithm removes the run
r from R, since it has violated the condition of con-
junction operator (lines 8-9). If T = 7,4, it extracts the
set of already matched edges (AME). It then removes
the edges from edge set E that are already matched
with the previous events (line 11). This pruned set E is
then used to match the incoming event with the selected
edges. The algorithm iterates over E and foreache € E
it takes the state-transition predicate 6 to compare the
stream name and graph pattern using the Gem function
(line 12-14). If there is a match it marks the edge as
matched by adding its mapping in D and inserting the
edge in the AME set (lines 15-16). In the end, the al-
gorithm again extracts all the edges for the conjunction
state and uses the AME set to check if all the edges
are matched or not (line 17-18). In case all the edges
have completed the matching procedure it transits the
run r to the next state (line 19). If the transited state is
the last state a query match is found for the conjunction
operator.
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Algorithm 6: Evaluation of the Disjunction Oper-
ator

1 Function DisiunctIioN(G,, u, xf, H, R, 1, x;, E)

2 Matched < false
3 foreach edge e € E do
4 get 0 from the edge e s.t & = (Uy, opg, Py)
5 if u € Uyand Grm (G,, Py, H) then
6 L Matched < true
7 if Matched then
8 SETACTIVESTATE(r, X;11)
// If it is the final state
9 if x; = x; then
10 a query match has been found
1 remove r from the list of active runs R
12 else
// If none of the edges e€ E
match with the event G,
13 remove r from the list of active runs R

C.3.2. Disjunction Operator

The disjunction operator resembles with the con-
junction operator. However, in this case the run can
transits to the next state if the incoming event matches
to at-least one of the state’s edges. Algorithm 6 presents
the evaluation of the disjunction operator. It starts by
initiating a variable Matched to keep track if any of
the state’s edge is matched with the incoming event.
It then iterates over each edge using its state-transition
predicate 6 (line 3-10), and compares the stream names
Uy and the graph pattern Py with the event G, (line
5). If any of the edge matches to the event, it updates
the value of the Matched variable (line 6). Next if the
value of Matched variable is frue, it transits the run to
the next state (line 8). Similarly to the other algorithms,
if such transition resulted in arriving at the final state
of the automaton, a query match is found and the run
is deleted (line 9-10). Otherwise, if none of the edges
are matched with the event, it deletes the run under
evaluation (line 13).

In the previous sections, we presented the execu-
tion of the SPAsEQ temporal operators and how they
use the NFA .., automaton to implement the required
functionalities. The discussion regarding the run-time
optimisations is provided in Section 7.

C.4. Compilation and Evaluation of Negation and
Optional Operators

In Section B, we discussed the case of integrating
negation and optional operators in SPAseqQ. We de-
scribed the issues that can arise while integrating their
semantics with the core SPAseQ operators. Herein, we
showcase the techniques to compile and implement
these operators. To allow the expressivity of optional
(°?’) and negation (‘!”) operators, we extend op and ¢ in
NFA ., definination (Definition 17), such that op € {
‘&, 4+, U {gtand g : E — O U {€},
where € denotes the instantaneous transition [64]. The
compilation process of optional and negation operators
is described as follows:

— Optional: The optional operator selects an event
if it matches to the defined GPM expression; oth-
erwise it ignores the event. Its compilation re-
sults in two edges: one with an e-transition and
the other with the defined state-transition predi-
cate. The corresponding NFA,, automaton for
((u1, P1)?) is illustrated in Figure 23. The € transi-
tion allows the transition to the next state without
a match.

({ul}, ?,P1)

()

Figure 23. Compilation of the Optional Operator for ((u1, P1)?)

— Negation: This operator detects if either no match
of an event occurs or there is no occurrence of
the expected event. Thus, it behaves similarly to
the optional operators, however the GPM process
is opposite. That is, if an event matches to de-
fined GPM expression, then it violates the condi-
tion of the sequence. The corresponding NFA .,
automata for ((u1, P1)!) is illustrated in Figure 24.

