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Abstract. In this paper, we propose an inference-based technique to generate redundancy-free natural language (NL) descriptions
of Web Ontology Language (OWL) entities. The existing approaches for verbalizing OWL ontologies generate NL text segments
which are close to their counterpart statements in the ontology. Some of these approaches also perform grouping and aggregation
of these NL text segments to generate a more fluent and comprehensive form of the content. Restricting our attention to descrip-
tion of individuals and atomic concepts, we find that the approach currently used in the available tools is that of determining
the set of all logical conditions that are satisfied by the given individual/concept name and translate these conditions verbatim
into corresponding NL descriptions. Human-understandability of such descriptions is affected by the presence of repetitions and
redundancies, as they have high fidelity to the OWL representation of the entities. In the literature, no major efforts have been
taken to remove redundancies and repetitions at the logical level before generating the NL descriptions of entities and we find
this to be the main reason for lack of readability of the generated text. In this paper, we propose a technique called semantic-
refinement to generate meaningful and easily-understandable (what we call redundancy-free) text descriptions of individuals
and concepts of a given OWL ontology. We identify the combinations of OWL/DL constructs that lead to repetitive/redundant
descriptions and propose a series of refinement rules to rewrite the conditions that are satisfied by an individual/concept in a
meaning-preserving manner. The reduced set of conditions are then employed for generating textual descriptions. Our experi-
ments show that, semantic-refinement technique could significantly improve the readability of the descriptions of ontology en-
tities, especially for domain experts. We have also tested the effectiveness and usefulness of the the generated descriptions in
validating the ontologies and found that the proposed technique is indeed helpful in the context. Details of the empirical study
and the results of statistical tests to support our claims are provided in the paper.
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1. Introduction

Web Ontology Language (OWL/DL) ontologies are
knowledge representation structures which are based
on decidable fragments of first order logic. They model
domain knowledge in the form of logical axioms; so
that, an intelligent agent with the help of a reason-
ing system, can make use of them for several applica-
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tions. Ontologies play an important role in the develop-
ment and deployment of the Semantic Web since they
help in enhancing the understanding of the contextual
meaning of data. Since the knowledge in the form of
an ontology is inherently characterized by complex re-
lational contexts, it is typically inaccessible for non-
Semantic Web experts. This problem motivated re-
searchers to work on natural language (NL) verbaliza-
tion techniques for OWL ontologies. The existing ap-
proaches in this direction mainly strive for one-to-one
conversion of logical statements to NL texts, and re-
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sult in methods which produce verbatim equivalents of
OWL constructs. One of the main and common draw-
back of these approaches is that, since the generated
sentences are verbatim equivalent to the OWL state-
ments, they are likely to have high amount of redun-
dancy. As we show later with examples, it can be very
annoying for a human reader (especially domain ex-
perts) to read and understand such sentences. There-
fore, in this paper, we explore techniques which can
generate NL sentences that do not have redundancies
and are semantically equivalent to their OWL counter-
parts.

We will closely look at the problem of verbalization
of OWL ontologies from the perspective of using the
generated descriptions for validating the formalized
knowledge. Typically, ontologies are developed by a
group of knowledge engineers with the help of domain
experts. The domain experts provide the knowledge to
be formalized and the engineers build the ontology out
of it. Since an ontology development involves multi-
ple parties (engineers and domain experts), the process
usually follows a spiral model, where suitable feed-
back mechanisms are involved to improve the struc-
ture.

As an ontology evolves over a period of time, it can
grow in size and complexity. Unless the updates are
carefully carried out, the quality of the ontology might
degrade. To prevent such quality depletion, usually an
ontology development cycle is accompanied by a vali-
dation phase, where both the knowledge engineers and
domain experts meet to review the content of the on-
tology.

In a typical validation phase, new axioms are in-
cluded or existing axioms are altered or removed, to
maintain the correctness of the ontology. The conven-
tional method for incorporating new axioms and val-
idating the ontology involves a validity check by do-
main experts. Domain experts, who do the validity
check, cannot be expected to be highly knowledge-
able on formal methods and notations. For their con-
venience, the OWL axioms will have to be first con-
verted into corresponding NL texts. Ontology verbal-
izers and ontology authoring tools such as ACE [9],
NaturalOWL [1] and SWAT Tools [13], can be utilized
for generating controlled natural language (CNL) de-
scriptions of OWL statements. Restricting our atten-
tion to description of individuals and atomic concepts,
we find that the approach currently followed in the
available tools is that of determining the set of all log-
ical conditions that are satisfied by the given individ-
ual/concept name and translate these conditions verba-

tim into corresponding NL descriptions. But the ver-
batim fidelity of such descriptions to the underlying
OWL statements, makes them a poor choice for ontol-
ogy validation. This is because, the descriptions will be
confusing to a person who is not familiar with formal
constructs, and it will be difficult to correctly under-
stand the meaning from such descriptions. This issue
had been previously reported in papers such as [11,13],
where the authors tried to overcome the issue by apply-
ing operations such as grouping and aggregation on the
verbalized text. But, since the issue had been treated
at the NL text level, the opportunity for a logical-level
refinement of the OWL statements to generate a more
meaningful and human-understandable representation
has been ignored.

For example, consider the following logical axioms
(from People & Pets ontology1) represented in the de-
scription logic (DL) notation.

1. Cat_Owner v Person u Owner u
∃hasPet.Animal u ∃hasPet.Cat

2. Cat_Owner(sam)
3. Cat v Animal

The different variants of the CNL sentences corre-
sponding to the individual sam are as follows:

– A cat-owner is a person2. A cat-owner is an
owner. A cat-owner has as pet an animal. A cat-
owner has as pet a cat. Sam is a cat-owner. All
cats are animals.
or (with grouping and aggregation)

– A cat-owner is a person and an owner . A cat-
owner is all of the following: something that has
pet an animal, and something that has pet a cat;
Example: sam. All cats are animals.

As can be easily noted, these descriptions have re-
dundant information and attempting verbatim equiva-
lence to DL constructs has resulted in this situation.
There are different types of redundancies one can ob-
serve. The obvious type is repetition of linguistically
similar texts; for example, a cat-owner is an owner.
Another type includes those generic restrictions which
can be logically inferred from more specific restric-
tions; for example, having said “A cat-owner has as pet
a cat.”, it is not necessary to say “A cat-owner has as
pet an animal.” This paper deals with removing redun-

1http://www.cs.man.ac.uk/∼horrocks/ISWC2003/Tutorial /peo-
ple+pets.owl.rdf

2Other way of saying “All cat-owners are person”
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dancies of the latter kind. From hereon, when we say
redundancy we mean the latter type of redundancy.

In this paper, we introduce an approach for re-
moving redundancies from the verbalized definitions
of OWL/DL entities, and to generate the so-called
redundancy-free representations/descriptions. We pro-
pose a technique called semantic-level refinement (or
simply semantic-refinement) that helps in removing
the redundant (portion of the) restrictions and gener-
ating a more semantically comprehensive description
of the entity. From an application point of view, in this
paper, we particularly focus on generating NL descrip-
tions of individuals and concepts for validating ontolo-
gies which follow SHIQ description logic.

Our proposed approach generates NL descriptions
of individuals and concepts by giving importance to
the semantic conciseness of the content. If we revisit
our previous example, we expect our approach to pro-
duce a text similar to: Sam: is a cat-owner having at
least one cat as pet; such that the redundant portion of
the text has as pet an animal (since it clearly follows
from having at least one cat as pet) is removed.

This paper is arranged as follows: Section 3 and 4
discuss the preliminaries for understanding the work
and, newly introduced terminologies in the paper re-
spectively. In Section 5 we elaborate an approach for
generating definitions (in the form of logical expres-
sions) of ontology individuals and concepts, and a rule-
based method for removing redundancies from the def-
initions. Section 6 explains the process that we have
followed for generating NL sentences from the logical
expressions.

In Section 7, the empirical evaluation section, we
seek to validate the following two propositions us-
ing case studies and using statistical significance tests.
Firstly, logical-level removal of redundancies and rep-
etitions can significantly improve the understandabil-
ity of the domain knowledge when expressed in a NL,
for domain experts. Secondly, NL definitions of indi-
viduals of an ontology can be effectively used for val-
idating the ontology.

2. Related Work

Over the last decade, several CNLs such as At-
tempto Controlled English (ACE) [9,8], Ordnance Sur-
vey3’s Rabbit (Rabbit) [4], and Sydney OWL Syntax
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(SOS) [3], have been specifically designed or have
been adapted for ontology language OWL. All these
languages are meant to make the interactions with for-
mal ontological statements easier and faster for users
who are unfamiliar with formal notations. Unlike the
other languages [5,7,1] that have been suggested to
represent OWL in controlled English, these CNLs are
designed to have formal language semantics and bidi-
rectional mapping between NL fragments and OWL
constructs. Even though these formal language seman-
tics and bidirectional mapping are helpful in enabling
a formal check that the resulting NL expressions are
unambiguous, they generate a collection of unordered
sentences that are difficult to comprehend.

To use these CNLs as a means for ontology author-
ing and for knowledge validation purposes, appropri-
ate organization of the verbalized text is necessary. A
detailed comparison of the systems that comprehend
the NL texts is given in [11]. Among such systems,
SWAT tools4 are one of the recent and prominent tools
which use standard techniques from computational lin-
guistics to make the verbalized text more readable.
They tried to give better clarity to the generated text by
grouping, aggregation and elision. The Semantic Web
Authoring (SWAT) NL verbalization tools have given
much importance to the fluency of the verbalized sen-
tences [13], rather than removing redundancies from
their logical forms, hence have deficiencies in inter-
preting the ontology contents.

An effort that is somewhat close to this paper is [12].
This paper clearly establishes the fact that omitting
“obvious” axioms while verbalization leads to a better
reading experience for a human. By “obvious” axioms
the author means those axioms whose semantics are
in some sense obvious for an average human reader.
(For example, phrases such as “junior school” explic-
itly covey the meaning that a junior school is a school.)
In this work, we, go further and, establish that more
inference-based redundancy removal can be done than
removing just the morphological variants of the entity
names, for greatly improving the quality and under-
standability of verbalized text.

