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Abstract. Stream-based reasoning systems process data stemming from different sources and that are received over time. In
this kind of application, reasoning needs to cope with the temporal dimension and should be resilient against inconsistencies
in the data. Motivated by such settings, this paper addresses the problem of handling inconsistent data in a temporal version
of ontology-mediated query answering. We consider a recently proposed temporal query language that combines conjunctive
queries with operators of propositional linear temporal logic and extend to this setting three inconsistency-tolerant semantics
that have been introduced for querying inconsistent description logic knowledge bases. We investigate their complexity for £L£ |
and DL-Liter temporal knowledge bases. In particular, we consider two different cases, depending on the presence of negations
in the query. Furthermore we complete the complexity picture for the consistent case. We also provide two approaches toward
practical algorithms for inconsistency-tolerant temporal query answering.
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1. Introduction

For applications that rely on sensor data, such as
context-aware applications, ontologies can enrich and
abstract the (numerical) stream data by means of back-
ground knowledge. This richer view on the data of-
ten results in more query results than over the data
alone. Since the collected data usually provides an
incomplete description of the observed system, the
closed world assumption employed by database sys-
tems, where facts not present are assumed to be false,
is not appropriate. Most applications that rely on sen-
sor streams observe some kind of running system over
time. In order to be able to react to the behaviour of
the observed system, they need to employ some repre-
sentation of temporal information and a query mech-
anism that can reference this temporal information. If
the sources of the collected data are not reliable, as
it might be in case of faulty sensors, the internal rep-
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resentation of the observations may contain inconsis-
tencies. In such cases, query mechanisms that rely on
logical reasoning are effectively useless, as everything
would follow from an inconsistent knowledge base.
As a counter measure to this effect, inconsistency-
tolerant semantics for answering ontology-mediated
queries have been devised. In this paper, we investigate
combinations of inconsistency-tolerant and temporal
query answering, which addresses two aspects vital to
stream reasoning and complex event processing.

In many stream reasoning systems, the collected
data is transformed into an abstract logical represen-
tation, and situation recognition is performed by some
kind of logical inference over the abstract logical rep-
resentation. There are stream reasoning approaches
based on rules, such as answer set programming [1-3],
(datalog) rules and approaches based on ontology lan-
guages [4-7]. While the former apply closed world se-
mantics, the later work under the open world semantics
and thereby can handle incomplete information grace-
fully. The ontology-based approaches mostly employ
the framework of ontology-mediated queries, where
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forms of conjunctive queries are answered over data
that is enriched by an ontology, to perform situation
recognition. The ontology languages that are investi-
gated for situation recognition are mostly those where
reasoning is of lower computational complexity in or-
der to obtain systems with low execution times.

In this paper, we investigate the lightweight descrip-
tion logics (DLs) ££, and DL-Liteg, for which an-
swering conjunctive queries is tractable (respectively
in P and AC? w.rt. the size of the data). The low
complexity for query answering in DL-Litex made it
the choice for the OWL 2 QL profile [8] in the lat-
est version of OWL [9], the W3C-standardized on-
tology language for the Semantic Web. For similar
reasons, the logic ££ was picked as the core of the
OWL 2 EL profile. Both DL-Litegx and ££, ad-
mit to use database systems to answer conjunctive
queries and are thus good candidates for implement-
ing ontology-based stream reasoning. In DL-Liteg,
the query can be rewritten using the information from
the ontology such that the resulting query can be eval-
uated over a finite interpretation, i.e. a database [10].
For query answering in ££, the data is augmented in
a query-independent way to build a canonical interpre-
tation, then the query is evaluated over this model and
unsound answers are filtered out [11].

In stream reasoning approaches in general, the tem-
poral information is often represented by associating
data with the time point at which it was collected. Re-
garding the language in which queries can be formu-
lated, many variations that capture the temporal as-
pect have been studied in recent research [2—4, 12].
Window based approaches admit to concentrate on re-
cent substreams when answering queries over the data,
and are the most prominent in implemented systems
[2-4]. Ontology-based approaches mostly cover clas-
sical temporal logics such as linear temporal logic
(LTL) [13] (see [5, 14—17]) or metric variants of tem-
poral logics [18, 19] to enrich the query language.
For a recent overview on temporal ontology-mediated
querying see [19, 20]. Ontology-based approaches for
stream reasoning often admit the use of temporal oper-
ators only in the query language and use classical on-
tologies without any temporal operators together with
sequences of datasets. Each dataset in such a sequence
contains data collected at the same time point. The on-
tology together with the sequence of datasets consti-
tute the temporal knowledge base. Queries can then
refer to the different time points by means of tempo-
ral operators. This kind of setting has been intensively
investigated for femporal conjunctive queries, that is,

queries with temporal operators from LTL appearing
in front of Boolean combinations of atoms, for expres-
sive DLs in [5, 21], for DL-Lite in [6], and for £L
in [22]. We base our study in this paper on this general
setting.

For stream reasoning systems, erroneous data sources
can be a severe problem, as for instance pointed out
in [23]. If inconsistencies arise in the knowledge base,
the logical reasoning mechanisms are rendered use-
less. There are several directions of research to cope
with this problem. While some employ non-monotonic
reasoning techniques [24, 25], others try to resolve
the inconsistencies [26] directly or perform reason-
ing with respect to inconsistency-tolerant semantics
(see [27] for a recent overview). We follow the lat-
ter road in this paper, since the techniques developed
there are tailored to ontology-mediated queries and of-
ten of lower complexity than the other approaches for
resolving inconsistencies. A prominent approach for
inconsistency-tolerant reasoning is to consider repairs
of the knowledge base, i.e., maximal consistent sub-
sets of the data, and then to perform query answering
with respect to these subsets. Arguably the most natu-
ral and well-known inconsistency-tolerant semantics is
the AR semantics [28, 29], inspired by consistent query
answering in the database setting [30], which consid-
ers the queries that hold in every repair. However, AR
query answering is intractable even for very simple on-
tologies [31], which leads [28, 29] to propose an ap-
proximation of AR tractable for DL-Litex, namely the
IAR semantics, which queries the intersection of the
repairs. Beside its better computational properties, this
semantics is more cautious, since it provides answers
supported by facts that are not involved in any contra-
dictions, so it may be interesting in our setting when
the observed system should change its behaviour only
if some situation has been recognised with a very high
confidence. Finally, the brave semantics [32] returns
every answer that holds in some repair, so is supported
by some consistent set of facts. This less cautious se-
mantics may be relevant for context recognition, when
critical situations must imperatively be handled.

For the two DLs to be investigated in this paper, an-
swering of (atemporal) conjunctive queries under these
inconsistency-tolerant semantics has already been in-
vestigated for DL-Liter in [28, 29, 32, 33] and for
EL) in [27, 34]. Attention has then turned to the prob-
lem of designing algorithms and implementing these
alternative semantics. Most work has focused on the
TAR semantics and dialects of DL-Lite, due to the
aforementioned tractability result [29, 35, 36]. A no-
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table exception is the CQAPri system, which imple-
ments all three mentioned semantics—AR, TAR and
brave—for DL-Litez knowledge bases [37, 38].

So far, inconsistency-tolerant semantics have not
been investigated in combination with temporal rea-
soning. In this paper, we lift inconsistency-tolerant se-
mantics to the case of answering temporal conjunc-
tive queries over lightweight DL temporal knowledge
bases.

1.1. Our contributions

This article extends the conference paper [39]
on temporal query answering in DL-Liteg over in-
consistent data, where the complexity of answering
queries with LTL operators, but without negations,
over DL-Liter temporal knowledge bases was investi-
gated. The considered ontologies admit the use of rigid
predicates, which are predicates that do not change
their interpretation over time. The initial results were
obtained for the three inconsistency-tolerant semantics
AR, TAR and brave and with respect of three cases
of rigid predicates: no rigid predicates, rigid concepts
only, and rigid concepts together with rigid roles.

Compared to the conference version, the present ar-
ticle includes new complexity results (all results for
EL |, as well as some results for DL-Liteg). It also
extends the set of temporal operators, distinguishing
bounded and unbounded variants of the future LTL op-
erators, in order to cover the two different settings that
have been investigated for temporal query answering
in the literature, where temporal knowledge bases are
interpreted w.r.t. finite or infinite sequences of inter-
pretations. Furthermore, we investigate both the case
where negation is admitted in the query language and
the case where it is not.

The complexity upper bounds are often obtained
by non-deterministic procedures that require for in-
stance to guess repairs, which may not be feasibly
computed in practice. Thus algorithms that lend them-
selves to implementation are still to be devised. We
make two contributions toward practical algorithms
for temporal inconsistency-tolerant query answering.
The first is a polynomial reduction of reasoning in
the presence of rigid predicates to reasoning without
such predicates by propagating the rigid facts in the
sequence of datasets. The second is to identify cases
where in the absence of rigid predicates the well-
known methods for classical temporal query answer-
ing and (atemporal) inconsistency-tolerant query an-
swering can straightforwardly be combined. We show

that for the IAR semantics, this yields a sound and
complete algorithm. For the AR semantics, such a
combination of the algorithms always yields a sound
approximation, and additionally yields a sound and
complete procedure if the query contains only a re-
stricted set of operators.

This paper is structured as follows. In the next sec-
tion, we introduce the basic notions of DLs, query
answering, inconsistency-tolerant semantics for atem-
poral knowledge bases and the temporal setting. We
also discuss earlier complexity results. In Section 3,
we lift the introduced inconsistency-tolerant seman-
tics to temporal query answering over inconsistent
data. Section 4 gives an overview over the achieved
complexity results. General versions of algorithms
for testing (non-)entailment of temporal conjunctive
queries under the different semantics are described
in Section 5 in preparation of the complexity analy-
sis. Section 6 shows data and combined complexity of
inconsistency-tolerant temporal query answering for
DL-Liteg and £L£, for the case where the query lan-
guage admits negation. In Section 7, we complete the
complexity picture of temporal query answering under
classical semantics by investigating the case where the
query does not contain negation. We then built on these
results to provide the complexity of inconsistency-
tolerant temporal query answering for queries without
negations in Section 8. Finally, Section 9 investigates
two approaches for practical implementations that al-
low to employ well-known methods. The article ends
with a section on conclusions and future work.

To improve readability, some of the proofs have
been moved to the appendix and are only sketched in
the main text.

2. Preliminaries

We briefly recall the syntax and semantics of DLs
and the three inconsistency-tolerant semantics we con-
sider, and then introduce the setting of temporal query
answering we use.

Syntax. A DL knowledge base (KB) K consists of
an ABox A and a TBox 7, both constructed from
three countably infinite sets: a set N¢ of concept names
(unary predicates), a set Ng of role names (binary pred-
icates), and a set N, of individual names (constants).
The ABox (dataset) is a finite set of concept asser-
tions A(a) and role assertions R(a,b), where A € N,
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R € Ng, a,b € N,. The TBox (ontology) is a finite set
of axioms whose form depends on the particular DL.

In DL-Liter, TBox axioms are either concept inclu-
sions B C C or role inclusions P C S, built according
to the following syntax, where A € N and R € Ng:

B:=A|3P C:=B|-B
P:=R|R~ S :=P|-P.

Inclusions of the form By C By or P; C Ps are called
positive inclusions (PI), those of the form B; C —Bs
or P1 C —P5 are called negative inclusions (NI).

In £L , the TBox contains concept inclusions of the
form C; C Cy, where C1 and Cs are built according to
the following syntax, where A € Ng and R € Ng:

C:=T|L|A|3RC|CTIC.

An £L | inclusion of the form C;MCy C L can also be
written in the form of a negative inclusion C; C —Cs.

Semantics. An interpretation is a tuple of the form
T = (AZ,.T), where AT is a non-empty set and -~
maps each a € N, to aZ € AT, each A € Ng to AT C
A7, and each R € Ng to RT C AT x AZ. We adopt
the unique name assumption, i.e., for all a,b € N|, we
require a” # b” if a # b. The function -Z is straight-
forwardly extended to general concepts and roles, e.g.,
T = AL, 1T =0, (R ={(d,e) | (e.d) € R},
(-R)T = AT x AT\ R%, (3P)t = {d | 3e: (d,e) €
PL}, (3PC)t = {d | Je : (d.e) € PL,e € Ct}
(C,nCy)t =cfnct.

An interpretation Z satisfies an inclusion G T H
if G C HZ; it satisfies A(a) (resp. R(a, b)) if a* €
AT (resp. (at,b?) € RT). We call T a model of K =
(T, A) if T satisfies all axioms in 7 and all assertions
in A. A KB is consistent if it has a model, and we say
that an ABox A is T -consistent (or simply consistent
if T is clear from the context), if the KB (7, .A) is
consistent.

Queries. A conjunctive query (CQ) takes the form
q = Y (X,¥), where y is a conjunction of atoms of
the form A(z) or R(z,1’), with #,# individual names or
variables from ¥U ¥. We call the variables in ¥ the free
variables in g. A CQ is called Boolean (BCQ) if it has
no free variables (i.e., ¥ = ). A BCQ ¢ is satisfied
by an interpretation Z = (AZ,.Z), written Z |= ¢, if
there is a homomorphism 7 mapping the variables and
individual names of g into AZ such that: 7(a) = a* for
every a € Ny, n(t) € AZ for every concept atom A(r)

iny, and (n(¢), n(¢')) € R” for every role atom R(t, ')
iny. A BCQ q is entailed from K, written K |= g, iff ¢
is satisfied by every model of K. Given a CQ ¢ with
free variables ¥ = (x1,...,x) and a tuple of individu-
alsd = (ai,...,ax), d is a certain answer to q over K
if £ |= g(d), where ¢(d) is the BCQ resulting from
replacing each x; in g by a;.

Inconsistency-tolerant semantics. A repair of K =
(T, A) is an inclusion-maximal subset of A that is T -
consistent. We consider three semantics based on re-
pairs that have been previously introduced in the liter-
ature [28, 29, 32]. A tuple d is an answer to g over K
under

— AR semantics, written K F=ar q(d),
iff (T, A’") = q(a) for every repair A’ of K;
— IAR semantics, written K |=1ar q(a),
iff (T, A") | g(d@) where A" is the intersection of
all repairs of K,
— brave semantics, written K Fpraye q(d),
iff (T, A") = q(a) for some repair A’ of K.

Figure 1 summarizes the complexity of BCQ entail-
ment under the different semantics for DL-Liter and
EL | . Data complexity is measured in the size of the
ABox only, while combined complexity is measured in
the size of the whole KB and the query. When com-
plexity is measured w.r.t. the size of the KB (ABox and
TBox), it is called KB complexity. For DL-Liter and
EL 1, CQ answering under the classical semantics is
in P w.r.t. KB complexity. We refer to Section 4 for a
reminder on the definitions of the different complexity
classes that appear in this work.

Temporal query answering. 'We now present our tem-
poral framework inspired from [5] and [17].

Definition 2.1 (TKB). A temporal knowledge base
(TKB) K = (T, (A:)ogi<n) consists of a TBox T and
a finite sequence of ABoxes (A;)o<i<x- An infinite se-
quence J = (I;)i>o of interpretations Z; = (A, %)
over a fixed non-empty domain A (constant domain
assumption) is a model of K iff for every i € [0,n],
Z; is a model of (T, A;), for every i > n, Z; is a
model of 7, and for every a € N, and all i,j > 0,
a’ = a% (rigidity of individual names). Rigid pred-
icates are elements from the set Ngc C N¢ of rigid
concepts and the set Ngg C Ng of rigid roles. A se-
quence of interpretations J = (Z;);»¢ respects rigid
predicates iff for every X € Ngc UNgg and all i, j > 0,
Xt = X%i. A TKB is consistent if it has a model
that respects rigid predicates. A sequence of ABoxes
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Data complexity

Combined complexity

Semantics
DL-Liter ELL DL-Liter ELL
classical in AC? P-complete NP-complete NP-complete
AR coNP-complete coNP-complete I15-complete I15-complete
IAR in AC® coNP-complete NP-complete APO(log n)]-complete
brave in AC? NP-complete NP-complete NP-complete

Figure 1. Complexity of BCQ entailment in DL-Liteg [28, 32] and £L£ [27, 34]

(Ai)o<isn is T-consistent, or simply consistent, if the
TKB (T, (Ai)ogign) 18 consistent.

It is sometimes convenient to represent a sequence
of ABoxes as a set of assertions associated with time-
stamps, which we call timed assertions: (A;)o<i<n
then becomes {(a,i) | @ € A;,0 < i < n}.

A rigid assertion is of the form A(a) with A € Ngg
or R(a,b) with R € Ngr. We distinguish three cases
depending on which predicates can be rigid: in the
first case there are no rigid predicates (Ngc = @ and
Ngrr = (), in the second case there are only rigid con-
cepts (Nrg # 0 and Nrg = ), and in the last case there
are both, rigid concepts and rigid roles (Nrc # () and
Nrr # 0). Because rigid concepts can be simulated
with rigid roles using a pair of concept inclusions of
the form A T 3R, IR C A, these three cases cover all
interesting combinations.

We denote by NX, N&, NA., NAg. and N/ respec-
tively the sets of concepts, roles, rigid concepts, rigid
roles, and individuals that occur in the TKB K.

Definition 2.2 (TCQ). Temporal conjunctive queries
(TCQs) are built from CQs as follows: each CQ is a
TCQ, and if ¢; and ¢, are TCQs, then so are —¢q
(negation), ¢; A ¢2 (conjunction), ¢; V ¢o (disjunc-
tion), O¢; (next), @ ¢; (bounded next), O~ ¢; (strong
previous), @~ ¢; (weak previous), (¢, (always), [1°¢;
(bounded always), [1~¢; (always in the past), Q¢
(eventually), O’¢; (bounded eventually),~¢; (some
time in the past), ¢, U ¢ (until), ¢1 U’ ¢ (bounded un-
til), and ¢1S ¢ (since). We further may use 1 — ¢
as a shortcut for —q V io.

We impose the constraint that the past operators O,
O-, ¢~ and S cannot be nested under the unbounded
future operators O, [, ¢ and U (in second position).

Given a TCQ ¢, we refer to the TCQs that occur in
¢ as subformulas of ¢.

Remark 2.3 (Choice of operators). The additional
LTL operators W (weak until), W~ (weak since), R
(release), and R~ (past release) can be expressed w.r.t.
our operator basis as follows: p$1W o = (¢p1U¢2) V

(O¢1), p1W~=¢2 = (¢1S¢2) V (O ¢1), 1R =
oW (2 A ¢1), and ¢1R™ p2 = oW~ (2 A ¢1).

We will consider in Sections 7, 8 and 9 a special
setting where TCQs do not contain negation symbols,
which sometimes leads to a lower computational com-
plexity. For this reason, we did not introduce U¢ as
a shortcut for =)—¢, as it is often done in the litera-
ture, but instead treat the operators (1 and [1” as na-
tive members of our query language. Similarly, since
the top and bottom concepts T and L are not allowed
in every DL, ¢ (resp. (") cannot be defined using U
(resp. U?) as usual in LTL (O¢; = true U ¢;), unless
we allow for negation (where we can express true us-
ing Ix.A(x) V =3x.A(x)). We thus keep all these oper-
ators in the set we consider.

Note also that since disjunctions are allowed, TCQs
could be defined with unions of conjunctive queries
(UCQs) instead of CQs. We use CQs for simplicity.

Definition 2.4 (TCQ answering). Given a TCQ ¢ with
free variables ¥ = (x1,...,x) and a tuple of individ-
vals d = (ai,...,a), ¢(d) denotes the Boolean TCQ
(BTCQ) resulting from replacing each x; by a;. A tu-
ple d is an answer to ¢ in a sequence of interpreta-
tions J = (Z;)i>0 at time point p iff 7,p = ¢(d),
where the satisfaction of a BTCQ ¢ by a sequence of
interpretations J is defined by induction on its struc-
ture as shown in Table 1. A tuple d is a certain answer
to ¢ over K at time point p, written K, p = ¢(d), iff
J.p E ¢(d) for every model J of K that respects
rigid predicates.

In addition to the standard LTL past and unbounded
future operators, we introduce four bounded future op-
erators that mimic the semantics based on finite se-
quences of interpretations used in [17] and similar
to that of LTL on finite traces (see e.g., [40]). In-
deed, while the standard way of interpreting TKBs
is based on infinite sequences of interpretations, it
can be relevant to limit the scope of querying to the
known time points, especially in the context of data
streams. For instance, a user may want to ask whether
a server has been running some process since it started
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Table 1

Satisfaction of BTCQs by a sequence of interpretations

¢ J.pE eiff

Fy () Ip = Fy@)

—¢1 J.p ¢

p1Np2 T.pE¢1and J,p = ¢2

1V T,pEsrorT,plEd2

O¢1 J.p+1E=¢1

®’¢1 p<nimpliesJ,p+1 ¢

O~ ¢ p>0and],p—1|:¢1

® ¢1 p>0impliesJ,p—1F ¢1

O Yk, k> p, T,k = ¢1

OP¢1  Vhkp<k<n J.klE=¢

O ¢1 VELO0<k<p T .kE=d¢1

Og1 Ik, k> p, T k= ¢1

O¢1  Jkp<k<n J.klE¢

O07¢1 I O0<k<p T kE$

p1U¢2 Ik k> p, Tk d2andVj,p<j<k T, jE ¢
$1U g2 3k, p<k<n T ki=gaandVj, p<j<k T, jE= ¢
$1S¢2 IOk p, T kEd2andVj k< j<p,J.jFE ¢

(O~ (Start(a) AL’ executes(a, b))), rather than whether
it will continue to run this process forever. Moreover,
we will see in Section 9.1 that using the bounded se-
mantics can be of practical interest since it allows us to
reduce TCQ answering in the presence of rigid predi-
cates to TCQ answering without rigid predicates. We
choose to keep both unbounded and bounded versions
of future operators to cover the two settings that have
been previously studied for TCQ answering.