We now present the evaluation of the negation and
optional operators. The evaluation functions of these
operators can be integrated in Algorithm 2.

C4.1. Optional Operator

The main difference between the evaluation of
the optional and negation operators is to differenti-
ate between the occurrence and non-occurrence of
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Qur}. 1, P1)

()

Figure 24. Compilation of the Negation Operator for ((u1, P1)!)

Algorithm 7: Optional Operator’s Evaluation

1 Function Opt1oNaL(G,, u, x, H, R, r, x;, E)
2 get O for an edge e € E s.t @ # € and
6 = (Uy, 0py, Py)

3 if u € Uy then

4 if Grm (G,, Py, H) then

5 ‘ SETACTIVESTATE(Y, Xj+1)

6 else

7 if PROCEEDINGSTATE(G,, U, X;, Xf)
then

8 ‘ SETACTIVESTATE(Y, X;t2)

9 else

10 L SETACTIVESTATE(Y, Xjt1)

11 else if u ¢ Uy then

12 if PROCEEDINGSTATE(G,, u, X;, Xr) then
13 ‘ SETACTIVESTATE(Y, Xj12)

14 else

15 L SETACTIVESTATE(Y, Xi4+1)

// If it is the final state

16 if x; = xy then
17 a query match has been found
18 remove r from the list of active runs R

an event. For instance, given a sequence expression
SEQ(A,B?,C) and events G} and G2. If G! matches
A then we have to match Gf with both B and C; since
it is possible that the event G? does not match with B
but with C, and in such a case we can have a query
match. Therefore, the evaluation of the optional opera-
tor makes sure that the event that does not match with
the optional state is compared with the next state’s state-
transition predicate. The evaluation of the optional op-
erator is shown in Algorithm 7. It first employs the edge
with state-transition predicate 6 # € (lines 1) and uses
the stream names to make sure the event is from the
stream the edge is waiting for (line 3). The algorithm
then uses event G,, graph pattern Py and the history

cache H to execute the GPM process (line 4). If the
event G, matches with the selected edge, it transits to
the next state (line 5). Otherwise it checks the event G,
with the next state-transition’s predicate (line 7-10) us-
ing the CHECKNEXTSTATE function in Algorithm 8. If
the event G, matches to the next state-transition pred-
icate — considering if it is not the final state — it tran-
sits the active state x; to x; o (line 8). Furthermore, if
the event is not from the desired stream, the run takes
the e-transition and compares the next state-transition
predicate to either transit to the next state x;;; or next
of the next state x; o (lines 12-15). During the eval-
uation of the operator, if the current state reaches the
final state, the algorithm output the query match (/ine
16-18).

Algorithm 8: Comparing Proceeding State’s Tran-
sition Predicate

1 Function PRocEEDINGSTATE(G,, u, Xy, H, R, 1)

2 select proceeding state x;1
3 if Xit+1 = Xy then

4 | return false

5 E < GETEDGESET(X;41)

get 6 for an edge e € E s.t § # € and
0 = (Uy, sfyg, opg. Py)

if u € Uyand Grm (G,, Py, H) then
| return rrue

else

10 | return false

C.4.2. Negation Operator

The negation operator is evaluated in a similar fash-
ion compared with the optional operator. However, in
this case, the run transits to the next state (producing an
identity element) if there is no match with the mapped
graph pattern Py. The evaluation of the negation oper-
ator is described in Algorithm 9. It begins by selecting
the state-transition predicate and compares the stream
names and graph pattern Py with the event G, using
GpwMm function (lines 4). If Gem returns false, i.e. the
event is not matched with the graph pattern, the al-
gorithm uses the CHECKNEXTSTATE function to deter-
mine if such an event can be matched with the next
state-transition predicate x; 1 (line 5), as described for
the optional operator. In case the current active state
x; is matched with the event G,, it means the run has
violated the negation operator and should be deleted
(line 10-11). If the event is from a different stream, the
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evaluation of the negation operator is same as that of
optional operator (lines 12-19).