3. Preliminaries

3.1. SHIQ Ontologies

The description logic (DL) SHIQ is based on an
extension of the well-known logic ALC [10], with

4http://mcs.open.ac.uk/nlg/SWAT/
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Table 1
The syntax and semantics of SHIQ concept types

Name Syntax Semantics

atomic concept A AI

top concept > ∆I

bottom concept ⊥ φ

negation ¬C ∆I\CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

existential restriction ∃R.C {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI }
universal restriction ∀R.C {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI }
min cardinality ≥ nR.C {x ∈ ∆I | #{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n }
max cardinality ≤ mR.C {x ∈ ∆I | #{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ m }

Table 2
The syntax and semantics of SHIQ ontology axioms

Name Syntax Semantics

role hierarchy R v S RI ⊆ SI

TBox role transitivity Tran(R) RI ◦RI ⊆ RI

concept inclusion C v D CI ⊆ DI

concept equality C ≡ D CI = DI

concept assertion C(a) aI ∈ CI

ABox role assertion R(a, b) 〈aI , bI〉 ∈ RI

inequality assertion a 6≈ b aI 6= bI

added support for role hierarchies, inverse roles, tran-
sitive roles, and qualifying number restrictions [6].

We assume NC and NR as countably infinite dis-
joint sets of atomic concepts and atomic roles respec-
tively. A SHIQ role is either R ∈ NR or an inverse
roleR− withR ∈ NR. To avoid considering roles such
as (R−)−, we define a function Inv(.) which returns
the inverse of a role: Inv(R) = R− and Inv(R−) = R.

The set of concepts in SHIQ is recursively defined
using the constructors in Table 1, whereA ∈ NC , C,D
are concepts, R,S are roles, and n,m are positive in-
tegers. A SHIQ based ontology — denoted as a pair
O = (T,A), where T denotes terminological axioms
(also known as TBox) and A represents assertional ax-
ioms (also known as ABox) — is a set of axioms of
the type specified in Table 2. A role R in O is transi-
tive if Tran(R) ∈ O or Tran(R−) ∈ O. Given an O,
let vO be the smallest transitive reflexive relation be-
tween roles R1 and R2, such that R1 v R2 ∈ O im-
pliesR1 vO R2 andR−1 vO R

−
2 . For a SHIQ ontol-

ogyO, the role S in every concept of the form≥ nS.C
and ≤ mS.C in O, should be simple, that is, R vO S
holds for no transitive role R [2].

The semantics of SHIQ is defined using interpre-
tations. An interpretation is a pair I = (∆I , .I) where
∆I is a non-empty set called the domain of the in-
terpretation and .I is the interpretation function. The
function .I assigns a set AI ⊆ ∆I to every A ∈ NC ,
and assigns a relation rI ⊆ ∆I×∆I to every r ∈ NR.
The interpretation of the inverse role r− is (r−)I :=
{〈x, y〉 | 〈y, x〉 ∈ rI}. The interpretation is extended
to concepts and axioms according to the rightmost col-
umn of Table 1 and Table 2 respectively, where #X
denotes the cardinality of the set X .

We write I |= α, if the interpretation I satisfies the
axiom α (or α is true in I). I is a model of an on-

tology O (written I |= O) if I satisfies every axiom
in O. If we say α is entailed by O, or α is a logical
consequence of O (written O |= α), then every model
of O satisfies α. A concept C is subsumed by D w.r.t.
O if O |= C v D, and C is unsatisfiable w.r.t. O
if O |= C v ⊥. Classification is the task of com-
puting all subsumptions A v B between atomic con-
cepts such that A,B ∈ NC and O |= A v B; sim-
ilarly, property classification of O is the computation
of all subsumptions between properties R v S such
that R,S ∈ NR and O |= R v S.

3.2. Running Example

In this section we introduce an example ontology
(called the academic (ACAD) ontology) which we fol-
low throughout this chapter. We have formalized vari-
ous concepts in academic domain in this ontology. The
ontology is rather small, but serves the purpose well.
The TBox and ABox of the ontology is given in Ta-
ble 3 and 4 respectively.

4. Newly Introduced Terminologies and
Definitions

In this section, we introduce the terminologies and
definitions by considering ontologies whose expressiv-
ity is bound to SHIQ description logic.

In this paper, we use the words “reduction” and “re-
finement” interchangeably. In the current context, ‘De-
scription’of an ontology entity refers to its domain-
specific NL definition generated from the ontology.

4.1. Label-sets

To generate descriptions of individuals in an ontol-
ogy, we associate with each individual a set of con-
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Table 3
TBox of ACAD ontology

IITStudent ≡ Student u ∀hasAdvisor.TeachingStaff u ∃hasAdvisor.Professor
u ∃enrolledIn.IITProgramme

IIT_MS_Student ≡ IITStudent u ≤ 1hasAdvisor.TeachingStaff

IITPhdStudent ≡ IITStudent u ≥ 2hasAdvisor.TeachingStaff u ≤ 1hasAdvisor.Professor

Professor v TeachingStaff

AssistantProf v TeachingStaff

⊥ ≡ Professor u AssistantProf

⊥ ≡ IIT_MS_Student u IITPhdStudent

Table 4
ABox of ACAD ontology

IITStudent(tom)

IIT_MS_Student(tom)

hasAdvisor(tom, bob)

IITPhdStudent(sam)

hasAdvisor(sam, alice)

hasAdvisor(sam, roy)

AssistantProf(alice)

straints it satisfies. We call these sets as label-sets in
general. A Label-set of an individual is called a node-
label-set and a label-set of a pair of individuals is
called an edge-label-set. The rationale behind generat-
ing these label-sets is that, since all the constraints sat-
isfied by an individual are captured at one place, it can
easily be looked up for redundancies.

Node-label-set The node-label-set of an individual is
the set which contains all the class expressions and
(existential, universal and cardinality) restrictions sat-
isfied by that individual.

Definition 1 The node-label-set of an individual x
(represented as LO(x)) is defined as:

LO(x) = {ci | O |= ci(x)}

where ci is of the following form:
ci = A | ∃R.C | ∀R.C | ≤ nR.C | ≥ nR.C

Here, A is an atomic concept, C is a class expression
and R is a role name in ontology O, and m and n are
positive integers. C is of the following form:
C = A | C1 u C2 | C1 t C2 | ∃R.C1 | ∀R.C1 |

≤ nR.C1 | ≥ nR.C1,
where C1 and C2 are also class expressions.

Note that, in the above definition, the first-level ex-
pressions (the cis) are free from disjunctions. If an in-
dividual satisfies a disjunctive clause (a set of indepen-
dent expressions combined using disjunctions), satisfi-
abilities of each of these independent expressions are

checked and include those expressions that are sat-
isfiable as conjunctions in the label-set. Clearly, the
conjunction of all the elements in the label-set of an
individual will be entailed by the ontology. That is,
O |=

(
uni=1 ci

)
(x)

An example of the node-label-set of the individ-
ual x = tom from ACAD ontology is: LO(x) = {
Student,IITStudent,IIT_MS_Student,

∃enrolledIn.IITProgramme, ≤ 1hasAdvisor.

TeachingStaff, ∀hasAdvisor.TeachingStaff,
∃hasAdvisor.Professor }

Edge-label-set The label-set of a pair of individuals
(x, y) is the set that contains all the property relation-
ships (role names) from the first individual to the sec-
ond individual. It is represented as LO(x, y).

Definition 2 LO(x, y) is formally defined as (where
NR is the set of all atomic roles in ontology O):
LO(x, y) = {R | R ∈ NR ∧ O |= R(x, y)}.

From ACAD ontology, the edge-label-set of the pair
(tom,bob) can be written as: LO(tom,bob) = {
hasAdvisor }.

Although various approaches can be considered for
generating label-sets, the practical method that we
have adopted for generating the label-sets is explained
in the next subsection.

4.2. Label-set generation technique

Node-label-set generation. The naive method to find
the node-label-set of an individual is by doing satisfia-
bility check for all combinations of roles, concepts and
restrictions types; and include them if they are true.
Since, this is not a practically adoptable method for
large ontologies, we generate the label-set of an indi-
vidual x from an ontology O as follows.

Firstly, we create the corresponding inferred ontol-
ogyO′(using a reasoner). FromO′, we find all the con-
cept names and (existential, universal and cardinality)
restrictions satisfied by the individual as follows:
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Algorithm 1. Handling disjunctions of expression
1: procedure LABEL-SET-GEN(x, D-Clause)
2: for each expression exp in D-Clause do
3: if exp is of the form ∃R.C then
4: if O |= ∃R.C(x) then
5: LO(x)← LO(x) ∪ {∃R.C}
6: end if
7: else if exp is of the form ∀R.C then
8: if O |= ∀R.C(x) then
9: LO(x)← LO(x) ∪ {∀R.C}

10: end if
11: else if exp is of the form ≤ nR.C then
12: if O |=≤ nR.C(x) then
13: LO(x)← LO(x) ∪ {≤ nR.C}
14: end if
15: else if exp is of the form ≥ nR.C then
16: if O |=≥ nR.C(x) then
17: LO(x)← LO(x) ∪ {≥ nR.C}
18: end if
19: end if
20: end for
21: end procedure

Step 1: All the concept names which are satisfied by
x are obtained by a simple SPARQL query. We can call
it as the seed label-set. For example, the set of concept
names, which we obtained from O′, corresponding
to the individual tom is { Student,IITStudent,
IIT_MS_Student }.

Step 2: In order to get the restrictions satisfied by
x, we access the class definitions and class subsump-
tion axioms corresponding to the concepts which are
obtained in the first step, and then consider the existen-
tial, universal and cardinality restrictions on the right
hand side of those axioms to enrich the label-set.

