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Abstract. The maintenance and use of metadata such as provenance and time-related information is of increasing importance in
the Semantic Web, especially for Big Data applications that work on heterogeneous data from multiple sources and which require
high data quality. In an RDF dataset, it is possible to store metadata alongside the actual RDF data and several possible metadata
representation models have been proposed. However, there is still no in-depth comparative evaluation of the main representation
alternatives on both the conceptual level and the implementation level using different graph backends. In order to help to close this
gap, we introduce major use cases and requirements for storing and using diverse kinds of metadata. Based on these requirements,
we perform a detailed comparison and benchmark study for different RDF-based metadata representations, including a new
approach based on so-called companion properties. The benchmark evaluation considers two datasets and evaluates different
representations for three popular RDF stores.
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1. Introduction

Within the Semantic Web community, the topic of
metadata has been subject of many discussions and
works for several years. These works range from the
publication of different metadata vocabularies (e.g.,
PROV-O1, the Dublin Core Metadata Initiative2, and
the Data Catalog Vocabulary3), the application of these

1https://www.w3.org/TR/prov-o/
2http://dublincore.org/documents/dcmi-terms/
3https://www.w3.org/TR/vocab-dcat/

vocabularies in datasets, the development of differ-
ent metadata representation models (MRM), metadata
support by graph backends, and much more.

In the context of this paper, we focus on metadata
representation models (MRM) for knowledge graphs
and how data and metadata are connected in the same
RDF store. Knowledge graphs consist of information
collected from different (data) sources, which evolve
over time and can reach large dimensions. Usually, het-
erogeneous sources contain information about similar
or equivalent entities, which represent the same real-
world object. Such overlapping entities from different

1570-0844/17/$35.00 c© 2017 – IOS Press and the authors. All rights reserved

http://aksw.org/Groups/KILT.html
http://dbs.uni-leipzig.de
https://www.tib.eu/en/research-development/scientific-data-management/staff/
https://www.w3.org/TR/prov-o/
http://dublincore.org/documents/dcmi-terms/
https://www.w3.org/TR/vocab-dcat/


Frey et al. / Evaluation of Metadata Representations in RDF stores

Figure 1. Structure of different Metadata Representation Models: Six different ways of describing (or reifying) an RDF triple s, p, owith
a metadata key and value pair are studied in this work. Companion property (cpprop), nary relation (naryrel), named graphs (ngraphs), sin-
gleton properties (sgprop), standard reification (stdreif), and the Blazegraph-specific Reification Done Right (rdr). Besides rdr all the approaches
use an explicit statement identifier (red), which is used to attach metadata (green) to the data (grey). Cpprop and stdreif are based on additional
triple handlers (white). Properties which also deal as subjects are drawn with dashed lines.

datasets will have common (e.g., birth year), conflict-
ing (e.g., different heights of a mountain), and comple-
mentary property attributes (e.g., fact about an entity
only available in one dataset). The process of merg-
ing these entity information into one common dataset
is called knowledge fusion [8] which can include op-
erations such as provenance tracing, conflict detection,
conflict resolution, and merge. Resolving conflicting
data values can be improved by metadata-based heuris-
tics [5], e.g., prefer newer facts or prefer values from
a source, which is known to ensure high data quality.
Furthermore, data traceability is an important use case
where not only source provenance data is recorded,
but also data processing information such as results
from normalization and cleaning operations, and infor-
mation about applied (fusion) algorithms. Traceabil-
ity can help users and developers to understand the re-
sults of Big Data systems and allows them to track
erroneous statements back to its data sources and the
involved algorithms, by inspecting provenance meta-
data. This topic has reached a political level and the
EU4 is pushing for new regulations, which will force
commercial solutions to add traceability of data to Big
Data systems.

As metadata representation model (MRM), we de-
fine a strategy of splitting an RDF triple t and its set of
key-value based metadata facts m into several triples
or quads, such that we can store and query metadata,
for all triples individually, in an RDF Store.

Handling data and metadata alongside each other
can be considered a challenging task. Since more data
has to be processed, stored and indexed, a negative
impact on the overall system performance might oc-
cur. However, solutions which store data and metadata

4http://irishtechnews.net/ITN3/eu-regulations-on-the-
traceability-of-your-data-is-looming-on-the-horizon/

in separate databases or backend types (e.g., data in
an RDF store and metadata in a relational database)
require complex and time-consuming join, lookup or
query federation solutions. Furthermore, such setups
are harder to maintain because data and metadata may
be out of sync. Hence, this work will evaluate how to
store metadata alongside data, using different MRMs
and RDF stores. Figure 1 illustrates the main structural
differences between the various MRMs, which will be
explained in detail in Section 4.

The contributions of this work are as follows: We
performed a thorough and comprehensive evaluation
of metadata handling in RDF from several angles. As
foundation for this evaluation but also as basis for a
future RDF metadata performance benchmark, we de-
fined requirements and criteria for an evaluation of
metadata representation models, based on an analysis
of existing RDF datasets and use cases where meta-
data is involved. We specified a setup motivated by
a knowledge fusion use-case including a novel high
degree metadata-dataset and a set of data-only and
mixed benchmarking queries from different complex-
ity classes. We validated and revised previous experi-
mental results from the state-of-the-art, and systemat-
ically compared and evaluated several MRMs (includ-
ing vendor-specific approaches and a new compan-
ion properties approach) against different RDF stores.
To close the gap to previous work, we considered
open questions and aspects like the MRM overhead
for regular data queries, the impact of dataset specific
characteristics, metadata granularity levels and meta-
metadata.

The rest of the paper is structured as follows: Sec-
tion 2 gives an overview about related work. Then the
evaluation requirements and criteria are presented in
Section 3. In Section 4 we describe different models
to represent metadata and introduce companion prop-

http://irishtechnews.net/ITN3/eu-regulations-on-the-traceability-of-your-data-is-looming-on-the-horizon/
http://irishtechnews.net/ITN3/eu-regulations-on-the-traceability-of-your-data-is-looming-on-the-horizon/
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erties. The evaluation datasets and the evaluation setup
are described in sections 5 and 6. Then the evalua-
tion results are presented in Section 7 and compared to
other studies. Finally, we conclude and discuss future
work.

2. Related Work

Related work can be separated into three groups.
First several SPARQL-benchmarks exist, which try to
evaluate the performance of RDF stores. Second, there
is related work, which discusses or proposes MRMs,
extensions of RDF or systems based on RDF to handle
provenance and other metadata. The last group evalu-
ates a set of MRMs against one or more RDF stores.

SPARQL & RDF store benchmarks:
Over the past years several benchmarks have been

created with the aim of providing testbeds for the eval-
uation of the performance of RDF stores. When cre-
ating these benchmarks, different strategies have been
applied. In the case of synthetic SPARQL benchmarks
like LUBM [4], BSBM [18], and SP2Bench [43], the
idea for the datasets and search queries are deduced
from real-world use cases, but both the dataset and the
queries are automatically generated. The Linked Data
Benchmark Council (LDBC)5 offers three benchmarks
[2] for different domains, such as semantic publish-
ing, social network and graph analytics [24]. LDBC is
using a combination of real and synthetic data while
[47] uses real-world datasets and a set of 15 fixed
queries. Despite the fact that synthetic benchmarks are
inspired by real-world use cases, the characteristics
of neither the datasets nor the queries will adequately
represent common real-world usage scenarios. Hence,
the authors of [32] proposed the DBpedia benchmark,
where both real-world data and user query logs are
used during a testbed generation. Similarly, Saleem et
al. [41] propose a framework that relies on query logs;
however, the framework is able to cluster query logs
and generate queries that fulfill a set of requirements
(e.g., usage of aggregates and GroupBy). In [1], the
authors evaluate different RDF benchmarks and show
that many of them lack a diverse (with respect to crite-
ria like result cardinality, join degree, and type) testing.
They state that varied queries and workloads are nec-
essary to detect performance differences of RDF store
implementation details and to drill down performance

5http://www.ldbcouncil.org/

problems for specific combinations of query features.
To close this gap they proposed the WatDiv bench-
mark. Although the authors do not specifically eval-
uate datasets with metadata, they highlight the need
for benchmarks, which cover provenance and temporal
data as well. Finally, the semantic web community has
been actively proposed testbeds for evaluating: Feder-
ated query engines [31, 40, 42], triple/graph or dataset
versioning [11, 29, 36], streaming [48], and geospa-
tial6 querying [15]. However, to the best of our knowl-
edge, there is no benchmark that generates metadata-
rich datasets or queries over fine grained meta infor-
mation.

Metadata handling & extensions in RDF: A first
extension of RDF to support efficient storage of prove-
nance for RDF data had been addressed with the pro-
posal of named graphs [6]. Meanwhile, several syntac-
tic and/or semantic metadata or provenance extensions
of RDF have been published; however, none of them
had been included in Semantic Web W3C standards so
far. The need for annotating triples to describe prove-
nance, time, trust or fuzziness of a statement has been
outlined in [27], but semantically formalized in [46]
with annotated RDF (aRDF). Within aRDF, triples can
be described by members of a partially ordered set.
Lopes et al. [26] propose basic annotated patterns for
enabling query processing over aRDF documents us-
ing extended SPARQL based SELECT queries. RDF+
[44] adds a semantic interpretation for metadata to
RDF and extends SPARQL with a WITH META key-
word. While it reuses the named graphs feature in a
backward-compatible way, the SPARQL extension is
only implemented in a research prototype. Another
extension of SPARQL [7], based on a hierarchy of
named graphs, uses a new STATE keyword to query
for the state (or metadata) of a triple. To the best
of our knowledge, RDF* and SPARQL* [20] are the
only well-founded (but non-standardized) extensions
of RDF and SPARQL, which are included in a recent,
maintained, and fully SPARQL 1.1 compatible RDF
store. Moreover, in order to optimize performance and
usability of querying and storage of temporal meta-
data in RDF (stores), approaches extending RDF and
SPARQL have been proposed [25, 30]. While temporal
and spatial metadata, as well as triple versioning can
be represented with MRMs, approaches optimized and
limited with respect to these dimensions are out of the
scope of this work.

6http://www.opengeospatial.org/standards/geosparql

http://www.ldbcouncil.org/
http://www.opengeospatial.org/standards/geosparql
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Since the presented RDF & SPARQL extensions are
lacking a widespread adoption in RDF stores, RDF
standard compatible MRMs have been published. This
includes singleton properties [35] and nanopublica-
tions [17] which will be covered in more detail in Sec-
tion 4.1 and Section 3.1.1.

MRM studies: Despite the fact that the handling of
metadata is becoming a more important topic in the
Semantic Web community, not many evaluations have
been conducted. Work studying different MRMs has
been reported in [13, 22, 23]. The storage of redun-
dant provenance per pairwise relation between chemi-
cals, genes, and diseases is evaluated in [13]. Since the
same backends have been used, there will be a detailed
discussion of the results in Section 7.7. In [22] and
[23], the authors apply different MRMs on a Wikidata
dataset. In [22], Virtuoso and Blazegraph in combina-
tion with different MRMs are compared to the non-
RDF backends PostgreSQL and Neo4J using several
template queries. In [23], the focus lies on the compar-
ison of the RDF stores 4store, BlazeGraph, GraphDB,
Jena TDB and Virtuoso but only using a set of 15 fixed
query instances.