The constraint that TCQs should not contain past
operators nested under unbounded future operators
will allow us to take advantage of the fact that a TKB
entails the same BCQs for every time point i > n to get
a lower complexity in the case where there is no nega-
tion in the query. Indeed, in this case, the unknown fu-
ture (i > n) can be entirely summarized in one time
point n + 1. It will also be useful to get the data com-
plexity upper bound of brave semantics in the case
where there are no rigid predicates present nor nega-
tion in the queries. Moreover, it turns out that for some
cases in our analysis, this restriction has no impact on
our results. Indeed, [17] shows that Gabbay’s separa-
tion theorem [41] can be used to rewrite a LTL formula
¢ containing bounded operators into a logically equiv-
alent LTL formula ¢’ that is a Boolean combination
of pure-past and pure-future formulas, although with
an exponential blow-up. It follows that the restriction
we impose does not have any influence over the data
complexity of BTCQ entailment as long as negation is
allowed in the query. Moreover, since past operators
can still be nested under bounded future operators, all

observations made can be referenced in the query lan-
guage which can express most situations that could be
desirable to detect.

It follows from the definition of certain answers
that TCQ answering can be straightforwardly reduced
to BTCQs entailment (using polynomially many tests
w.r.t. data complexity and exponentially many tests
w.r.t. combined complexity). For this reason, we focus
on the latter problem.

Figure 2 summarizes the complexity of BTCQ en-
tailment for DL-Liter and ££ | in the different cases
depending on which kind of predicates are rigid. Our
setting is slightly different from those of [6] and [22]
because we have additional bounded operators and the
restriction that past operators cannot be nested un-
der unbounded future operators. However, the results
shown in these papers apply to our setting. Indeed, the
proofs for the lower bounds do not use past opera-
tors nested under future operators, and for the upper
bounds, we argue that it is possible to reduce the en-
tailment of a BTCQ ¢ that contains bounded opera-
tors to the entailment of a BTCQ ¢’ without bounded
operators independently from the size of the TKB
and linearly w.r.t. the query size. To do that, we add
an assertion end(a) to the last ABox A, of the se-
quence, where end and a are both fresh names, and
rewrite the query without unbounded operators using
the following equivalences: @” ¢; = O¢; V end(a),
0P¢1 = ¢1U (end(a) A ¢1), OP¢1 = —end(a)U ¢y,
¢1Ub ¢2 = (¢1 A —end(a))U ¢o.

3. Temporal query answering over inconsistent
data

We extend the three inconsistency-tolerant seman-
tics to temporal query answering. The main difference
to the atemporal case is that in the presence of rigid
concepts or roles, a TKB K = (7, (A;)o<i<n) may be
inconsistent even if each KB (7, .4;) is consistent. In-
deed, in this case there need not exist a sequence of
interpretations J = (Z;);>o such that Z; is a model of
(T, A;) for every i € [0,n] and which also respects
rigid predicates. That is why we need to consider as re-
pairs the T -consistent sequences of subsets of the ini-
tial ABoxes that are component-wise maximal.

Definition 3.1 (Repair of a TKB). A repair of a
TKB K = (7, (Ai)o<i<n) is a sequence of ABoxes
(Al)o<i<n such that {(a,i) | @ € A, 0 < i < n}
is a maximal 7 -consistent subset of {(@,i) | @ € A,
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Data complexity

Combined complexity

Rigid predicates

DL-Liter ELL DL-Liter ELL
Nrc = Npr = 0 ALOGTIME-complete P-complete PSPACE-complete PSPACE-complete
Npc # 0,Ngr = ) ALOGTIME-complete coNP-complete PSPACE-complete PSPACE-complete

Nrc # O,Nrr # @  ALOGTIME-complete

coNP-complete

PSPACE-complete CONEXPTIME-complete

Figure 2. Complexity of BTCQ entailment in DL-Lite [6] and ££ [22]

0 < i < n}. We denote the set of repairs of
by Rep(K).

The next example illustrates the impact rigid predi-
cates can have on repairs.

Example 3.2. Consider the TKB K = (T, (A)o<i<1)-
The TBox expresses that web servers and applica-
tion servers are two distinct kinds of servers, and the
ABoxes provide information about a server a that exe-
cutes two processes b and c.

T = {WebServer C Server, AppServer C Server,
WebServer C —AppServer}
Ao = {WebServer(a), executes(a,b)}
A, = {AppServer(a), WebServer(a), executes(a, c) }

Assume that no predicate is rigid. The TKB K is incon-
sistent because the timed assertions (AppServer(a), 1)
and (WebServer(a), 1) violate the negative inclusion
in 7. Specifically, AppServer(a) and WebServer(a)
cannot both be true at time point 1. It follows that
KC has two repairs that correspond to the two dif-
ferent ways of restoring consistency: (A!)o<i<1 and
(A;l)ogigl, where

Ay = Ag = Ao
A} = {AppServer(a), executes(a, c) }

! = {WebServer(a), executes(a, c)}.

Now assume that AppServer is rigid. There is then
a new reason for [C being inconsistent: the timed as-
sertions (WebServer(a),0) and (AppServer(a), 1) vi-
olate the negative inclusion of 7 due to the rigidity
of AppServer, which implies that AppServer(a) and
WebServer(a) should be both entailed at time point 0.
Therefore, K has now the two repairs (A})o<i<1 and
(A7 )o<i<1, where

Aj = {executes(a, b)}
A’ = {AppServer(a), executes(a, )}

"
0 = Ao

! = {WebServer(a), executes(a, c)}.

Note that even though (A})o<i<1 is maximal (adding
WebServer(a) to Aj renders the TKB inconsis-
tent), Aj is not a repair of (7, .4y), because it is not
maximal.

We extend the semantics AR, TAR, and brave to
the temporal case in the natural way by regarding se-
quences of ABoxes.

Definition 3.3 (AR, IAR, brave semantics for TCQs).
A tuple d is an answer to a TCQ ¢ over a TKB K =
(T, (Ai)o<i<n) at time point p under
— AR semantics, written /C, p F=ar ¢(d),

iff (T, (ADo<i<n)»p | ¢(d) for every repair

(ADo<isn of K;
— IAR semantics, written /C, p [=1ar ¢(d),

iff (7, (ANo<i<n)s P FE 6(d),

with A = ﬂ(A;)oéj@eRep(,C) Al foralli € [0,n];
— brave semantics, written I, p Eprave ¢(d),

iff (T, (ADo<i<n), P |E ¢(@) for some repair

(Af)og,’gn of K.

The following relationships between the semantics,
which already hold in the atemporal case, are implied
by their definition:

’C,P ’:lAR ¢(67) = ’C,P ’:AR ¢(ﬁ) = ’C’P ':brave ¢(ﬁ)

‘We illustrate the effect of the different semantics in the
temporal case in the following example.

Example 3.4 (Example 3.2 cont’d). Consider the fol-
lowing three temporal conjunctive queries.

¢1 = 0P (3y.executes(x,y))
¢> = [0°(3y.Server(x) A executes(x, y))

¢3 = [0 (3y.AppServer(x) A executes(x, y))

If there are no rigid predicates, the intersection of
the repairs is (A )ogic1, with Af = Ag and Af =
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{executes(a,c)}. We have IC,0 =1ar ¢1(a), because
in every model of the intersection of the repairs a ex-
ecutes b at time point 0 and c¢ at time point 1. For ¢,
K,0 Ear ¢2(a), since every model of every repair
assigns a to WebServer at time point 0 and to either
AppServer (in models of (A})ogic1) or WebServer
(in models of (A!")o<i<1) at time point 1. However,
K,0 FEiar ¢2(a). Finally, K,0 Fprave ¢3(a), because
no repair entails AppServer(a) at time point 0.

If AppServer is rigid, the intersection of the re-
pairs is (AM)o<i<1 with AT = {executes(a,b)} and
.Allr = {executes(a, C)} So, still £,0 ':IAR ¢1(Cl).
Since every model of every repair assigns a to Server
at time points 0 and 1 (either because a is a web server
or because a is an application server), K, 0 =ar ¢2(a),
but /C,0 %IAR b2 (a) Finally, IC,0 ):brave b3 (a),
because every model of (7, (Al)ogig1) assigns a to
AppServer at any time point by rigidity of AppServer,
but 1C, 0 F&AR ¢3(a).

We conclude this section by pointing out some char-
acteristics of the case without rigid predicates that will
be useful later. If there are no rigid predicates, the in-
terpretations Z; of a model J = (Z;)i»o of K that re-
spects rigid predicates are independent, besides the in-
terpretation of the individual names. We thus obtain
the following proposition.

Proposition 3.5. If Nsc = Nrg = 0, then a TKB
K = (T, (A)ogign) is consistent iff every (T, A;)
is consistent. Moreover, if IC is consistent, for every
p € [0,n], T, is a model of (T, A,) iff there exists a
model J = (ZL;)i0 of K such that T, = II',.

Proof. If Nsg = Ngrr = 0, a sequence of interpre-
tations J = (Z;)i>0 is a model of K that respects
rigid predicates iff it is a model of /. It follows that
K is consistent iff there exists J = (Z;)i>0 such
that for every i € [0,n], Z; is a model of (T, A4;),
for every i > n, Z; is a model of T, and for ev-
erya € Nyand all i,j > 0, a" = a’i. We show
that this is the case iff each (T, .A;) has a model. Let
T, = (AT, %), ..., I' = (AT, .T) be models of
(T, Ao), ... (T, A,) respectively, and p € [0,n]. For
every i € [0,n],let Z; = (A,-T), where A = AI;’,
and -Z is defined as follows: % = a% for every
a €N, AT = {aI; | aki ¢ AII'/} for every A € Ng,
and RE = {(d%,b%) | (a% ,b%) € RE} for ev-
ery R € Ng. Since we adopted the unique name as-
sumption, each Z; is a model of (T, A4;). It follows
that 7 = (Z;)i>o with Z; = ) for i > n is such that
for every i € [0,n], Z; is a model of (T, .A;), for ev-

ery i > n, Z; is a model of T, and for every a € N,
and all i, j > 0, a%i = 4%i. Moreover, J is such that
1, = I[’,. The other direction is trivial since Z, is a
model of (7, A,). O

It follows that CQs can be answered at time point p
by answering them over the KB (7, A)).

Proposition 3.6. If Nvg = Nrg = 0, then for ev-
ery BCQ q = Fyy(¥) and p € [0,n], K,p = q iff
(T, Ap) E q.

Proof. K, p |= q iff for every model J = (Z;);>¢ of
K that respects rigid predicates, Z, = ¢. By Propo-
sition 3.5, this is the case iff for every model Z, of
(T, Ap), I, = g, which is equivalent to (T, A,) = g.

O

4. Complexity analysis overview

In the next four sections, we investigate the com-
plexity of inconsistency-tolerant BTCQ entailment in
DL-Liteg and £L£ . Apart from the different DLs, we
also consider two settings of query languages: in the
first setting, all TCQs as defined in Section 2 are con-
sidered, in the second setting, we analyze the com-
plexity for TCQs that do not use any negation opera-
tors. For classical semantics, some complexities have
been investigated earlier for the different settings we
consider. For the case where negations are allowed in
the queries, the complexity of BTCQ entailment un-
der the classical semantics has been studied in [6] for
DL-Liteg and in [22] for £L (cf. Section 2, Figure
2). Furthermore, it has also been shown in [17, 42]
that in DL-Liter, TCQs without negation (and with a
bounded future semantics) can be rewritten into FO-
queries for temporal databases, but only for a restricted
framework without rigid roles and with rigid concepts
only for TCQs that are rooted. We follow a simi-
lar route in this paper and consider TCQs with and
without negations explicitly, for which we analyze the
data and combined complexity for ££, and DL-Liteg
TKBs.

Most of our complexity upper bounds are based on
a set of general algorithms for BTCQ entailment under
the different inconsistency-tolerant semantics, which
we present in Section 5. Those allow to deduce com-
plexity upper bounds for the different settings based
on the complexity of BTCQ entailment under classical
semantics, on the complexity of recognizing repairs,
and on the complexity of consistency checking. In Sec-
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tion 6, we establish the complexity of these basic tasks,
and give complexity results for our two DLs of inter-
est, L, and DL-Liteg, regarding both data and com-
bined complexity. In the cases where the general algo-
rithms are insufficient to give tight bounds, we try to
provide specialized algorithms.

We then study the complexity of the entailment of
BTCQs without negation. In Section 7, we first in-
vestigate this case under classical semantics, and ob-
serve that in some cases, disallowing negations leads to
lower worst case complexities, even if we alleviate the
limitations imposed in [17, 42]. These lower complex-
ities allow us to also improve the complexity bounds
for inconsistency-tolerant reasoning when there are no
negations in the TCQs in Section 8. Furthermore, we
take advantage of the absence of negations to tighten
an upper bound for brave semantics without rigid pred-
icates.

We recall the definitions of the complexity classes
that appear in this section.

— P: problems solvable in polynomial time.

— NP: problems solvable in non-deterministic polyno-
mial time.

— coNP: problems whose complement is in NP.

- A%O(log n)]: problems solvable in polynomial time
with at most logarithmically many calls to an NP
oracle.

— XL: problems solvable in non-deterministic polyno-
mial time with an NP oracle.

— II%: problems whose complement is in 5.

— ACY: problems that can be solved by a uniform fam-
ily of circuits of constant depth and polynomial size,
with unbounded-fanin AND and OR gates. We have
AC’ C P.

— ALOGTIME: problems solvable in logarithmic time
by a random access alternating Turing machine. We
have ACY C ALOGTIME C P.

— PSPACE: problems solvable in polynomial space.

— EXPTIME: problems solvable in exponential time.

— NEXPTIME: problems which are solvable in non-
deterministic exponential time.

— CONEXPTIME: problems whose complement is
in NEXPTIME.

For the remainder of this paper, £ is a DL which is
interpreted w.r.t. standard interpretations, as defined in
Section 2. We will consider in particular the cases £
= DL-Liter and £ = £L£ . Furthermore, we assume
K = (T, (Ai)ogiga) to be the TKB we evaluate our
query against, and ¢ to be the considered query.

5. General algorithms for inconsistency-tolerant
BTCQ entailment

Our complexity bounds are based on a set of gen-
eral algorithms for deciding BTCQ entailment under
the different semantics, which are inspired from known
algorithms for inconsistency-tolerant BCQ entailment
in the atemporal case (see e.g., [34]).

Non-Entailment under AR semantics. The procedure
ARNonEntailment decides whether ¢ is not entailed
by K at time point p under AR semantics, and is de-
fined as follows.

1. Guess a sequence of ABoxes (A})o<i<n C (Ai)ogicn-

2. Verify that (A})ogi<n is a repair of K and that
(T, (ADo<i<n)> P = @

Entailment under brave semantics. The procedure
braveEntailment decides whether ¢ is entailed by /C at
time point p under brave semantics, and is defined as
follows.

1. Guess a sequence of ABoxes (A})o<i<n C (Ai)ogign-

2. Verify that (A})ogi<n is a repair of K and that
(T, (ADo<i<n)> P = ¢

Non-Entailment under IAR semantics. The proce-
dure IARNonEntailment decides whether ¢ is not en-
tailed by /C at time point p under IAR semantics, and
is defined as follows.

1. Guess

(@) aset B={(e1,i1),. .-, (@msim)} € (A)ogi<n
of timed assertions, together with
(b) m subsets of the data (A )o<i<n € (A)oi<ns
vy (Agm)ogign - (A,‘)ogign such that for ev-
ery j€ [1,m], a; ¢ A:j’
2. Verify that

(a) for every j € [1,m], (A)o<icn is a repair
of K, and
) (T (Aio<i<n\B), p [~ ¢.

Note that, since m < |[(A;)ogignl- Step 2a has to
verify only a linear number of repairs. We show that
the algorithm decides non-entailment under IAR se-
mantics. Indeed, if for every (a jad j) there exists a re-
pair (A7)o<ic, of K that does not contain (;,i;),
then (a@;,i;) is not in the intersection of the repairs
of K. Thus (A;)o<i<n\{(a1, il)’ oo (s i)} is @ su-
perset of the intersection (AJ)o<icn Of the repairs
of K. It follows that if (T, (A)o<i<a\B)-P % ¢,
then C, p }~1ar ¢. In the other direction, assume that
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’C,p l?éIAR ®, ‘and let B = {(a’1, il), ceey (am, lm)} =
(A o<i<n \ (A o<iga- For each (e}, i;), there exists a
repair (A )o<ic, of K that does not contain the timed
assertion (a;,i;), and (7T, (A)o<i<n\B), p I~ &.

Entailment under IAR semantics. We give an alter-
native procedure for TAR, IAREntailment, which de-
cides whether ¢ is entailed under IAR semantics at
time point p.

1. Compute the maximal size k,,,, of a minimal 7 -
inconsistent subset of (A;)o<;<n by binary search,
asking an oracle if there exists a 7 -inconsistent set
of timed assertions B C (A;)o<i<» such that for ev-
ery (a,i) € B, B\{(«, 1)} is consistent and |B| > k,
where k is the input. Note that verifying whether
a candidate fulfils these conditions requires only a
polynomial number of consistency checks.

2. Compute the minimal inconsistent subsets of
by checking the consistency of every subset of
(Ai)ogign of size at most Kyyqy.

3. Call the oracle to determine whether ¢ is entailed at
time point p by the TKB from which the minimal
inconsistent subsets have been removed.

We show that the intersection of the repairs of C is ob-
tained by removing the minimal inconsistent subsets
of K. Let B C (A;)o<icn be a minimal inconsistent
subset of K and (a, i) € B. Since B\{(a, i)} is consis-
tent, (, i) is not in the repairs that contain B\{(«, i)}.
In the other direction, if a timed assertion (a,i) does
not appear in some repair (A!)o<;<, of IC, since the re-
pairs are maximal, (A})o<i<n U {(e, i)} is inconsistent
so (a, i) is in some minimal inconsistent subset of K.

6. Complexity of inconsistency-tolerant BTCQ
entailment with negations in the query

In this section, we investigate the complexity of
BTCQ entailment for general BTCQs, that is, BTCQs
that may contain negations. For this, we first estab-
lish the complexities of consistency checking and re-
pair recognition, i.e., the task of deciding whether a se-
quence of ABoxes is a repair of IC. We then build on
these results to prove the complexity of inconsistency-
tolerant temporal query entailment using the algo-
rithms described in the last section, while showing
matching lower bounds. In order to show data com-
plexity bounds for DL-Lite that are below P, we fol-
low a different route, by defining an abstract structure
that captures BTCQ entailment under IAR and brave

semantics and can be verified in ALOGTIME. We thus
obtain the following theorem.

Theorem 6.1. The results in Figure 3 hold.

6.1. Consistency checking and repair recognition
for TKBs

We reduce these tasks to the atemporal case by
defining an atemporal KB K based on K. For £ =
(T, (Ai)ogign), K is defined in Figure 4. We first show
a correspondence between the models of K that respect
rigid predicates and the models of /.

Lemma 6.2. /C is consistent iff K is consistent.

Proof. (<) We construct a function temp from the
models of K to those of K that respect rigid predi-
caltes;Assume Kis consigtent, and let 7 be a model of
(T, A). We define temp(Z) = J = (Z;)i»o0 as follows.
For every i € [0, n], we set

- a’i = a’ forevery a € N,,

— AT = A7 for every A € Ngg,

- R% = RZ for every R € Ngp,

— AL = Aif for every A € N¢\Ngg, and
- RL = Rlz for every R € Ng\Ngg,

and for every i > n, we set

- d%i = 4~ for every a € N,

— AT = AZ for every A € Ngc,

— R% = RZ for every R € Ngg,

— AL = Ani+1 for every A € Ng\Ngg, and
- R% = RL_| for every R € Ng\Ngg.

We show that the sequence of interpretations temp(f )
is a model of K that respects rigid predicates.

1. For every i € [[0,n], Z; is a model of A;. If A(a) €
A;, then either A € Ngc and A(a) € A, or A ¢ Nre
and A;(a) € A. In both cases, a¥ = aZ € AT. We
can argue in the same way for the role assertions
in .A,'.

2. Forevery i € [0,n+ 1], Z; is amodel of 7. Slightly
abusing notation, we denote by RenameNotRig(Z;, i)
the interpretation obtained from Z; by renaming ev-
ery non-rigid predicate X by X;. (We can see an
interpretation as an infinite set of assertions.) The
interpretations of all rigid predicates and of all A,
and R; are the same in RenameNotRig(Z;, /) and Z.
Since Z is a model of ’7~' and ’7' does not con-
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Data complexity

Combined complexity

classical AR IAR brave classical AR IAR brave
EL)
Nrc = Npr =0 P coNP coNP NP PSPACE PSPACE PSPACE PSPACE
Nrc # 0, Ngr = 0 coNP coNP coNP Xf PSPACE PSPACE PSPACE PSPACE

Nrc # 0, Ngr # 0 coNP coNP coNP Xf

CONEXPTIME CONEXPTIME CONEXPTIME CONEXPTIME

DL-Liter

Nrc = Npr = 0 ALOGTIME coNP inP in NP PSPACE PSPACE PSPACE PSPACE
Npc # O,Ngr = ) ALOGTIME coNP inP NP PSPACE PSPACE PSPACE PSPACE
Npc # 0,Ngr # ) ALOGTIME coNP inP NP PSPACE PSPACE PSPACE PSPACE

Figure 3. Data [left] and combined [right] complexity of BTCQ entailment for BTCQs with negations. All complexities are tight, except those

[TEPt]

preceded by “in”, which are upper bounds. The results for the classical semantics come from [22] for ££ and [6] for DL-Liter .

n+1
T = U RenameNotRig( 7, i)

i=0

A= U RenameNotRig(A;, i)
i=0

where for every set of axioms O, the function
RenameNotRig(O, i) substitutes every non-rigid
predicate X by X; in every axiom a € O.