The right hand side of the axioms in their conjunc-
tive normal form (CNF) is used for enriching the label-
set. That is, the R.H.S. will be of the form: c1 u c2 u
(c3tc4tc5t...tck)uck+1u...uck+n. Those clauses
in the CNF which do not contain any disjunction, for
examples as in c1, c2 etc. are directly included in the
label-set. If a clause contains disjunction of expres-
sions (denoted as D-Clause), such as c3tc4tc5t...tck
above, then it is handled in parts, as shown in Algo-
rithm 1.

Continuing with our example, enrichment of the
label-set of tom is done by obtaining existential, uni-
versal and cardinality restrictions associated with each
of the concept names in the seed label-set. That is, the
restrictions ∃enrolledIn.IITProgramme,

≤ 1hasAdvisor.TeachingStaff,

∀hasAdvisor.TeachingStaff, and
∃hasAdvisor.Professor associated with concept
names are included in LO(tom).

It should be noted that, using this approach, we
are generating only those necessary restrictions which
can entail the other satisfying combinations as per our
label-set definition. For the same reason, we may need
to rely on rule-based reasoning (explained later) to
generate other restrictions which are of our interest.

Edge-label-set Generation The edge-label-set of a
pair of individuals (x, y) can be easily generated from
O′ using a simple SPARQL query.

5. Proposed Method for Generating Descriptions

Once we get the label-sets of all the individuals
(node-label-sets) in a given ontology, we can generate
descriptions of individuals and concepts using the fol-
lowing approaches.

5.1. Description of individuals

Node-label-sets of each individuals are considered
for generating their descriptions. Label-sets of all the
individuals from ACAD ontology is given in Table 5.
For example, by looking at the node-label-set of tom,
we will get the set of all restrictions (logical expres-
sions) that are satisfied by the individual. Considering
these restrictions together, we can frame a meaning-
ful definition for tom as: “Tom is a student who is en-
rolled in an IIT Programme, has one professor as ad-
visor, and all his advisors are teaching staffs.” Clearly,
not all logical expressions (labels) in the label-set are
necessary to generate such a description. That is, those
labels that can induce redundancy in the description
can be ignored or combined with other restrictions.

As noted earlier, some of the labels (mainly role
restrictions) in the label-set if verbalized directly
may generate confusing descriptions, and hence they
should be reduced or combined with other restrictions
to get a more refined restriction. For example, if left
unrefined, the restrictions ∀hasAdvisor.TeachingStaff
and ∀hasAdvisor.>may give rise to the description:
“all advisors are some one and all advisors are teach-
ing staffs”, which confuses a human reader.

Given a label-set, to generate a refined description,
we have to perform two tasks. The first task is to iden-
tify the labels that induce redundancy from the label-
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Table 5
Node-Label-set of individuals in ACAD ontology (intentionally
omitted > class from the label-sets)

LO(tom) = { Student, IITStudent, IIT_MS_Student, ∃enrolledIn.IITProgramme,
≤ 1hasAdvisor.TeachingStaff, ∀hasAdvisor.TeachingStaff, ∃hasAdvisor.Professor }

LO(sam) = { Student, IITStudent, IITPhdStudent, ∃isEnrolledIn.IITProgramme,
≥ 2hasAdvisor.TeachingStaff, ≤ 1hasAdvisor.Professor, ∀hasAdvisor.TeachingStaff,
∃hasAdvisor.Professor }

LO(bob) = { Professor, TeachingStaff }

LO(alice) = { AssistantProf, TeachingStaff }

LO(roy) = { Professor, TeachingStaff }

set. We call this task as content selection. The sec-
ond task is to perform inferencing using the selected
content so that they can be combined with the non-
redundant labels, to form a refined content.

The naive method to perform the aforementioned
tasks is by considering all combinations of labels and
see whether they can be reduced or not. This is in-
deed a tedious process, since the total number of steps
to be taken for completing the reduction depends on
the combination which we select at each step. To over-
come this, the content selection is carried out by con-
sidering labels of specific restriction types in a pre-
defined order. For example, all the existential role re-
strictions are considered prior to universal role restric-
tions. Such a systematic process along with an ordered
list of inference rules that always generate stricter
(more specific) forms of a given set of restriction, will
ensure a faster refinement of the label-sets. Due to
the aforementioned property of the rules, we call them
as refinement-rules. Since we do this reduction or re-
finement of labels at the logical-level by considering
their semantics, we call the two tasks collectively as
semantic-refinement of label-sets. The refined form of
the label-set is called semantically-refined label-set.

The semantic-refinement is not only done to remove
redundant labels in a label-set, but also to avoid am-
biguous verbalization of interim logical expressions.
For example, ∀hasAdvisor.Professor is a label
which can appear in the label-set of an individual
of IITStudent due to the axiom: IITStudent v
∀hasAdvisor.Professor. Linguistically this label
(along with the axiom) can be interpreted in two ways.
That is, either as All advisors of IIT students are teach-
ing staffs or, by considering logical equivalent of the
statement, it can be interpreted as Either all advisors
of IIT students are teaching staffs or (vacuously-true
case) they do not have an advisor. Clearly, including

the latter description in the verbalization may confuse
a reader. This is especially the case when it can be in-
ferred from other axioms that vacuously-true case does
not arise.

For identifying the cases where combinations of
conditions involving qualifiers and/or number restric-
tions occur and to succinctly represent them, we intro-
duce the following new constructors.

– Non-vacuous role restriction: =R.C
=R.CI = {x ∈ ∆I |∃y.〈x, y〉 ∈ RI ∧ y ∈ CI∧
∀z.〈x, z〉 ∈ RI =⇒ z ∈ CI}

– Exactly-one role restriction: ∃=1R.C
∃=1R.C

I = {x ∈ ∆I |(∃y1.〈x, y1〉 ∈ RI ∧ y1 ∈
CI∧ ∃y2.〈x, y2〉 ∈ RI ∧ y2 ∈ CI) =⇒ y1 =
y2}

– Exactly-n role restriction: ∃=nR.C, general case
of exactly-one role restriction.

In our semantic refinement process, like any rule-
based approach, the order at which the inferencing
rules are applied is also important, as the applicability
of one rule may depend on another. We observed that
there is a notion of strictness associated with role re-
strictions which can be effectively utilized for ordering
the rules, such that the content selection and the ap-
plication of the rules can be done simultaneously. The
notion of strictness can be looked at as: if a role re-
striction R1 is implied by another role restriction R2

(i.e., R2 =⇒ R1), then R1 can be said as a stricter
version of R2. For instance, =R.U can be said as the
stricter form of ∃R.U and ∀R.U . Similarly, ∃=nR.U
is a sticker form of≤ nR.U and≥ nR.U . Since we in-
tend to find sticker forms of role-restrictions, the obvi-
ous way is to apply rules corresponding to less stricter
restriction types prior to those of stricter restriction
types.

In the forthcoming sub-section, we introduce our
rule-based refinement algorithm to accomplish com-
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plete reduction, where, we do all the possible reduc-
tion of less stricter restrictions prior to reducing stricter
ones. Completeness of the refined form of label-set is
guaranteed by the construction of the algorithm.

In what follows, we discuss how semantic-refinement
of label-sets can be achieved.

5.1.1. Semantic-refinement of label-sets
We propose seven sets of rules for refining a label-

set. Each of these rule sets contain carefully chosen
rules which are repeatedly applied to the selected re-
strictions in the label-set, until no more reduction is
possible. On moving from one rule set to another, those
labels which have been reduced would be provision-
ally removed from the label-set. More details about the
algorithm is given in the next sub-section.

The details of the first five sets of rules are given
in Table 6. Each of the rule sets are given names that
correspond to the type of restriction they handle. For
example, the first rule set is called Concept Refinement
rule, where atomic concepts in the label-set are looked
at for refinement. More details about the refinement
rules are given below.

Concept Refinement Rule. To apply this rule, the con-
tent selection process is to consider all the concept
name symbols that are present in the label-sets whose
definitions (i.e., the set of restrictions which defines
the concept) are included in the label-set. If the defin-
ing restrictions of a concept are present in the label-
set, we can apply the rule and the corresponding con-
cept names can be removed, since they are redundant
content.

Superclass Refinement Rule. Consider the individu-
als given in Table 5, we can see that their label-sets
contain all the concept names which they belong to.
Some of the concepts in these label-sets are hierar-
chically related (in class - super-class relationship) in
the ontology, resulting in redundant labels. For exam-
ple, consider the label-set LO(tom), it contains the
concepts IIT_MS_Student and IITStudent. Since
it can be inferred from the concept IIT_MS_Student
that tom is also a IITStudent, we can say that
IITStudent is a redundant information (label) in the
label-set. We remove such redundant labels by using
most-specific concept notion, for that we first iden-
tify all the possible concept chains that are present
in the label-set. It should be noted that an individual
may present in 2 or more such subsumption concept
chains. By applying the refinement rule to each chain
we maintain only the most-specific concepts.

(Note that, this refinement rule is applied only after
the applications of the concept refinement rule – some
specialized concepts may get removed while applying
the rules in the first rule set, therefore, it does not al-
ways mean that a refined label-set contains only the
specialized concept names in the ontology)

The presence of redundant concept names in a node-
label-set is mainly because, we do a classification on
the ontology prior to the label-set generation.

The upcoming rule sets are meant for reducing the
various role restrictions allowed in a SHIQ ontology.

Existential Role Refinement rule. We can select two
labels of the form: ∃R.U and ∃S.U , from the label-
set, as candidates for applying this rule, if U v V

and R v S, in the ontology. According to the existen-
tial role refinement rule, candidate labels are semanti-
cally equivalent to stating only a single restriction of
the form ∃R.U (which we call as the refined form of
the labels). In general, all the rules that we cover in this
paper are defined such that given a refined form and
the condition which have been used for refinement, the
non-refined forms of the restriction(s) can be traced
back. This means that, the refinement is done without
affecting the semantics/meaning of the restrictions.