This work features a novel DBpedia based dataset
including high degree revision metadata, meta-metadata
and a set of data-only and mixed query templates from
three complexity classes. By revising and reproduc-
ing results from [22] we allow for a direct compari-
son of results and studying of dataset specific impacts
between Wikidata and our knowledge fusion use case.

3. Evaluation requirements and criteria

To establish a foundation for our evaluation, we
define requirements and criteria for metadata usage,
MRMs, and their comparison. In this section we will
give a brief rundown of our requirements, and present a
set of criteria, which are used to analyze, measure and
compare the different MRMs. Moreover, we present an
overview of metadata usage in RDF as basis for the
requirements.

3.1. Metadata (Requirements) Analysis

In order to establish MRM evaluation requirements,
an analysis of metadata usage and datasets with meta-
data has been conducted.

3.1.1. Metadata usage analysis
Several search strategies have been used to explore

metadata usage. First repositories such as datahub.io7,
as well as other CKAN8 repository instances were
searched. Second, with the help of LODVader [3],
LodLaundromat9 and lodstats10 we searched for datasets
containing MRM patterns and specific metadata vo-
cabulary in the Linked Open Data (LOD) cloud. For
provenance related metadata, the following metadata
vocabularies were investigated: PROV-O11, Dublin
Core12. Furthermore, we checked for more dataset ori-
ented metadata vocabularies such as DCAT13, VoID14,
and Data Cube15. In order to find out how often meta-
data vocabularies are already used in the LOD cloud,
we used the LODVader service16, which indexes most
active datasets of the LOD cloud. With the help of
this index, we were able to perform an in-depth anal-
ysis on 43,777 datasets. Out of all searched datasets,
4,843 datasets contain provenance related meta infor-
mation, which is about 11% of all datasets. This shows
that metadata vocabularies already play an important
role in existing LOD datasets. Within the metadata-
carrying datasets on average 9% of all triples are meta-
data triples. In the datasets, where PROV-O vocabulary
was used, the PROV-O related information covers on
average 62% of all the dataset triples. The most popu-
lar predicate is prov:wasDerivedFrom with more than
128 million occurrences, followed by dc:language
(94 million), dc:title (63 million), dc:rights (48 mil-
lion). The properties describing provenance, rights,
and language are the most relevant metadata predi-
cates so far. Furthermore, we were able to find 7,088
datasets, which use more dataset-centric vocabular-
ies and if the Data Cube vocabulary is included, we
found about 14,767 matches. When only datasets with
DCAT and VoID are evaluated, on average nearly 28%
of all triples are metadata triples. This is not a sur-
prise because many of these datasets describe other
datasets. The top predicates in this metadata category
are: cube:Dataset (840 million), void:vocabulary (109
million), and dcat:distribution (84 million). We also

7https://datahub.io/
8http://ckan.org/
9http://lodlaundromat.org/
10http://aksw.org/Projects/LODStats.html
11https://www.w3.org/TR/prov-o/
12http://dublincore.org/documents/dc-rdf/
13https://www.w3.org/TR/vocab-dcat/
14https://www.w3.org/TR/void/
15https://www.w3.org/TR/vocab-data-cube/
16http://lodvader.aksw.org/

https://datahub.io/
http://ckan.org/
http://lodlaundromat.org/
http://aksw.org/Projects/LODStats.html
https://www.w3.org/TR/prov-o/
http://dublincore.org/documents/dc-rdf/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/void/
https://www.w3.org/TR/vocab-data-cube/
http://lodvader.aksw.org/
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analyzed the datasets for URI identifiers, which are
specific for MRMs. We were not able to find any
dataset using the Singleton Property MRM. When
it comes to RDF reification, we did not find any
dataset, which uses rdf:Statement. Looking for the
standard reification predicates, allowed us to iden-
tify 15 datasets, where the number of occurrences
of rdf:subject, rdf:predicate, and rdf:object differed,
which indicates wrong usage of standard reification or
inconsistencies in the datasets or indexes.

In addition, we requested help via the Semantic
Web17 and PROV-O18 mailing lists for known meta-
data datasets or projects, where management and stor-
age of RDF metadata is an essential part. This search
pointed us towards Nano-publications, Bio2RDF, and
OpenCitations. Overall, the search strategy and meta-
data vocabulary analysis helped us to find relevant
datasets and it showed us that metadata is already used
within the Linked Data community, since more than
11% of all datasets contain metadata information.

3.1.2. Metadata datasets analysis
From the dataset candidates returned by our search

strategies, we selected exemplary datasets with more
than 5 million triples for a deeper analysis. These
datasets are:

Yago 3: is a prominent knowledge base extracted
from Wikipedia and other sources [28]. It stores meta-
data and provenance information per triple using a
non-standardized way of assigning triple-ids via tur-
tle comments. The ids are associated with metadata in
the same way as in the other MRMs. While there is
a source URL and extraction technique recorded for
almost every triple, metadata from other dimensions
(e.g., geo location, time) is only available for a very
small subset of triples.

Artists Knowledge Graph: A knowledge graph,
containing fused data about 161,465 artists from 4
sources [16]. For every statement, a provenance object
containing detailed traceability metadata is recorded,
using a role object19. If the same value for one en-
tity attribute occurs in several datasets, multiple prove-
nance objects are attached to it.

Bio2RDF: Within the Bio2RDF [9] project various
datasets from the Life Sciences have been converted to
RDF. More than 30 datasets contain simple provenance

17https://lists.w3.org/Archives/Public/semantic-web/2016Sep/
0034.html

18https://lists.w3.org/Archives/Public/public-prov-comments/
2016Sep/0000.html

19http://blog.schema.org/2014/06/introducing-role.html

information, which describe each graph. A graph con-
tains all triples from one source. The number of differ-
ent graphs for the majority of datasets is very small.

LinkLion: is a database for owl:sameAs links be-
tween entities [33]. In this dataset standard reifica-
tion is used, to represent which linksets support a spe-
cific sameAs link. Furthermore, provenance informa-
tion such as dump time and the used extraction algo-
rithm name are provided.

LinkedGeoData: is a mapping of relational data
from OpenStreetMap20 to RDF. It provides revision
metadata information for every node such as ver-
sion_number, user_id, timestamp, changeset_id [45].

Linked Clinical Trials: translates XML export files
of clinical trials to RDF [21]. For some entities (e.g.,
facility, drug, condition, address, state, and person) the
XML document provenance information is kept.

Nano-publications: is a data model, which can
be represented in cascaded RDF graphs, one con-
tainer graph for the nano-publication and three addi-
tional graphs for the fact (assertion), provenance and
publication information (meta-metadata))[17]. Nano-
publications are primarily used in the Life Sciences.
One big dataset21 consists of 204 million associa-
tions between gene and disease concepts. For each
of these relations the percentile rank of the match
score is stored in combination with other prove-
nance information such as prov:wasDerivedFrom and
prov:wasGeneratedBy. In addition, a nano-publication
dataset stores metadata about license, right-holder, au-
thors, and creation date. For the checked datasets, the
metadata is not diverse, i.e., many/all nano-publications
share the same authors.

Open Citations Corpus: The Open Citations Cor-
pus [38] contains information about the author-created
bibliographic references present in publications that
cite other publications. It consists of around a mil-
lion cited bibliographic resources with a total number
of more than 1.2 million citation links22. For biblio-
graphic entities, provenance, and versioning metadata
(changes between versions, which agent changed the
version and source information) is tracked [39].

Wikidata: Since Wikidata is used as one of the eval-
uation datasets, a detailed explanation will be given in
Section 5. For the sake of completeness of the meta-
data analysis, we would like to mention that Wiki-

20https://www.openstreetmap.org/
21http://datadryad.org/resource/doi:10.5061/dryad.gn219
22http://rawgit.com/essepuntato/opencitations/master/paper/occ-

driftalod2016.html
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data is characterized by diverse metadata for individ-
ual facts, whereas more than one third of the metadata
is dedicated to a temporal dimension.

3.2. Evaluation dimensions and requirements

In the following section, we describe the evaluation
dimensions and deduce requirements towards our eval-
uation to study different effects and aspects of these
dimensions with regard to MRMs, but also to cover
metadata handling in RDF from various angles. With
respect to the latter and to close the gap to previous
work, an objective of this evaluation is to also exam-
ine vendor-specific metadata extensions in large-scale
capable, SPARQL 1.1 compliant RDF stores.

During our investigation and based on previous
work in RDF store benchmarking, we identified three
main dimensions which are influencing the perfor-
mance of MRMs in RDF stores:

3.2.1. Dataset characteristics
Each dataset differs in features such as in/out de-

grees of entities, property, and value distributions.
These dataset characteristics have a direct impact on
different evaluation metrics such as the dataset size and
loading time. The datasets which are used in this eval-
uation should contain real-world data, since a realistic
combination of these different features is difficult to re-
produce in a synthetic dataset. Furthermore, the dataset
should contain diverse and not just repetitive data (e.g.,
different data sources, annotators, dates) and cover dif-
ferent metadata types (e.g., date, provenance) which
were seen in the metadata usage analysis. The dataset
should be big enough, in order to stress the graph back-
end. These requirements shall ensure that the amount
of (meta)data allows us to create and execute diverse
search queries, for which the whole dataset can not
be cached by the backend. In nanopublications we ob-
served the concept of meta-metadata. The effect of
such nested metadata should be addressed as well.

3.2.2. Granularity of metadata
While the dataset characteristics also include fea-

tures of metadata, from our perspective the granularity
level on which metadata is expressed should be con-
sidered separately. In the dataset analysis, we observed
meta information which describes the whole dataset or
huge parts of it, but also more fine-grained metadata
for individual triples or entities. In the context of this
evaluation, we defined three granularity levels:

Dataset/Graph level: it provides information for all
entities and statements within the same dataset/graph.

For a dataset like DBpedia, this meta information can
be information about the source from which data was
extracted, e.g., Wikipedia version or Wikipedia chapter
language.

Entity/Resource level: level where all statements
about one entity share the same meta information. If
facts about an entity from a Wikipedia page are ex-
tracted, then the meta information of the Wikipedia
page can be used as meta information for all the ex-
tracted statements/triples of this entity such as revision
information, publication date, number of edits, etc.

Triple/Statement level: level where metadata is ex-
pressed for each statement or triple. When dealing with
information from different DBpedia language datasets,
it is possible that two or more data sources share infor-
mation about the same real-world entities. In this sce-
nario, it is required to store metadata at a triple/state-
ment level, e.g., to track the origin of every individual
fact.