Figure 4. KB K = (T, A) representing K = (T, (Adogign)-
tain any axiom that involves two non-rigid predi-
cates X; and X; with i # j, RenameNotRig(Z;, i) is a
model of 7. Moreover RenameNotRig(7,i) C 7~',
and therefore RenameNotRig(Z;, i) is a model of
RenameNotRig (7, ). Hence, Z; is a model of 7.

3. Foreveryi>n+1,7Z; = 7,11 is amodel of T.

4. For every i > 0, for every A € Ngc , AL = AT,
and for every R € Ngc, R = RT. Therefore, J
respects rigid predicates.

We obtain that temp(Z) is a model of /C that respects
rigid predicates.

(=) For the other direction, we construct a function
atemp from the models of K that respect rigid pred-
icates to those of IC. Assume K is consistent, and let
J = (Z)i>0 be a model of K that respects rigid predi-
cates. We define atemp(J) = 7T as follows.

- at = a’® (= a%i forevery i > 0) for every a € N;,
— AT = A%o for every A € Ngg,

- R% = R%o for every R € Ngg,
- AT = A% for every A € Nc\Ngc and i € [0, ], and
— RT = R% for every R € Ng\Ngg and i € [0, n].

Again, we show that 7 is a model of K by considering
the ABox and the TBox separately.

1. 7 is a model of A. If A(a) € A with A € Ngg ,
then aZ = a% € AZ, and if A;(a) € A for some
A ¢ Ngc, then A(a) € A; and a = a% € AT. The
situation is the same for the role assertions in A

2. 7 is a model of 7. If we rename the non-rigid
predicates, RenameNotRig(Z;, i) coincides with Z
on the interpretation of all rigid predicates and all
A; and R;. Since each Z; is a model of 7, each
interpretation RenameNotRig(Z;,7) is a model of
RenameNotRig(7, i), and since 7~' does not contain
any axiom that involve two non-rigid predicates X;
and X; with i # j, each RenameNotRig(Z;, i) is a
model of 7. It follows that Z is a model of 7.

We thus shown a direct correspondence between the
models of K and those of K, and obtain that K is sat-
isfiable iff K is satisfiable. O

It follows that consistency checking of TKBs can be
polynomially reduced to consistency checking of KBs.

Lemma 6.3. If for a DL L, consistency checking of
L KBs is in P, then consistency checking of L TKBs is
in P as well.

Proof. By Lemma 6.2, the TKB K is consistent iff the
KB K is consistent. If consistency checking is in P for
L KBs, the consistency of I can then be checked in
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time polynomial in the size of T and A. Since the size
of T is polynomial in |7 | and n, and the size of A
is at most the size of (A;)o<i<n, We obtain that TKB
consistency checking is in P. O

We next show that repair recognition can be done
with a polynomial number of consistency checks.

Lemma 6.4. If for a DL L, consistency checking of
L TKBs is in P, then repair recognition, i.e., deciding
whether a sequence of ABoxes (A!)o<i<n is a repair
of K, is in P.

Proof. Assume consistency checking of £ TKBs is
in P. Then, we can verify in P whether a sequence of
ABoxes (A!)ogign is a repair of KC as follows.

1. For every i, check that A} C A;.

2. Check that (A;)o<i<n is T-consistent.

3. Forevery (a, j) € (Ai)o<i<n \(A})o<i<n, check that
(ADo<icn U {(a, j)} is T-inconsistent. O

Note that Lemmas 6.3 and 6.4 apply to DL-Liteg
and £L | .

6.2. Combined complexity

We now are ready to establish the complexity of
BTCQ entailment under inconsistency-tolerant seman-
tics. We start with the combined complexity. The fol-
lowing upper bounds follow straightforwardly from
the procedures described in Section 5.

Proposition 6.5. If repair recognition is in P and
BTCQ entailment under the classical semantics is in
PSPACE w.r.t. combined complexity, then BTCQ entail-
ment under AR, IAR and brave semantics is in PSPACE
w.r.t. combined complexity.

Proof. If verifying that a sequence of ABoxes is a re-
pair is in P and verifying the entailment, and thus
also the non-entailment, of a BTCQ is in PSPACE, the
procedures ARNonEntailment, IARNonEntailment, and
braveEntailment all run in NPSPACE=PSPACE. More-
over, CONPSPACE=PSPACE. O

Proposition 6.5 applies to DL-Liteg and ££, in
all cases except for ££, with rigid roles, for which
BTCQ entailment under classical semantics is CO-
NEXPTIME-hard [22].

Proposition 6.6. BTCQ entailment from an L, TKB
under AR, IAR and brave semantics is in CONEXP-
TIME w.r.t. combined complexity, even if Npr # 0.

Proof. For the AR and TAR semantics, we modify the
procedures ARNonEntailment and IARNonEntailment
described in Section 5 so that they also guess a certifi-
cate of the non-entailment of ¢ in the first step. Then, in
the second step, the non-entailment of ¢ can be decided
by simply verifying this certificate. The certificate can
be checked in EXPTIME, since the non-entailment of ¢
can be decided in NEXPTIME.

For the brave semantics’ upper bound, we give a
NEXPTIME procedure to decide /C, p Fprave ¢. For ev-
ery subset (A})o<i<n of (Ai)ogicn, guess either “not
a repair” or a certificate of the non-entailment of ¢
from (T, (A})o<i<n) at time point p. Note that there
are 2/(Ado<i<al guch subsets. For every such subset,
verify in EXPTIME whether it is indeed not a repair, or
whether (7, (A})o<i<n)» P = ¢ O

The matching PSPACE and CONEXPTIME com-
bined complexity lower bounds for ££, and DL-Liteg
follow from the consistent case (cf. Section 2).

6.3. Data complexity for EL, TKBs

We now prove the data complexity results, starting
with ££,. We first consider the case without rigid
predicates.

Proposition 6.7. BTCQ entailment froman EL, TKB
with Ngc = Ngr = 0 is

— coNP-complete w.r.t. data complexity under AR and
IAR semantics, and

— NP-complete w.r.t. data complexity under brave se-
mantics.

Proof. The upper bounds follow from the proce-
dures described in Section 5: since verifying that a
sequence of ABoxes is a repair as well as verify-
ing the non-entailment and entailment of a BTCQ
take polynomial time w.r.t. data complexity, the pro-
cedures ARNonEntailment, IARNonEntailment, and
braveEntailment run in NP w.r.t. data complexity. The
lower bounds follow from the atemporal case. O

Next, we prove the complexity of BTCQ entailment
with rigid predicates. The following proposition estab-
lishes the upper bounds for the case where both rigid
concepts and rigid roles are allowed.

Proposition 6.8. BTCQ entailment from an EL, TKB
with Nre # 0 and Ngg # 0 is

— in coNP w.rt. data complexity under AR and IAR
semantics, and



C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 13

— in X5 w.rt. data complexity under brave semantics.

Proof. For AR and IAR semantics, we modify the pro-
cedures described in Section 5 to also guess a certifi-
cate for the non-entailment of ¢. This certificate can
be checked in P, since the non-entailment of ¢ can be
decided in NP. The upper bound for brave semantics
is obtained using the procedure braveEntailment de-
scribed in Section 5. O

We show that these results are tight even if we only
have rigid concepts.

Proposition 6.9. BTCQ entailment from an L, TKB
with Npg 75 0 is

— coNP-hard w.rt. data complexity under AR and IAR
semantics, and

— X0L-hard w.rt. data complexity under brave seman-
tics.

Proof (Sketch). The lower bounds for AR and IAR se-
mantics follow from the atemporal case. For brave se-
mantics, we show that the complement of brave TCQ
entailment is HS -hard by reduction from QBFs .

Let® =Vx;...x,3y1 ...y, ¢ be a QBFs y-formula,
where ¢ = Al €0V €} V €2 is a 3-CNF formula over
the propositional variables {xi,...,XmsY1,--.,Yr}-
Based on @, we define the TKB K = (T, (A;)o<i<snt2)
and the TCQ ¢ as follows, where Ngc = {T}.

T = {3Pos.T C Sat, INeg.F C Sat,
JFromPos.Sat C T, 3FromNeg.Sat C F,
JFromY.SatC T,TMFC L,
TrN3avaly.TC L}

¢ =—°(NotFirst(c) V Sat(c)V
OSat(c) vV OOSat(c))
For each clause ¢? \ ¢! V €2, we define the following
three ABoxes Ag;; (0 < k < 2):
As; =B U Bs;
Asipr =B U Bsiyx U {NOtFiI’St(C)}, 1<k<2,

where

B ={T(x;),F(x;) | 1 <
1

<m}uU
{ValY(y;,7y;), j

J
<j<r}

Bsirx ={Pos(c, x;), FromPos(x;,c)} if = Xj
Bsivx ={Neg(c, x;), FromNeg(xj,c)} if £f = —x;
Bsiyr ={FromY(y;,c)}if &f = y;

Bg,urk :{FromY(ﬁyj, C)} if ffc = Tyj.

We show that @ is valid iff K, 0 Fprave ¢-

Since T is rigid and disjoint from F, the repairs of K
correspond to the valuations of the x;.

Assume ® is valid. We can then show that for ev-
ery repair (A!)ogicsntz of KC, we can define a model
J = (Zi)iso of (T, (A)o<igant+2) that respects rigid
predicates and such that 7,0 = [O”(NotFirst(c) Vv
Sat(c)vVOSat(c)VOOSat(c)). Indeed, since P is valid,
there exists a valuation vy of the y; that satisfies ¢ to-
gether with the valuation of the x; corresponding to
(Al)o<i<ant2- This valuation can be used to define J
as follows.

- yi e TH iff vy(y;) = true

- —yi € THiff vy(y;) = false

— if there exists some d such that (d%, %) € FromY”%
and d% € T%, then % € Sat™.

It is then easy to see that at each time point p €
[0, 3k + 2], either NotFirst(c) is true, or p = 3i and
Sat(c) is true at time point 3i + k, where ¥ is the
first satisfied literal of the clause ¢? V ¢} v £2. Since
J.0 ¥ ¢, then (T, (ADo<icant2),0 [~ ¢. Thus
K:, 0 l#brave ¢

Now assume /K, 0 Fpve ¢ We can then show that
for every valuation vy of the x;, there exists a valuation
vy of the y; such that ¢ is satisfied. Indeed, there exists
a model J of the repair corresponding to vy and of
the TBox that respects rigid predicates and is such that
J. 0 ¢, ie.,

J,0 = O° (NotFirst(c) VSat(c) VOSat(c) VOOSat(c)).

This model can be used to define vy. For this, we set
vy(y;) = true if there exists k such that 7,k = T(y;),
and vy(y;) = false if there exists k such that 7,k =
T(-y;). Since J,0 = O(NotFirst(c) Vv Sat(c) V
OSat(c) vV OOSat(c)), for every clause €2\ €} v €2, we
have that 7, 3i + k |= Sat(c) for some k € [0, 2], and
we can show that ¢* is then evaluated to true. It follows
that vy U vy satisfies every clause 9 VV £} 2. Hence,
@lxj < vx(xj),y; « vy(y;)] evaluates to true for ev-
ery valuation vx, which implies that ® is valid. O
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6.4. Data complexity for DL-Liter TKBs

It remains to show the data complexity results for
DL-Lite . We first consider the case where Ngc # 0.
For AR and brave semantics, the upper bounds fol-
low from the guess and check procedures described
in Section 5 (for brave semantics, guess together with
the repair a certificate that it entails ¢ at time point
p). The lower bound for AR follows from the atempo-
ral case, which establishes a tight coNP-bound even if
Nrc = Ngr = 0. In contrast, for brave semantics, BCQ
entailment is tractable in the atemporal setting. How-
ever, we cannot directly extend this result to the tem-
poral case. Indeed, the data complexity upper bound
for brave CQ answering in DL-Litex relies on the fact
that the size of the minimal sets of assertions that sup-
port the query is bounded by the query size. This is
not true in the temporal setting, as can already be seen
by the query ¢ = 0~ A(a), whose entailment at time
point p can depend on p assertions in the TKB. In fact,
we show that in the presence of rigid concepts, brave
BTCQ entailment becomes NP-hard.

Proposition 6.10. If Nrc # 0, then brave BTCQ en-
tailment from DL-Litegx TKBs is NP-hard w.r.t. data
complexity.

Proof. We show NP-hardness of brave BTCQ entail-
ment from DL-Liteg TKBs by reduction from SAT.
Let ¢ = cg A ... A ¢, be a CNF formula over variables
X1, ...y Xy We define the following problem of BTCQ
entailment under brave semantics, with two rigid con-
cepts T and F. Let K = (T, (A;)o<i<n) be such that:

T = {3Pos C Sat, INeg C Sat,
JPos” C T, INeg” CF, TLC —F}
A; = {Pos(a, x;) | xj € ¢;} U

{Neg(a,x;) | ~xj € ¢;} for0<i<n

Let ¢ = O~ Sat(a). We show that ¢ is satisfiable iff
K,n Ebrave ¢. Indeed, since T and F are rigid, a re-
pair (A})o<i<n of K is such that each x; has either
only Pos or only Neg incoming edges in (A!)o<i<n-
We can thus define a valuation v of the variables such
that v(x;) = true if (A})o<i<n does not contain a timed
assertion of the form (Neg(c, x;), k), and v(x;) = false
otherwise. The clause c¢; is satisfied by v iff there ex-
ists x; such that either x; € ¢; and v(x;) = true or
—-x; € ¢; and v(x;) = false, that is, iff there exists x;
such that either Pos(a, x;) € A or Neg(a, x;) € A,

which holds exactly iff (T, (Al)o<i<n).i = Sat(a).
It follows that ¢ is satisfiable iff there exists a repair
(A o<i<n Of K that entails ¢ at time point n. O

For the case Npc = Npg = 0, we have an ALOG-
TIME lower bound from the classical semantics, and it
is open whether the NP upper bound can be improved.

In contrast, for IAR semantics, we can give a
tractable upper bound even if Nrg # (. The reason is
that, in DL-Liter TKBs, the size of a minimal incon-
sistent subset is at most two, as in the atemporal case.

Fact 6.11 ([28], Lemma 1). Because of the DL-Litep
syntax, the following holds: for every DL-Litegx TBox
T, the size of a minimal 7 -inconsistent set of (timed)
assertions is at most two.

Therefore, we can always compute the intersection
of all repairs in polynomial time.

Proposition 6.12. BTCQ entailment from a DL-Liter,
TKB under IAR semantics is in P w.r.t. data complexity,
even if Npg # 0 and Nrg # 0.

Proof. The size of the minimal 7 -inconsistent subsets
of (A;)ogicn is bounded by 2. We can thus skip the
first step of the procedure IAREntailment described in
Section 5 and compute the minimal inconsistent sub-
sets in P by checking the consistency of every timed
assertion and pair of timed assertions (with a quadratic
number of consistency checks), and then verify the en-
tailment of the query in P w.r.t. data complexity over
the TKB from which they have been removed. O

7. BTCQ entailment under classical semantics
without negation in the query

This section completes the complexity picture for
BTCQ entailment under the classical semantics by in-
vestigating the case where TCQs do not contain nega-
tion. We show that the absence of negation in the query
induces a complexity drop in several cases. These re-
sults are based on a more general property: we show
that for any DL L, if £ has the canonical model prop-
erty for CQ answering over KBs, then £ has also
the canonical model property for TCQ answering over
TKBs for TCQs without negation. We use the canoni-
cal model to prove that for the classical semantics, the
complexity upper bounds of the atemporal case trans-
fer to the temporal case.



C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 15

We first show that BCQ entailment from a TKB K
can be reduced to BCQ entailment from the KB K de-
fined Section 6, Figure 4. For this, we define a simi-
lar transformation for BCQs as we did for TKBs. Let
g = YY) be aBCQ and p > 0 be a time point.
Consider

g, = RenameNotRig(q, p)

where RenameNotRig(q, p) replaces every non-rigid
predicate X in g by X, if p < n, and by X, other-
wise.

Lemma7.1. K,p = qiff K = qp-

Proof. The following proof is written for the case p €
[0,n + 1]. For the case p > n + 1, p is replaced by
n + 1 in the predicates names. _ _

Assume that K, p = ¢, and let Z be a model of K.
Let 7 = (Zi)iz0 = temp(Z) be the correspond-
ing model of K that respects rigid predicates, as de-
fined in the proof for Lemma 6.2. For any BCQ y
without existential variables, we denote by atoms(y)
the set of (ground) atoms of . Since Z, = ¢, there
then exists a mapping 7 from the set of constants and
variables that appear in ¢ into A such that for every
X(d) € atoms(if,), where  is the BCQ obtained by
replacing the terms of ¢ by their image by x, we have
d € X% 1t follows that for every X(d) € atoms (i),

if X is rigid then d € XZ, and otherwise d € X;.
Thus, E RenameNotRig(q, p), i.e., T = g,. Hence
K. i

In the other direction, assume that K |= ¢, and
let 7 = (Z;)i»0 be a model of K that respects
rigid predicates. Let Z = atemp(7) be as defined
in the proof for Lemma 6.2. Since 7 = g, there
then exists a mapping m from the set of constants
and variables that appear in ¢ into A such that
for every X(d) € atoms(RenameNotRig(¢y. p)). we
have d € XZ. It follows that for every X(d) €
atoms(RenameNotRig (i, p)) such that X is rigid,
d € X%r. Furthermore, we have d € X% for every
X,,(J} € atoms(RenameNotRig(y, p)) such that X is
not rigid. Thus, Z,, = ¢, and we obtain IC, p = q. O

Moreover, the size of g, is the same as ¢g. Hence:

Lemma 7.2. If BCQ entailment from an L KB is in P
w.r.t. KB complexity and in NP w.r.t. combined com-
plexity, then so is BCQ entailment from an L TKB.

Proof. Since deciding whether K = g, is polynomial
both in |7 and in |.4], it is polynomial in |7 and
|(Ai)ogignl- It follows that deciding whether IC, p |= ¢
is in P w.r.t. KB complexity. _

Moreover, since deciding whether K = g, is in
NP w.rt. |T], | Al and |g,|, then verifying a certificate
that K = ¢, can be done in polynomial time w.r.t.
|71, |-A] and |g,], so in polynomial time w.r.t. |T], n,
|(Ai)o<i<n| and |g|. It follows that deciding whether
K, p = g is in NP w.r.t. combined complexity. O

We next define the notion of canonical model prop-
erty for BCQ entailment and for entailment of BTCQ
without negation.

Definition 7.3 (Canonical model property). A DL L
has the canonical model property for BCQ entailment
iff for every £L KB (T, A), there exists a model Z7 4
such that for every BCQ g, (T, A) = qiff Zir 4y = q.
We call Z;7 4 the canonical model of (7, .A).

A DL L has the canonical model property for en-
tailment of BTCQ without negation iff for any £ TKB
(T, (Ai)ogin), there exists a model J(7 (4,)0c,c,)
such that for every BTCQ without negation ¢ and ev-
ery time point p,

(T, (Aosicn)» P E ¢ iff Ti7(A)0cicn)> P E ¢

We call the model J(7,(4,)y<.c,) the canonical model
of (T, (Ai)o<i<n>-

Note that it is justified to speak of the canonical
model of a KB or TKB K because such a model can
be homomorphically mapped into any other model of
KC. Indeed, for every assertion « built over N, N¢ and
Ng, if @ holds in the canonical model of K then it also
holds in every model of K.

The following theorem gives the relation between
the canonical model property for BCQ entailment and
for BTCQ entailment and shows why the presence or
absence of negations in the query matters.

Theorem 7.4. If L has the canonical model property
for BCQ entailment, then L has also the canonical
model property for the entailment of BTCQ without
negation.

Proof. Let fﬁ be the canonical model of K and T =

(Zi)izo = temp(Zg). We show that Ji is the canon-
ical model of K for BTCQs without negation, that is,
for every BTCQ ¢ that does not contain any negation,

K.pE ¢iff Tc.p = ¢.
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Since Jx is a model of K that respects rigid predi-
cates, if IC, p = ¢ then Jx, p |= ¢. For the other direc-
tion, we show by induction on the structure of ¢ that if
Jip E ¢, then K, p = ¢.

If ¢ = g is a BCQ, by Lemma 7.1, K,p E ¢
iff K |= qp, which is exactly the case iff f,% = gp.
By construction of Ji, it follows that K, p = ¢ iff
Jisp FE 4.

Assume that for two BTCQs ¢1, ¢2 and any p > 0,
Ji,p = ¢ implies K, p = ¢; (i € {1,2}). We can
show the following for BTCQs built from ¢4, ¢o.

- If T, p = ¢1 A @2 then Jic, p = ¢1 and Tk, p |=
¢2. Hence by assumption, K,p = ¢; and K, p =
o, thus K, p = ¢1 A ¢2.

- If Tk, p = ¢1V g2 then Tk, p |= ¢1 or Ti, p |= ¢o.
Hence by assumption, I, p = ¢1 or K, p = ¢2, thus
]C’p ): ¢1 \ ¢2-

- If Je,p E O¢1 then Jic,p + 1 = ¢1. Hence by
assumption, K, p + 1 |= ¢1, thus KC, p | O¢.

— We can show similarly that if Ji,p = @°¢:
then KC,p = @ ¢y, that if Jic,p = O~ ¢ then
K,p E O ¢1, and that if Jx,p = @ ¢1 then
K.p =@ ¢:1.