Formally, the correctness of the existential role re-
finement rule can be proven as follows:

Proof of Rule 3a. Given an ontology O with R and
S as its roles, and U and V are two of its concepts,
and O|= U v V,R v S, then ∃R.U u ∃S.V ≡
∃R.U . To prove this, let us consider an individual x ∈
∃R.U u ∃S.V , clear it implies x ∈ ∃R.U . Therefore
∃R.U u ∃S.V v ∃R.U . Now, if x ∈ ∃R.U , it implies
that there exist an arbitrary a, such that (x, a) ∈ R, a ∈
U . Since U v V , we can say that a ∈ V . It implies,
x ∈ ∃S.V . Similarly, since R v S, (x, a) ∈ R =⇒
(x, a) ∈ S Therefore, ∃R.U v ∃R.U u ∃S.V .

Universal Role Refinement rules. This rule set con-
tains two rules which help in refining universal role
restrictions. If a label-set contains two role restrictions
of the form: ∀R.U and ∀S.V , universal role refine-
ment rules can be applied if they satisfy the condi-
tions of the rule. For example, if the label-set con-
tains ∀hasAdvisor.Professor and ∀hasAdvisor.
TeachingStaff, and if Professor v TeachingStaff,
we can refine those restrictions to ∀hasAdvisor.
Professor. The correctness of the two rules can be
easily be proven as follows.
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Table 6
Details of rule sets 1-5.

Rule No. Restriction 1 Restriction 2 Condition Refined form

Concept Refinement rule
1a Concept names, whose (equality) definitions are already

included in the label-set, can be removed.

Superclass Refinement rule
2a U V U v V U

Existential Role Refinement rule
3a ∃R.U ∃S.V U v V & R v S ∃R.U

Universal Role Refinement rules
4a ∀R.U ∀S.V U v V & S v R ∀R.U , ∀S.U
4b ∀R.U ∀R.V V v U ∀R.V

III & IV Combination rules
5a ∃R.U ∀R.U =R.U

5b ∀R.U ∃S.V U v V & S v R =R.U , =S.U
5c ∀R.U ∃S.V V v U & S v R =R.U , ∃S.V

Table 7
Details of rule sets 6 and 7.

Rule No. Restriction 1 Restriction 2 Condition Refined form

Qualified Number Restriction Refinement rules
6a ≥ nR.U ≥ mS.V U v V & R v S & n ≥ m ≥ nR.U

6b ∃R.U ≥ nS.V V v U & S v R & n ≥ 1 ≥ nS.V

6c ∃R.U ≤ nR.V U v V & n = 1 ∃=1R.U,∃=1R.V

6d ≥ nR.U ≤ nS.V R v S & U v V ∃=nR.U,∃=nS.V

Exactly-n Role Refinement rules
7a ∃R.U ∃=1S.V U v V & R v S ∃=1R.U,∃=1S.V

7b =R.U ∃=1S.V U v V & R v S ∃=1R.U,∃=1S.V,=R.U

7c ≥ mR.V ∃=nR.U U v V &m ≥ n ∃=nR.U,≥ (m−n)R.(V u¬U)

Proof of Rule 4a. Given an ontology O which en-
tails U v V and S v R (where R and S are roles,
and U and V are concepts), then ∀R.U u ∀S.V ≡
∀R.U u ∀S.U. Proving ∀R.U u ∀S.U v ∀R.U u ∀S.V
is trivial since ∀S.U v ∀S.V (given, U v V ). Now,
let x ∈ ∀R.U u ∀S.V , suppose (x, a) ∈ S where a is
an arbitrary individual. Since S v R, (x, a) ∈ R. It
implies a ∈ U (since x ∈ ∀R.U ). Therefore, we get
x ∈ ∀S.U. Hence, ∀R.U u ∀S.V v ∀R.U u ∀S.U.

Proof of Rule 4b. Given an ontology O which en-
tails V v U (where R is a role and, U and V are
concepts), then ∀R.U u ∀R.V ≡ ∀R.V . Proving
∀R.U u ∀R.V ≡ ∀R.V is trivial, since the L.H.S.
can be written as ∀R.(U u V ), and it is equivalent to

∀R.V, since V v U .

Further in this section, we refrain from giving the
proof of correctness of the rules in the succeeding rule
sets. An appendix is provided at the end of the paper
with all the required proofs.

III & IV Combination rules. For applying the rules
in this rule set, the content selection process selects
combinations of existential and universal role restric-
tion from the label-set. The rules help in refining such
combinations to a reduced form.

The details of the next set of rule sets are given in
Table 7.
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Qualified Number Restriction Refinement rules. In
this set there are four rules. Here we mainly try to
refine qualified number restriction restrictions (of the
form ≤ nR.U or ≥ mS.V ) to stricter version of the
same form or to a exactly-n restrictions.

Exactly-n Role Restriction rules. In this rule set, we
reduce the exactly-n role restrictions which are gen-
erated using the preceding rule-sets. The rule set is
named so because, this is the only rule set where we
try to reduce exactly-n role restrictions.

5.1.2. Algorithm for semantic-refinement
As we mentioned before, semantic-refinement helps

in refining restrictions, which are present in a label-set,
to their stricter forms by combining them using a set of
rules. The rules are applied sequentially from rule-set
1 to 7. While applying the rules, on moving from one
rule-set to another, provisional removal of reduced re-
strictions is done to reduce computational complexity.
In our algorithm, we will mark such restrictions as PRs
(Provisionally Reduced ones), so that at a later stage
we can remove them permanently from the label-set.

Algorithm-2 describes the steps that has to be fol-
lowed for applying the rules. This algorithm works by
taking pairs of restrictions from the label-set, and look-
ing for the applicability of the rules. If a rule is appli-
cable, the restrictions will be checked for the follow-
ing set of conditions, to decide whether to resume the
reduction or not. These conditions are followed mainly
to ensure quick reduction.

Condition-1. No need to further reduce two provi-
sionally reduced (PR) restrictions. (This is because, the
rule-sets are designed in such a way that if a particular
combination of restriction types is reduced by a rule
in one rule-set, the same combination will not occur in
the succeeding rule-sets)

Condition-2. If a rule combines two restrictions (R1
andR2) and generates eitherR1 orR2, then thatR1 or
R2 should not be marked as a PR. ( This is because, in
the rules such as 4a, 5c, 6a etc., one of their antecedent
term gets repeated in the consequent part of the rule to
ensure reverse implication (i.e., for preserving seman-
tics). On applying such rules, if the regenerated terms
are marked as PR, they may get permanently removed
during the course of the algorithm, which is not accept-
able.)

Condition-3. If the restrictions of a particular form
are not used in successive rule-sets, the PR restrictions
of that form can be removed. (Either they can be re-

Algorithm 2. Semantic-refinement of label-sets
1: procedure SEMANTIC_REFINEMENT(LO(x))
2: Mark all u ∈ LO(x) as not PRs
3: Apply Concept Refinement rule and remove

appropriate concept names from LO(x)
4: R← Rule-sets 2-7 . list of pre-defined rules
5: for each rule-set rs ∈ R do
6: Set M,REF ← φ
7: for each (u, v) ∈ LO(x)× LO(x) AND

u 6= v do
8: if (NOT(MARKED_AS_PR(u)) AND

NOT(MARKED_AS_PR(v))) then
9: for each (r ∈ rs) do

10: if r is applicable on (u, v) then
11: M ← APPLY_RULE(r, u, v)
12: LO(x)←LO(x) ∪M
13: REF ← REF ∪ {u,v}
14: if u ∈M then
15: REF ← REF\{u}
16: end if
17: if v ∈M then
18: REF ← REF\{v}
19: end if
20: end if
21: end for
22: end if
23: end for
24: MARK_AS_PR(REF )
25: LO(x)←LO(x) ∪ REF
26: for each u ∈LO(x) do
27: if the restn. type of u is not used in the suc-

cessive rule-sets AND MARKED_AS_PR(u) then
28: LO(x)←LO(x)\{u}
29: end if
30: end for
31: end for
32: end procedure

moved after the applications of rules in all the rule-sets
or they can be removed at specific points where it can
be determined that they will not be used by any rules
from then on. The latter is computationally efficient)

For illustration, let us consider the node-label-set of
the individual sam. Fig 1 shows the refinement steps
and the rules in the rule sets which are used for the re-
finement.LO(sam) is represented vertically. In the fig-
ure, the arrows represent the application of rules. Rule
numbers are represented in italics. A refinement of two
restrictions may sometimes result in more than one re-
strictions, to represent them, the arrows are followed
by brace brackets ({...}) to show the resultant restric-
tions.
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LO(sam)
Student

IITStudent

IITPhdStudent

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
∃hasAdvisor.Professor
∀hasAdvisor.TeachingStaff

{}
{}Rule 1a

Rule 5c

Rule 6c

Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
∃hasAdvisor.Professor
∀hasAdvisor.TeachingStaff

Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
∃hasAdvisor.Professor
∀hasAdvisor.TeachingStaff

Rule-set change
1 → 5 Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
{∃hasAdvisor.Professor
=hasAdvisor.TeachingStaff}√ ∀hasAdvisor.TeachingStaff

Rule-set change
5 → 6

Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
∃hasAdvisor.Professor
=hasAdvisor.TeachingStaff

Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff√ ≤ 1 hasAdvisor.Professor√ ∃hasAdvisor.Professor
{∃=1hasAdvisor.Professor}
=hasAdvisor.TeachingStaff

Rule-set change
6 → 7

Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff√ ∃hasAdvisor.Professor
∃=1hasAdvisor.Professor

=hasAdvisor.TeachingStaff

Student

∃isEnrolledIn.IITProgramme√ ≥ 2 hasAdvisor.TeachingStaff√ ∃hasAdvisor.Professor
=hasAdvisor.TeachingStaff
{≥1hasAdvisor.(TeachingStaff
u¬Professor),
∃=1hasAdvisor.Professor}

Rule 7c

Fig. 1. Steps involved in the semantic-refinement of LO(sam). Arrows represent the application of rules.