Considering our knowledge graph and fusion use
case, we were only interested in datasets which store
metadata at the entity or triple level. When fusing data
from different datasets into a new dataset, the source
information can not be tracked using only dataset level
granularity metadata. An MRM evaluation should con-
sider both entity and triple level granularity.

In connection with metadata granularity, the support
of an MRM for factorization should be examined in
more detail. As factorization, we denote the capability
of an MRM to represent the granularity level of meta-
data in an efficient way on the storage level without
metadata redundancy.

3.2.3. Query characteristics
Besides the compatibility problem of existing data

queries without rewrite, the question of the overhead
of MRM usage for data-only queries remains to be an-
swered. Therefore, an MRM evaluation should con-
sider both data-only queries and also mixed (data-
metadata) queries. Furthermore, a thorough evalua-
tion should use queries of different complexity classes,
ranging from simple to very complex queries. Fi-
nally, the complexity and structure of MRM meta-
data queries should be studied in terms of usability for
adopters but also potential effects for RDF store query
optimizers.

3.3. Evaluation Criteria

Based on the analysis steps and the presented re-
quirements and dimensions, we deduced the following
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criteria and give metrics for the evaluation, whenever
possible.

3.3.1. Criteria for metadata representations
Storage cost - evaluates the size of the MRM and its

factorization support and will be measured by
triple count, as well as serialized file size and
overall database size in byte.

Data-only query overhead/impact - Our evaluation
measures query time in ms for data-only queries
for the MRMs compared to a baseline query/-
dataset without MRM specific triples.

Mixed (metadata and data) query execution time -
for a set of query templates over data and meta-
data we compare the execution time (in ms)

Usability - We compare the number of variables,
triple patterns, and additional SPARQL elements,
which are necessary to query a single triple with
a metadata fact, as indicators for the query usabil-
ity/complexity of an MRM.

3.3.2. Criteria for metadata extension and SPARQL
implementations

Bulk load - evaluates (meta)data bulk loading capac-
ities for stores and is measured in milliseconds.

SPARQL integration/conformance - evaluates inte-
gration of store-specific metadata extensions into
SPARQL and validates whether stores are able to
handle all SPARQL queries correctly

3.3.3. Additional criteria
Backward compatibility of queries - evaluates data-

only queries, which should still work after the
addition of metadata without the need to rewrite
them.

4. Metadata Representation Models

Within the Linked Data community different ways
of representing metadata have been developed. The
most common MRMs were described in [23] and [22].
Besides two additional MRMs, not evaluated in the
literature so far, this work will study the same list
of MRMs. In this section, we will present five RDF-
compliant MRMs and we will have a brief discussion
about native metadata support by graph backends. Fig-
ure 1 visualizes the major differences between MRMs
and can be used as a visual reference.

4.1. RDF compliant models

In order to make it easier for the reader to under-
stand the differences between the MRMs, a running
example is used. In the example, two entities are shown
with birth year values for Person p1 and p2 using the
dbo:birthYear attribute. For each RDF statement meta-
data about the last modification date (dc:modified) ex-
ists. The presented query searches for the most cur-
rent birth date for each distinct person. The abbreviated
names, shown in Figure 1, are used in the upcoming
sections, to indicate that the specific realization of an
MRM (as displayed in the figure) is meant. This con-
vention allows, e.g., to distinguish between the RDF
1.1 feature “named graphs” and the MRM ngraphs,
which utilizes the former.

4.1.1. Named graphs (ngraphs)
The Named Graph feature, which is supported by

every SPARQL 1.1 compliant graph backend, allows
for the assignment of one IRI for one or more triples as
a graph id. The same IRI can then be used as a subject
for a metadata entity, which itself can store the meta-
data about the associated triple(s) as predicates and ob-
jects.

# data with birth year values for
# Person p1 and p2 (trig notation)
<g1> { <p1> dbo:birthYear "1981". }
<g2> { <p1> dbo:birthYear "1983". }
<g3> { <p2> dbo:birthYear "1982". }

# metadata:
meta:dbpedia { <g1> dc:modified "2016-11"^^xsd:gYearMonth .

<g2> dc:modified "2014-12"^^xsd:gYearMonth .
<g3> dc:modified "2012-01"^^xsd:gYearMonth . }

# query
SELECT ?person ?birth WHERE {

{ GRAPH ?g {?person dbo:birthYear ?birth } .
GRAPH meta:dbpedia {?g dc:modified ?modified}

} FILTER NOT EXISTS {
GRAPH ?g2 {?person2 dbo:birthYear ?birth2 }
GRAPH meta:dbpedia {?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

The ngraphs MRM is easy to understand, since it
just builds on top of the existing triple format. Hence,
it is possible to reuse existing data queries. In addition,
the representation is very compact (for both data and
query), which can be seen in the example, the meta-
data can be reached by only adding the GRAPH state-
ment and one additional triple into the search query.
Another big advantage of this approach is the fact, that
the ngraphs MRM supports factorization for all gran-
ularity levels. The same metadata IRI can be reused at
dataset, entity and triple-level. The one big drawback
of the ngraphs model is the fact that it uses the named
graph IRI as a URI for a metadata resource, which it-
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self stores a set of key-value based metadata facts. If
the original dataset uses a named graph to store the
data facts, then a ngraphs MRM can not be applied in
a backward compatible way.

4.1.2. RDF standard reification (stdreif)
As specified in the RDF standard, it is possible to

create a resource which describes a triple and its sub-
ject, predicate, and object. The resource IRI can then
be used to connect provenance or meta information
with the triple.

# birth year values for
# Person p1 and p2 (turtle notation)
<stmt-56e8> rdf:type rdf:Statement ;

rdf:subject <p1> ;
rdf:predicate dbo:birthYear ;
rdf:object "1981" .

<stmt-4f83> rdf:type rdf:Statement ;
rdf:subject <p1> ;
rdf:predicate dbo:birthYear ;
rdf:object "1983" .

<stmt-4327> rdf:type rdf:Statement ;
rdf:subject <p2> ;
rdf:predicate dbo:birthYear ;
rdf:object "1982" .

# metadata:
<stmt-56e8> dc:modified "2016-11"^^xsd:gYearMonth .
<stmt-4f83> dc:modified "2014-12"^^xsd:gYearMonth .
<stmt-4327> dc:modified "2012-01"^^xsd:gYearMonth .

# query
SELECT ?person ?birth WHERE {

{ {?g rdf:subject ?person; rdf:predicate dbo:birthYear;
rdf:object ?birth ; a rdf:Statement . } .

{?g dc:modified ?modified . }
} FILTER NOT EXISTS {

{?g2 rdf:subject ?person2; rdf:predicate dbo:birthYear;
rdf:object ?birth2 ; a rdf:Statement . } .

{?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

Compared to the ngraphs MRM, it is not possible
to reuse existing data queries out of the box. In or-
der for them to work, a custom reasoning mechanism
would have to be applied. Furthermore, each original
data triple has to be represented by a resource entity,
which itself consists of four statements (rdf:subject,
rdf:predicate, rdf:object, and rdf:Statement). This does
not only increase the dataset size, but adds more triple
patterns to queries. All four components of a reified re-
source have to be used as triple patterns in order to find
the correct reified triple in the dataset. The resource IRI
can be used to access data and metadata. On the posi-
tive side it supports datasets, which use named graphs.

4.1.3. N-ary relation (naryrel)
In this MRM, a relationship instance is created as

a resource of the subject-predicate-pair instead of the
object of the triple. The object is connected to the rela-
tionship resource, using a renamed version of the pred-
icate (appending a designated suffix). The same rela-

tionship resource is utilized, to relate meta information
to the statement.23

# birthyear values for
#Person p1 and p2 (turtle notation)
<p1> dbo:birthYear <rel-56e8> .
<rel-56e8> dbo:birthYear-value "1981" .
<p1> dbo:birthYear <rel-4f83> .
<rel-4f83> dbo:birthYear-value "1983" .
<p2> dbo:birthYear <rel-4327> .
<rel-4327> dbo:birthYear-value "1982" .

# metadata:
<rel-56e8> dc:modified "2016-11"^^xsd:gYearMonth .
<rel-4f83> dc:modified "2014-12"^^xsd:gYearMonth .
<rel-4327> dc:modified "2012-01"^^xsd:gYearMonth .

# query
SELECT ?person ?birth WHERE {

{ { ?person dbo:birthYear ?g. ?g dbo:birthYear-value ?birth . } .
{?g dc:modified ?modified . }

} FILTER NOT EXISTS {
{ ?person2 dbo:birthYear ?g2.

?g2 dbo:birthYear-value ?birth2 . } .
{?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

Similar to the standard reification, an IRI can be
used to access data and metadata. In the case of the
nary-relation MRM, the IRI is a relation resource IRI.
Due to the introduction of the relation resource IRI,
one more statement per triple value has to be added.
Existing data queries cannot be reused, but compared
to the standard reification fewer triple patterns are re-
quired to access either data values or metadata. Fur-
thermore, it is possible to support datasets with named
graphs.

4.1.4. Singleton Property (sgprop)
The singleton property [34] scheme uses a unique

property for every triple with associated metadata.
This unique property deals as a triple identifier, which
can be used to describe the statement with meta
information. In order to be able to reconstruct the
original property of the statement, every singleton
property is linked to its original predicate using a
rdf:singletonPropertyOf relationship.

# birth year values for
# Person p1 and p2 (turtle notation)
<p1> <56e8-783f-9cd3> "1981" .
<p1> <4f83-6cd5-88da> "1983" .
<p2> <4327-367e-439b> "1982" .

# property reconstruction information
<56e8-783f-9cd3> rdf:singletonPropertyOf dbo:birthYear .
<4f83-6cd5-88da> rdf:singletonPropertyOf dbo:birthYear .
<4327-367e-439b> rdf:singletonPropertyOf dbo:birthYear .

# metadata:
<56e8-783f-9cd3> dc:modified "2016-11"^^xsd:gYearMonth .
<4f83-6cd5-88da> dc:modified "2014-12"^^xsd:gYearMonth .
<4327-367e-439b> dc:modified "2012-01"^^xsd:gYearMonth .

# query
SELECT ?person ?birth WHERE {

23https://www.w3.org/TR/swbp-n-aryRelations/

https://www.w3.org/TR/swbp-n-aryRelations/
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{ {?person ?g ?birth .
?g rdf:singletonPropertyOf dbo:birthYear .} .

{?g dc:modified ?modified . }
} FILTER NOT EXISTS {

{?person2 ?g2 ?birth2.
?g2 rdf:singletonPropertyOf dbo:birthYear. }

{?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

This unique property can be seen as a predicate re-
source IRI. The predicate resource IRI can be used to
access metadata and the original predicate type. Since
the predicate resource has the rdf:singletonPropertyOf
relation, it is possible to use RDFS entailment rules
to infer the original statements. When looking at the
dataset triples, it is not possible to deduce the direct
meaning of a triple predicate. It is always required to
use the predicate resource IRI to find the associated
rdf:singletonPropertyOf property and with it the orig-
inal predicate. Furthermore, it is possible to support
datasets with named graphs.