- If Jx, p = O¢y then for every k > p, T, k E ¢1.
Hence by assumption, for every k > p, K,k = 1,
thus IC, p = O¢s.

— We can show similarly that if Ji,p = Db¢1 then
K,p &= [OP¢, and that if Jic,p = O ¢; then
K7p ‘: D_¢1~

- If Tk, p |E O¢1 then there exists k > p, Jic, k = ¢1.
Hence by assumption, there exists k > p, K,k |= ¢1,
thus IC, p = Q¢ .

— We can show similarly that if Ji,p = (’¢; then
K.p E 0%¢1, and that if Ji,p E O ¢y then
K.pkE 0 ¢1.

- If J, p = ¢1U ¢ then there exists k > p, Ji, k |E
@2 and for every jsuch that p < j <k, Jk, j | é1.
Hence by assumption, there exists k > p, K,k = ¢o
and for every j such that p < j <k, K, j |= ¢1, thus
K,p E ¢1U ¢o.

— We can show similarly that if Jx, p = ¢1U? ¢o then
K,p = $1U° ¢o, and that if Jic, p = ¢#1S ¢ then
K.pE ¢1S 2.

We conclude that for every BTCQ without negation ¢,
the following holds: if Jic,p | ¢, then K, p E ¢. O

Remark 7.5. If ¢ contains some negation, the preced-
ing induction does not work and Ji is not a canoni-
cal model for TCQ answering: Jx, p = —¢ does not
guarantee that 7, p [~ ¢ for every model 7 that re-

spects rigid predicates. For example, consider 7 = 0
and A; = 0 for every i € [0,n]. We have Ji,0 W
Jx.A(x), but we can easily construct a model J for
(T, (Ai)ogign) such that 7,0 = Ix.A(x).

The following proposition is a direct consequence
of the existence of a canonical model for entailment of
BTCQ without negation.

Proposition 7.6. If L has the canonical model prop-
erty for BCQ entailment, for every L TKBs K and K,
if K and K' coincide for BCQ entailment, then K and
K' coincide for entailment of BTCQ without negation,
i.e., if for every time point p and BCQ g, K,p = ¢
iff K',p |= g, then for every time point p and BTCQ
without negation ¢, K, p = ¢ iff K', p = ¢.

Proof. If for every time point p and BCQ ¢, IC, p |= ¢
iff X', p | g, we can then show by induction on the
structure of ¢ that C,p = ¢ iff K',p = ¢. For ¢ =
3y.4(¥), this holds by assumption. Assume that for two
BTCQs ¢1,¢2, K,p = ¢ iff K',p |= ¢ (i € {1,2}).
Then, since by Theorem 7.4 £ has the canonical model
property for entailment of BTCQ without negation, by
applying the definitions of BTCQ satisfaction of Ta-
ble 1 to the canonical models of X and K’, we obtain
the following about formulas composed of ¢ and ¢.

—IC,p ): ¢1 /\¢2 ifflC,p ': ¢)1 and lC,p ': ¢2,
which is the case iff K, p = ¢1 and K, p |= ¢ by

assumption, i.e., iff ', p = ¢1 A ¢o.

- ’C’p ’: ¢1 \/¢2 lfflc’p ': ¢1 OI']C,p ': ¢2’ which
is the case iff K, p = ¢1 or K, p |= ¢2 by assump-
tion, i.e., iff X', p |: b1V @o.

- K,p = O¢1iff K, p+ 1 |= ¢1, which is the case iff
K', p+1 = ¢1 by assumption, i.e., iff X', p | O¢1.

— We show in the same way that K,p = @°¢; iff
K p = .b¢1, that I,p E O ¢y iff K',p =
O ¢1,and that C,p = @ ¢ iff ', p = @ ¢1.

- K, p E O, iff forevery k, k > p, K,k |= ¢1, which
is the case iff for every k, k > p, K',k = ¢1 by
assumption, i.e., iff ', p = Oy

— We show in the same way that K,p = (¢, iff
K',p = OP¢y, and that K, p = O~ ¢y iff K',p |
Di(ﬁl.

- K,p = O¢; iff there exists k, k > p, K,k &= 1,
which is the case iff there exists k, k > p, K', k = ¢
by assumption, i.e., iff ', p E O¢;.

— We show in the same way that KC,p = OP¢ iff
K',p | O’¢1, and that K, p = O~ ¢ iff K',p |
O~ 1.
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- K, p E ¢1U ¢ iff there exists k, k > p, K,k = ¢
and for every j, p < j <k, K, j = ¢1, which is the
case iff there exists k, k > p, K',k = ¢2 and for
every j, p < j <k, K, j E ¢1 by assumption, i.e.,
iK', p = 61U 6.

— We show in the same way that KC,p = ¢1U’ ¢
iff ’C/,p ': ¢1Ub P2, and that ]C,p ): ¢1S P2 iff
K/’p ': ¢1S¢2.

We conclude that for every BTCQ without negation ¢
and time point p, K, p E ¢ iff K', p = 6. O

We now prove a central proposition for TCQ an-
swering over TKBs in DLs that have the canoni-
cal model property for entailment of BTCQs with-
out negation. It amounts to reducing the entailment of
BTCQs with unbounded future operators to the entail-
ment of BTCQs with only bounded future operators.
These can then be answered by considering only a fi-
nite number of time points.

Let IC* be the following TKB:

K* :<T, (.A,')og,'g,, U (An+1)> where
Api1 ={A(a) | A € Nrg,A(a) € AYU
{R(a,b) | R € Ngg,R(a,b) € A}

Proposition 7.7. If L has the canonical model prop-
erty for BCQ entailment, the relations in Table 2 hold
forany L TKB K.

Proof. 1t is easy to see that by construction Ji» =
Ji- Hence IC,p = ¢ iff K*, p = ¢ for every BTCQ
without negation ¢.

All relations in Table 2 but those for the operators
0, ¢ and U are straightforwardly obtained by apply-
ing the definitions of BTCQ satisfaction of Table 1 to
this canonical model. To show the three remaining re-
lations, we rely on the fact that Ji« is such that for
every i > n, Z; = 7,41 and there is no past opera-
tors nested under unbounded future operators by def-
inition of TCQs. Indeed, if a BTCQ ¢; does not con-
tain any past operators and i > n, Ji-,i | ¢ iff
Jk+,n+ 1 |= ¢1. Hence we can show the following,
from which the relations of Table 2 follow straightfor-
wardly.

- K*,p E O¢, iff for every k > p, K*,k = 1.

Hence K*, p = O¢y iff Vk, p < k < n, K5k = ¢
and K*,n+ 1 = ¢4.

Table 2

Entailment under classical semantics for DLs with the canonical
model property for BCQ entailment

¢ K,pE¢ift K*, p = ¢iff

Fy() K p = Fe@i)
$1 A2 K. p = ¢1and K*, p = ¢2
$1V d2 K*,p = d1or K*, p = ¢2
Op1  K5p+1Eé¢
®"¢1 p <nimplies K*, p+1 = ¢1
O ¢1 p>0andK*,p—1FE ¢
® ¢1 p>0impliesK*,p—1FE ¢
Oeg1 Vk,p<k<n+1,K* kE¢1
OP¢1 Yk p<k<n K*kE ¢
O ¢1 VE,0<k<p, K*kE=d1
01 Tk p<k<n+ 1K kE ¢
Ob¢r Tk p<k<n K* k¢
0791 FO<k<p, K5 kg1
$1U d2 3k,p<k<n+1,l€*,k):¢2
andVj, p < j<kK* jE ¢
Ul o Tk, p <k <, K* k=g andVj, p < j <k, K*, j = ¢1
$1Sd2 T 0< k< p,K* kE¢oandVjk<j< p,K* jE¢1

- K*,p E Q¢ iff there exists k > p, K*,k = ;.
Hence K*,p |= O¢q iff Ik, p < k < n, K*,k = ¢
or K*,n+ 1 ¢;.

—K*p = ¢:1Uds iff Ik > p, K*k |= ¢o and Vj,
p < Jj<kK*jE ¢1.Hence K*,p | ¢1U¢o
iff 3k, p < k < n K*k=¢pandVj, p < j <
kK jE ot K*n+1E¢randVj, p < j<
n+1,K*, j = é1.

O

In the next theorem, we transfer complexity upper
bounds from the atemporal case to the temporal case
(even with rigid predicates) for queries without nega-
tion and DLs that have the canonical model property
for BCQ entailment. We consider DLs for which BCQ
entailment is in P w.r.t. KB complexity and in NP w.r.t.
combined complexity, such as DL-Liteg and ££ .

Theorem 7.8. If L has the canonical model property
for BCQ entailment and is such that BCQ entailment
from KBs is in P w.r.t. KB complexity and in NP w.r.t.
combined complexity, then the entailment of BTCQs
without negation from L TKBs is in P w.r.t. KB com-
plexity and in NP w.r.t. combined complexity.

Proof. By Lemma 7.2, it is possible to decide whether
K*,p = g in P w.r.t. KB complexity for any BCQ gq.
Based on this, we can show by induction on the struc-
ture of ¢ that K*,p = ¢ can be decided in P w.r.t.
KB complexity. Assume that for two BTCQs ¢, ¢2
and any p > 0, it is possible to decide in P whether
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K*,p E ¢:. Using the relations in Table 2, we can
prove the following.

- K*pE ¢1 AN iff K*, p |= ¢1 and K, p = ¢, sO
deciding whether K*, p = ¢1 A ¢5 can be done in P
by checking that K*, p = ¢1 and K*, p |= ¢o.

- K:*,[J ': ¢1 \/¢2 ifflC*,p ': ¢1 OI‘]C*,p ': ¢2, SO
deciding whether K*, p = ¢1 V ¢2 can be done in
P by deciding whether £*, p = ¢1 and K*, p = ¢o
and checking that at least one is true.

-K*,p E O¢1 iff K*,p+ 1 E ¢1, so deciding
whether K*, p = O¢; can be done in P by checking
whether C*, p + 1 |= ¢.

- K*,p = @ ¢, iff p < nimplies C*,p + 1 = ¢4,
so deciding whether K*, p = @ ¢; can be done in
P by checking whether p > nor K*,p+ 1 |= ¢1.

— We show in the same way that we can decide in
P whether £*,p E O~ ¢y and whether £*,p =
@ ¢;.

- K*, p E Q¢ iffforevery k, p < k < n+1,K* k |E
#1, so deciding whether K*, p = ¢y can be done
in P by checking foreach p < k < n+1 that K*, k =
¢1.

— We show in the same way that we can decide in
P whether K*,p | [0°¢; and whether K*,p |=
O ¢;.

- K*,p | Q¢ iff there exists k, p < k < n+ 1,
K*, k = ¢1, so deciding whether K£*, p = O¢1 can
be done in P by deciding foreach p < k < n+1
whether IC*, k = ¢1, and checking that it is true for
at least one k.

— We show in the same way that we can decide in P
whether K*, p = 0’¢; and whether K*, p |= O~ ¢1.

- K*,p E ¢1U ¢y iff there exists k, p < k < n+ 1,
K*,k |= ¢, and for every j, p < j <k, K*, j E ¢1,
so deciding whether £*, p = ¢1U @2 can be done
in P by deciding for each p < k < n + 1 whether
K*,k = ¢1 and whether K*, k = ¢2, and checking
that the condition holds.

— We show in the same way that we can decide in P
whether K*,p = ¢1U? ¢o and whether K*,p =

1S d2.

The number of subqueries in ¢ is linear w.r.t. the size of
¢, and independent from the TKB size. It follows that
the total number of polynomial checks is also polyno-
mially bounded. Therefore, we obtain that for every
BTCQ ¢ without negation, K*, p |= ¢ can be decided
in P w.r.t. the size of K*. Since I, p = ¢ iff K*, p = ¢
and the size of IC* is polynomial in the size of I, de-
ciding whether IC, p = ¢ is in P w.r.t. KB complexity.

For the NP membership of entailment of BTCQs
without negation w.r.t. combined complexity, we de-
scribe how to guess a certificate that K, p = ¢ that can
be checked in P. This certificate consists of:

— asequence of functions (v;)o<i<n+1 that associate to
each BCQ g of ¢ true or false, and

— for each BCQ ¢ of ¢ and time point i € [0,n + 1]
such that v;(qg) = true: a certificate that g; =
RenameNotRig(g, i) is entailed from K.

There are polynomially many pairs of a time point and
aBCQ, and the certificate that g; is entailed from K can
be checked in polynomial time, since BCQ entailment
is in NP. Moreover, we can show that, since ¢ contains
neither negations nor past operators nested under un-
bounded future operators, deciding whether the propo-
sitional abstraction of ¢ is satisfied by the sequence
of truth assignments that assign the propositional ab-
straction of ¢ to v;(g) for every i € [0,n + 1] and to
vnt1(q) for every i > n + 1 can be done in polyno-
mial time w.r.t. the size of the query and the length
of the sequence of ABoxes. Indeed, identify ¢ and the
BCQs in it with their propositional abstractions, and
denote by w = wow!..w"w"t1 .. the trace over 25€2(¢)
(where BCQ(¢) is the set of BCQs of ¢), such that
wi = {q | vi(q) = true} fori < n+ 1, w' = w't! for
i>n+1.Since w = w"t1, fori > n+ 1, we can show
similar relations as those in Table 2 for the entailment
of LTL formulas without past operators nested under
unbounded future operators or negations from w. We
can then use a similar induction as we did when we
proved the data complexity to show that w, p = ¢ can
be decided by checking which queries are in w'. For
this, the number of queries to be tested is polynomial
in n and the size of ¢. O

As a consequence of Theorems 7.4 and 7.8, and
since ££, and DL-Liter have the canonical model
property for BCQ entailment (cf. [11] for ££, and
[43] for DL-Lite ), we obtain the following theorem.

Theorem 7.9. For DL-Liter and EL |, entailment of
BTCQs without negation is in P w.rt. KB complexity
and in NP w.r.t. combined complexity, even if Nrg # 0.

Besides these results for DL-Liteg and £L£ |, the
Theorems 7.4 and 7.8 hold for all Horn-DLs satisfying
the complexity constraints in the precondition of The-
orem 7.8. For instance, this holds for DL-Lite}\. ~[44].
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8. Complexity of inconsistency-tolerant BTCQ
entailment without negation in the query

The following proposition gives general complex-
ity upper bounds for BTCQ entailment under the AR,
IAR and brave semantics. By Theorem 7.9, they hold
in particular for £ = ££, and £ = DL-Litegx when
negations are not allowed in the TCQs.

Proposition 8.1. If L is such that consistency checking
of a L TKB is in P and BTCQ entailment from a L TKB
is in P w.r.t. data complexity and in NP w.r.t. combined
complexity, then BTCQ entailment from a L TKB

— under AR semantics is in coNP w.r.t. data complexity
and in 115 w.r.t. combined complexity;

— under IAR semantics is in coNP w.r.t. data complex-
ity and in A8[O(log n)] w.r.t. combined complexity;

— under brave semantics is in NP w.r.t. data complex-
ity and in NP w.r.t. combined complexity.

Proof. The data complexities follow from the proce-
dures described in Section 5: since verifying that a se-
quence of ABoxes is a repair as well as non-entailment
and entailment of a BTCQ can be decided in poly-
nomial time, ARNonEntailment, IARNonEntailment
and braveEntailment take non-determistic polynomial
time.

For the combined complexity of brave BTCQ entail-
ment, a certificate that (7, (A})o<i<n)» P = ¢ can be
guessed together with (A!)o<;<n. and verified in P.

For the combined complexity of IAR, we use the
procedure IAREntailment of Section 5 with an NP or-
acle to decide the existence of a minimal inconsistent
subset of size at least k in the first step, and to decide
the entailment of ¢ in the last step. O

For ££, , matching lower bounds for all semantics
come from the atemporal case [27, 34].

For DL-Lite , we can obtain matching lower bounds
from the atemporal case for the combined complex-
ity of all semantics as well as for the data complexity
of the AR semantics [28, 32]. Moreover, the proof of
Proposition 6.10 does not use negation in the query,
and therefore the data complexity lower bound for
brave semantics with rigid predicates applies also in
this case. Regarding IAR semantics, entailment of
BTCQs with negations under IAR semantics is already
in P (see Figure 3), so this better upper bound ap-
plies. Finally, we show that for brave semantics and
DL-Lite, in the case where there are no rigid predi-
cates, we can improve the NP upper bound of Figure 3
to a P bound.

We describe a method for brave entailment of BTCQ
without negation when Ngc = Nrg = () that proceeds
by type elimination over a set of tuples built from the
query and that represent the TCQs that are entailed at
each time point. First, we define the structure on which
the method operates. We consider the set BCQ(¢) of
leaves of ¢, that is, the set of all BCQs in ¢, and the set
F(¢) of subformulas of ¢. In what follows, we iden-
tify the BCQs of BCQ(¢) and the BTCQs of F(¢) with
their propositional abstractions: if we write that a KB
or a TKB entails some elements of BCQ(¢) or F(¢),
we consider them as BCQs or BTCQs, and if we write
that some elements of BCQ(¢) or F(¢) entail others,
we consider the elements of BCQ(¢) as propositional
variables and those of F(¢) as propositional LTL for-
mulas built over these variables.

Definition 8.2. A brave-justification structure J for
the BTCQ without negation ¢ in the TKB /C is a set
of tuples of the form (i, Lnow, Frow» Fprevs Frext), Where
0 g i < n, Lnow g BCQ(¢)’ Fnow g F(¢)’ Fprev g
F(¢), and Fuext C F(9).

Note that the size of a brave-justification structure
for ¢ in K = (T, (Ai)ogicn) is linearly bounded in
n and independent of the size of the ABoxes. A tuple
(4, Loow» Frows> Fprevs Frext) is justified in J iff it fulfils
all of the following conditions.

1. <Ts Al> ':brave /\qGLm)w q.
2. If i > 0, there exists (i—1, L s Friows
J such that Fyrey = F o, and Fyoy = Fly.
3. Ifi < n, there exists (i+1, Ljoy» Frows Fprevs Frext) €
J such that Fuext = Fly and Frow = Flyey-

. For every ¢ € BCQ(¢), if Fpow = ¥, then ¢ €
Liow-

. Forevery y € F(¢), if Foow = ¢, then ¢ € Fiyo-

- Foreveryy € F(¢).if A\ (e, aNO™ (Ayer,. XN
O(/\Xepnm)() = ., then € Frow.

. For every y, ¥/ € F(¢):
ifyVy' € Fuow, then either y € Foow or ¥/’ € Frow,
if O € Fpow, then either ¢ € Fl oy or QY € Frexes
if 0Py € Fpow, then either ¢ € Foy or OP% € Frexis
if 07y € Fyow, then either ¢ € Fpow or Q"¢ €
FpreVa
if 'Uy € Fuow, then either iy € Frow Or ¢/ € Foow
and y'Uy € Frexts
if y'UP y € Fpow, then either iy € Froy or ¢/ € Fpow
and ¥'U ¢ € Frex,
if Y'Sy € Fpow, then either ¢ € Foy or Y/ € Frow
and Y'Sy € Frey, and
if ¢ is of the form Uy, then either ¢ ¢ Fio Or

0, (Dogign),n+ 1 = Oe.

! /
Fprev’ Fnext) €

/

~

AN D

~
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8. If i = n, then
for all y € F(¢) that are of the form @”¢, ¥ €
Fn0W7
for all y € F(¢) that are of the form Og and such
that (0, (0)o<i<n),n + 1 = Oy, we have ¢ ¢ Frow,
for all ¢ € F(¢) that are of the form (¢, 1Py, or
splUb ‘D’ lr// 6 FH()W iffga 6 FﬂOW?
for all € F(¢) that of the form O, ¢'U’ ¢ and
such that (0, (0)o<i<n)n + 1 = Do, ¥ € Fpoy iff
¢ € Foow.

9. If i = 0, then
for all ¢ € F(¢) that are of the form @ ¢, ¥ €
Fn0W7
for all ¢ € F(¢) that are of the form O~ ¢, ¢ ¢
Frow, and
forally € F(¢) that are of the form ¢~ ¢, (0~ ¢, ¢'S ¢,
WU € Frow iff ¢ € Frow.

We give the intuition behind the elements of the tuples
that fulfil these conditions. The first element i is the
time point we are considering, Loy is a set of BCQs
whose conjunction is entailed under brave semantics
by (T, .A;) (Condition 1), and F is the set of for-
mulas that can be entailed together with L, depend-
ing on what is entailed in the previous and next time
points, this information being stored in Fyrey and Frex;
respectively (Condition 6). Conditions 2 and 3 ensure
that there is a sequence of tuples representing every
time point from O to n such that this information is
coherent between consecutive tuples. Condition 4 ex-
presses that L, is exactly the set of BCQs contained
in F. and Condition 5 that F,,, 1S maximal in the
sense that it contains its consequences. Condition 7
enforces that Fpow, Fprey and Fyex respect the seman-
tics of LTL operators and Conditions 8 and 9 enforce
this semantics at the ends of the finite sequence. (Note
that we use here the fact that past operators cannot be
nested below unbounded future operators, and that no
BCQ can be entailed under brave semantics after time
point n because there are no rigid predicates.)

A brave-justification structure J is correct if every
tuple is justified, and ¢ is justified at time point p by J
if there is (p, Luows Frows Fprevs Fnext) € J such that
¢ € Fpow. We show that ¢ is entailed from K at time
point p under brave semantics iff there is a correct
brave-justification structure for ¢ in KC that justifies ¢
at time point p. The main idea is to link the tuples of
a sequence ( (7, Lnows Frow» Fprevs Frext))o<i<n t0 a con-
sistent TKB X' = (T, (C;)o<i<n) such that for every
i,C; C A; and (T,C)) E /\qeLm q. We show in the
appendix that there is such a K’ such that K',p = ¢

iff there is such a sequence of tuples that is a correct
brave-justification structure for ¢ in K and justifies ¢
at time point p.