Initially, the algorithm marks all the labels in the
label-set as not PR. Then the algorithm looks for
the applicability of the rule 1a (concept refinement
rule). In the figure, LO(sam) contains the labels
IITStudent and IITPhdStudent whose definitions
are present in the label-set. Therefore, the Rule 1a
is applied on those labels and remove them from the
label-set. In the algorithm, lines 5-31 take the rest of
the rule-set one at a time, and look for possible appli-
cation of rules on pairs of restrictions in the label-set.
In our example label-set, since no rules in the rule-sets
2,3, and 4 are applicable, we move to the rule set 5.
Now, the algorithm applies the rule 5c on two of the
restrictions as shown in the figure and refine them to
the two restrictions given in the brackets. Application
of a rule will be done only if the restrictions in the
pair are not marked as PR (checked using the function
MARKED_AS_PR(.)). The if condition in the line-8
of the algorithm will take care of this. After the appli-
cation of a rule (using the function APPLY_RULE(.)),
the details of the reduced restrictions will be stored in
the set variable REF . Based on the condition-2, ap-
propriate changes have to be done on the contents of
REF (lines 14-20). Once all the possible rules in a
particular rule set are applied, the reduced restrictions
will be marked as PRs (lines 24). Once the algorithm
considers all pairs of labels and checks them for the
applicability of all the rules in the current rule-set, the
condition-3 will be checked for possible permanent re-
moval of the PRs. The entire process will be repeated
for all the succeeding rule-sets.

Coming back to our example label-set, after the ap-
plication of Rule 5c, one of the reduced restriction is
marked as PR (represented using

√
), while the other

restriction is not marked as PR due to the condition-2.

On changing the rule-set, since no other rules in rule-
set 5 are applicable, the one which is marked as PR
can be permanently removed since the condition-3 is
satisfied. In the forthcoming iterations of the for loop
(line 5), rules in the rule-set 6 and 7 are applied in sim-
ilar fashion. In the last iteration, we will get the most
refined set of labels, along with a set of restrictions
which are marked as PRs. The restrictions which are
marked as PRs are removed to get the refined label-set.

Illustration of the usefulness of the approach. The
usefulness of semantic refinement can be illustrated by
looking at the sentences that can be generated from the
node-label-set before and after refinement. Consider-
ing the original node-label-set, sam can be defined as
“A student, an IIT student, an IIT PhD student, who is
enrolled in an IIT programme, has more than two ad-
visors who is a teaching staff, has less than one and
at least one advisor who is a professor, and all advi-
sors are teaching staff ”. By making use of the refined
node-label-set, we can generate a smaller and easily-
understandable definition: “A student who is enrolled
in an IIT programme, has exactly one advisor who is
a professor and has at least one more advisor who is
a teaching staff but not a professor”. More examples
and evaluation results to support the usefulness of this
approach are presented in Section 7.

5.2. Description of Concepts

A concept can be defined in a similar fashion as that
of an individual using label-sets. To generate the de-
scription of a concept, we introduce a new individual
as its member. It is important that the new individual
should be assigned as the member of only the concept
whose definition has to be found. Now, label-set corre-
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sponding to this newly introduced individual is utilized
to generated the concept’s definition. The rationale be-
hind introducing a new individual is that, in order to
find the definition of a concept (say Concept A), we
only need restrictions which are associated with it and
its super-classes. Considering an existing individual
may result in a case where it may belong to concepts
which are sub-classes of the concept A; this results in
including the restrictions associated with the specific-
classes also in the label-set, which is undesirable. In-
troducing a new individual will overcome this issue;
in addition, the approach will even work smoothly for
those concepts which do not have an individual.

Let us look at an illustration of generating defini-
tion of IITPhdStudent from ACAD ontology. At
first, we introduce the individual ips as a member of
IITPhdStudent. Now we will find the label-set of
ips.

We get LO(ips) as {Student, IITStudent,

IITPhdStudent, ∃isEnrolledIn.IITProgramme,
≥ 2 hasAdvisor.TeachingStaff,

≤ 1 hasAdvisor.Professor, ∀hasAdvisor.
TeachingStaff, ∃hasAdvisor.Professor }

In the next step, we remove the concept name,
whose definition has to be found, from the obtained
label-set. That is, LO(ips)\{IITPhdStudent}. This
new label-set is semantically-refined and verbalized to
get the redundant-free description of the concept.

Therefore, IITPhdStudent can be defined as:
{ Student, ∃isEnrolledIn.IITProgramme,
∃=1hasAdvisor.Professor, =hasAdvisor.
TeachingStaff, ≥ 1hasAdvisor.(TeachingStaff

u¬Professor)}
Even though this approach works well for those

concepts whose (axiomatized) definitions contain only
conjunctive clauses, it may generate incomplete de-
scriptions when the definition contains a disjunctive
clause. For example, if the definition of the con-
cept IITStudent is of the form IITStudent ≡
∃isEnrolledIn.IITProgramme u(IITPhdStudent
t IIT_MS_Student), the label-set of a newly intro-
duced individual of IITStudent (say, stud) should
be {IITPhdStudent t IIT_MS_Student,

∃isEnrolledIn.IITProgramme}. However, our cur-
rent label-set generation method will not include dis-
junctive clauses as such in the label-set, instead it will
look for the satisfiability of each of the expression in
the disjunctive clause (that is, IITPhdStudent(stud)
and IIT_MS_Student(stud)), and include them in
the label-set, if they are true. But, for stud, they will
not be true as we are not explicitly adding any other

facts into the ontology other than IITStudent(stud).
Therefore, we will get the label-set as {IITStudent,
∃isEnrolledIn.IITProgramme} which is an in-
complete label-set of the concept. On doing the next
steps – removing the concept name itself from the
label-set, and doing a semantic-refinement over it –
the incompleteness persists. To overcome issue, after
semantic refinement step, we will enrich the refined
label-set with the previously encountered disjunctive
clause(s). That is, we get the new refined label-set of
stud as {IITPhdStudent t IIT_MS_Student,

∃isEnrolledIn.IITProgramme}.

6. Natural Language Descriptions from the
Refined Label-sets

In this paper, prime focus is given for the generation
of redundancy-free descriptions of ontology entities
represented in the form of logical expressions. Appro-
priate NL sentence generation of these logical forms
is yet to be fully explored. However, for the complete-
ness of the paper, we present a simple method which
we have adopted to generate NL descriptions of indi-
viduals and concepts from their refined label-sets.

NL description of an entity is defined as the set of
NL fragments which describes the class names and
role restrictions it satisfies. An example of a descrip-
tion of tom is:

tom: is a student, enrolled in at least one IIT pro-
gramme, and has exactly one professor as advisor

We consider a template similar to the following reg-
ular expression (abbreviated as regex) for generating
descriptions of individuals and concepts.

Individual/concept: (“is”)
(
(“a”) ClassName

(“,” | “and”)?
)+ (

RoleRestriction (“,” | “and”)?
)+

In the above regex, ClassName specifies the con-
cept names in the label-set. We use the rdfs:label
role values of the class names as the ClassName. If
rdfs:label role is not available, the local names
of the URIs are used as the ClassName. For RoleRe-
striction, the role restrictions in the label-set are uti-
lized. The role restrictions are treated in parts. We
first tokenize the role names in the constraints. To-
kenizing includes word-segmentation and processing
of camel-case, underscores, spaces, punctuations etc.
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Table 8
Refined node-label-sets of individuals in ACAD ontology

Individual Refined-label-set
sam { Student, ∃isEnrolledIn.IITProgramme, ∃=1hasAdvisor.Professor,

=hasAdvisor.TeachingStaff, ≥ 1hasAdvisor.(TeachingStaff u¬Professor)}
tom { Student, ∃isEnrolledIn.IITProgramme, ∃=1hasAdvisor.Professor }

bob { Professor }

alice { AssistantProfessor }

roy { Professor }

Table 9
Constraint-specific templates of the possible restrictions in a
redundancy-free description-set.

Restrictn. Constraint-specific template

∃R.C <R-verb> at least one <C> as <R-noun>
∀R.C <R-verb> only <C> as < R-noun >

≥nR.C <R-verb> at least <n><C> as <R-noun>
≤mR.C <R-verb> at most <m><C> as <R-noun>
=R.C <R-verb> at least one <C> and

only <C> as <R-noun>
∃=nR.C <R-verb> exactly <n><C> as <R-noun>

Then, we identify and tag the verbs5 and nouns in the
segmented phase — as R-verb, R-noun respectively
— using the Natural Language Tool Kit6. We then
incorporate these segmented words in a constraint-
specific template, to form a RoleRestriction. For in-
stance, the restriction ∃hasAdvisor.Professor is verbal-
ized to “has at least 1 professor as advisor”, using the
template: <R-verb> at least <n><C> as <R-noun>
(where C corresponds to the concept present in the re-
striction). Constraint-specific templates corresponding
to the possible restrictions in a label-set are listed in
Table-9. In our studies, we have also tried out variants
of these constraint-specific templates to further tune
the NL output. Since the empirical study (see the next
section) is done for a different intention, involving only
a carefully chosen participants, we refrain from further
enhancing the fluency of the NL texts.

If the C equivalent portion of the restriction is not
a concept name (atomic concept), that is, if it a con-
junction or disjunction of restrictions, Table 9 will be
recursively looked up for possible templates, and the
conjunctions and disjunctions will be replaced with
‘and’and ‘or’ respectively.

5In the absence of a proper verb, the phrase “related to” is used in
its place.

6Python NLTK: http://www.nltk.org/

When it comes to generating concept definitions, we
can expect clauses containing disjunctions (indepen-
dent expressions combined using disjunctions) in the
refined label-set. They are handled in parts by taking
each of those independent expressions in the clause
separately for NL generation, and, they are then com-
bined using ‘or’.