4.1.5. Companion Properties (cpprop)
As was shown in [22], the singleton property rep-

resentation model suffers from the fact that it creates
a new property for every statement in order to cre-
ate globally unique properties. This results in a very
uncommon uniform distribution and large number of
properties, and therefore, in increased query times. To
limit the creation of new properties and to reduce the
influence on the datasets property (frequency) distribu-
tion, we propose a novel MRM - companion proper-
ties.

The companion properties representation is inspired
by sgprop but uses a fixed naming scheme to create a
property, which is unique with respect to the subject of
the statement. In order to support the naming scheme,
an occurrence counter can be utilized when creating
the new dataset. An individual occurrence counter is
used per property p for its subject s. The occurrence
count is appended as a suffix to every instance of p.
Depending on the used profile, every generated prop-
erty cp has at least one companion property, which is
from a graph theoretic view a sibling of p with respect
to s. The IRI of this companion property consists of the
IRI of cp plus the additional suffix “.SID”. For each
subject and companion property pair, a statement ID
is created which serves as a unique metadata resource
identifier for the triple s cp o .

The number of different companion property names
is bound by

∑
p∈D(maxOut(p) · 2), where maxOut(p)

is the maximum number of edges per resource for
the property p in the dataset D. When merging two

datasets which use this MRM, the naming scheme
should include a dataset specific prefix for the counter
values, in order to avoid name collisions. Analogous
to a singleton property, RDFS entailment rules can be
used to infer the original statements.

# birth year values for
# Person p1 and p2 (turtle notation)
<p1> dbo:birthYear.1 "1981" ;

dbo:birthYear.1.SID <sid-56e8> .
<p1> dbo:birthYear.2 "1983" ;

dbo:birthYear.2.SID <sid-4f83> .
<p2> dbo:birthYear.1 "1982" ;

dbo:birthYear.1.SID <sid-4327> .

# property reconstruction and SID association vocabulary
dbo:birthYear.1.SID rdf:idPropertyOf dbo:birthYear.1 .
dbo:birthYear.1 rdf:companionPropertyOf dbo:birthYear .
dbo:birthYear.2.SID rdf:idPropertyOf dbo:birthYear.2 .
dbo:birthYear.2 rdf:companionPropertyOf dbo:birthYear .

# metadata:
<sid-56e8> dc:modified "2016-11"^^xsd:gYearMonth .
<sid-4f83> dc:modified "2014-12"^^xsd:gYearMonth .
<sid-4327> dc:modified "2012-01"^^xsd:gYearMonth .

# inference "rule"
rdf:companionPropertyOf rdfs:subPropertyOf rdfs:subPropertyOf .

# query
SELECT ?person ?birth WHERE {

{ { ?person ?cp ?birth; ?cpid ?g.
?cp rdf:companionPropertyOf dbo:birthYear.
?cpid rdf:idPropertyOf ?cp . } .

{?g dc:modified ?modified . }
} FILTER NOT EXISTS {

{ ?person2 ?cp2 ?birth2; ?cpid2 ?g2.
?cp2 rdf:companionPropertyOf dbo:birthYear.
?cpid2 rdf:idPropertyOf ?cp2. } .

{?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

In contrast to the other triple based MRMs, the iden-
tifiers are not required for reconstructing the original
triple. Thus it allows, likewise to ngraphs, for sharing
of statement identifiers, and additionally multiple iden-
tifiers per statement. This enables companion proper-
ties to support different granularity levels.

4.2. Vendor Specific models

Some of the database vendors for RDF stores have
recognized and discussed the potential of adding a cus-
tom support for metadata on statement level or a na-
tive way of using statement identifiers in their back-
ends. We investigated the online documentation of sev-
eral major RDF stores and asked their vendors whether
they are planning or already implemented a specific
support for metadata. To the best of our knowledge, we
provide a short overview of the current state at the time
of writing this paper.
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4.2.1. Blazegraph24

The Java-based graph store Blazegraph offers a fea-
ture called Reification Done Right25. It provides an im-
plementation of SPARQL* and RDF*. These formal-
ized syntactic extensions [19] of the SPARQL and the
Turtle grammar allow to directly associate and query
triples with metadata. The existence of a translation to
Turtle and SPARQL ensures backward compatibility
and provides formal semantics.
Reification syntax - RDF*: To import and bulk
load reified RDF data, two additional file formats
based on N-Triples and Turtle have been introduced.
The extensions allows a statement to occur as sub-
ject and/or object of another statement by enclosing
it with double angle brackets. «:Bob foaf:age
23» dc:source :Joe. RDF* even supports nested
reified statements to represent meta-metadata. Unfor-
tunately, there is one major limitation caused by the
translation into RDF. Multiple reifications of the same
triple are translated into one standard W3C reification
rdf:Statement, and therefore, it is not possible to dis-
tinguish grouped annotations (e.g., when a confidence
score and the tool which produced the data and the
score, are stored as individual values, the confidence
values only make sense in the scope of the tool) any-
more. One workaround for this issue is explained in
Section 6.3.
SPARQL reification extension - SPARQL*: Using
SPARQL*, it is possible to bind a whole statement or
a statement pattern in RDF* syntax (which can con-
tain variables) to a variable. This variable can be used
as subject or object of another SPARQL triple pattern.
An example is shown below.

SELECT ?age ?src WHERE {
?bob foaf:name "Bob" .
BIND( <<?bob foaf:age ?age>> AS ?t ) .
?t dct:source ?src .

}

Besides the support for CONSTRUCT and DE-
SCRIBE, Blazegraph allows data mutation for reified
triples using UPDATE and INSERT queries.
RDR Implementation: The reified statement is em-
bedded directly into the representation of each state-
ment about that reified statement. This is achieved by
using indices with variable lengths and recursively em-
bedded encodings of the subject and object of a state-
ment.

24https://www.Blazegraph.com/product/
25https://wiki.Blazegraph.com/wiki/index.php/Reification_

Done_Right

4.2.2. Virtuoso26

To the best of our knowledge, the Virtuoso back-
end does not have extensions for handling metadata
use cases. The community and an OpenLink employee
have discussed possible extensions 27 28, but no addi-
tional reification feature has been added to Virtuoso
yet. In order to use Virtuoso for provenance and meta-
data scenarios, the RDF-compatible MRMs have to be
utilized.

4.2.3. Others
Other RDF store providers have created extensions

for storing and retrieving metadata more efficiently.
AllegroGraph29 supports the handling of metadata
with its Direct Reification feature, which uses state-
ment identifiers. Stardog30 allows for the support of
metadata by introducing a statement identifier, which
is also used to support property graphs. Both systems
provide a proprietary SPARQL extension to query a
statement identifier. Unfortunately, at the time of writ-
ing this work, none of the systems provide a way to
bulk load data making use of statement identifiers.
Aside from that, AllegroGraph supports storage and
bulk loading of JSON based so-called triple attributes.
The fact, that the attributes have to be defined in a
schema before they can be loaded, and the missing
SPARQL integration limit the usage of this extension.

5. Evaluation Datasets with Metadata

After the review of the available metadata datasets,
we decided based on our requirements to use the fol-
lowing datasets for the evaluation:

Wikidata: Wikidata is no native RDF dataset,
it instead uses its own Wikidata Statement Model
[10]. Claims (which are similar to triples/statements in
RDF) can be described with so-called qualifiers con-
sisting of keys and values (analogous statement level
metadata in RDF). Qualifiers are used to provide a con-
text or scope for a claim (e.g., how long the marriedTo-
relation between two persons is valid). In contrast to
this factual metadata, there also exists the concept of
references, which records provenance for claims.

26http://Virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
27https://lists.w3.org/Archives/Public/public-lod/2010Oct/0094.

html
28http://www.openlinksw.com/weblog/oerling/?id=1572
29http://franz.com/agraph/allegrograph/
30http://Stardog.com/

https://www.Blazegraph.com/product/
https://wiki.Blazegraph.com/wiki/index.php/Reification_Done_Right
https://wiki.Blazegraph.com/wiki/index.php/Reification_Done_Right
http://Virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
https://lists.w3.org/Archives/Public/public-lod/2010Oct/0094.html
https://lists.w3.org/Archives/Public/public-lod/2010Oct/0094.html
http://www.openlinksw.com/weblog/oerling/?id=1572
http://franz.com/agraph/allegrograph/
http://Stardog.com/
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In order to reproduce and compare the work from
[22], we reused the same Wikidata dump with time,
geospatial and source/reference metadata for a part
of the claims. The converted RDF dataset based on
2016/01/04 JSON dump contains over 81 million
claims, describing around 16 million entities (out of 19
million entities in total) and using 1600 different prop-
erties. Since metadata is modelled on statement level,
a statement id is kept for every claim (data triple), but
1.5 million claims have qualifiers, only. The 2.1 mil-
lion qualifiers are based on 953 distinct qualifier keys
(denoted as metadata key in Figure 1). In the excerpt
below, a shortened example of two different claims
with metadata about the presidency of Grover Cleve-
land is given. Furthermore, the example illustrates the
special case, where the same claim occurs more than
once, but with different metadata. For a more detailed
description of the data, we refer to [22].

# 2 Wikidata claims about Grover Cleveland (TriG notation)
<claim1> {

<claim1> rdf:type wb:Statement .
# Grover Cleveland held position President of U.S.
wde:Q35171 wdp:P39 wde:Q11696 .

# start time qualifier of presidency (claim metadata)
<claim1> wdp:P580 wdq:abb3c2c8a00 .

# start time qualifier value object
wdq:abb3c2c8a00 rdf:type wb:TimeValue ;
wb:timeValue "+1893-03-04T00:00:00Z"^^xsd:dateTime ;
wb:timeTimeZone "0"^^xsd:integer ;
wb:timePrecision "11"^^xsd:integer ;
wb:timeCalendarModel wde:Q1985727 .

# as 24th president (claim metadata)
<claim1> wdp:P1545 "24" .

}

<claim2> {
<claim2> rdf:type wb:Statement .

# Grover Cleveland held position President of U.S.
wde:Q35171 wdp:P39 wde:Q11696 .

# as 22nd president
<claim2> wdp:P1545 "22" .

}

Wikipedia history and DBpedia: Since DBpe-
dia data does not come with diverse metadata, we de-
cided to apply the Wikipedia Revision history on top
of a company focused dataset. This dataset allows for
insights into the data evolution of a DBpedia entity,
which is going to be part of future research projects.

In [14], a system has been presented, which can be
used to create an RDF dataset with revision informa-
tion for a Wikipedia chapter (e.g., French, German, or
English). We adopted these scripts31, to transform the
revision metadata XML dumps, which are published
every month on Wikipedia, into a Turtle representa-
tion. Additionally, the script writes metadata such as
the corresponding DBpedia instance, the number of re-

31https://github.com/dbpedia/Historic

visions per time frames (e.g., months, years), author
information, and change dates, to the output turtle file.