The data complexity of brave entailment of BTCQ
without negation when there are no rigid predicates
follows from the characterization of brave BTCQ en-
tailment with brave-justification structures.

Pl'OpOSitiOIl 8.3. For DL-Liter, l:fNRC = Npr =
(), then entailment of BTCQs without negation under
brave semantics is in P w.r.t. data complexity.

Proof. We describe a polynomial procedure that de-
cides the existence of a brave-justification structure for
¢ in IC that justifies ¢ at time point p. We start with
a brave-justification structure J for ¢ in I that con-
tains all possible tuples. We then remove the unjusti-
fied tuples as follows: (i) remove every tuple that does
not satisfy Conditions 1, 4, 5, 6, 7, 8 or 9, and (ii)
repeat the following steps until a fix-point has been
reached: iterate over the tuples from time point O to
n, eliminating those which do not satisfy Condition 3,
and then iterate from n to O eliminating those which
do not satisfy Condition 2. For the resulting brave-
justification structure, we check whether it contains a
tuple (p’ Lnow’ Fnow, Fprev: Fnexl) such that ¢ € Fnow~
If yes, we return “entailed at time point p”, otherwise,
we return “not entailed at time point p”. Since the size
of J is linear in n, this process requires at most quadrat-
ically many steps. The verification that a given tuple
is justified requires polynomial time w.r.t. data com-
plexity (the verification of Condition 3 or Condition 2
is linear in n, and only the brave entailment of a BCQ
from a DL-Liteg KB for Condition 1 depends on the
size of the ABox, which can be performed in AC® w.r.t.
data complexity). Therefore, the complete procedure
runs in polynomial time w.r.t. data complexity. O

The following theorem summarizes the complexity
results for the case without negation in the TCQ.

Theorem 8.4. The results in Figure 5 hold.

9. Toward practical algorithms

Until now, work on TCQ answering has primar-
ily focussed on complexity analysis for different DL
languages [5, 6, 21]. Attempts towards practical al-
gorithms or implementations are as of now scarce
[42, 45]. The only attempt toward more practical al-
gorithms close to our scenario that we are aware of
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Data complexity

Combined complexity

classical AR IAR brave classical AR IAR brave
EL)
Nrc = Nrg = 0 P coNP coNP NP NP 15 Ab[O(log n)] NP
Npc # 0,Ngr = 0 P coNP coNP NP NP 15 Ab[O(log n)] NP
Nrc # 0, Ngr # 0 P coNP coNP NP NP 15 AS[O(log n)] NP
DL-Liter
Nrc = Nrg = 0 in ALOGTIME coNP in P inP NP I NP NP
Nrc # 0,Nrgr = in ALOGTIME coNP in P NP NP | N4 NP NP
Nrc # 0,Npr # @  in ALOGTIME  coNP in P NP NP I NP NP

Figure 5. Data [left] and combined [right] complexity of BTCQ entailment for BTCQs without negation. All results are tight but those preceded

[7IeRt)

by “in” which are upper bounds. The complexities lower than in the case of BTCQs with negation are in bold.

has been made for DL-Liter and TCQs without nega-
tion in [42], and partially implemented [46]. Some of
the results have then been generalized in [17] to query
languages that are rewritable in the atemporal case. In
this section, we will mainly focus on DL-Liteg TKBs
and TCQs without negation, building on this previous
work. However, some of our results also apply to other
DLs and we will discuss the case of £L£ .

Three different algorithms for answering TCQs
without negation over DL-Liteg TKBs without rigid
predicates are provided in [17, 42]. The first approach
is to rewrite the TCQ into a query in ATSQL [47],
an SQL variant for temporal databases. The second
method first rewrites the TCQ into an equivalent TCQ
that does not contain future operators, and then itera-
tively computes the answers for each time point. The
third algorithm computes the answers of the TCQ it-
eratively as well, but does not eliminate the future op-
erators beforehand. For this, it uses a data structure
called answer formulas, which represents the TCQs in
which some parts have already been evaluated. This
structure contains sets of already computed answers
to subqueries, as well as variables that serve as place-
holders for subqueries that have to be evaluated at the
next time point.

Our first contribution is a method for handling rigid
predicates (both concepts and roles) in polynomial
time for TCQ answering over DL-Litex TKBs under
the classical semantics. Indeed, [17, 42] consider only
rigid concepts (but not rigid roles) for which they pro-
vide a method that is restricted to TCQs that are rooted,
i.e., in which each CQ contains an individual or an an-
swer variable that is connected to all the other terms
through roles. As a second contribution, we show that

in the absence of rigid predicates, it is sometimes
possible to combine the algorithms for inconsistency-
tolerant query answering in the atemporal case with
algorithms for temporal query answering in the con-
sistent case in order to perform inconsistency-tolerant
temporal query answering.

9.1. TCQ answering under classical semantics in the
presence of rigid predicates for DL-Liter and
TCQ without negation nor unbounded future
operators

In this section, we show how TCQ answering with
rigid predicates can be reduced to TCQ answering
without rigid predicates, enabling us to use the algo-
rithms that have been proposed for this latter case. In
all the section K is a DL-Liteg TKB and ¢ a TCQ
without negation nor unbounded future operators (O,
O, ¢, U). This restriction amounts to using the setting
of [17,42] in which the semantics is defined w.r.t. finite
sequences of interpretations, and is necessary to reduce
TCQ answering with rigid predicates to TCQ answer-
ing without rigid predicates. Indeed, consider for in-
stance the query [JA(a). Such a query can be entailed
with rigid predicates, e.g., if A is rigid, but not without
rigid predicates since for p > n, the interpretation of
every predicate is empty in the p™ component of the
canonical model of a TKB without rigid predicates.

To the best our knowledge, the only algorithm that
has been proposed for TCQ answering with rigid pred-
icates and aims at practicality is described in [17, 42],
and deals only with rigid concepts and rooted TCQs.
We briefly describe this algorithm, which aims at han-
dling streaming data by computing the answers to the
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query at the last available time point. The key idea is
to check all sets of potentially rigid concept assertions
and test their compatibility with each of the ABoxes
from the sequence together with the TBox. Unfortu-
nately, the original algorithms omits the test whether
the checked set of rigid concept assertions covers also
the rigid information from the tested ABox together
with the TBox. As we found this small flaw in the orig-
inal algorithm, we present here a mended variant.

The algorithm first constructs every possible set R
of assertions built from the rigid concepts and indi-
viduals in the TKB K. Note that there are 2/Nacl*IN"|
such sets. It then runs, in parallel, for each such set R
an instance of the algorithm for TCQ answering with-
out rigid predicates on the TKB that is obtained by
adding the assertions in R to every ABox of the TKB.
For each time point i, it takes into account the new
dataset available by eliminating the incompatible in-
stances, i.e., those for which

1. (T, A; UR) is inconsistent, or
2. a rigid concept assertion entailed by (7T ,.A;) does
not belong to R.!

The answers at time point i are then obtained by taking
the intersection of the answers returned by all active
instances.

We follow a similar idea in the sense that we also
add assertions to the TKB that propagate the effects
of the rigid predicates. We show that this way, for
DL-Liter, TCQ answering with rigid predicates can
be reduced to TCQ answering without rigid predicates
in polynomial time.

In order to show that TCQ answering with rigid
predicates can be reduced to TCQ answering without,
we construct in polynomial time a set of assertions
‘R that captures all information about rigid concepts
and roles that is relevant for consistency checking and
TCQ answering. Then, TCQ answering over /C with
Ngrc # 0, Nrg # @ can be performed by TCQ answer-
ing over (T, (A; U R)ogi<n) With Nsc = Npg = 0.
Without any restriction on the TBox, R may be infi-
nite, as illustrated in the following example.

Example 9.1. Consider £ with 7 = {3R~ C
3R, R C S}, where S is rigid, Ay = {R(a,b)}, and
A; =0 fori € [1,n].

IThis condition is new and added after consultation with the au-
thors of [17, 42].

Every model of K that respects rigid predicates sat-

isfies ¢ = Fxp..xpp1.S(x1,x2) A oo A S (g, Xgt1)
for every k > 0 and at every time point. Since with
Nrc = Nrr = 0, K entails such a query only at

time point 0, R should be such that (7,R) entails
such a query, so that (7, (A; U R)ogign) entails it at
every time point. Moreover, there exist models of IC
that respect rigid predicates and for which neither
Fx1... xS (21, x2) Ao AS (xg, x1) nor Ixy.R(x,y) hold
at any time point i > 0. Therefore, R cannot contain
cycles of §, nor R-assertions . Consequently, R has to
contain an infinite chain of S -assertions.

This problem motivates us to disallow rigid roles
that have non-rigid sub-roles. In other words, we re-
strict ourselves in the following to TBoxes 7T that en-
tail no role inclusions of the form Py C P, with
Py = Rl‘Rl_7 R, € NR\NRR and Py, = RQ‘R_,
Ry € Ngg. This condition avoids chains of rigid roles
in the anonymous part of the canonical model Ji that
cannot be entailed by a single rigid assertion. In the
example above, if rigid roles are only allowed to have
rigid sub-roles, then R has to be rigid. In this case,
adding the single assertion R(x, y) to every A; is suffi-
cient for Ixq...xp11.R(x1, X2) A ... A R(xp, Xpy1) to be
entailed at every time point and for every k£ > 0.

As a first step, we explicitly construct the canonical
model Jx of the DL-Litegx TKB K. This model will
be used to prove that K with Ngc # @, Ngg # @ and
<T, (A, U R)O<[<n> with Ngc = Npg = () entail the
same BTCQs without negation nor unbounded future
operators.

We build a sequence of (possibly infinite) ABoxes
(chaser’?g(Ai))ogignH similar to the chase presented
in [48] for KBs. Let S be a set of DL-Lite assertions.
We say a Pl a is applicable in S to an assertion 3 € S
if one of the following conditions is satisfied:

- :Al EAQ,IB :Al(a) andAg(a) é S,

—a =A C 3P, = A(a) and there exists no b such
that P(a,b) € S,

-—a=3PCA,B=P(a,b)and A(a) ¢ S

— a = 3Py C 3Py, B = P1(ay, az) and there exists no
b such that Py(ay,b) € S, or

- = Pl E Pg,ﬁ = Pl(al,ag), and Pg(al,ag) € S.

A Pl « is applied to an assertion 8 by adding a new
assertion ey to S such that « is not applicable to 8 in
S U {Bnew } anymore.

Definition 9.2 (Rigid chase of a TKB). Let £ =
<T, (Ai)0<i<n> be a DL-Litex TKB. Let (A;)ogign_;,_l
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be such that A = A; U {B | Jk,B € A, and B is rigid}
for i € [0,n] and A, = (. Finally, let 7, be the set
of positive inclusions in 7, and N; be the number of
assertions in .A]. Assume that the assertions in each .A;
are enumerated from N1+ - -+N;_1+1to N1+ - -+N;
following their lexicographic order. Consider the se-
quences of sets S/ = (8/)o<icnt1 of assertions de-
fined by

S =(ADo<ic<nt1

Sitl —Si |y Snev — (Szj U Sinew)0§i§n+17
where 8"V is defined in terms of the assertion Spey

obtained as follows: let 8 € S'i be the first assertion in

S/ such that there exists a PI in 7, applicable in SJ to
[ and let a be the lexicographically first PI apphcable
in 512 to 8. In case a, 8 are of the form

—a=A; C Ay and 8 = Ay (a) then Bpey = Az(a)

—a=ALC JPand B = A(a) then Buew = P(a, dpew)

—a=3PLC Aand B = P(a,b) then B,y = A(a)

—a = 3Py C JP and B = Pi(a,b) then Bpew =
P(a, anew)

—a = Py C Pyand B = Pi(ai,az) then Byew =
Py (a1, az)

where dpey, is constructed from a and 3 as follows:

— ifa € N then tew = X,
— otherwise a ¢ N°, then let a = x vp. p, and define

i
new = Xyrp, . p,p-

If Brew is rigid, then 8™ = ({Bnew})o<icnt1. other-
wise, S"V = (SMY)o<ignt1 With S};ew = {Bnew } and
SV = () for i # ig.

Let N be the total number of assertions in S/. The
assertion(s) added are numbered as follows: if Byew 1S
not rigid, Bpew 1S numbered by N + 1, otherwise for
every i € [0,n + 1], the assertion Byew € SV added
to S/ is numbered by N + 1 + i.

We call the rigid chase of K, denoted by chaseyiy (K) =

(chaseng(A,-))og,-g,,H, the sequence of sets of asser-
tions obtained as the infinite union of all S/, i.e.,

(U Shosicntr-
JEN

(Chaserlg (A ))0<i<"+1 =

Based on the rigid chase of /C, we construct the se-
quence of interpretations Jx = (Z;)i>0, where Z; =
(A, 1) is defined as follows.

- A = NF UTy, where Ty is the set of individuals
that appear in chasei(K) and not in /.

- Foreverya € A, ali = a.

- For every A € Ng, AT = {a | A(a) € chasef,(A:)}
ifi < n A% = {a | Aa) € chaseng(AnH)} if
i>n.

— For every R € Ng, R = {(a,b) | R(a,b) €
chaseng(.A-)} if i < n, R% = {(a,b) | R(a,b) €

chaseng(A,,+1)} ifi > n.

We show that Ji is a model of /C that respects rigid
predicates, and that for any BTCQ without negation ¢
such that Nf’ - N,’C, K,pE ¢iff e, p E 6.

Lemma 9.3. If K is consistent, then Ji is a model
of K that respects rigid predicates.

Proof (Sketch). Since for every i € [0,n], A; C
chaseng (A;), we directly obtain Z; |= A;. We can show
that for every i, Z; further satisfies every positive inclu-
sion of 7 with similar arguments as those used in [48].
Indeed, every PI applicable to an assertion S in Sij at
step j of the construction of the rigid chase becomes
not applicable to 3 in S¥ for some k > j, because there
are neither infinitely many assertions before g, nor in-
finitely many PIs applied to some assertion that pre-
cedes B. Finally, we show that Z; satisfies every neg-
ative inclusion of 7 because otherwise K would be
inconsistent. Moreover, the model [Ji respects rigid
predicates because, if an assertion S of chaseng(A,-) is
rigid, either 8 € A; and by construction § € S = A}
for every k, or 8 has been derived at some step j by ap-
plying some PI to an assertion of S/ and 8 € S} +1 for
every k. We obtain that in both cases, 8 € chaseng (Ax)
for every k. O

Next, we show that Jx is the canonical model of
for entailment of BTCQ without negation.

Lemma 9.4. If IC is consistent, then for every BTCQ
without negation ¢ such that N? - N,’C, K,p E ¢iff
TP FE ¢

Proof (Sketch). Since T = (I;)i>0 with Z; = (A, =)
is a model of KC that respects rigid predicates, the first
direction is straightforward, and we only need to show
that Jic, p = ¢ implies K, p = ¢. Let T = (Z])i>o0
with Z/ = (A’,-Z') be a model of K that respects rigid
predicates. We show by structural induction on ¢ that
if Je,p E ¢, then J,p = ¢. For the case where ¢
is a CQ ¥y (¥), we show that if there exists a homo-
morphism 7 of Fy.4(¥) into Z,, then Z, = 3V.4(¥), by
defining a homomorphism % from A into A’. O
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We are now ready to introduce the set R that, if
added to every ABox of the TKB, allows us to reduce
TCQ answering with rigid predicates to TCQ answer-
ing without.

Proposition 9.5. Let R be as defined in Figure 6. The
set R is computable in polynomial time and such that

1. K is consistent iff Kr = (T, (A U R)ogign) is
consistent with Ngc = Npg = 0, and

2. for any BTCQ ¢ without negation nor unbounded
future operators and such that Nf’ CNE KopE¢
iﬁ(ICR,p ': ¢Wil‘h NRC = NRR = (Z)

The size of R is polynomial in the size of N N’,§,
and NI, and since query answering as well as sub-
sumption checking are in P, 'R can be computed in
polynomial time. The first three parts of R contain in-
formation about the participation of individuals of N
in rigid predicates. The last two witness the partici-
pation in rigid predicates of the role-successors w.r.t.
non-rigid roles, thus take into account also anonymous
individuals that are created in chase;i,(KC) when ap-
plying PIs whose right-hand side is an existential re-
striction of a non-rigid role. Note that the individuals
created in chaseyi,(}C) when applying such a PI with a
rigid role are witnessed by the individuals x,p or xp, p,
if they do not follow from a rigid role assertion, and
do not need to be witnessed otherwise, since the asser-
tion Py(xp,, xp,p,) is sufficient to trigger the genera-
tion of the whole anonymous part implied by the fact
that xp, p, is in the range of Ps.

We break the proof of Proposition 9.5 into several
lemmas.

Lemma 9.6. /C is consistent iff KCr is consistent with
Nrc = Nrr = 0.

Proof. By Proposition 3.5, Kr is consistent with
Nrc = Ngg = 0 iff each (T, A; UR) is consistent. We
show that also /C is consistent iff each (7, A4; U R) is
consistent.

If I is not consistent, let B be a minimal incon-
sistent subset of K. Then B is either internal to some
A;, and (T, A; UR) is inconsistent, or is of the form
B = {(a,i), (B, j)} with i # j. In the latter case, {«, 8}
violates some negative inclusion in the closure of the
TBox that involves at least a rigid concept A or a rigid
role R by assigning an individual a (or two individ-
uals a, b) to two disjoint concepts (or roles). We can
then assume w.l.o.g. that we are in one of the follow-
ing cases: (i) (T, a) E A(a), (i) (T, @) E Ix.R(a, x),
@iii) (T,a) = 3Fx.R(x,a), or (iv) (T,a) = R(a,b).

It follows that respectively (i) (7, .A4;) |E A(a), (ii)
(T, A)) E Ix.R(a,x), (i) (T, A;) E IxR(x,a), or
@iv) (T, A;) = R(a, b). By construction of R, we then
conclude that (i) A(a) € R, (ii) R(a, x,g) € R, (iii)
R(x,z-,a) € R, or (iv) R(a,b) € R respectively, and
therefore (7, .A; U R) is inconsistent.

In the other direction, assume there exists i € [0, n],
such that (7, A; U R) is inconsistent, and let B be a
minimal inconsistent subset of (7, A; UR). If B is in-
ternal to A;, KC is clearly inconsistent. Otherwise, B is
of the form {a,} and involves at least one assertion
from R. The assertions « and S assign an individual
x to two disjoint concepts Cq,Ca, or two individuals
X,y to two disjoint roles R, Ro. We distinguish three
cases. In the case where x = x,p (resp. x = xp,p,),
since P(a, x,p) (resp. P2(xp,, xp, p,)) is the only asser-
tion of R that contains x, we obtain that 3P~ (resp.
3P;) is unsatisfiable. Since there exists j such that
(T, Aj) = 3x.P(a,x) (tesp. (T, Aj) = Ixy.P1(x,y)
and 7 }= 3P; T 3P»), it follows that 4; is incon-
sistent. In the case where x = xp,, since xp, appears
only in concepts that subsume 3P7, the fact that x is
assigned to two disjoint concepts implies that 3P| is
unsatisfiable. Therefore, and since there exists j such
that (7, A;) = 3xy.P1(x,y), Aj is inconsistent. Fi-
nally, in the case where x € N|’C, since @ or Bisin R,
at least one of C1,Cy (or Ry, R») is rigid. If some A;
is inconsistent, so is K. Otherwise, every A; is consis-
tent. If @ ¢ A;, let ¢, € A;, be an assertion responsi-
ble for the entailment that triggered the addition of @
to R, and otherwise let (¢4, jo) = (@,i). If B ¢ A;, let
cg € Aj, be an assertion responsible for the entailment
that triggered the addition of 8 to R, and otherwise
(cg, jg) = (B,i). Then {(cq. jo), (cs, js)} is inconsis-
tent because ¢, and cg lead to a (or a, b) being assigned
to two disjoint concepts (or disjoint roles) such that at
least one of them is rigid. O

We now assume that KC and [C are consistent. Note
that if this is not the case, they both trivially entail
any BTCQ. The two following lemmas show that if a
Boolean conjunctive query ¢ = 3y.4(¥) is such that
N/ C N, then for every p € [0,1], Kr,p = q iff
K.pEaq

Lemma 9.7. Let ¢ = 3y.4(¥) be such that N] C N{*.
Forevery p € [0,n], if Cr,p E qthen K, p E q.

Proof (Sketch). This lemma can be shown by defin-
ing a homomorphism from the canonical model of
(T, A, UR) into Z,,. O
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{R
{P

(
(
(
(

R ={A(a) | A € NK;,a € NF,3i, (T, A) = A(a)} U

a,b) | R € N§s,a,b € N, 3i, (T, A)) = R(a,b)} U

a,%.p) | R € NAj, P := R|R™,a € NI, 3i, (T, A;) = 3x.P(a,x)} U

i, (T, A;) E Ixy.Pi(x,y)and T =3P CA} U
{Pa(xp,, xp,p,) | S € NF\NAR, Py :=S|S ~,R € N&g, P2 := RIR™,3i, (T, A} |= Fxy.P1(x,y)

{A(xp,) | S € Ng\NRg, P1 :=S|S 7, A € NE,

Figure 6. Set of rigid assertions added to every ABox of /C

Lemma 9.8. Let ¢ = 3y.4(¥) be such that N{ C N[
Forevery p € [0,n], if C,p = q then Kz, p E q.