7. Empirical Evaluation

We present two case studies to explore the applica-
bility of the redundancy-free description of individu-
als and concepts in validating the domain knowledge.
Rather than choosing an ontology under development,
we study the cases of validating two previously built
ontologies.

In the study, domain experts were presented with
two representations of the same knowledge: one is by
direct verbalization of the label-sets and the other is
by verbalizing them after finding the corresponding re-
fined label-sets. Direct verbalization of a label-set gen-
erates texts (or descriptions) which are similar to those
texts which are produced by an existing ontology ver-
balizer — we call this method as traditional approach,
and the other as the proposed approach. Examples
for the description texts that are generated using the
proposed approach and traditional approach, from the
Plant Disease (PD) ontology7, HarryPotter (HP) on-
tology8 and Geographical Entity9 (GEO) ontologies
are given in Table 10. One can clearly see that those
descriptions which are generated using the proposed
approach are compact, precise and easy-to-understand
when compared to those which are generated using the
traditional approach.

7http://wiki.plantontology.org/index.php/Plant_Disease_Ontology
8https://sites.google.com/site/ontoworks/ontologies
9https://bitbucket.org/uamsdbmi/geographical-entity-

ontology/src (last accessed: 27/11/2015)
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Table 10
Examples of the descriptions of individuals and concepts from PD,
HP and GEO ontologies, generated using the proposed and as well
as the traditional approaches

Entity
type

Proposed approach Traditional approach Ontology

Indivl. Bird cherry Oat Aphid: is a biotic-disorder, having at
least one pest-insect and all its factors are pest-insects.

Bird cherry Oat Aphid: is a disorder, bio-disorder, pest damage
and insect damage. It is all the following: has as factor only
pest-insect, has as factor only pest, has as factor only organism
and has as factor something.

PD

Indivl. Black Chaff: is a plant disease, having at least one
bacteria and all its factors are bacterium.

Black Chaff: is a disorder, a biotic disorder, a plant disease and
a plant bacterioses. It is all the following: has as factor only
organism, has as factor only micro-organism and has as factor
only bacterium, has as factor at least one thing

PD

Concept Mite Damage: is a pest damage, having at least one
mite pest and all its factors are mite pests.

Mite Damage: is a disorder, a biotic-disorder and a pest dam-
age. It is all the following: has as factor only organism, has as
factor only pest, has as factor only mite pest, has as factor at
least one thing.

PD

Indivl. Hermione Granger: is a Hogwarts Student, a muggle,
a gryffindor, having exactly one cat as pet.

Hermione Granger: is a Hogwarts student, a student, a human,
a muggle, a gryffindor. It is all the following: has a pet, has as
pet a cat, has as pet only creature, has at least one creature, has
at most one creature, as pet.

HP

Concept Hogwarts Student: is a Student, is a Gryffindor or
Hufflepuff or Ravenclaw or Slytherin, and having ex-
actly one pet.

Hogwarts Student: is a student, a human, is a Gryffindor or
Hufflepuff or Ravenclaw or Slytherin. It is all the following:
has a pet, has as pet only creatures, has at least one creature,
has at most one creature.

HP

Indivl. Hedwig: is an owl, is related to at least one Hogwarts
student and only Hogwarts student, as pet.

Hedwig: is an owl, a pet, a creature. It is all the following: is
pet of only Hogwarts student, is pet of a Hogwarts student.

HP

Concept Aggregate of sovereign states: is not a governmental
organization, is aggregate of only sovereign states and
is aggregate of at least two sovereign states.

Aggregate of sovereign states: is not a governmental orga-
nization and not a sovereign state. It is all the following: is
aggregate of only governmental organization, is aggregate of
at least two governmental organizations, is aggregate of only
sovereign states and aggregate of at least two sovereign states.

GEO

Indivl. Florida: is a government organization and a major ad-
ministrative subdivision, is related to at least one na-
tion as a part, is related to exactly one sovereign state
as a member, and is a subordinate authority of at least
one sovereign state.

Florida: is a major administrative subdivision, an organization,
a governmental organization, a subnational entity. It is all the
following: is a part of at least one nation, is a subordinate au-
thority of at least one sovereign state, is a member of at least
one sovereign state and have at most one member of relation-
ship with sovereign state.

GEO

Scope of the study. We have done the empirical study
mainly for two reasons. Firstly, for finding whether the
process of semantic-refinement is helpful in generat-
ing useful texts for describing the ontology. For this
purpose, the experts were asked to rate their degree of
understanding of the knowledge in the scale: (1) poor;
(2) medium; (3) Good.

Secondly, to measure the usefulness of the gener-
ated sentences (i.e., the descriptions of individuals and
concepts) in validating the domain knowledge, domain
experts were told to choose from the options: (1) Valid

(2) Invalid (3) Don’t know (4) Cannot be determined.
Significance of these options is that, if a participant is
choosing the 4th option, it is likely that she finds it dif-
ficult to reach a conclusion on the validity of the sen-
tence presented. In addition, feedbacks are collected
from the experts to get suggestions on improving the
system.

Dataset used. We used two ontologies for generating
descriptions. The first ontology is Plant-Disease ontol-
ogy (PD ontology) developed by International Center
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of Agricultural Research in the Dry Areas (ICARDA),
and the second one is a synthetic ontology, Data struc-
tures and Algorithms (DSA) ontology, developed by
ORG group10 at IIT Madras11. More details about
these ontologies are available at our project website12.
The current version of PD ontology has 546 individu-
als, 105 concepts and 15 object properties. The DSA
ontology has 333 individuals, 53 concepts, 19 object
properties and 11 datatype properties.

Experimental setup. For each of the individuals and
concepts in the two ontologies we have generated cor-
responding NL descriptions from their node label-sets
as well as from their refined label-sets, using an im-
plemented prototype of the system. Since manual eval-
uation of all the generated descriptions is difficult, a
selected number of descriptions were utilized for the
study. The set of descriptions of individuals for the
study were selected by grouping the entire descrip-
tions based on their label-sets and randomly choosing
one individual’s description from each group. The set
of descriptions of concepts were selected from those
set of descriptions (generated from refined label-sets)
which are highly different from their counterparts that
are generated from their non-refined label-sets. From
PD ontology, 31 descriptions of individuals and 10 de-
scriptions of concepts have been considered for evalu-
ation. Similarly, for DSA ontology, 14 descriptions of
individuals and 17 descriptions of concepts were cho-
sen for evaluation. Then, experts of the two domains
were asked to review the verbalized descriptions. Ma-
jority ratings of the sentences were considered for find-
ing the statistics.

Expert selection. Seven experts of plant disease ar-
eas and fourteen experts of data structures and algo-
rithms were involved in the study. The seven experts
of PD domain have either a masters degree or a doc-
torate degree in the plant disease or agriculture related
areas. The fourteen experts of DSA domain have suc-
cessfully completed the advanced data structures and
algorithms course offered at IIT Madras.

7.1. Results and Discussions

Fig 2-5 show the summary of the ratings given by
the domain experts. Based on this data, we answer the
following two questions.

10https://sites.google.com/site/ontoworks/home
11https://www.iitm.ac.in/
12https://sites.google.com/site/ontoworks/projects

7.1.1. How does the semantic-refinement help in
improving the understandability of the
verbalized knowledge?

The degree of understanding of each of these de-
scriptions to the domain experts can be identified by
looking at the ratings (i.e., poor, medium or good)
which they had chosen during the empirical study. If
there exists an ambiguity in the description (due to
its verbatim fidelity to OWL statements), they are ex-
pected to choose poor or medium as the level of un-
derstanding. To confine the reasons for ambiguity to
the fidelity to OWL constructs alone, possible (man-
ual) grammatical error corrections have been done on
the generated text — as we were not using any sophis-
ticated NL generation techniques. Grammatical errors
such as subject-verb agreement errors, verb tense er-
rors, verb form errors, singular/plural noun ending er-
rors and sentence structure errors were corrected.

Fig. 2. Y-axis shows the count of descriptions of a particular rating
which are generated using our proposed approach and the tradi-
tional approach from the PD ontology

Fig. 3. Y-axis shows the count of descriptions of a particular rating
which are generated using our proposed approach and the tradi-
tional approach from the DSA ontology

Fig 2 shows the overall responses which we received
from the seven domain experts for the descriptions of
PD ontology. We call it as the overall response be-
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cause, ratings are calculated by looking at the major-
ity responses; that is, only if a description is rated as
‘good’ by at least 4 participants, it will be considered
as a good description; similar is the case with poor and
medium ratings. The dotted-bars represent the count of
the descriptions of a particular rating which are gen-
erated using the proposed approach and the stripped-
bars denote the count of those which are generated us-
ing the traditional approach. Similarly, Fig 3 shows the
summary of the responses received for DSA ontology.
For PD ontology, out of 41 descriptions which are gen-
erated using the proposed approach, 34 were rated as
‘good’, whereas for those which are generated using
the traditional approach, only 6 out of 41 texts were
rated as ‘good’. For DSA ontology, 24 out of 31 de-
scriptions generated by proposed approach are ‘good’,
only 11 descriptions that are generated using the tra-
ditional approach were rated as ‘good’. These results
highlight the significance of the semantic-refinement
process in domain knowledge understanding.

Statistical analysis. We observed that 34 out of 41
and 24 out of 31 descriptions from two samples are
found to have good understandability. Therefore, we
can hypothesize that 80 percent of the descriptions
(in the population) generated after semantic refinement
will have good understandability. This claim needs to
be tested.

The data collected for the chi-square test is summa-
rized in Table 11. As observed data, we considered 72
samples arbitrary taken from the descriptions of PD
and DSA ontologies, and the degree of freedom is one
(since we consider only two categories: 1. Good sen-
tence and 2. Medium or Poor – i.e., Not-Good sen-
tence). In Table 11, the values 57.6 and 14.4 denote
the expected count of Good and Not-Good sentences –
i.e., 80% and 20% of the sample size – respectively.