Considering that on average more than 277 metadata
revision statements exist per DBpedia entity, we de-
cided not to use the complete DBpedia dataset. There-
fore, we extracted data from the German and English
DBpedia chapters about companies, their associated
locations and persons. Focusing the dataset around
companies and their related resources, helped to nar-
row down the dataset. Due to the different types of
entity classes, this dataset still ensures a diverse dis-
tribution of entity relations within the graph. The re-
duced dataset contains more than 83 thousand entities
(approx. 37,000 companies, 27,000 places, and 19,000
persons). Once extracted, the selected DBpedia re-
sources were enriched with the resource revision meta
information for the German and English Wikipedia
chapter. The meta information comprises aggregated
metadata based on all revisions of an article like the
number of revisions (total, last 2 years/months), cre-
ation and last modification date, but also links to ev-
ery Wikipedia revision for the article of the triples en-
tity. In the dataset, a dedicated resource exists for ev-
ery link, which contains additional information such
as editor name and date of the revision. While a link
to a revision remains stable, the aggregated metadata
is dependent on a specific dump file created at a given
point of time. We therefore save meta-metadata for this
aggregated metadata in the form of a link to the used
dump file. Note that storing provenance for the meta-
data requires reifying the metadata, too. In total over
23 million revisions are associated with the entities.
More than 12,800 properties are used for data state-
ments, but just 21 for metadata keys. The dataset is
characterized by a 1:10 data/metadata ratio (10 meta-
data triples for a data triple) and 1:100 data/revision
ratio (100 triples of revision information for one data
triple). In contrast to the Wikidata dataset the number
of metadata statements (948 million revision informa-
tion statements and 94 million statements for aggre-
gated metadata plus the links to the revisions) exceeds
the number of data statements (9.7 million) by two
orders of magnitude. This is motivated by use cases
where traceability or provenance information make up
a greater portion than the data itself. A fragment of the
dataset which shows the full aggregated metadata for
one entity, with incomplete data and revision links, is
listed below.

# DBpedia dataset with revision metadata (trig notation)
# triples of one entity share same metadata
dbr:Ang_Lee-Statements {

dbr:Ang_Lee

https://github.com/dbpedia/Historic
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rdf:type <http://dbpedia.org/ontology/Person> ;
foaf:givenName "Ang"@de ;
foaf:surname "Lee"@de ; # ...
owl:sameAs <http://dbpedia.org/resource/Ang_Lee> .

}

# aggregated metadata for entity
dbr:Ang_Lee-Meta {
dbr:Ang_Lee-Statements

dc:created "2001-08-08T08:21:09"^^xsd:dateTime ;
dc:modified "2016-10-14T17:06:34"^^xsd:dateTime ;
historic:uniqueContributorNb 235 ;
<http://www.w3.org/2004/03/trix/wp-2/isVersion> 378 ;
historic:revPerLastMonth1 1 ;
historic:revPerLastMonth2 1 ;
historic:revPerYear2016 10 ;
historic:revPerYear2015 10 .

}

{# meta-metadata for aggregated metadata from above
dbr:Ang_Lee-Meta

historic:hasSource historic:de_xml_16_11_14 .
# links to revisions metadata resources
dbr:Ang_Lee-Statements

historic:hasMainRevision wiki:wiki/Ang_Lee;
historic:hasOldRevision

wikiv:index.php?title=Ang_Lee&oldid=10 , # ...
wikiv:index.php?title=Ang_Lee&oldid=96519084 ,
wikiv:index.php?title=Ang_Lee&oldid=9713203 .

}

6. Evaluation Setup

To allow a comparison of this work with respect
to different evaluation hardware and setup, we repro-
duced the loading and the quin query pattern experi-
ments from [22]. In addition, we measured the execu-
tion and loading times as well as the database sizes. For
this evaluation, we created a DBpedia based dataset
which uses Wikipedia revision information as meta-
data. Combining the results of all the experiments al-
lows us to take a more detailed look on how different
MRMs perform for different datasets and use cases.

The evaluation was executed on an Ubuntu 14.04.3
server system with a 3.19.0-33 kernel, Oracle Java
1.8.0_66, Ruby 2.2.5p319, a 1.8GHz Intel Xeon E5-
2630L CPU, 256GB RAM and a 3.6TB hard disk
drive. We used Blazegraph in version 2.1.2, Virtuoso
07.20.3215-pthreads and Stardog 4.2.3. The database
configuration parameters for Virtuoso and Blazegraph
were reused from [22]. According to the settings in
[22], we use the recommended 6GB Java heap mem-
ory size for Blazegraph. Blazegraph relies on the file
system cache to improve disk access and the rela-
tively small memory footprint should keep interrup-
tions by the GC at a minimum. Furthermore, we dis-
abled swap as per recommendation of the Blazegraph
performance guide32. For Virtuoso we used a buffer ac-
cording to 32GB available RAM and additional 2GB

32https://wiki.Blazegraph.com/wiki/index.php/
PerformanceOptimization

for the query processor. The recommended settings
(4GB heap and 8GB direct memory for 1 billion
triples33) for Stardog were not sufficient for our dataset
and lead to memory exceptions. We therefore set Java
parameters to 32GB heap (for better comparison with
Virtuoso) and 32GB as maximum direct memory.

According to our requirements for SPARQL inte-
gration and bulk loading we did not consider the ven-
dor specific metadata extensions for Stardog and Al-
legroGraph due to their limitations. Moreover license
restrictions prevent the evaluation of AllegroGraph in
this work. Therefore we selected Blazegraph, Stardog
(without testing the metadata extension) and Virtuoso
for this evaluation.

6.1. Dataset Conversion

For the experiment which is described in [22], we
reused and extended the existing conversion frame-
work. However, due to its technical design we were not
able to generate cpprop representation for the Wikidata
dataset.3

To create the DBpedia based dataset, we developed
a Java-based framework and command line utility34,
which allows us to apply various metadata represen-
tation formats on top of datasets. The framework [12]
features a novel JSON representation, which allows
for the association of metadata to quad(s) for differ-
ent levels of granularity. Once the source dataset is
converted into the novel JSON representation, this in-
termediate JSON-based dataset can be used to create
test datasets, which use the different metadata repre-
sentations. All datasets had been converted into several
gzipped nquads (.ntx for rdr) files.

6.2. Evaluation Procedures

The evaluation is separated into two parts. First,
datasets are loaded, and the following metrics are mea-
sured: loading time, database size, statement count.
For every MRM and dataset, we created an isolated
new database instance to prevent side effects. Once all
the data is loaded, the second part, the query execu-
tion, is started. For each query template, we restart the
backend and clear the cache. Then we run all instances
of one query template sequentially.

33https://www.stardog.com/docs/#_memory_usage
34https://github.com/JJ-Author/meta-rdf

https://wiki.Blazegraph.com/wiki/index.php/PerformanceOptimization
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In order to execute the queries, we adapted35 the
framework, which is described in [22]. We measure
both, the execution times and the loading times, by re-
trieving a Ruby time stamp before sending the query,
respectively executing the bulk load command, and af-
ter the execution is finished. The database sizes were
measured with the UNIX ls command. We use both a
client side and a database internal timeout. The former
one is used as a fallback, in case the database time-
out did not trigger. For Wikidata, we kept the database
timeout of 60 seconds and a client timeout of 120 sec-
onds. As we aim to evaluate also more challenging
queries within the DBpedia scenario, we have chosen
timeouts of 240 seconds and 400 seconds, respectively.

6.3. Wikidata Scenario

For this work, we extended the scenario, which is
described in [22], by evaluating the Blazegraph feature
RDR, which had not been studied for the Wikidata use
case yet. In order to circumvent the limitation of RDR,
that every triple needs to be unique, we do not attach
the metadata directly to the data triple. Instead, we use
(multiple) statement identifiers as metadata, which are
then linked to the actual metadata. This is necessary,
to model the Grover Cleveland example shown in Sec-
tion 5. The technique is illustrated in the following ex-
ample:

<< :s :p :o >> :hasMeta :id1 ;
:hasMeta :id2 .

6.3.1. Wikidata Loading Procedure
When we looked at the original experiment web-

page36, we were surprised about the huge loading
times of Blazegraph (e.g., more than 66 hours for
ngraphs) in contrast to Virtuoso (4 hours). We repeated
loading the data for ngraphs and rdr with the same
database configurations and measured 76 and 80 hours
on our machine, respectively. We could identify two
minor issues in the original setup, which were caus-
ing this huge difference. First the original Wikidata
dataset uses a non-RDF compliant encoding of dates.
When loading the data into the RDF backend, various
warnings are recorded in the log-files, which decreased
the insertion throughput. We therefore converted the
dates into the appropriate format and repeated measur-
ing the loading time and achieved 47 hours for rdr and
44 hours for ngraphs. Furthermore, we switched the

35https://github.com/JJ-Author/wikibase-bench
36http://users.dcc.uchile.cl/~dhernand/wquery/#results

commit process from an incremental commit to a batch
commit. This guarantees a fair comparison to Virtuoso,
where indexing and commits have been disabled for
the bulk loading procedure. This change resulted in an
additional speedup and also reduced the database size.
The results will be discussed in section 7.

6.3.2. Wikidata Templates (Quins Experiment)
A quin represents a data-metadata look-up query,

where for a data triple pattern s,p,o the attached
metadata key k and its corresponding values v are
queried. For this quin pattern (s,p,o,k,v) the au-
thors defined 31 templates based on 31 binary masks of
length 5 (from (0,0,0,0,1) to (1,1,1,1,1)),
which define whether the corresponding position of
the quin deals as a constant or as a variable in the
query. For example the mask (1,1,1,0,0) gen-
erates queries retrieving all the metadata informa-
tion for one specific triple (s,p,o are constants and
k,v are variables). Every template has 300 query
instantiations, whereas for every template the same
pool of 300 randomly sampled quin instances is used
for the constants in the query. The query instances
are translated into the respective representations of
the ngraphs, naryrel, sgprop, stdreif, and rdr for-
mats. In addition, we replaced the triple pattern (?p
a wikibase:Property) in the queries with an
equivalent FILTER EXISTS statement. We studied the
runtime behavior of this optimziation for ngrahps and
rdr which are referred to as fngraphs and frdr. While
this just slightly improves Virtuoso’s query execution
performance, for Blazegraph various queries do not
time out anymore (e.g., fngraphs). The performance
improvement can be explained with a different query
plan, since due to the FILTER statement one join could
be omitted. Detailed results are presented on the ex-
periment description website37.

6.4. DBpedia Scenario

For the DBpedia based dataset, we used a slightly
different setup for loading and created a new set of
queries, which we will introduce in this section.

6.4.1. DBpedia Loading Procedure
For the DBpedia datasets, we started pre-loading the

revisions metadata first. This part of the metadata is in-
dependent of the used MRM. We then replicated this
database to load the MRM-specific parts of the dataset.