Proof (Sketch). The lemma can be shown by consider-
ing a model Z* of (T, A, UR), and defining a homo-
morphism of Z,, into I;z. O

Since by Lemmas 9.7 and 9.8, £ and Kz with
Nrc = Ngr = 0 coincide on the entailment of BCQs
for every time point p € [0,n], we can show as in
Proposition 7.6 that they coincide on entailment of
BTCQs without negation nor unbounded future opera-
tors.

Lemma 9.9. Let ¢ be a BTCQ without negation nor
unbounded future operators and such that Nf& C N

K,p = ¢ iff Kr, p = ¢ with Npc = Npg = 0.

It follows that TCQs can be answered in X with
rigid predicates by answering TCQs in r without
rigid predicates and pruning answers that contain in-
dividual names not in N{*. Note that every model of
Kr is a model of C, but does not respect rigid predi-
cates in general. We can reduce BTCQ entailment over
IC with rigid predicates to BTCQ entailment over Kz
without rigid predicates only because our TCQs do not
allow LTL operators to be nested in existential quan-
tifications. This prevents existentially quantified vari-
ables to link different time points. To see this, con-
sider the query Jxy.[0?(R(a, x) AR(x,y)) and the TKB
K= <T, (.A,')og,-gn> with T = {B C3JR,JR C ER},
R € Ngg and A; = {B(a)}. For this TKB, we would
have R = {R(a, x,z)}, and therefore x,z could have a
different R-successors in each interpretation of a model
of K, thus y cannot be mapped to the same object at
every time point.

Remark 9.10. In the case of streaming data, if we
want to take into account a newly available dataset, we
do not need to fully recompute R: we only need to add
the new rigid assertions that can be derived from the
new dataset. Moreover, if we only reason over a win-
dow of n time points from our stream, we can anno-
tate the assertions in R with a counter that is initialised
with n and decremented with each new time point.
Assertions are then removed from R if their counter
reaches 0. Here, we implicitly assume that the counter
for an assertion is reset to n whenever it is again de-
rived from the next dataset.

Remark 9.11. The main goal of the approaches pre-
sented in [17, 42] for TCQ answering in DL-Litex, is to
obtain the query answers at the last time point without
storing all the data for all previous time points. Their
algorithm uses a bounded history encoding, which
means that the space required by the algorithm is con-
stant w.r.t. the number n of previous time points: only
the current dataset and some auxiliary relations re-
quired for computing the query answers are stored and
updated at each time point.

Unfortunately, with rigid predicates present, our ap-
proach does not achieve bounded history encoding,
since the answers of the subqueries of ¢ at previous
time points may change when new rigid assertions are
derived from the last dataset. However, if the algo-
rithm of [17, 42] has this property, it requires exponen-
tial space w.r.t. N5 and N/* which can also be prob-
lematic, while our algorithm requires only polynomial
space and time. To achieve bounded history encoding
(but in exponential time w.r.t. N&;, NAz and NI), we
could adapt the algorithm of [17, 42] to support rigid
roles. We would consider all possible sets R built from
NA., NAg and NF following the form of Figure 6, then
verify at each time point whether R is consistent with
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A; and 7 and contains all rigid assertions that can be
derived from A; as described in Figure 6.

A possible direction to alleviate the restrictions on
the TBox that forbid rigid roles that have non-rigid
sub-roles would be to use ideas similar to those de-
veloped in [43] for CQ answering over DL-Liteg KB
using the combined approach. This CQ answering ap-
proach saturates the data by adding to the ABox every
assertion that can be derived, introducing individual
names to witness existential role restrictions, and then
uses a special rewriting to prune spurious answers. In
our setting, we could model infinite chains of rigid
roles by adding cycles of rigid roles to R, then prune
the spurious answers resulting from these cycles.

Regarding ££, , we conjecture that we could have
a similar approach for rigid predicates. The main dif-
ference would be that since in £L£ | several assertions
may be needed to derive one, R would have to be com-
puted iteratively, taking into account its own assertions
to derive new ones until a fix-point is reached. More-
over, the problem of infinite chains of rigid roles that
cannot be entailed by a polynomial set of assertions
would appear as soon as Ngg # ). The combined ap-
proach for £L [11] could provide ideas to overcome
this difficulty.

9.2. Inconsistency-tolerant TCQ answering without
rigid predicates

In this section K is a £ TKB and ¢ a TCQ without
negation.

When Ngc = Ngr = 0, an important consequence
of Proposition 3.5 is that the repairs of I are all
possible sequences (A})o<i<, Where A/ is a repair
of (T, A;), so the intersection of the repairs of K is
(AMo<i<n where A is the intersection of the repairs
of (T, A;). This allow us to show that the entailment
(resp. IAR entailment) of a BTCQ without negation
from a consistent (resp. possibly inconsistent) TKB in
a DL L that has the canonical model property for BCQ
entailment can be equivalently defined w.r.t. the entail-
ment (resp. IAR entailment) of the BCQs it contains as
follows:

Proposition 9.12. [f L has the canonical model prop-
erty for BCQ entailment and Nrc = Npg = 0, then the
entailments shown in Table 3 hold for S = classical
when K is consistent, and for S = IAR.

Table 3

Entailment under classical or IAR semantics from a £ TKB without
rigid predicates and such that £ has the canonical model property
for BCQ entailment

¢ K,p Es ¢iff

Fy(F) p<nand (T, Ap) s Fu(F)

$1 A p2 K,p s ¢1 and I, p |=s p2

$1V o2 K,plEs ¢1or K, p s ¢2

O¢1  K.p+1f=s¢1

®’¢1 p<nimplies K, p+1 Es ¢1

O7¢1 p>0andK,p—1|=s ¢1

® ¢1 p>0implies K, p—1 =5 ¢1

U Vk, k> p, K.k |= ¢1

OP¢1 Vk,p<k<nK.klE=¢

O ¢1 Yk 0< k< p K kl=s 1

Qp1 Ik, k> p, Kk = ¢

OP¢1 Tk p<k<n KklE=dr

O0~¢1 KO0k p. K.k s o1

$1U¢a 3k k> p, K k= g2 andVj, p < j<kK,jE= ¢1
p1UP g2 Tk, p <k <n, K.k =5 g2 and Vj, p < j <k, K, j |=s ¢1
$1S¢d2 Tk, 0< k< p, K,k =s g2 and Vj, k< j< p, K, j Es ¢1

Proof. For the consistent case, all relations in Table 3
but the first one are straightforwardly obtained by ap-
plying the definitions of BTCQ satisfaction of Table 1
to the canonical model of K. Moreover, by Proposi-
tion 3.6, if p < n, then K, p |= Iy (F) iff (T, A,) =
Iy (¥). Finally, I, p & Fy(¥) if p > n, because
there exists a model of X whose p”* component inter-
prets every predicate as the empty set.

For IAR semantics, let (AF)o<;<, denote the inter-
section of the repairs of K and .A{' denote the intersec-
tion of the repairs of (7, A;).

= K. p Far () (T, (Af)o<i<n), P = DU (),
ie, iff p < nand (T, A}) = 3¢(¥) because
(AN)o<i<n is consistent. Since the repairs of K
are the sequences of the repairs of the (T, A;),
Al = A7 so K,p Fiar F4(3) iff p < n and
(T, Ap) Fiar (). A

-K.p Fuar ¢1 A @2 iff (T, (Ao<i<n)s P F
é1 A ¢2, ie., iff <T, (A}r)ogj<n>,p |= ¢1 and
(T, (AN o<i<n)s P & ¢2 because (AF)o<i<n is con-
sistent. It follows that IC,p Far @1 A @2 iff
K, p Fiar ¢1 and IC, p =1ar ¢2.

— We show all remaining relations in the same way,
applying the definition of IAR semantics and using
the fact that (A)o<;<, is consistent.

O

This is a remarkable result, since it implies that an-
swering temporal CQs under IAR semantics can be
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done with the algorithms developed for the consistent
case (see [17, 42] for algorithms for DL-Liter with-
out unbounded future operators) by replacing classical
CQ answering by IAR CQ answering (see [29, 36, 37]
for algorithms for DL-Lite). The following example
shows that this is unfortunately not true for brave or
AR semantics.

Example 9.13. Consider the TKB K = (T, (A;)o<i<n)
and TCQ ¢.

T ={T C -F}
A; ={T(a),F(a)} for0<i<n
¢ =07 (T(a) N @ F(a))

Now, K,k Ebrave T(a) N@~ F(a) forevery 0 < k < n,
but KC,n |[Eprave ¢ This is because the same repair
cannot entail 7(a) A @ F(a) both at time point k
and k + 1, since it would contain both (T'(a), k) and
(F(a),k) which is not possible. For AR semantics,
consider ¢ = T(a) V F(a) over the TKB K: while ¢
holds under AR semantics at each time point, neither
T (a) nor F(a) does.

However, if the operators allowed in the TCQ are re-
stricted to A, O, @”,0, @, 0,0%, and O, then AR
TCQ answering can be done with the algorithms devel-
oped for the consistent case by simply replacing clas-
sical CQ answering by AR CQ answering (see [37] for
algorithms for DL-Liter ). Indeed, for these operators,
the relations of Proposition 9.12 hold for S = AR.

“Kop Far W) iff for every repair (AD)ocic
of KK, (T, (AD)o<i<n) P E YY), i.e., iff for ev-
ery repair (Af)o<icn of K, p < nand (T, A)) =
.y (F) because (Al)ogicn is consistent. Since the
repairs of /C are the sequences of the repairs of the
(T, A;), it is the case iff p < n and for every repair
A, of (T, Ap), (T, A}) = FFy(y), ie., iff p < n
and (T, A,) Far By ().

- K,p Ear ¢1 A ¢2 iff for every repair (A])o<i<n
of IC, (T, (AD)o<isn)» P = @1 A @2, i.e., iff for ev-
ery repair (Aj)o<i<n of K, (T, (Ado<isn) P = 61
and (7., (A}o<i<n), P = ¢2 because (Af)o<icn i
consistent. It follows that IC,p =ar ¢1 A ¢o iff
K,p Ear ¢1 and K, p [Ear ¢2.

— We show all remaining relations in the same way,
applying the definition of AR semantics and using
the fact that TKB repairs are consistent.

The following counter-examples show that this is not
the case for the other operators: Vv, O, 0?, O, U, U,
and S.

= KC,0 =ar @1V @2 but C,0 Far ¢1 and KC,0 fear
¢a:

T ={A C -B)
¢1 =A(a)

Ao ={A(a), B(a)}
¢2 =B(a)

- K,0 =ar O (resp. K,0 =ar OP¢1) but for every
k (resp. such that 0 < k < 2), K, k [Ear é1:

T ={AC -B}
A ={A(a), B(a)}
¢1 =A(a) N OB(a)

Ao ={A(a)}
Az ={B(a)}

- K.0 [Far ¢1Ugs (resp. K,0 =ar ¢1U” ¢2) but
for every k (resp. such that 0 < k < 2), either
K,k FEar ¢2 or there exists j, such that 0 < j < k

and ]C,] %AR ¢1Z

T—{aT-B) A ={Al)
A1 ={A(a). B(a)} Az ={B(a)}
¢1 =A(a) ¢2 =B(a)

— We can construct similar counter-examples for {~
and S.

Interestingly, contrary to the brave semantics, even
for general TCQs the “if”” direction of Proposition 9.12
is true.

- If ’C,p ':AR ¢1 or ’C,p ':AR ¢2, then ]C,p ':AR
é1V P2

— If there exists kK > p such that K,k Ear ¢1, then
K,p Far 0d1.

— If there exists k such that p < k < nand K,k =ar
b1, then IC,[) ':AR <>b¢1.

— If there exists k such that 0 < k < p and K,k =ar
¢1.then IC, p [Far O™ ¢1.

— If there exists k > p such that I,k =ar @2 and for
every jsuch that p < j < k, K,j FEar ¢1, then
K, p Ear ¢1U ¢a.

— If there exists k such that p < k < n, K,k Ear ¢
and for every j such that p < j < k, K, j =ar ¢1,
then ’C,p ':AR ¢1Ub ¢2.

— If there exists k such that 0 < k < p, K,k Ear ¢
and for every j such that k < j < p, K, j Ear 61,
then K, p =ar 1S ¢o.

It follows that even for unrestricted TCQs, combin-
ing algorithms for TCQ answering with algorithms for
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AR query answering will provide a sound approxima-
tion of AR answers.

For brave semantics, it would be useful to charac-
terize the queries for which this method would be cor-
rect. Indeed, for many pairs of a TBox and a query,
the minimal subsets of the TKB such that the query
can be mapped into them cannot be inconsistent. For
instance, for DL-Liter; TKBs, this is the case if no
pair of predicates that may be involved at the same
time point appears in an NI entailed by the TBox. Con-
sider for instance 7 = {A C —-C, B C —C} and
¢ = IxA(x) A O(3x.B(x) A O(3x.C(x))). For ¢ to
be entailed at time point p, 3x.A(x) should hold at p,
Jx.B(x) at time point i > p and 3x.C(x) ati + 1 > p,
so there cannot be a conflict between the C and the A
or B timed assertions used to satisfy the different CQs.

10. Conclusions and future work

For stream reasoning handling the temporal dimen-
sion of the collected data and being resilient against
errors in the data are expedient requirements. In the
presence of erroneous data handling inconsistencies
is even indispensable for logic-based approaches to
stream reasoning. In this paper we have lifted stan-
dard inconsistency-tolerant semantics AR, AR and
brave to a temporal query answering setting that has
been widely studied in the literature—namely, where
the data is associated with time points and only the
query language admits the use of temporal operators
from LTL. We have presented complexity results and
techniques to combine temporal with inconsistency-
tolerant query answering over lightweight DL tempo-
ral knowledge bases suited for ontology-mediated sit-
uation recognition.

Our main contribution is a complexity analysis of
the three semantics, focusing on the DLs ££,; and
DL-Liter, where we distinguished the cases based
on whether rigid concept or role names occur in the
TKB, and on whether the query contains negation.
We provided general algorithms that allow us to de-
rive the complexity of temporal inconsistency-tolerant
query answering from the complexities of consistency
checking and classical entailment of temporal conjunc-
tive queries. We furthermore completed the complex-
ity picture for the classical semantics for TCQs with-
out negations. Indeed, for the case where the query lan-
guage does not provide negation, we devised a gen-
eral approach to assess the complexity by the use of

the canonical model property for B(T)CQ answering
and thus not only limited to a particular DL. This ap-
proach allows to derive the complexity of temporal
query answering from the complexity of conjunctive
queries entailment for DLs that have this canonical
model property.

Encouragingly, our analysis shows that either with
or without negation in the query, in most cases,
inconsistency-tolerant reasoning and temporal query
answering can be combined without increasing the
computational complexity. Furthermore, our results
show that disallowing negation in the query language
results in a drop in the combined complexity of TCQ
answering, and, in the case of ££, with rigid pred-
icates, even in the data complexity. This raises hope
that ontology-based stream reasoning applications in
temporal settings which are resilient against noise in
the data, can be feasibly implemented and used.

As a second major contribution, we investigated two
techniques useful for developing practical algorithms
for inconsistency-tolerant temporal query answering.
We first showed that in DL-Liter, under the classi-
cal semantics and for queries without negation nor un-
bounded temporal operators, rigid predicates can be
handled by adding a set of assertions of polynomial
size to each ABox from the TKB. However, our ap-
proach that adds this set of assertions R to every ABox
of the TKB to reduce TCQ answering with rigid predi-
cates to TCQ answering without rigid predicates works
only for BTCQ entailment under the classical seman-
tics.

We then showed that in the case without rigid pred-
icates and for queries without negation, TCQ answer-
ing under IAR semantics can be implemented by com-
bining algorithms developed for TCQ answering un-
der the classical semantics with algorithms for CQ
answering under IAR semantics over atemporal KBs.
Moreover, we showed that when disallowing some of
the operators in the queries, the same method can be
used for AR semantics, while for full TCQs without
negation, it provides for a sound approximation of the
AR answers. Unfortunately, this is not the case for
brave semantics which are relevant for practical appli-
cations, such as recognizing highly critical situations.
Thus it would be useful to characterize the queries and
TBoxes for which this method is correct. Now, fully
fledged practical algorithms still remain to be found for
inconsistency-tolerant temporal query answering with
rigid predicates.
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Appendix A. Omitted proofs

We start by defining the notions of conflicts and
causes that will be used in some proofs. A conflict for
aKB K = (T,.A) is a minimal 7 -inconsistent subset
of A. A cause for a BCQ g w.r.t. K is a minimal 7 -
consistent subset C C A such that (7,C) = g. The
following definitions extend these notions to the tem-
poral setting.

Definition A.1 (Conflicts of a TKB). A conflict of a
TKB K = (T, (Ai)o<i<n) is a sequence of ABoxes
(A!)o<i<n such that {(a,i) | @ € A,0 < i< n}isa
minimal 7 -inconsistent subset of {(a,7) | @ € A;,0 <
i < n}.

The conflicts of a DL-Liteg TKB are at most binary,
i.e., contain at most two timed assertions (Fact 6.11).

Definition A.2 (Causes for a BTCQ in a TKB).
A cause for a BTCQ ¢ at time point p in £ =
(T, (A)o<i<n) is a sequence of ABoxes (C;)o<i<n
such that {(a,i) | @ € C;,0 < i < n} is a minimal
T -consistent subset of {(a,i) | @ € A;,0 < i < n}
such that <T, (Ci)0<i<n>,p ): ¢.

Note that a KB (resp. TKB) is consistent iff it has no
conflict, and that a BCQ (resp. BTCQ) is entailed from
a KB (resp. a TKB) K under brave semantics iff it has
some cause in /C, since such a cause can be extended
to a repair that entails the query.

A.1. Proofs of complexity results

Hardness-results.

Proposition 6.9. BTCQ entailment froman EL, TKB
with Ngc # 0 is

— coNP-hard w.r.t. data complexity under AR and IAR
semantics, and

- Y-hard w.rt. data complexity under brave seman-
tics.

Proof. The lower bounds for AR and IAR semantics
follow from the atemporal case, so that we only have
to provide the lower bound for brave semantics.

We show that the complement of brave TCQ entail-
ment is H’z’-hard by reduction from QBFyy. Let & =
VX1 ... Xu3y1 ...y, be a QBFg y-formula, where ¢ =
AL, €0V €' v €2 is a 3-CNF formula over the propo-
sitional variables {x1,..., X, Y1, ..,y }. Based on @,
we define the TKB K = (T, (Ai)ogicsn+2) and the
TCQ ¢ as follows, where Ngg = {T}.

T ={3Pos.T C Sat, INeg.F C Sat,
JFromPos.Sat C T, 3FromNeg.Sat C F,
JFromY.SatC T, TMFC L,
TH3valy.TC L}

¢ =—°(NotFirst(c) V Sat(c)V

OSat(c) V OOSat(c))
For each clause €Y \ £} V €2, we define the following
three ABoxes As; 1 (0 < k< 2):
Asi =B U Bs;
Asivx =B U B U {NotFirst(c)},1 < k < 2,
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where

B ={T(x;),F(x;) |1 < j<m}U
{valY(yj,—y), [ 1< j<r}
Bsivx ={Pos(c, x;), FromPos(x;, ¢) } if £f = x;
Bsiyx ={Neg(c, x;), FromNeg(x;, c)} if £f = —x;
Bsiyx ={FromY(y,,c)} if £f = y;
Bsirx ={FromY(—y;,c)} if = -y

We show that @ is valid iff /C, 0 Epraye @-

The repairs of K correspond to the valuations of
the x;. Indeed, since T is rigid and disjoint from F,
each pair of timed assertions {(T(x;),i1), (N(x;),i2)}
is inconsistent, so every x; is such that a repair of K
contains either (T(x;),i) for every i, or (F(x;),i) for
every i. For each repair A’ = (A,)o<l<3h+2 of K,

we denote by vj? the valuation of the x; defined by

v (xj) = true if T(x;) € Aj. Correspondingly, for
every valuation vy of the x;, we denote by A =
(A™)o<ican+2 the repair of K defined by T(x;) € A

for every i if vx(x;) = true.

Assume that @ is valid and let A’ = (A])o<i<ant2
be a repair of /C. Since @ is valid, then there exists
a valuation vy of the y; such that ¢[x; < v (x;)]
is satisfied by vy. Let J = (Z;);>0 be a model of
(T, (A)o<i<ant2) that respects rigid predicates and
such that for every i,

- ij € THiff vy (y;) = true,
-~y € THiff vy(y;) = false, and

— if there exists some d such that (%, ¢%) € FromY%:

and d% € T%, then ¢% € Sat”.

One can verify that such a model always exists.
First, because the role ValY links only individuals of
the type y; and —y;, and we only assign T to one of
them, these additional constraints respect the TBox ax-
iom T 3IValY.T C L. Second, the assignment of ¢ to
Sat respects JFormY.Sat C T by construction.

It is easy to see that J,0 = [’(NotFirst(c) V
Sat(c) vV OSat(c) V OOSat(c)). Indeed, at each time
point p € [0, 3k + 2], either NotFirst(c) is true, or p =
3i and we show that Sat(c) is true at time point 3i + k,
where ¥ is the first literal of the clause 9 v £} v ¢?
satisfied by vf/ Uvy.

- If ¢ = x;, then v (x;) = true. Thus, by construc-
tion, T(x;) € Aj_,. and therefore 7,3i + k |=

T(x;). Moreover, since 7, 3i + k = Pos(c, x;), also
J.3i+ k |= Sat(c), because 7 is a model of 7.

- If £& = —x;j, then v{(x;) = false. Thus, by con-
struction, F(x;) € Aj; ., and therefore J,3i + k |=
F(x;). Moreover, since J,3i + k |= Neg(c, x;), we
obtain 7, 3i + k |= Sat(c) because 7 is a model of
T.