The null hypothesis Ho is same as what we hypoth-
esized above, and the alternate hypothesis, Ha, is that
semantic refinement does not help in improving the
understandability as we claimed. The chi-square score
is obtained as 0.014 and the P-value is 0.90618562.
The null hypothesis is not rejected since the P-value is
greater than the significance level (0.05).

7.1.2. How does the semantic refinement helpful in
knowledge validation?

Fig 4 and 5 show the statistics to determine the
usefulness of the generated descriptions in validat-
ing the two domain ontologies, where, as before, the
dotted-bars represent the ratings of the descriptions
that are generated from the proposed approach and the

Table 11
Summary of observed and expected data for statistical analysis
– finding understandability

Category Observed Expected

Good 58 57.6 (80%)

Medium + Poor 14 14.4 (20%)

Fig. 4. Statistics (based on the majority responses) to determine the
usefulness of the generated descriptions in validating the PD ontol-
ogy

Fig. 5. Statistics (based on the majority responses) to determine the
usefulness of the generated descriptions in validating the DSA on-
tology

stripped-bars denote rating of the descriptions gener-
ated by the traditional approach. Usefulness of the gen-
erated descriptions in validating an ontology are ob-
tained by looking at the number of descriptions which
are marked as ‘Cannot be determined’. The three op-
tions: Valid, Invalid and Don’t know, imply that the
text is useful in getting into a conclusion, whereas the
option ‘Cannot be determined’indicates that there is
some problem in the representation. From Fig 4 and
Fig 5, in case of the proposed approach, only 7 out of
41 descriptions from PD ontology and 4 out of 31 de-
scriptions from DSA ontology were not useful in de-
termining the quality of the ontology, whereas in case
of the traditional approach, approximately 50 percent-
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age of the descriptions were not helpful. This clearly
indicates that, verbalization after semantic-refinement
is more effective in applications such as ontology val-
idation.

Statistical analysis. We observed that only 7 + 4 out
of 41 + 31 verbalized texts are not found to be useful
(i.e., not useful) in determining the quality of the ontol-
ogy, whereas a large percentage (80%) are useful. This
is the hypothesis which needs to be tested.

Here also we can use a chi-square test to find out
how closely observed data fits our expected data. The
data collected for the test is summarized in Table 12.
We consider the null hypothesis as “80% of the ver-
balized texts are useful in knowledge validation”. Cor-
respondingly the alternate hypothesis is that “not 80%
of the verbalized texts are useful in knowledge valida-
tion”.

The chi-square score is obtained as 0.966 (P-value
= 0.32574922), and the null hypothesis is not rejected
(P-value > 0.05).

Table 12
Summary of observed and expected data for statistical analysis –
finding usefulness

Category Observed Expected

Useful 61 57.6

Not useful 11 14.4

7.1.3. Discussion and future work
In this paper, we have tried to define the notion of

redundancies in a label-set in terms of concept (both
atomic as well as complex) and role hierarchies. How-
ever, the notion of redundancy is, to some extent, sub-
jective. That is, depending on the readers’ domain
knowledge, the level of redundancy in the text varies.
In the process of semantic-refinement, we have re-
moved the generic information from the label-set with
an assumption that the human readers would be fa-
miliar with the explicit relationships between the do-
main entities. In that sense, a reader with poor domain
knowledge would miss out generic concept informa-
tion due to the refinement process. This would be eas-
ily visible when the concept hierarchies are reduced to
the specific ones alone. One possible way to overcome
this problem would be by including (not all but) po-
tentially relevant concept names, that were previously
omitted in the semantic-refinement process, in the re-
fined label-set. For example, in Table 10, we can fur-
ther generalize the description of the concept “mite

damage”, by including additional generic concept de-
tails, as “Mite Damage: is a pest damage and a biotic-
disorder, having at least one mite pest and all its fac-
tors are mite pests.” Since only a generic concept name
is included in addition to all the refined concepts, the
meaning of the description is not affected. More inves-
tigation and empirical study related to this would have
to be done as a future endeavor.

Another interesting method (which is not addressed
in this paper) to improve the description of individ-
uals is by considering the property assertions along
with the label-sets to generate descriptions. Consider-
ing property relationships/assertions is important be-
cause validation of an ontology also involves verifying
the truthfulness of the property assertions in it. In fu-
ture, we would be addressing this issue by making use
of the edge-label-sets (label-sets for pairs of individu-
als – see Section 4.1), and mapping them to the respec-
tive constraint(s) in the node-label-set of the first indi-
vidual. For e.g.,LO(a) = {C1, C2,∃hasFriend.C3},
and LO(a, b) = {hasFriend}, then hasFriend in
LO(a, b) can be mapped to ∃hasFriend.C3 inLO(a).
The description of a can be generated as “a: is aC1 and
C2, and having b as a friend and having some C3 as
friend.” An example from Table 10 would be: the de-
scription of “Black Chaff” can be improved as “ Black
Chaff: is a plant disease, having Xanthomonas sp as a
factor, having at least one bacteria and all its factors are
bacterium.” It would be our future work to further look
at how to remove the redundancies in the improved de-
scriptions – in the mentioned example, “having Xan-
thomonas sp as a factor” and “having at least one bac-
teria”, can be further combined, since “Xanthomonas
sp” is an individual of the concept Bacteria.

Another future work is related to ontology valida-
tion application. According to the domain experts, a
persisting problem with any validation phase (espe-
cially when it involves descriptions of ontology entities
and experts validating the verbalized knowledge) is
that, when the ontology becomes very large and com-
plex, validation phase becomes a bottleneck for the en-
tire development cycle. One way to overcome this is-
sue is by considering only a relevant subset of indi-
viduals and concepts and their descriptions for valid-
ity check, so that, a rough estimate of the erroneous
formalisms in the ontology can be identified quickly.
A study on the order in which the descriptions are to
be presented to an expert so that an early detection of
invalid knowledge can be made possible, would be an-
other future work.
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8. Conclusion

A novel method for verbalizing the definitions
(called natural language descriptions) of ontology en-
tities is presented in the paper. The descriptions are
not merely verbatim translations of logical axioms of
the ontology. Instead, they are generated from the set
of logical restrictions satisfied by individuals and con-
cepts of the ontology on which semantic simplifica-
tion had been carried out. We propose an inference-
based reduction approach for this purpose. We find that
the proposed method indeed gives redundancy-free de-
scriptions of individuals and concepts.

Our time-budgeted empirical studies based on two
ontologies have shown that the redundancy-free de-
scription of the domain knowledge is helpful in under-
standing the formalized knowledge more effectively
and also useful in validating them, typically for hu-
mans who are familiar with the domain semantics.
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Appendix A

Proofs for the rules in the rule-sets 5 to 7

Here we use proof-by-contradiction as the proof
method. Given a rule of the form P ≡ Q, we prove
P v Q u Q v P, by negating it and proving
(P u ¬Q) t (Q u ¬P ) as false.

Consider that all the following rules are defined on
an ontology O with R and S as its roles, and U and V
are two of its concepts.

Rule 5a: Given the ontology O, ∃R.U u ∀R.U ≡
=R.U . The proof is trivial, and can be easily derived
from the definition of =R.U .
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Rule 5b: IfO |= UvV, SvR, then for ∀R.U u ∃S.V ≡
=R.U u =S.U.

Assume that ∀R.U u ∃S.V u ¬(=R.U u =S.U) is
true. We can write it as: ∀R.U u ∃S.V u ¬((∃R.U u
∀R.U)u(∃S.Uu∀S.U))≡∀R.U u ∃S.V u (∀R.¬Ut
∃R.¬Ut∀S.¬Ut∃S.¬U) =⇒ ∀R.U u ∀S.U u ∃S.V
u (∀R.¬U t ∃R.¬U t ∀S.¬U t ∃S.¬U) (since
S v R,∀R.U =⇒ ∀S.U )≡ ∀R.U u ∀S.U u ∃S.V
u (∀R.¬U t ∃R.¬U t ∀S.¬U t ∃S.¬U) ≡ (∀R.U
u ∀S.U u ∃S.V u ∀R.¬U)t(∀R.U u ∀S.U u ∃S.V u
∃R.¬U) t(∀R.U u ∀S.U u ∃S.V u ∀S.¬U) t
(∀R.U u ∀S.U u ∃S.V u ∃S.¬U), contradiction.

Now, assume that (∃R.U u∀R.U u∃S.U u∀S.U)u
¬(∀R.U u ∃S.V ) is true. ≡ ∃R.U u∀R.U u∃S.U u
∀S.U u (∃R.¬U t ∀S.¬V ) ≡ (∃R.U u ∀R.U u
∃S.U u∀S.U u∃R.¬U) t (∃R.U u∀R.U u∃S.U u
∀S.U u ∀S.¬V ) ≡ (∃R.U u ∀R.U u ∃S.U u ∀S.U u
∃R.¬U) t (∃R.U u∀R.U u∃S.U u∀S.U u∀S.¬V u
∀S.¬U ), (Since, U v V,) contradiction.

Rule 5c: IfO |= V vU, SvR, then for ∀R.U u ∃S.V ≡
=R.U u ∃S.V.

Assume that ∀R.U u ∃S.V u ¬(=R.U u ∃S.V )
is true. We can write it as: ≡ ∀R.U u ∃S.V
u ¬(∃R.U u ∀R.U u ∃S.V ) (by the deftn. of =R.U )
≡ ∀R.U u ∃S.V u (∀R.¬U t ∃R.¬U t ∀S.¬V ) ≡
∀R.U u ∃S.V u ∀R.¬Ut∀R.U u ∃S.V u ∃R.¬Ut
∀R.U u ∃S.V u ∀S.¬V.

Now, assume that (=R.Uu∃S.V )u¬(∀R.U u ∃S.V )
is true.≡ ∀R.U u∃R.U u∃S.V u (∃R.¬U t∀S.¬V )
≡ ∀R.U u∃R.U u∃S.V u∃R.¬U t∀R.U u∃R.U u
∃S.V u ∀S.¬V.