37http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/meta-
evaluation/

https://github.com/JJ-Author/wikibase-bench
http://users.dcc.uchile.cl/~dhernand/wquery/#results
http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/meta-evaluation/
http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/meta-evaluation/


Frey et al. / Evaluation of Metadata Representations in RDF stores

Table 1
Query templates for DBpedia dataset: DBQ-SIM-01 to DBQ-HAR-02 are data query templates to study the impact of the MRMs for data-only
queries. The letter X represents the template variable, which is replaced with an existing constant from the dataset during query instantiation.
Every mixed query DBM is an extension of its respective DBQ query by taking additional metadata for selected triple patterns of the query into
account.

Data Query DBQ Mixed Query DBM

SIM-01 Show all properties and objects of the Person X. . . . as well as the information when the triple (p-o pair) was created.

SIM-02 Show all cities and its population which are located in country X and having more
than 20,000 inhabitants.

. . . and additionally the provenance (last wikipedia revision url) information for the
city

MED-01 Show properties and its according objects of an entity X, which match exactly with
the same entity (owl:sameAs) of another language version of DBpedia.

. . . plus the number of unique contributors for the used sameAs link as confidence
indicator.

MED-02 Count (distinct) all companies of a country X. . . . and the number of revisions in 2016 for the location information (as
up-to-dateness indicator) and also the number of contributors for the company type

information of the entity

HAR-01 Find potentially matching companies within an industry sector X, having at least
one exact match of the OPTIONAL properties label, city and country.

. . . furthermore the modification dates of the sector information of the entities

HAR-02 Find Entities which are associated with a specific geographical region X. The
association is defined in that sense, that the entity has an outgoing edge to a Place

p, whereas p (or another subject which is the same as p) is part of that region.

. . . and the provenance for the type information.

Unfortunately, we could use this strategy for the triple
based MRM, only. Blazegraph and Stardog use a dif-
ferent indexing for rdr and ngraphs, which does not
allow to use the triple-based pre-loaded database. For
virtuoso, it was possible to reuse the database for
ngraphs.

6.4.2. DBpedia Query Templates
In order to allow for a meaningful comparison be-

tween the different MRMs, we need to define a set of
queries which cover different query types and com-
plexities. As in [22], we also use query templates. But
instead of applying systematic pattern based genera-
tion, we define a set of individual and heterogeneous
templates (based on one template variable), which dif-
fer in complexity, the number of triple patterns and
used SPARQL features. Defining criteria to measure
the complexity of a query independent of the dataset
is not trivial. The selectivity of a query is influenced
by the query structure itself, but it is also a function
of the dataset characteristics. The authors in [37] have
studied complexity classes of different SPARQL ele-
ments. The conclusions are summarized in three lem-
mas, whereas Lemma 2 and 3 help to judge complexity
independent of dataset characteristics.

Lemma 1: the evaluation of SPARQL queries with
AND and FILTERS depends on the size of the dataset
(D) and the number of triple patterns (P) in the query
and is in O(P · D).

Lemma 2: establishes that UNIONs between non
union-compatible basic graph patterns (BGPs) are NP-
complete, where two BGPs are union compatible if
they share variables.

Lemma 3: states that OPTIONAL values increase
the complexity and are PSPACE-complete.

Based on this work, we define three complexity
classes for the SPARQL templates. The SIMPLE class
is characterized by queries with a low number of triple
patterns while the MEDIUM class applies for queries
containing a large number of triple patterns. Queries
consisting of more than one non union-compatible
UNION or more than one OPTIONAL are classified
as HARD. As outlined in the introduction, knowledge
fusion is an important use case if multiple, overlapping
graphs are combined in one knowledge graph. Inspired
by this use case, we defined two templates per class.
We choose randomly a set of 40 instances from our
DBpedia evaluation dataset to populate the templates.

In order to measure the overhead of an MRM, when
executing data queries, we have created two versions
for each template. The first template version executes
queries over the data only and the second query tem-
plate over the data and the metadata. In the results
section, these queries are denoted as data (DBQ) and
mixed queries (DBM) respectively. A description of
the used data and mixed patterns can be seen in Table
1. We refer to the experiment website for the SPARQL
syntax of the used templates and query instances.

7. Evaluation Results

This section presents the results of the qualitative
and quantitative MRM comparison as well as the Wiki-
data and DBpedia experiments, which will be followed
by a general discussion about findings.
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Table 2
MRM Comparison (factorization, backward compatibility & usability): The level of factorization of each MRM is measured for a set of
100 DBpedia entities and its revision metadata (95,864 meta facts, 950 on avg. per entity). Furthermore, the query complexity between different
MRMs is compared. Note: The first number in the statements count column of rdr MRMs corresponds with the number of rdr (nested) statements
in the database, whereas the second represents the number of triples, obtained by unnesting the rdr statements. The file format for rdr is .ntx,
an extension of N-Triples.

# statements .nq file size (MB) backward comp. #(triple
patterns)

#(overhead variables) & #(sparql
elements)

raw data 8,444 1.16 / / /

cpprop 115,822 19.76 yes - w/ rdfs reasoning 5 3

naryrel 11,202,942 2161.53 no 3 2 & 1 BIND + 3 string-functions

naryrel (shared) 122,812 21.36 no 4 3 & 1 BIND + 3 string-functions

ngraphs 104,308 19.34 quads: no / triples: yes 2 1 & 1 GRAPH

rdr 11,126,845 / 22,169,250 2856.60 (.ntx) quads: no / triples: yes 2 1 & 1 BIND

rdr (shared) 246,947 / 314,499 44.55 (.ntx) quads: no / triples: yes 3 2 & 1 BIND

sgprop 11,202,942 2193.75 yes - w/ rdfs reasoning 3 1

sgprop (shared) 122,812 21.52 yes - w/ rdfs reasoning 4 2

stdreif 11,354,934 2188.17 yes - w/ custom reasoning 5 1

stdreif (shared) 141,316 24.63 yes - w/ custom reasoning 6 2

7.1. Factorization study and qualitative MRM
comparison

Factorization: As already highlighted, the MRMs
ngraphs and cpprop are capable of efficiently storing
all granularity levels. However, the remaining MRMs
do not support factorization, since they are intended
for statement level granularity. In order to study this ef-
fect with regard to the number of statements, we used
a sample of 100 entities from the DBpedia based eval-
uation dataset for each MRM. Table 2 highlights that
the dataset sizes vary significantly. The raw input data
size is about 1.2 MB for 100 entities. When different
MRMs are applied on the data, the dataset size ranges
from about 20MB to more than 2.8 GB. Table 2 clearly
shows that cpprop and ngraphs MRM are using signif-
icantly less triples than the other MRMs for the same
amount of information, due to its factorization support.
Since on average nearly 950 statements describe the
revision history of an entity, repeating all these meta-
data statements per data triple has a knock-on effect on
the size of the MRM datasets. Due to the high number
of meta information per triple, this study shows very
strongly the different characteristics of these MRMs.
Based on these numbers, we estimated that for 100.000
entities the dataset size can grow to more than a ter-
abyte for MRMs not supporting factorization, when
applied on our DBpedia based evaluation dataset.

Due to the large dataset sizes for some MRMs, we
decided to introduce a shared resource, which holds

metadata information for one DBpedia entity. For each
MRM, which does not support factorization, we link to
the shared resource only once per statement, instead of
attaching every metadata fact to it. This strategy allows
for storing at entity level granularity metadata in a cost
effective manner. For rdr, we apply this technique for
the revisions, only. However, the aggregated metadata
is applied on triple level, using nested rdr statements.
The resulting differences are displayed with shared in
Table 2. Once a shared metadata resource is introduced
for each statement, the dataset sizes only vary slightly
between all the MRMs. As a result the ngraphs MRM
is using the least amount of space and stdreif as well
as rdr the most.

Query Complexity/Usability: As outlined in Sec-
tion 4, the data layout and the query structure differ
between MRMs, hence the query complexity has to
be analyzed for each MRM. First the number of triple
patterns and the number of extra SPARQL elements is
considered. This gives an indication of how easy it is
to read, understand and create a search query. Hence,
it might have an impact on how an MRM is going to
be adopted by other practitioners. The amount of ex-
tra triple patterns and the number of extra SPARQL
elements (e.g. GRAPH, BIND) for each MRM search
query is shown in the last two columns of Table 2.
The second last column shows the number of triple
patterns which are required to find a metadata state-
ment which is associated to a data statement. A query
which is based on the Singleton Property requires 2
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triple patterns to reach the meta information and one
more triple pattern to access it. If the meta information
is shared for different data statements, then an addi-
tional triple pattern is required to access the meta in-
formation. This adds up to 3 or 4 triple patterns per
query, depending on whether the meta information is
shared or not. On top of the extra triple patterns, addi-
tional variables or SPARQL elements have to be added
to the query. They are displayed in the last column of
the table. When looking at the last two columns of the
table, the ngraphs and rdr MRMs show the easiest us-
ability, since the query complexity for these MRMs is
the lowest.

Backwards Compatibility: In addition, we checked
the backwards compatibility for data queries, meaning
the ability to execute existing data queries on a mixed
dataset with graph and metadata statements. This is
shown in the fourth column. Apart from the naryrel
MRM, all other MRMs support at least basic back-
ward compatibility, if using a reasoning strategy. The
ngraphs and rdr MRM only support backward com-
patibility for queries, which do not use the RDF named
graph feature. But they do not need to rely on reason-
ing, in case triples are used, only. If the named graph
feature of an RDF dataset is required, the graph IRI
has to be treated as metadata, if using ngraphs or rdr
MRM, or one of the other MRMs has to be used.

7.2. Loading times and sizes

When looking at the statement counts in Table 3,
ngraphs can be identified as the most compact repre-
sentation. Sgprop and rdr are the most compact triple
based MRMs. In the Wikidata scenario, an naryrel se-
rialization scheme similar to sgprop is used, which
links the p-NARY-value edges shown in Figure 1
to its original predicate names p. Thus it has a higher
number of statements. When we examined database
sizes, we observed it the other way around. While
the stdreif MRM transformation results in the high-
est number of statements, it consumes the least stor-
age in the database files and ngraphs the most, due to
the fact that additional index structures for the graph
identifiers are maintained. For Blazegraph and Star-
dog this additional overhead is ranging from 60 to 75
%. Virtuoso uses index structures for graphs per se,
which results in an overhead less than 4%. Rdr does
consume more storage than the triple based MRMs but
less than ngraphs. The difference between the triple
based MRM is not significant. Blazegraph increases its

journal file with fixed memory blocks (extents), which
explains the equal sizes for all triple MRMs.

The rankings in the DBpedia scenario shown in Ta-
ble 4 are slightly different. Cpprop is the most compact
representation after ngraphs, which also is reflected in
the smallest database size for Virtuoso and Blazegraph.
For these stores the database size difference between
sgprop, stdreif and naryrel is very small, too. Except
for Virtuoso, ngraphs database files are similar to the
Wikidata case the biggest. While Virtuoso and Stardog
can benefit from the reduced number of graph identi-
fiers (around 0.8 million for DBpedia vs. 80 million for
Wikidata) the graph overhead almost doubles Blaze-
graph‘s journal size. Due to an optimized scheme for
naryrel, its number of statements is equal to sgprop. In
contrast, rdr has more statements overhead than stdreif,
because we do not use a shared resource for the aggre-
gated metadata.