- If &f = yj, then vy(y;) = true. Thus J,3i + k =
T(y;), and since 7, 3i + k = FromY(y;, c), by con-
struction of 7, it follows that 7, 3i + k |= Sat(c).

- If ff-‘ =y, then vy(y;) = false. Thus 7, 3i + k |=
T(—yj), and since J,3i + k = FromY(—yj;,c), by
construction of 7, it follows that 7, 3i+k |= Sat(c).

It follows that 7, 0 = ¢, 50 (T, (A})o<icant2), 0 = ¢.
HCHCG, K:, 0 %brave ¢

In the other direction, assume that K, 0 Eprave ¢, and
let vy be a valuation of the x;. Since (A)o<icania is
a repair of IC, (T, (A)o<igant2), 0 [~ ¢, so there ex-
ists a model J = (Z;)i>0 of (T, (A*)o<i<snte) that
respects rigid predicates and is such that 7,0 & ¢,
ie, J,0 E O°(NotFirst(c) Vv Sat(c) V OSat(c) V
OOSat(c)). Let vy be the (partial) valuation of the y;
defined as follows: vy(y;) = true if there exists k such
that 7,k |= T(y;), and vy(y;) = false if there exists
k such that 7,k = T(—y;). The valuation vy is well
defined because 7 is a model of 7 and respects rigid
predicates. Therefore, if 7, k = T(y;) for some , then
J.k [= T(y;) for every k, and J, k = T(—y;). Other-
wise, we would have J,k |= T M 3ValY.T(y;) which
contradicts our TBox axioms.

Since J,0 = [O?(NotFirst(c) V Sat(c) vV OSat(c) Vv
OOSat(c)), for every clause £? V £} Vv €2, we have that
J,3i+ k |= Sat(c) for some k € [0, 2]. We then show
that vy U vy satisfies ¢¥.

- If £&f = x;, since J,3i 4+ k |= Sat(c), J,3i + k =
FromPos(x;, c) and J respects 3FromPos.Sat C T,
then 7, 3i + k |= T(x;). It follows that (T(x;),k) €
(A )o<icsnt+2 for every k (otherwise, by maximal-
ity of repairs, (F(x;),k) € (A/)o<i<snt2 and J
assigns x; to T and F at some time point). Hence,
vX(xJ) = true.

- If ¢ = —x;, since J,3i + k |= Sat(c), J,3i + k =
FromNeg(x], ¢) and J respects 3FromNeg.Sat C F,
then 7, 3i + k |= F(x;). It follows that (F(x;), k) €
(A)o<igsnto for every k (otherwise (T(x;),k) €
(A )o<icsn+2 and J assigns x; to T and F at some
time point). Hence vx(x;) = false.

—If &% =y, since J,3i + k = Sat(c), J,3i+ k |=
FromY(y], ¢) and J respects JFromY.Sat C T, then
J.3i+k =T(y;),s0vy(x;) = true.
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— If ¢ = —y;, since J, 3i + k |= Sat(c), J,3i + k =
FromY(—y;,c) and J respects 3FromY.Sat C T,
then 7,3i + k = T(—y;), so vy(x;) = false.

It follows that vx Uvy satisfies every clause £0 vV €} v £2.
We have thus shown that ¢[x; <— vx(x;),y; < vy (y;)]
evaluates to true, and that ® is valid. O

Justification structures for brave entailment of BTCQs
without negation in the case Npg = Npr = (. We
prove that if N;gc = Ngg = 0 and ¢ is a BTCQ with-
out negation, then K, p Eprave ¢ iff there is a correct
brave-justification structure J for ¢ in K that justifies
¢ at time point p. We prove both directions in separate
lemmas.

Lemma A.3. IfNrc = Ngr = () and there is a correct
brave-justification structure J for ¢ in IC that justifies

¢ at time point p, then K, p Eprave 9.

Proof. In order to show I, p Epave ¢, We determine
a cause (C;)ogign for ¢. To do this, we first select a
sequence of tuples from J as follows:

1. The tuple (p, Liow, Fhow, Fhrev, Fhey) is such that
¢ € Fhw.

2. If the tuple (i, Loy, Frows Fhrevs Fhext) Was selected
and 0 < i < p, then select a tuple of the form
(i = 1, Ligws Fiows Fhrets Fron), Where Fio = Fi,

and Fil = Fi

now*

3. If the tuple (i, Liy» Fhows Fhrevs Fhext) Was selected
and p < i < n, then select a tuple of the form

(i+ 1, LEL Fidl Firl Fitl), where Fifl = Fi

> “now> * now> * prev> * next now next
i+1 _ i
and FpreV =Fl

Because J is correct and justifies ¢ at time point p,
such a sequence can always be selected. Based on
this sequence, we construct a sequence of ABoxes
(Ci)ogica- For this, we take for each of the tuples
(is Liows Frow» Fhrev» Fhext) @ cause C; € A; that entails
Nje 1. q- Such a cause exists because (T, A) Ebrave
A geri 4 by Condition 1. Since each C; is consis-
tent and rigid predicates are not allowed, the TKB
(T, (Ci)ogi<n) is consistent.

We prove that (7, (C;)o<i<n), P = ¢, by proving
that (7, (Ci)o<i<n)s P | Fhow. To do this, we con-
sider the sets of LTL formulas Fid = {y | ¢ €
Fi .. degree(y) < d}, where degree(y) is the maxi-
mal number of nested LTL operators in ¢, and prove
by induction on d that for all 0 < i < n and for
all y € Fid . we have (T, (Co<i<n)i E ¥, ie.,
(T (Co<isn) 1 Fray-

For d = 0, Fi9 contains only conjunctive queries
of the form 3¥¢(¥). Since for every & € BCQ(¢),
if Fi , =  then y € Li_, (Condition 4), Fi0 C

now

Lioy- Then, since (7.Ci) = A cp g, it follows that

now *
(T (Cio<icn) i = Froy-

Assume that for all 0 < i < n, (T, (Ci)ogign)- i
Fid  Lety € Fidil forsome 0 < i< n. Ify € Fid |
then (7, (Ci)o<icn)»i = . Otherwise, degree(y) =
d + 1 and we distinguish the cases based on the syn-
tactical form of .

— ¢ = Y1 Ao, where degree(y1) < d, degree(yz) <
d.Since y € Fi , then F._ =1 and Fi , = o,
so by Condition 5, 1 € F., and yo € Fig,.
It follows that ¢y € Fi¢ and yo € Fid & so
(T, (Ci)o<in)si = Y1 and (T, (Ci)o<i<n)s i [ Yo
Hence <T, (Ci)0§i§n>’i ': lﬁl AN !ﬁQ.

— ¥ = Y1 Vo, where degree(y1) < d, degree(yz) <

d. Since ¢ € F!,, then by Condition 7 either
Y1 € Fi, oryy € FL . It follows that y; € Fid
or Yo € Fid . so that (T, (Cioi<a)»i = Y1 or
(T (Ci)o<isn),1 = 2. Hence, (T, (Cilo<i<n). 1 =
Y Vi

— ¢ = Oy, where degree(y1) < d. By Condition 8,
either i < n,ori = nand (0, (0)ogi<a),n+1 = Oe.
In the latter case, note that the canonical models
of (T, (Ci)osisn) and (0, (0)o<i<n) coincide after n
(empty interpretations), and since i1 does not con-
tain any past operators, (7, (C;)o<i<n), n+1 = Oy
is a direct consequence of (0, (0)o<i<n).n + 1 =
U1 . Then ¢ is true at any time point j > n and in
particular, <T, (Ci)0<i<n>,n ': Olﬂl

! i
In the former case, since Oy1 € Fio, = Fply, we

have that A it gANO™ (N epitt X)NO(Ayepinr ) =
O~Oy1 | 1, so by Condition 6, y; € Fitl.
Hence, lﬁl € Fflt\i’d, <T, (Ci)0<i<n>,i+ 1 ': lﬁ1, and
(T, (Ci)ogign)si E OY1.

— ¢ = O™y, where degree(y1) < d. This case is
similar to O.

- ¢ = @y, where degree(yy1) < d. If i < n, since
@y, ¢ Fi, = Fitl we have that Nyerizr @ A

prev>

O™ (A\verizt INO(Nyepizr x) | O™ @7y =y,

prev

so that by Condition 6, ¥; € Fifl Hence y; €
Fitld and (T, (Ci)o<icn)»i + 1 |= 1, which im-
plies (T, (Ci)o<icn)»i = @y1. Otherwise, i = n,
and (T, (C)o<i<n)» 1 = @ 1 by definition of @ .
- ¢ = @y where degree(y1) < d. This case is
similar to @” .
— ¢ = Oy, where degree(y1) < d. By Condition 7,

<®7 (®)0<i<n>,n +1 ': Dl,[/l
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We show that (T, (C;)o<i<n)»i = Oy by descend-
ing induction on i.

For i = n, note that the canonical models of
(T, (Ciogicn) and {0, (0)ogi<n) coincide after n
(empty interpretations), and since 1 does not con-
tain any past operators,

(T, (Ci)o<icn)sn + 1 | Oyy is a direct con-
sequence of (B, (D)ogi<n)sn + 1 = Oyi1. Then
(T, (Ci)oin)sn | Oy iff (T, (Ci)ogica)s 1 | Y1,
that is iff Y4 € F<, by induction. This is the case
by Condition 5.

For i < n, we assume by inductive hypothesis that

if Oy € Frby, then (T, (Cioi<a)s i + 1 | Oy

Since L1 € Fhoy = Fpyey, We have that Ngerit aN
O7(A\yeritz X) N OWN\yepizzx) F O70d1 =

Oy, so by Condition 6, Cyy € Fifl, and by
assumption (7, (C;)ogign)»i + 1 = Oyq. More-
over, since LYy € F',, then F. , | W1, and

now?

Y1 € Fi, by Condition 5. Hence, y; € Fi¢ and
(T (Cioin) 1 E 1.

It follows that (T, (C;)o<i<n)» i = OY.

W = [Py where degree(y;) < d. We show that
(T, (Ci)o<i<n)»i E 0Py by descending induction
on i.

For i = n, if OPyy € F,, then ¥y € F",
by Condition 8, and therefore y; € F%4 and
(T (Ci)o<i<n)»n = ¥1. As a consequence, we ob-
tain <T, (Ci)og,'g,,>,n ': Dblﬁl.

For i < n, we assume by inductive hypothesis that
if Dblﬁl € Fflz)r‘i, then (T, (Ci)0<i<n>,i +1 E
0Py Then, since Py, € F. , = Fi*1 we have

now prev?

that A et g A O™ (N epitt X) AN O(Ayerpti X) E
O~O%, | OPyy. Therefore, by Condition 6,
Oy € Fifl, and by assumption (T, (C;)o<i<n), i+
1 &= 0. Moreover, since %y, € Fi ., then
Fi . E 1, and ¥y € Fi by Condition 5. Hence,
Y1 € Fid and (T, (Co<i<n)»i = 1. It follows
that (T, (Ci)o<i<n)> i = OPy1.

¥ = O ¢, where degree(y1) < d. This case is
similar to (17,

¥ = Oy, where degree(y1) < d. We prove
(T, (Ci)ogign)»i = Oy by descending induction
on i.

For i = n, if Qyq1 € F.,,
(0, (D)o<i<n)>n + 1 = Oyy by Condition 8.

In the former case, y1 € F4, and (T, (Ci)o<i<n)s 1 =
Y1, which implies that (7, (C;)o<ign)» 1 = O¥1.

In the latter case we can show as in the proof for O
that (T, (Ci)o<i<n), n+1 = Oy, which implies that

(T, (Ci)ogign)sn+ 1 = Oy

then ¥y € F], or

now

For i < n, we assume by inductive hypothesis that

if Qyy € Fr';ér\,‘l,, then (7, (Ci)0<i<n>,l' +1E Ous.

Since Qy; € F.,,, by Condition 7, either (i) ¥ €
Flows Y1 € Fidy and (T, (Ci)o<i<n).i = W1, and
therefore (7, (Ci)o<i<n),i = Oya, or (i) Oy €
Fflext = Fril—g“l/’ and by assumption <T’ (Ci)0§i§n>’ i+
1 = Oy It follows that (7, (Cio<ign)» i = QY.

- ¢ = Oy, where degree(y;) < d. This case is
similar as for Qurq.

— ¢ = O ¢y, where degree(y;) < d. This case is
similar to .

— ¢ = Y1U 2 where degree(y1) < d, degree(yz2) <
d. We show that (T, (C;)o<i<n),i = ¥1U 2 by de-
scending induction on i.
Fori = n, if y1Uys € Fl oo
(0, (D) o<icn)>n = Oz by Condition 8.

In the former case, Y2 € FZ, and (T, (C;)o<i<n)» 1 =
W2, which implies that (7, (C;)o<i<n), 1 | ¥1U 2.
In the latter case, we can show as in the proof for
O that (T, (Ci)o<i<n)>n + 1 = Oys, which im-
plies that (T, (Ci)oi<n)>-n + 1 = ¢1Uyo. Then
(T, (Ci)osin)sn | O Uy iff (T, (Ci)o<isa)» 1 =
1 or (T, (Cilogicn)sn = Yo, that is iff Y € Fps,
oryy € F™4 by induction. This is the case by Con-
dition 5.

For i < n, we assume by inductive hypothesis
that if y1Uye € Fiiy, then (T, (Ciogicn)si +
1 E ¢1Uys. Then, since y1Uys € Fi ., by
Condition 7, either (i) Yo € Fi ., ¥o € Fi
and (7, (Ci)ogign)»i = ¥2, which in turn implies
(T, (Closin)»i = Y1UW, or (i) Y1 € Floys
Y1 € Fy,, which implies (7, (Ci)o<i<n)si F 1,
and y1Uyo € Fi = Fitl Therefore, by assump-
tion we obtain (7, (C;)o<icn),i + 1 = ¥1U o, and
(T, (Ciogign)» i E YU yo.

- ¢ = ¢1U" Yo, where degree(y1) < d, degree(y2) <
d. This case can be shown in the same way as for U.

— ¢ = ¢1S 2, where degree(y1) < d, degree(y2) <
d. This case is similar to U.

then yo € F7 ., or

now?

O

Lemma A 4. IfNRC = NRR = @ and ,C,p ':brave ¢,
then there is a brave-justification structure for ¢ in IC
that is correct and justifies ¢ at time point p.

Proof. Assume IC, p Fprave ¢. Then there exists a TKB
K’ = (T.,(Ci)ogign), such that C; C A; and K’ is
consistent and X', p = ¢. Based on K’, we construct
a brave-justification structure J for ¢ in K that jus-
tifies ¢ at time point p. The elements of the tuples
(i, L o, Fi s Fo o Fiy ) are selected as follows:

>~ now? now? prev? next
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1. i, is the largest subset of BCQ(¢#) such that

now

K'iE Npew 4

now

2. FnoW is the largest subset of F(¢) such that K',i =
Fl

now?

3. FL =Fi=lfori>0,

prev now
i _ i+l
4. F%exm Fil, fori<n,and
— n
5. Fprev Fnext @

We show that J is correct and justifies ¢ at time point p.
The latter case is easy: since K', p |= ¢, we have ¢ €
FP.., and therefore ¢ is justified by J at time point p. It
remains to show that J is correct, i.e., that every tuple
of J satisfies the nine conditions of the definition of
justified tuples.

Conditions 1, 2, 3 and 4 follow straightforwardly
from the construction. Condition 5 is satisfied because
ify € F(¢)issuchthaty ¢ F._, then K',i [~ ¢ and

For Condition 6, we show that for every ¢ &€
F(¢) and for every 0 < i < n, if /\qe%w qg A

O (Nveri, X) N O(Nyeri, X) |5 s then K i = s,
which in turn implies ¢ € Fi_,. Since K’ entails ev-
ery CQ in L, at time point i, every TCQ in F,., at
time point i — 1, and every TCQ in F},, at time point
i + 1, every TCQ that corresponds to a formula en-
tailed by L, O~ (/\XEFé,rev x) or O(A,epi_ x) is en-

tailed from K’ at time point i. Hence, if /\qu;nw qn

O (Nger X) N Oy x) | W then K. i = .

For Condition 7, we do a case analysis based on the
structure of the elements in Fyq,, using the Proposi-
tion 9.12 and the fact that Ngc = Ngg = 0.

now?

-IfK,i Ey vy, then K'yi E yorK,iE z,b’
Therefore, ify vy e Fi ., eithery € F. ., 0
lﬁ e nOW

-IfKiE Oy, then K'yi = yor K'i+1 | Oy.

Therefore, if Q¢ € F.,, either y € Fi_, or Oy €
Fitl = Fi,.

-IfK',i = Oby, thenIC’ i Eyor KL i+ 1 Oy
Therefore, if Oy € Fi_, either y € Fi_, or Py €
Fifl = Fl.

-IfKiE O ¢, then K\ i = yor KMy i— 1 |:<>*w
Therefore, if O~y € Fi,, either ¢y € F. o
<> ';b € Frlov} Ff)rev

- IfIC’ E yUy/, then K',i E ¢/, or K',i E ¢ and

"i+1 E yUy'. Therefore, if yUy' € F!,, either
Lﬂ EF! ,,oryeF andyUy € Fl .

—IfK',i = yUPy, then K',i |= ¢/ or K',i = ¢ and
K',i+1 = yUly/'. Therefore, if yU’y' € Fi .,
eithery’ € Fi ,,ory € Fi , andyU’y' € F!

next-

—IfIC’ | = ¢Sy, then K',i = ¢/, or K, '|:1ﬁand
K',i— 1= ¢Sy’. Therefore, if ySy’ € F now, then
erther Y €Fl oty €F andySy' €F preve

— If ¢ is of the form Oy and ¢ € Fyoy, ie., K',i E
O, then for every j > n, K',j = ¢. Since there
are no past operators in ¢, and no BCQ is entailed
from K’ at time point j > n in the absence of rigid
predicates, the only possibility is that ¢ is trivially
entailed at any time point j > n. It follows that
(0, (D)ogin),n + 1 = Oep.

The proof of Condition 8 is as follows.

-Ify e F(¢>) is of the form @” ¢
alsoy € FJ, .

— Assume ¢ € F(¢) is of the form O¢ and such
that (0, (0)o<i<n).n + 1 & Og. Note that, because
(B, (D)ogign)>n + 1 = O, ¢ cannot be trivially en-
tailed at any time point j > n, and consequently also
not at n + 1. In the absence of rigid roles, and be-
cause ¥ cannot contain past operators, we therefore
have K',n + 1 [~ ¢, which implies K, n £ Oy and
W ¢ Fl,

-if ¢ € FJ,. then K',n
plies K',n = Op, K'.n = OP¢, K'.n = [Py,
K',n = ¢'Ugpand K',n = ¢'U? . It follows that
if any of those entailed TCQs are in F(¢), then they
are also in F,,,, For the other direction, we do a case
analysis.

x Assume Q¢ € F' . and (0, (0)o<i<a)sn + 1 B
O. Note that, because (0, (0)o<i<n), n+1 = O,
¢ cannot be trivially entailed at any time point
j > n. If this would be the case, due to the ab-
sence of rigid predicates, ¢ would also be triv-
ially entailed at all time points j > n. Because
K',n = Op, we must have K',n = ¢, since ¢
cannot be entailed at any time point j > n in the
absence of rigid predicates, and ii) ¢ does not con-
tain past operators. Therefore, ¢ € F} .

x If Obp € F,, then K/, n |: O, which in turn
implies K',n = ¢ and ¢ € FI .

x If OPp € F,, then K/, n |: ¢, which in turn
implies K',n |= ¢ and ¢ € FI .

x Assume ¢'Ugp € F"  and (0, (0)o<i<a),n + 1 [
Oe. Similar to the case for ¢, then K',n = ¢’Ugp
and X', n |= ¢, because i) ¢ cannot be entailed at
time point j > n in the absence of rigid predicates,
and ii) ¢ does not contain past operators. Conse-
quently, ¢ € F] ;’fow

« If g'UPp € F1 ., also K',n = ¢'UP ¢, which in
turn implies K',n = ¢ and ¢ € FIL .

,then K',n |= ¢ and

= ¢, which in turn im-
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Condition 9 can be shown similarly to Condition 8.
We have shown that every tuple in J is justified, and
consequently that J is correct and justifies ¢ at p. [

A.2. Proofs of Section 9

The following properties of chase,;, (KC) will be use-
ful for the proofs of Subsection 9.1.

Proposition A.5. chase,,(K) satisfies the following
properties.

(P1) x}p €Ty = Pi(a,x}) € chasels,(A;,)

rlg
(P2) X p € Ty, 1> 1 = Py i p) €
chase,(A;)

(P3) chasef,(A;) = B(x" p) = T =3P CB
(P4) x;lplllpl EFN,l> 1] = T'ZHPI 1 C E'P[

(P5) chasel,(Ai) | B(a).a e N = (T, A)
B(a) or there exists B' := A|3R|3R™ with A €
Nrcs R € Ngg such that T |= B’ C B and there ex-
ists j such that (T, A;) = B'(a)

(P6) chase”g(.A) = B(x;ﬁf..P,) = i = i or there
exists B’ := A|3R|3R™ with A € Ngc, R € NRR such
that T = B' C B and chaseng( i) F B (x5 p)

(P7) P(a,b) € chasef,(Ai).a.b € N =
(T, Ay = P(a,b) or there exists P’ := R|R™ with
R € Ngg such that T |= P’ C P and there exists j

such that (T, A;) = P'(a,b)

(P8) P(a, xaP ) € chasef,(Ai),a e NF.iy =i =
T P1 C Pand (T, A;) E 3x.Pi(a,x) or there
exists B := A|3R|3R™ with A € Ngc, R € Ngg such
that T | = B T 3Py and there exists j such that

(T, A)j) = Bla)

(P9) P(a,xl} ) € chasel,(Ai).a e NN iy # i =
there exists P' := R|R™ with R € Ngg such that
TePCPCP

(P10) P(x,y) € chase”g(.A,-),x,y cel'y = x=
xleé'ih Yy = ;lPllll/;»l;,,+1 and T ): Py © Por

_ i1 llll+1 11 0y
X = xaPl P[PH,l’y aP1 P[ andT ': Pl+1 |: P

(PI]) P( uP1 P/’xZIPllm;[;’prl) € Chaserlg(Ai)7il+1 7é i
= there exists P’ := R|R™ with R € Ngg
such that T & P4b1 £ P C P and

/ i1.. llll+1
P( aPl P,’xaPl P1P1+1) € Chaseng(AilJrl)

(P12) Py p  xbsip) € chasel(A) =
3j, (T, Aj) = 3xy.Pi1(x,y)

Proof. We refer to [49] for the detailed proof of these
properties. O

Lemma 9.3. If K is consistent, then Jx is a model
of K that respects rigid predicates.