Rule 6a: If O |= U v V,R v S, then for n ≥ m,
≥nR.U u ≥mS.V ≡≥nR.U.

Assume that, ≥nR.U u ≥ mS.V u ¬(≥ nR.U)
is true. We can write it as: ≥nR.U u ≥ mS.V u
≤(n− 1)R.U, Contradiction.

Now assume that,≥nR.U u ¬(≥nR.U u ≥mS.V )
is true. We can write it as: ≥nR.U u (≤(n− 1)R.U
t ≤ (m − 1)S.V ) ≡ (≥nR.U u ≤(n− 1)R.U) t
(≥nR.U u ≤(m− 1)S.V ), contradiction. In the sec-
ond conjunctive clause ≥ nR.U =⇒ ≥ nS.V
(since U v V&R v S) , for n ≥ m, ≥ nR.U u
≤(m− 1)S.V is a contradiction.

Rule 6b: If O |= V v U, S v R, then for n ≥ 1,
∃R.U u ≥nS.V ≡≥nS.V.

Assume that, n ≥ 1, ∃R.U u ≥ nS.V u ¬(≥
nS.V ) is true. We can write it as: ∃R.U u ≥nS.V u
≤(n− 1)S.V , contradiction.

Now, assume that ≥ nS.V u ¬(∃R.U u ≥ nS.V )

is true. We can write it as: ≥ nS.V u (∀R.¬U t
≤ (n − 1)S.V ) ≡ (≥nS.V u ∀R.¬U) t (≥nS.V u
≤(n− 1)S.V ), contradiction. The contradiction in the
first conjunctive expression is because: ≥ nS.V =⇒
∃S.V =⇒ ∃R.U which contradicts with ∀R.¬U.

Rule 6c: If O |= U v V , then for n = 1, ∃R.U u ≤
nR.V ≡ ∃=1R.U u ∃=1R.V.

Assume that, ∃R.U u ≤ nR.V u ¬(∃=1R.U u
∃=1R.V ) is true. We can write it as: ∃R.U u ≤
nR.V u ¬(∃R.Uu ≤ 1R.U u ∃=1R.V ) ≡ (∃R.U u
≤1R.V u ∀R.¬U)t (∃R.U u ≤1R.V u≥ 2R.U)t
(∃R.U u ≤ 1R.V u ¬∃=1R.V ), contradiction. The
second conjunctive clause is a contradiction because:
≤ 1R.V =⇒ ≤ 1R.U (since U v V ), which contra-
dicts with≥ 2R.U. In the third conjunctive expression,
∃R.U =⇒ ∃R.V , now, ¬(∃=1R.V ) u ∃R.V =⇒
≥ 2R.V, which contradicts with ≤ 1R.V.

Now, assume that ∃=1R.Uu∃=1R.V u¬(∃R.U u ≤
1R.V ) is true. We can write it as: ∃=1R.Uu∃=1R.V u
(∀R.¬U t ≥ 2R.V ) ≡ (∃=1R.U u ∃=1R.V u
∀R.¬U)t (∃=1R.U u∃=1R.V u≥2R.V ), contradic-
tion.

Rule 6d: If O |= UvV,RvS, then for a whole num-
ber n, ≥ nR.U u ≤nS.V ≡ ∃=nR.U u ∃=nS.V.

Assume that, ≥ nR.U u ≤nS.V u ¬(∃=nR.U u
∃=nS.V ) is true. We can write it as: ≥ nR.U u ≤
nS.V u ¬(≤ nR.Uu ≥ nR.Uu ≤ nS.V u ≥
nS.V ) ≡ ≥ nR.U u ≤ nS.V u (≥ (n +

1)R.Ut ≤ (n − 1)R.Ut ≥ (n + 1)S.V t ≤ (n −
1)S.V ) ≡ (≥ nR.U u ≤ nS.V u ≥ (n+ 1)R.U)

t (≥ nR.U u ≤nS.V u ≤ (n− 1)R.U) t
(≥ nR.U u ≤nS.V u≥ (n+ 1)S.V )t(≥ nR.U u ≤
nS.V u ≤ (n− 1)S.V ), contradiction. In the third
conjunctive expression, ≥ nR.U u ≤ nS.V =⇒
∃=nS.V, which contradicts with ≥ (n+ 1)S.U.

Now, assume that ∃=nR.U u ∃=nS.V u ¬(≥
nR.U u ≤ nS.V ) is true. We can write it as: ≤
R.U u ≥ nR.Uu ≤ nS.V u nS.V u (≤ (n− 1)R.U

t≥ (n+ 1)S.V ) ≡ (≤ R.U u ≥ nR.U u ≤ nS.V u
nS.V u ≤ (n− 1)R.U) t(≤ R.Uu ≥ nR.U u
≤ nS.V u nS.V u ≥ (n+ 1)S.V ), contradiction.
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Rule 7a: If O|= U v V,R v S, then ∃R.U u
∃=1S.V ≡ ∃=1R.U u ∃=1S.V.

Assume that, ∃R.U u ∃=1S.V u ¬(∃=1R.U u
∃=1S.V ) is true. That is, ∃R.Uu ≤ 1S.V u ≥
1S.V u (≥ 2R.Ut ≤ 0R.Ut ≥ 2S.V t ≥ 0S.V )
≡ (∃R.U u∃=1S.V u≥ 2R.U)t (∃R.U u∃=1S.V u
≤ 0R.U)t (∃R.U u ∃=1S.V u ≥ 2S.V )t (∃R.U u
∃=1S.V u ≤ 0S.V ), Contradiction. The contradiction
in the first clause is because: since U v V&R v
S;≥ 2R.U =⇒ ≥ 2S.V ; ≥ 2S.V contradicts with
∃=1S.V.

Now assume that ∃=1R.U u ∃=1S.V u ¬(∃R.U u
∃=1S.V ) is true. We can write it as: ∃=1R.U u
∃=1S.V u (∀R.¬U t ¬(∃=1S.V )) ≡ (∃=1R.U u
∃=1S.V u∀R.¬U)t(∃=1R.Uu∃=1S.V u¬(∃=1S.V )),
Contradiction.

Rule 7b: If O|= U v V,R v S, then =R.U u
∃=1S.V ≡ ∃=1R.U u ∃=1S.V u =R.U.

Assume that, =R.U u ∃=1S.V u ¬(∃=1R.U u
∃=1S.V u =R.U) is true.
≡ ∃R.U u ∀R.U u ∃=1S.V u (¬(∃=1R.U) t

¬(∃=1S.V )t¬(=R.U))≡ (∃R.Uu∀R.Uu∃=1S.V u
¬(∃=1R.U))t(∃R.Uu∀R.Uu∃=1S.V u¬(∃=1S.V ))t
(∃R.U u ∀R.U u ∃=1S.V u ¬(=R.U))), Contradic-
tion. The contradiction in the first conjunctive clause
is because: given x ∈ ∃R.U u ¬(∃=1R.U), it implies
x ∈≥ 1R.U =⇒ x ∈≥ 1S.V (since R v S and
U v V ) which contradicts with ∃=1S.V . In the third
conjunctive clause, ¬(=R.U) ≡ ¬(∀R.U u ∃R.U) ≡
∃R.¬U t ∀R.¬U , both these cases contradict with
∃R.U u ∀R.U .

Now assume that, ∃=1R.U u ∃=1S.V u =R.U u
¬(=R.U u ∃=1S.V ) is true.

≡ ∃=1R.U u∃=1S.V u=R.U u¬(∀R.U u∃R.U u
∃=1S.V )≡ (∃=1R.U u∃=1S.V u=R.U u∃R.¬U)t
(∃=1R.U u∃=1S.V u=R.U u∀R.¬U)t (∃=1R.U u
∃=1S.V u =R.U u ¬(∃=1S.V )), Contradiction.

Rule 7c: If O|= U v V , then ∃=nR.U u ≥ mR.V ≡
∃=nR.U u ≥ (m− n)R.(V t ¬U) for m ≥ n.

Assuming that ∃=nR.U u ≥ mR.V u ¬(∃=nR.U
u ≥ (m− n)R.(V t ¬U)) is true.
≡ ∃=nR.U u ≥ mR.V u ¬(≤ nR.U u ≥ nR.U

u ≥ (m− n)R.(V t ¬U))
≡ ∃=nR.U u ≥ mR.V u (≥ (n + 1)R.U t ≤

(n− 1)R.U t ≤ (m− n− 1)R.(V t ¬U))
≡ ∃=nR.U u ≥ mR.V u ≥ (n+ 1)R.U t
∃=nR.U u ≥ mR.V u ≤ (n− 1)R.U t
∃=nR.U u ≥ mR.V u ≤ (m − n − 1)R.(V t ¬U)

The contradictions in the first two conjunctive clauses
are trivial, in the third clause, ∃=nR.U u ≥ mR.V
implies≥ (m−n)R.(V t¬U) which contradicts with
≤ (m− n− 1)R.(V t ¬U).

Now, assume that, ∃=nR.U u ≥ (m − n)R.(V t
¬U) u ¬(∃=nR.U u ≥ mR.V ) is true.
≡ ∃=nR.U u ≥ (m−n)R.(V t¬U)u (¬(∃=nR.U)

t ≤ m− 1R.V )
≡ (∃=nR.U u ≥ (m−n)R.(V t¬U)u¬(∃=nR.U))t

(∃=nR.U u ≥ (m− n)R.(V t ¬U) u ≤ (m− 1)R.V )

In the second conjunctive clause, contradiction can
be found as follows: an x ∈≥ (m − n)R.(V t ¬U)
implies x has more than m−n R relations to ¬U uV ,
since x ∈ ∃=nR.U, we can say that x has more than
m − n + n R relations to V, which can be written as
x ∈≥ mR.V . Clearly, this contradicts with ≤ (m −
1)R.V .