Examining the loading times of the Wikidata datasets,
we observed that naryrel tends to be the slowest and
stdreif followed by sgprop the fastest. Although for
Blazegraph and Stardog ngraphs is rather slow, Virtu-
oso processed it most rapidly. Cpprop is the fastest so-
lution for DBpedia. Ngraphs followed by naryrel per-
form worst. However, the loading of stdreif is slower
in relation to the Wikidata experiments. The huge gap
between Blazegraph’s loading times and its competi-
tors is caused by a limited loading parallelization of the
used version. Despite index updates themselves are be-
ing executed multi-threaded, the parser is not executed
while the index updates are being performed. Further-
more files which could be read in parallel (nquads) are
not processed in parallel and if multiple files are pro-
vided for bulk-loading these are loaded sequentially,
as well. With ongoing progress of the bulkload proce-
dure, we observed a continuously dropping rate of in-
serted triples per second as well as a decreasing CPU
usage but an increasing time of waiting for I/O request
completion. Albeit Stardog does load files in parallel
and we could observe that it utilized all CPU cores,
which explains the short loading times.

Summarising we found that for Stardog and Virtu-
oso the MRMs are competitive w.r.t loading times. For
Blazegraph the variance is much higher, but seems to
be dataset dependent. When it comes to database sizes
ngraphs files are significantly larger for Stardog and
Blazegraph. If Virtuoso in combination with ngraphs
or the other MRMs is used, the choice is of no conse-
quence for disk space.
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Table 3
Wikidata experiment: The number of statements for the Wikidata dataset, its respective loading times and the final database size for the different
MRMs. All loading times are in hours, whereas database sizes are in GiB.

naryrel ngraphs sgprop stdreif rdr

#statements 563,678,588 482,371,357 563,676,547 644,981,737 563,676,547

loading time Virtuoso (hours) 3.39 3.04 3.22 3.15 -
db size Virtuoso (GiB) 45.94 46.83 46.25 45.21 -

loading time Blazegraph (hours) 14.57 13.03 7.12 7.09 10.40
db size Blazegraph (GiB) 60.73 98.25 60.73 60.73 66.87

loading time Stardog (hours) 1.12 1.35 1.07 0.85 -
db size Stardog (GiB) 32.34 56.52 32.31 32.19 -

Table 4
DBpedia experiment (db sizes and statement counts): Number of statements for the DBpedia based dataset, its respective loading times and
the final database size for the different MRMs. All loading times are in hours, whereas database sizes are in GiB. In the second row the number
of statements without counting the revision metadata is shown. The overhead of the MRM specific handling triples is illustrated in contrast to
the most compact representation ngraphs (no additional handling triples) in row 3 for a simpler comparison. The last column shows the results
for the Wikipedia revisions information (no instance data, no aggregated metadata, or MRM handling triples). Since this is no complete dataset,
no values are available for time complete rows. The data column studies the dataset containing revisions and instance data but without any
aggregated metadata and MRM handling triples. Rdr is limited to Blazegraph. Therefore no results are available for the other stores.

cpprop naryrel ngraphs sgprop stdreif rdr data revision
metadata

total # statements 1,065,086,298 1,078,194,485 1,051,908,211 1,078,194,485 1,104,459,275 1,213,393,958 957,576,433 947,842,639
w/o revisions 117,243,659 130,351,846 104,065,572 130,351,846 156,616,636 265,551,319 9,733,794 0
MRM overhead compared to ngraphs 13,178,087 26,286,274 0 26,286,274 52,551,064 161,485,747 -94,331,778 -

time (MRM) part Virtuoso 0.39 0.47 0.60 0.46 0.48 - 0.29 2.14
time complete dataset Virtuoso 2.53 2.61 2.73 2.60 2.61 - 2.43 -
db size Virtuoso 37.71 39.46 38.26 39.92 38.92 - 33.96 32.65

time (MRM) part Blazegraph 3.46 4.61 - 4.83 5.40 - 0.09 42.51
time complete dataset Blazegraph 45.98 47.13 42.51 47.35 47.91 29.31 42.60 -
db size Blazegraph 77.03 79.72 157.61 80.34 80.07 89.25 68.63 66.60

time (MRM) part Stardog 0.50 0.66 - 0.56 0.56 - 0.17 0.97
time complete dataset Stardog 1.48 1.64 1.75 1.54 1.53 - 1.15 -
db size Stardog 76.94 77.97 86.27 78.72 73.58 - 67.09 56.86

7.3. Wikidata query results

In Figure 2, we can identify stdreif as best solu-
tion for Blazegraph for the Wikidata use case; no sin-
gle timeout occurs. In Virtuoso, stdreif also exhibits
a good performance for queries having an execution
time longer than 30 milliseconds. For queries faster
than that, the additional number of joins caused by the
4 triple patterns has a greater impact on the execution
time. While the singleton property is the worst per-
former for Virtuoso, in Blazegraph there is no huge dif-
ference between sgprop, naryrel, and ngraphs. More-
over, sgprop is the best model for Stardog but with
no significant difference to stdreif. Though naryrel is
faster for simple queries in Stardog, it is not compet-
itive for challenging queries. Surprisingly ngraphs is
exceptional slow. Since the Stardog code is not pub-
licly available and we could not find documentation
about indexing techniques and other database inter-
nals, we can only guess that the database structures for

named graphs lead to performance issues for a high
number of graphs. The rdr feature which is used to en-
code the statement identifier and not the metadata di-
rectly (caused by the data model of Wikidata as men-
tioned before), cannot benefit from its indexing strat-
egy. It is the worst performing MRM for the Wikidata
use case. Generalising over all quin queries and stores,
stdreif performs best.

7.4. DBpedia query template results

Considering the mixed Queries for the DBpedia
dataset, ngraphs is the clear winner, as can be seen in
Figure 2. For the triple based MRM, naryrel exhibits
the best performance in Virtuoso. We can in theory
observe the same behavior for Blazegraph. Unfortu-
nately, the naryrel queries for Blazegraph do not re-
turn the full number of results. This explains why the
queries are executed quickly and why naryrel seems
to even outperform ngraphs. Blazegraph showed is-
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Figure 2. Comparison of MRM performance for metadata related queries between Wikidata and DBpedia Queries: Overall results for
all queries of DBM patterns (bottom) and a random sample (240 queries) from all Wikidata quin patterns (top). The queries are sorted by its
execution time (fastest query has rank 0) for each MRM individually.

sues evaluating queries with multiple BIND statements
correctly. We tried to circumvent this observation by
rewriting the queries for Blazegraph. When executing
the rewritten queries, Blazegraph froze when process-
ing the DBM-HAR-01 queries. Therefore, we were
not able to test naryrel in a reliable way. As a conse-
quence, the best triple based MRM for Blazegraph is
standard reification. However, sgprop outperforms all

triple MRMs in Stardog. But it is important to mention
naryrel potentially is a better choice for the tested Star-
dog version based on a trade-off between performance
and query stability, since we experienced several non-
deterministic HTTP 500 Errors, when we executed sg-
prop queries (see section 7.6). Stdreif turns out to be
the most inefficient approach for Stardog. The rdr fea-
ture is almost competitive with ngraphs for the sim-
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ple and medium queries taking not the revisions into
account. While we found performance problems for
queries over revision metadata (which are just links to
other resources similar to the Wikidata dataset), Blaze-
graph can leverage its nested statements and benefit
from the special structure of the aggregated metadata,
which is reified itself. In best case, these nested state-
ments allow Blazegraph to materialize the joins which
are necessary in other MRMs. Nonetheless, we can-
not observe this advantage for hard queries. For those
queries, we encountered several timeouts, which is in-
dicated by the platue in the rdr curve in the plot. De
facto there are two plateus, which will be discussed in
more detail in section 7.6.

Looking at the overhead of MRMs for regular data
queries (Figure 3), ngraphs is the closest to the base-
line for the majority of queries against Virtuoso. For
queries faster than two seconds, cpprop is competitive
with the other triple MRMs. In spite of this, for stdreif
and cpprop followed by sgprop occur many timeouts
for complex queries. Summing all query execution
times, naryrel is the best triple MRM for Virtuoso. In
contrast to that naryrel and ngraphs MRMs introduce
the most overhead in Stardog, though to the latter is
performing well for short queries. Cpprop is the best
option. Likewise, sgprop shows similar good results
as for mixed queries in Stardog. While there is a sig-
nificant overhead for queries shorter than one second,
rdr is outstanding for challenging data queries. Cpprop
deals as second-best option in Blazegraph. Stdreif and
ngraphs show almost the same behavior. Sgprop ap-
pears as the slowest MRM. Note that naryrel returns
incomplete result sets for a fraction of Blazegraph’s
queries, as already mentioned for mixed queries.

7.5. Dataset characteristics impact

To examine the influence of the dataset and the type
of metadata, we compared the DBpedia related mixed
simple queries to a query pattern from the quins ex-
periment. The SIMPLE group applies for these kinds
of queries. Hence, the query impact is low, so that we
potentially can observe an influence of the dataset or
the metadata type. We selected the 10010 query pat-
tern, as it projects all properties and values of a specific
entity and all its metadata values for a given key. Be-
sides the fact that DBQ-SIM-01 instances are querying
for persons only and use a non-varying key constant
(creation date) the templates are the same. We can ob-
serve for Blazegraph that the trends for the selected
quin pattern in Figure 4 are in line with the overall re-

sults for Wikidata from Figure 2. Stdreif outperforms
the other MRMs, sgprop and naryrel are slower but do
not significantly differ. Ngraphs is slower and (f)rdr
performs worst. In contrast to that, there is a different
order for the DBpedia dataset. While ngraphs undoubt-
edly is the best, sgprop is much slower. Stdreif deals as
best triple MRM candidate. The fact that ngraphs per-
forms better for DBM-SIM-01 can be explained by the
characteristics of the metadata: Parts of the metadata
facts in the DBpedia dataset (like the creation date)
are reified as well in order to store meta-metadata. For
ngraphs, the metadata is stored "as is", while for stdreif
and the other triple based MRMs the metadata triple
is split into several triples. Hence the complexity for
query evaluation is higher for these MRMs. For Vir-
tuoso, the results are very similar to the DBM over-
all results. But the gap between sgprop and the other
MRM is drastically bigger. When having a look at the
execution times from Wikidata, we see that there is
no such gap. Moreover, naryrel is the fastest alterna-
tive option for ngraphs for the DBM queries, but the
worst MRM for the Wikidata scenario. Taking into ac-
count that this is not the case for the overall quins re-
sults and additionally that the average execution time
for Wikidata and DBpedia are close to each other, we
think that this is caused by a general overhead when
evaluating the queries for naryrel. Thus, this observa-
tion does not seem to reflect a dataset impact. But is
noteworthy, that again stdreif is worse in relation to the
other MRMs. Following the overall trends for Stardog,
sgprop performs well for both datasets. But using the
DBpedia based dataset, ngraphs is the fastest approach
with respect to query execution times as opposed to
Wikidata, where it is the worst solution. This obser-
vation seems to support our presumption that ngraphs
has performance issues in Stardog, when the num-
ber of graph identifiers is large (81 million graphs in
Wikidata, around 100 times more compared to DB-
pedia). Stdreif is notably slower in the DBpedia sce-
nario likewise for Virtuoso. Furthermore, we observed
a poor performance executing DBM-SIM-02 queries
for naryrel.