Algorithm 9: Negation Operator’s Evaluation

1 Function NEGaT1oN(G,, 4, Xf, H, R, 1, x;, E)
2 get 0 for an edge e € E s.t 6 # € and

6 = (Us, sfa, 0pa, Po)

3 if u € Uy then

4 if =Gprm (G,, Py, H) then

5 if PROCEEDINGSTATE(G,, U, X;, Xf)
then

6 | SETACTIVESTATE(r, Xi12)

7 else

8 L SETACTIVESTATE(Y, Xi41)

9 else

10 remove r from the list of active runs R

11 return

12 else if u ¢ Uy then

13 if PROCEEDINGSTATE(G,, u, X;, x7) then
14 ‘ SETACTIVESTATE(r, Xi1+2)

15 else

16 L SETACTIVESTATE(Y, Xi4+1)

// If it is the final state

17 if x; = x; then
18 a query match has been found
19 remove r from the list of active runs R

D. Local Query Optimisations of Disjunction and
Conjunction Operators

Algorithm 10 shows the lazy evaluation of the con-
junction operator and it extends Algorithm 5. It em-

ploys an event buffer 5 to cache the set of events hav-
ing the same timestamps. The algorithm first takes the
set of edges E for an active state and timestamp 7 of
the newly arrived event (lines 1-2). It then checks if
there exists any previously buffered event in B. If so
it checks their timestamp 7,;; and the timestamp 7 of
the newly arrived event (line 5). If the timestamps do
not match it deletes the run under evaluation while re-
moving all the previously buffered events in B (lines
4-7). Otherwise it adds the event G, in the event buffer
B, which is later used to evaluate the unmatched edges
(line 10). At this stage, the algorithm prunes the edge
set E with the edges that have already been matched —
using the mapping structure D (line 11) (as described
in Algorithm 5). If the number of unmatched edges in
E is equal to the number of buffered event B, it starts
the matching process using the lazy evaluation strategy.
Before starting the matching process, it first sorts the
edges according to the selectivity of the graph patterns
in state-transition predicates, hence using the low cost
edges first (line 13). The algorithm then iterates over the
sorted edges E and the buffered events set to match the
selected edge (lines 12-22). If an edge e € E matches
the buffered event G| € B, its mapping is added into
D and the matched event is removed from the buffer
B (lines 18-19). In the end, the algorithm has to deter-
mine if all the edges of the active states are matched
and should it transit to the next state or not. Therefore,
it examines the number of actual edges of the state and
the number of them that have already been matched
(line 25). If all the edges are matched the run transits to
the next state. Otherwise, it waits at the same state to
receive more events having the same timestamps (/ine
28).
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Algorithm 10: Optimised evaluation of the con-
junction operator

Input: G,: Graph Event, u: stream name, r: active
run, x;: final state, r: active run, H: cache
history, D: conjunction edge-timestamp
map, B: event buffer

1 Xx; < GETACTIVESTATE(r)
2 E < GETEDGESET(X;)

3 7 + GerTimMeSTAMP (G,)
4 if |B| # @ then

5 get T,;q from an event G € B
6 if 7 # 7, then
7 B+ o
8 remove r from the list of active runs R
9 else
10 B=BUG,
11 remove edges from E using D that are
already matched

12 if |E| = |B| then
13 sort E according to the graph patterns
14 foreach each edge e € E do
15 get 0 from the edge e
16 foreach each event G\ € B do
17 if u € Uyand

Grm(G', Py, sfs, H) then
18 remove G', from event

buffer B
19 insert (, x, ¢) and 7; in D
20 E < GETEDGESET(X;)
21 get the set of matched edges AME
from D
22 if |[E| = |AME| then
23 SETACTIVESTATE(7, Xjt1)
// If it is the final
state

24 if x; = x then
25 ‘ a query match has been found
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