7.6. Timeouts, database instabilities & pitfalls

As mentioned before, we implemented an additional
client side timeout in the benchmarking framework.
For both Blazegraph and Stardog, it is crucial to use
this second timeout as fallback to continue benchmark-
ing. For challenging queries these Java based stores
had issues terminating the query within the specified
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Figure 3. MRM overhead for data only queries: Overall results for all DBQ queries in relation to baseline representation containing data triples
(purple line)

Figure 4. Studying dataset influence I - Blazegraph & Virtuoso: A random sample of 80 query instances of the Wikidata quin 10010 query
template is compared to all DBM-SIM-01 and DBM-SIM-02 instances. The queries are very similar in structure and/or complexity.

database timeout of 240 seconds. If huge parts of the
dataset are being processed, several Java Objects are
created. The garbage collection seems to be the rea-
son that both stores struggle and get unresponsive.
The framework therefore waits up to 400 seconds to
let the store clean up memory and properly termi-
nate the timed-out query before executing the next
query. In [22], it had already been reported that subse-
quent queries did time out non-deterministically. Hav-
ing a closer look at this issue revealed that challeng-
ing queries, which are supposed to be aborted by the

database (due to database timeout), continue to run
up to several minutes. As a result the original Wiki-
data setup effectively ran several queries in parallel,
which increased the backend pressure even more and
caused the timeout of subsequent queries. The client
timeout helps to reduce such domino effects by giving
the backend a period of 160 seconds to abort the query
and enforce the database timeout. However, even this
additional timeout is too short for stopping every chal-
lenging query. Therefore, a second plateu at 400 sec-
onds can be observed in the plots for various MRMs.
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Figure 5. Studying dataset influence II - Stardog:

Despite this, we observed both databases transition-
ing into an undefined state after executing a number
of queries. The backends were still running, but did
not respond to any command or activity and did not
consume CPU time. For several query templates, this
was non-deterministic and rerunning the experiment
for the query template solved the issue. The garbage
collection overhead and problems can be tackled by
using off-heap data structures. For Blazegraph a so-
called analytic query mode exists, leveraging a custom
(off-heap) memory management. Yet, for the rewrit-
ten Blazegraph naryrel queries several attempts did not
succeed. According to the Blazegraph issue-tracker not
all database components and query execution stages
utilize this memory management. Likewise, for Star-
dog, we were not able to run the original HAR-01
templates. Splitting its 3 pairwise OPTIONAL clauses
into 6 clauses resolved this issue. Further investiga-
tion revealed that due to sub-optimal query optimiza-
tion and planning, Stardog performs several loop joins
and finally exceeds memory. As already stated, inter-
nal server errors occurred for subsequent sgprop and
cpprop HAR-02 queries, starting at random positions
in the queries. After submission of this work a native
memory management, trying to address GC issues, has
been integrated in the Stardog 5 release (July 2017).

In order to allow for a comparison of Stardog for
this template, we decided to use the rewritten tem-
plate for the other backends as well. Figure 6 illus-
trates the significant changes in runtime behavior be-
tween this template variations. The fix leads to an im-
provement for sgprop and cpprop for Virtuoso. As a re-
sult Blazegraph’s performance for sgprop, cpprop and
especially ngraphs, declined sharply but increased for
rdr. This observation exposes a major problem. The

performance of an MRM is not just dependent on its
structure, the complexity of the query and database ar-
chitecture details like data structures and indices. In
practice, the way how the template query is expressed
and how BGP’s are ordered or grouped may have a
huge impact on the performance. Depending on the
structure, the query optimizer may choose an improper
join order. Thus, an MRM based on many joins (e.g.,
cpprop) has a higher risk that unfavorable join orders
are used in the query plan.

To check whether all MRMs are consistent, we com-
pared result sizes. We discovered that a few template
queries returned incorrect results. Virtuoso evaluates
the FILTER EXISTS expression in HAR-02, which
contains an optional variable, as false if the variable
is unbound. As opposed to this, Blazegraph and Star-
dog evaluate this condition as true. We therefore added
bound conditions to the queries. A similar issue arise
for fngraphs queries in Stardog, which we therefore
excluded. Virtuoso shows different results, if strings
(containing numbers only) are compared to integers.

7.7. Comparison with other studies

The results in [13] show a complete different pic-
ture. Regarding sgprop, Virtuoso performed best, Star-
dog was 3 to 4 times slower than Virtuoso and Blaze-
graph was much slower than both of them. As the used
nary-relation serialization is really different in struc-
ture, it is hard to compare with our naryrel results, but
instead it makes more sense to compare the trends with
stdreif model. Stardog clearly outperformed Blaze-
graph (5 times slower) and Virtuoso (around 2 to 20
times slower) for queries against this standard reifica-
tion variant. Several factors may explain the different
outcome. The dataset is rather small and from another
domain, the evaluation setup differs and the used stor-
age backends have received major updates.

8. Conclusion and Future Work

To summarize, this work defined requirement-based
criteria to drive an evaluation of different approaches
for metadata handling in three prominent RDF stores.
Furthermore, a systematic comparison of several MRMs
and its corresponding queries was presented. Based
on previous work, additional datasets and use cases
which elaborated different aspects about dealing with
metadata in RDF datasets were created. Additionally,
we introduced a novel metadata representation model
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Figure 6. Query optimization impact: Comparison of original and rewritten (Stardog fix) DBQ-HAR-01 queries for Blazegraph and Virtuoso

called Companion Properties, which has been proven
to be a good alternative to existing triple based MRMs
for DBQ Queries, even outperforming ngraphs in Star-
dog. Unfortunately, it did not perform well for chal-
lenging DBM queries. Substituting idPropertyOf
triple patterns, in order to reduce joins and increase
performance, will be subject to future research.

The results clearly show, that ngraphs outperforms
the other MRMs for challenging mixed queries, which
confirms the results presented in [22] for more com-
plex templates than the quin queries. As long as the
use case or source dataset does not require the usage
of quads, ngraphs is the most suitable solution. In case
existing datasets rely on named graphs, naryrel turned
out to be a very good alternative for Virtuoso. With
the used Blazegraph version, it was not possible to fin-
ish the Blazegraph naryrel experiments due to an un-
responsive backend. In contrast to [22], we were not
able to confirm performance problems with sgprop. It
is the best triple MRM for Stardog and it seems to be
a more reliable replacement for naryrel in Blazegraph.
Stdreif performs good in Blazegraph and Stardog for
simple queries, but it has shortcomings in Stardog and
for challenging queries in all tested stores. This is not
in line with findings in [22], where stdreif had been re-
ported as competitive to ngraphs. The obtained results
indicate that metadata characteristics have an impact
on the ranking of the MRMs. Ngraphs and rdr sup-
port queries against meta-metadata much better than
the other MRMs. In general, rdr can compete with
ngraphs, if the metadata is on statement level granular-
ity and does not require logical units of metadata facts.

In addition, experimental results show that the
MRM ranking differs between data-only and mixed

query scenarios. Moreover, ngraphs and rdr offer the
best trade-off for both, mixed and data query work-
loads. When the query templates were created, the
query optimizers were strongly impacted by even min-
imal structural changes in the queries. After investi-
gating incomplete or wrong query results, we encoun-
tered the presented SPARQL implementation errors
and variations in the used stores. Therefore an adop-
tion of existing SPARQL test suites to check for these
errors is advisable. Besides, memory and stability is-
sues for Stardog and Blazegraph were observed, which
were caused by garbage collection pressure. Improv-
ing query (plan) optimizers and memory management
is ongoing work for upcoming major releases of Star-
dog and Blazegraph. Therefore, it could be interest-
ing to repeat these experiments in the future, in order
to evaluate the impact of such changes on the query
execution performance.

8.1. Future Work

With regard to benchmarking MRMs, there are
many aspects that required to be studied in the future,
e.g., parallel query workloads with multiple users. De-
pending on whether high throughput or low latency
are required, it would be interesting to evaluate, which
factors influence the performance of a parallel execu-
tion. If multiple query operators are evaluated in par-
allel, this can improve execution performance of an in-
dividual query, but it can result in higher costs, which
in turn can potentially decrease the overall system per-
formance, if many queries are run in parallel. Hence, a
future work could validate, whether the results are also
valid for parallel workloads.
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In the performance evaluation of this paper (and to
the best of our knowledge also in previous MRM stud-
ies), the queries are read-only. Having Big Data sys-
tems in mind, we can think of scenarios, where data
is streamed (added and changed) continuously into the
database. Changing metadata of a triple using a shared
statement identifier (ngraphs & cpprop) is more com-
plex than for other MRMs. So MRMs optimized for
fast reading and factorization, may perform worse in
update scenarios. Moreover, the study reported in this
paper could be extended to other datasets to gain a bet-
ter insight into dataset characteristics impact. By us-
ing additional datasets and update queries in combi-
nation with formalized scores and evaluation proce-
dures, the performance evaluation could be extended to
a general-purpose benchmarking framework for meta-
data handling in RDF stores. Furthermore, the mixed
queries used in this evaluation are characterized by se-
lecting and filtering (e.g., for confidence) of metadata.
Therefore, metadata has a supportive role for the data
parts of a query. We think, it could be interesting to
study queries with patterns evaluating metadata state-
ments over different entities or using other more elab-
orated metadata-centric query patterns, in order to find
out whether similar results can be observed. On top of
this, different ways in how to query a specific MRM
need to be analyzed in more detail. For cpprop and
naryrel, other SPARQL expression can be used to re-
duce the number of joins or BIND statements. Addi-
tionally, the injection of query hints during the trans-
formation of a template for an MRM can help to sup-
port the query plan selection. In order to improve meta-
data handling, combinations of MRMs can be consid-
ered as well. For the purpose of backwards compati-
bility and performance, it seems reasonable to use a
triple MRM for the first metadata level but ngraphs for
meta-metadata. Moreover, rdr could be combined with
an adopted version of cpprop to logically tie metadata
facts, which belong to the same group. As these queries
would require users to have detailed knowledge of the
applied MRMs, the usability could be improved by
using a SPARQL proxy. Such a service could (simi-
lar to our query transformation framework) use spe-
cial MRM-independent annotations within a query,
to translate it into the appropriate format. To go one
step further, a more sophisticated metadata-aware sys-
tem could be developed, which enables unified query-
ing, regardless the used MRMs, granularity levels, and
metadata levels.
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