Proof. We first show that Jx is a model of K, i.e., that
for every i € [0,n], Z; = A; and for every i > 0,
T, = T. It is easy to see that for every i € [0,n],
Z; = A; because A; C chaseng(.A,-). We can show
that Z; satisfies every positive inclusion of 7~ with sim-
ilar arguments as those used in [48]. We only consider
the case i < n + 1 explicitly. For the case i > n + 1,
we assume A; to be replaced by A, in what fol-
lows. If a Pl @ € 7, is not satisfied, there is an as-
sertion 8 € chaseng(Ai) such that « is applicable to
B in chaseng(A,) This is impossible given that every

PI applicable to 8 in Sij at step j of the construction of
the rigid chase becomes not applicable to 8 in S¥ for
some k > j. Indeed, because each PI can only be ap-
plied once to a given assertion, there are only finitely
many assertions before 8, and only finitely many PIs
are applied to the assertions that precede S. Finally, we
show that because K is consistent, Z; satisfies every
negative inclusion of 7. Indeed, if a negative inclusion
would not be satisfied, this would imply the existence
of a conflict B in chaseng(A[). If B = {e}, the timed
assertion (a/, j) € (A;)ogicn from which o has been
derived by applying PIs from 7, is clearly inconsis-
tent. Otherwise B = {«, 8} with « derived from (o, j)
and B derived from (8',k). If j = k, {(¢/, ), (B, k)}
is clearly inconsistent. If j # k, since @ and 8 be-
long to chaseng(A ), if j # i (resp. k # i), there ex-
ists @’ € chaseng(Ai) rigid such that @ derives from
', which derives from o (resp. B/ € chasef,(A;)
rigid such that B derives from B, which derives from
). Therefore, and because no sequence of interpre-
tations that respects rigid predicates can be a model
of {(«, ), (B',k)} and T, {(, j), (B, k) } is inconsis-
tent.

Moreover, the model Jic respects rigid predicates,

because if an assertion 8 of chaserlg(Ai) is rigid, either
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B € A; and by construction 8 € S = A; for every k,
or 3 has been derived at some step j by applying some
PI to an assertion of S/ and B € S’ for every k, so
that in both cases 8 € chaseng(Ak) for every k. O

Lemma 94. If KC is consistent, then for every BTCQ
without negation ¢ such that Nfb C NN K,pl=oif
j’Cvp ‘: ¢

Proof. Since Jx = (L;)iz0 with Z; = (A, F) is
a model of /C that respects rigid predicates, the first
direction is clear, and we only need to show that
Ji,p = ¢ implies K, p = ¢. Let J = (I})i>0 with
7! = (A, %) be amodel of K that respects rigid pred-
icates. We show by structural induction on ¢ that if
Jxp = 6. then T, p b= 6.

If ¢ is a BCQ 3¥.y¢(¥), we show that if there ex-
ists a homomorphism 7 of 3y./(¥) into Z,,, then Z, |=
IV (¥). We define a mapping & from A into A’, where
we assume w.l.0.g. that A and A’ are disjoint.

)= a”

1. For every a € N, set h(a%r) = a™».

) 7
2. For every xp € Iy, set h(xillpl’) =y, where

/ T/
(aIp, y) € P;". (If there are several such y, choose
one of them randomly.) '

3. For every x“ g " p, € Ty with[ > 1 set h( ;11,'”1,!’1) =

i1..011Z,

¥, where (h(x aPl...P,,l)’Y) € P ". (If there are sev-
eral such y, choose one of them randomly.)

We first show that 4 is well defined, i.e., that in the
two latter cases, there always exists a y as required. We
show this by induction on [. For [ = 1, because xilpl €
Ty, by (P1) Py (a, x'} p,) € chaseng(A ). Therefore, by
(P8), either (i) (T, A,1> = 3x.P1(a, x), and since T,
is a model of (T, A;,), there is some (a%,y) € Pf’l,
or (ii) there exists B := A|JR|3R~ with A € Nge, R €
Ngg, such that 7 = B C 3Py, and there exists j such
that (7, A;) = B(a). In the latter case, since 7 is a
model of K that respects rigid predicates, Z = B(a).

Slnce 7] is a model of T, there is some (a%r,y) €

Pl‘1 Then, for [ > 1, since xi:" , € Ty, by (P4),
7 | 3P,_, T 3P, Since by induction there is an

. . T’ . .
(x, A(x5 "5 r)) € P, it follows that there is some
Y Z
(h(xgp 5" )y) € P
Next, we show that 4 is a homomorphism of Z,

into I;,, which then implies that 4 o & is a homomor-
phism of 3y.4/(¥) into Z,. We only consider the case

p < n explicitly, and assume A, to be replaced with
A, 11 for the case p > n.

For every a € N and concept A, if a’r €
Al e, A(a) € chaseng(Ap), then by (P5), ei-
ther (i) (7,A,) = A(a), and since Z, is a model
of (T, A,), also h(a®r) = a™» € A%, or (ii) there
exists a concept B = C|3R|IR™ with C € Ngg,
R € Ngg, such that 7 = B C A and there ex-
ists j such that (7, A;) = B(a). In the latter case,
since J is a model of KC that respects rigid predi-
cates, Z, = B(a). Since 7, is a model of T, it fol-
lows that 7)) |= A(a), so h(a®r) = a% € A%, For
every pair a,b € NF and role P, if (aZr,b%r) € P,
by (P7), similar arguments can be used to prove that
(h(a®),h(b%r)) = (a®,b"r) € PP,

For every xis:" , € Ty, such that Xl ”IP[ € AL,
ie, A(XL" p) € chasefi,(A,), by (P6) we are in one
of the following cases.

1. iy = p.By (P3), 7 =3P, C A and by construction
i T, i1..ij—1Z, I,/,
of h, h(xgs" ) = v with (h(x5" 3™0).y) € P,
(note that if I = 1, x5 = a). Since Z/, is a
model of T, it follows that y € AL,
2. There exists B := C|3R|IR~ with C € Ngg,R €
NgR such that 7 = B C A and chaseng(A ) E
B(x; 5" p,)- As in case (i), by (P3) and definition of

i1..i L,

h we have that h(x,p 3) =y € B%i. Since B is
rigid, y € B%. Since 7, is amodel of T, it follows
thaty € AT

For every pair x,y € Iy and role P such that
(T, yB) € Pl by (PLO) x = Xil,. v =

1.0 i
‘xaPl P1P1+1 andT ): Pl+1 E P’ orx = xaPl,..P[PH,l’

y = xi}P i 'pandT = P © P~. We can assume
w.lLo.g. that we are in the first case. (Otherwise we
consider (yZr,x%») € P~%r) If z,+1 = p, by defini-

tion of h, (h(xZr),h(y¥)) € P,Jﬁl, and since Z), is a
model of T, (h(xZr),h(y%)) € P%r. Otherwise, by
(P11), there exists P’ := R|R~ with R € Ngg such that
T | Py © P C Pand P'(x,y) € chasel,(A;,, ).
With the same arguments as in the first case, we show
that (h(x%),h(y%)) € P™r+1, and since P’ is rigid

(h(xTr),h(y*r)) € P™

». Since II’J is a model of T, it

follows that (h(xZ), h(yZr)) € P%.
Flnally, ifa € N’C and x € FN, then (a®r, x%r) €
PLr only if x = L If 11 = p, by definition

of h, (h(a 1’),h(xII’)) € P T Since by (P8), T
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Py C P and I; is a model of 7T, it follows that
(h(a®),h(xT)) € PL.If iy # p, by (P9), there ex-

ists P’ rigid such that T = Py C P C ,P’ and
since by definition of h, (h(a%), h(x%)) € P1", then
(h(a®r), h(xTr)) € P Since J respects rigid pred-
icates, it follows that (h(aZ),h(x%)) € P'% and
(h(a®), h(x%r)) € PL

We have thus shown that Jic, p = 3¥.¢(¥) implies

J.p = ().

Now for the inductive step, assume that for two
BTCQs ¢1, ¢o such that N C NI and N> C NI, we
have that Jic, p = ¢; implies J,p = ¢; (i € {1,2}).
We show that then, for every BTCQ ¢ that we can con-
struct in one step from ¢, and ¢, Jic, p = ¢ also im-
plies 7, p = ¢. We distinguish the cases based on ¢.

- If Jc.p = ¢1 A o, then Tk, p = ¢1 and T, p =
¢2, and therefore by assumption, J,p = ¢1 and
J.p E ¢o. Hence, J,p = &1 N ¢o.

- If Ji,p E ¢1 Voo, then Ji, p = ¢1 or Jic, p = ¢,
and therefore by assumption, J,p = ¢1 or J,p =
¢2. Hence, 7,p = ¢1 V ¢o.

- If Jk, p = O¢1, then Jic, p+1 |= ¢1, and therefore
by assumption, 7, p+1 = ¢1. Hence, J, p = O¢;.

— In the same way as in the last case, we can show
that Jic,p = @°¢; implies 7,p = @° ¢y, that
Jc,p E O ¢1 implies J,p E O ¢4, and that
Jk.p = @ ¢1 implies 7,p = @ ¢1.

- If Ji,p = Oé¢, then for every k > p, Ji,k =
¢1, and therefore, by assumption, for every k > p,
J.k = ¢1. Hence, J, p E O¢;.

— In the same way as in the last case, we can show
that Jic, p = O%¢; implies 7, p = 0P¢; and that
Jic. p = O~ ¢y implies 7, p = 0" ¢1.

- If Jk,p = O¢1, then there exists k > p, Tk, k =
¢1, and therefore by assumption 7,k = ¢1. Hence,
T, p = 0.

— In the same way as in the last case, we can show
that J, p = OP¢; implies 7, p = O’¢1, and that
Tk, p = O~ ¢1 implies 7, p |= O~ ¢1.

- If Jk, p = ¢1U ¢o, then there exists k > p such that
Ji.k |E ¢2 and forevery j, p < j <k, Tk, j = ¢1.
Therefore, by assumption J,k |= ¢, and for every
jp<j<k J,jE ¢1.Hence, J,p = ¢1Uo.

— We can show in the same way as in the last case that
Jic»p = $1UP ¢o implies 7, p = ¢1U” ¢, and that
Ji- P [ $1S ¢z implies T, p = ¢1S 2.

We conclude by induction that for every BTCQ ¢ with-

out negation such that N/ € N, Ji, p = ¢ implies
J,p = ¢.Itfollows that Jx, p = ¢ implies IC, p = ¢.

We have thus shown that for every BTCQ ¢ without
negation such that N,¢ - Nfc, we have KC,p | ¢ iff

j)C?p':¢' O

Lemma 9.7. Let g = 3Y.y/(¥) be such that N{ C NF.
Forevery p € [0,n], if Cr,p E qthen K, p £ q.

Proof. Assume that Kz, p = 3¥¢(¥). By Proposi-
tion 3.6, since Npg = Ngg = 0, (T,(A, UR)) =
Fu(). Let T = (AIIZ2 I ) be the canonical model
of (T, (A, UR)). There exists a homomorphism 7 of
3F.4(¥) into . We first define a mapping o~ from
{xIlZa | x € NForoccursinR} into {xZr | x €
NI UTy, x occurs in chaseng(/l )}, where we assume

A and AT to be disjoint, by

(aIﬁR = a®» fora € NF,
» such that P(a, x) € chasek,(A,),

) =

o(xXp ) =

(xP ) = xr such that there exists P(y,x) €

" chas rlg(.A) and
) =
(xp

’R
Z,
aP rig
TR

P

=
(xPP/

with o(x

x%r such that P'(y,x) € chaseng(Ap)
") =

Claim 1. o is well defined.

Proof of claim. 1If x,p occurs in R, there exists i
such that (7, .4;) = 3x.P(a,x). Since Z; is a model

of (T, A;), it follows that there is some P(a,x) €
chaserlg(Ai). Moreover, since P is rigid, P(a,x) €
chasef§,(A,).

If xp occurs in R, there exists i such that (T, A;) =
xy.P(x,y). Since Z; is a model of (T, A4;), it follows
that there exist x,y € NF U T'y such that P(y,x) €
chasef§,(A;). Moreover, x occurs in chasef,(A,) be-
cause there exists B := A|JR|FR™ with A € Ngc
and R € Ngg such that 7 = 3P~ C B, and there-
fore there is a rigid assertion 8 = B(x) such that
B € chasel,(A,).

If xppr occurs in R, then xp also occurs in R. It
follows that there exist i and y € N U T'y such that

R
P(y,a(xi” )) € chaseng(.A;). Moreover, by construc-
tion of R, P’ is rigid and such that 7 = 3P~ C 3P".
Since Z; is a model of 7T, there then exists x €
R
N U Ty such that P’ (o-(xI” K (A)).

R
Hence, P’(a'(xgp ). x) € Chaseng(A )- u

).x) € chase

Claim 2. o is a partial homomorphism of I;a into Z,,.
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Proof of claim. For every a € NI and concept A,
if aIfZa S AIF , since IZ} is the canonical model of
(T.(A, UR)), then (T,(A, UR)) = A(a). Let
{a} be a cause for A(a). If @ € A,, then @ €

chasefi,(A,). In this case, since Z, is a model of T

and (T, a) = A(a), then O'(aIﬁR) = a» € A% Oth-
erwise, « € R, and « is either of the form A’(a)
with A’ € Ngg, or of the form P(a,b) or P(a, x.p),
where P is rigid. In the first two cases, there exists
i such that (7, A4;) E «. Therefore, since Z; is a
model of (T, A;), @ € chaseng(Ai). Since « is rigid,
ac chaseng(A ), and therefore, since 7, is a model of
T and (T, @) = A(a), we obtain that o-(azf) =alr
AZr. In the last case, if @ = P(a, x,p), there exists i
such that (7, A;) = Jx.P(a, x). Since Z; is a model of
(T, Ai), there is some P(a,x) € chasef,(A;). Since
P is rigid, P(a,x) € chase g(.A,,), and since 7, is
a model of 7 and (T, P(a, x)) = A(a), we obtain
o-(aIrZ%) =alr € ATr.

For every paira,b € N[ and role P, if (a* b5 )
P v s We can use similar arguments to show that
(o (a®> ), (bI )) = (atr,b%r) € P,

For every x,p that occurs in R and A € N, if

R
xaI{; e AT, since I;z is the canonical model of
(T, (A,UR)), then (T, (A,UR)) = A(xsp). Let {a}
be a cause for A(x,p). By construction, the only asser-
tion of .A,UR that involves x,p is P(a, x,p). Therefore,
a = P(a,x,p) and (T, P(a,x.p)) | A(xap). Since
R

O'(xazf, ) = x%r is such that P(a x) € chasef§,(A,),

and Z, is a model of 7, then 0'( ) c AL,

For every a € N, x ¢ NF that occurs in R and
role P, if (aIZ2 x5 ) € PL" , since If is the canon-
ical model of (T, (A, UR)), then (T, (A, UR)) =
P(a, x). Let {a} be a cause for P(a x). By construc-
tion of R, x = x,p, and a = Pl(a Xap, ), and by

definition of o, (U'(aIr )’O-(XaIPlP>) € P ”. Since
(T, P1(a,x)) = P(a, x) and Z, is a model of T it fol-

lows that (o-(azlzz), o-(xaIPlp)) € P,

For every xp, that occurs in R and A € Ng, if
R

xi’l’ e AT, since I;z is the canonical model of
(T, (A, UR)), then (T, (A, UR)) = A(xp,). Let
{a} be a cause for A(xp, ). By construction, either @ =
A'(xp,) with A’ € Npgand 7 = 3P] C A',ora =
P2(xP1’xP1P2) with Py rlgld and T ): HP; C dPs.

: 3} . I
Since o(xp" ) = x™» is such that there exists i such that

Pi(y,x) € chaseng(Ai) and 7; is a model of 7, then

A(x) € chaseng( ;) (resp. there is some Ps(x,z) €
chaseng( ;). Therefore A’(x) € chasenl-cg(A,,) (resp.

there is some Py(x,z) € chaseng( »)). Because 7, is

a model of 7, it follows that o-(xP ) € ALr.

For every xp,p, that occurs in R and A € Ng,
R

if xﬁl P, € ATY | since I;z is the canonical model

of (T, (A, UR)), then (T, (A, UR)) = A(xp,p,).

Let {a} be a cause for A(xp,p,). By construction,

a = Py(xp,,xp,p,), Po is rigid, and T = IP] C
R

. z, . .
3P;. Since o(x”p,) = x™ is such that there exists

P5(y, x) € chase, ») (with y* ;= o'(xp ) and Z,

rlg(
. e
is a model of T, then o-(x}’ p, ) € A”r.

Finally, for every x,y ¢ N[ that occur in R

: R IR IR
and for every role P, if (x> ,y™» ) € P*», since
I is the canonical model of (T, (A, U R)), then
(T,(A, UR)) = P(x,y). Let {a} be a cause for
P(x,y). By construction, x = xp,, ¥y = Xp,p,, @ =
Ps(xp,, xp,p,), and Ps is rigid, and therefore, as pre-
R

. I x Z,
viously, (o (xp! ), 0 (xp!p,)) € P*. ]

Claim 3. o can be extended to a homomorphism ¢ of
I]f into Z,,.

Proof of claim. Since I;z is the canonical model of
(T,(A, UR)), Z, is a model of T, and o~ preserves
the concept or role memberships, we can extend o to
a homomorphism ¢’ of I;a into Z, by mapping the
R R

anonymous part of Z* rooted in e (b | x e
N[ or occurs in R} to the part of Z,, rooted in 0'()(132 ).
[ |

From Claim 3, it follows that ¢’ o 7 is a homo-
morphism of 3y.y(¥) into Z,. We have thus shown
that if Cr,p = Iy (), then Z, = Fy (), ie,
Ji,p E Iy (). Hence, if Kz, p = Ty (¥), then
K,.pE Iy (). O

Lemma 9.8. Let ¢ = 3y.4() be such that N} C NI,
Forevery p € [0,n], if K, p E g then Kz, p = q.

Proof. Assume that IC,p = Iy (¥). Then, Z, =
Iy (¥), and there exists a homomorphism 7 of 3y.4(¥)

into Z,. Let I = <AIWR,~IPR> be a model of
(T.(Ai UR)). We define a mapping A% from {x% |
x € NI U Ty, xoccurs in chaseng(A )} into AT
where we again assume that A and A% » are disjoint.

K R(. I, _ IF
— For every a € NI, we set h,"(a™r) = a™
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— For every xa P> Where i1 # p and P is rigid, we set

Z,
hR( lalPl] ) :_ xa_Pl
— For every xj5™" p with [ > 1, such that for every
j € [L1],ij # p, P;is rigid, and P, is not rigid,
R

R iy P
we set ;" (x Xap.. 7)) = Xp_,p,

— For every x5 i "p, with [ > 1, such that for every
je 11, i ;é p, and P; and P;_; are rigid, we set
. R
W (a5 ) = v, where (W (5370, y) € P
If there are several such y, we choose one of them
randomly.
— For every xi}:" , such that for every k € [1,1], i; #

i1..0L, IR
p» and P, not rigid, we set kX (x5} ) = xp!

— For every x’1 g ! p, such that for some j € [1,1], i; =
i1..01 L, i1..i—17Z,

p, we set hﬁ( ap,..p) =Y, Where (h;f( aprp )5 Y) €
IR

P;" . If there are several such y, we choose one of

them randomly.

Claim 1. h;z is well defined.

Proof of claim.  We distinguish the cases based on the
argument of h;}.

- Ca;e xllp with iy # p and Py is rigid, hz,z(x’afl”) =
Xup, -
Since xﬁ}Pl € Ty, by (P1) and (P8), 3x.P1(a, x) is
entailed by some (7,.A;). Therefore, x,p, appears
inR.

— Case xﬁllf;'l":{ p, With [ > 1, such that for every j €
1,1, ij # p, Py is rigid and P;_; is not rigid,

. . R
R 10, I
h( aPl.“P,) Xp, . pp-

Since x5, € Ty, by (P4), T | 3P, C 3P,
and by (P2) and (P12), there is some j such that
(T.A)) E 3xy.Pi_1(x,y). Moreover, P; is rigid and
P;_; is not rigid, and therefore xp, , p, appears in R.
— Case xf;};'l":’upl with [ > 1, such that every j € [1,1],

ij # p,and P, and P,_; are rigid, hz,z(x;},l”z,é’,) =y,
. . IR

where (1% (x5, 5 7).y) € P,

We show by induction on the length length = [ — r

of the sequence of rigid roles P,...P;_; that there is

Ry 11T, Iy
always such a (b5 (x,p. 5 ""),y) € P;" .

—If length = 1, we are in one of the following cases.
R

. R il...i,_ll,, o I,,

(i) r > 1 and h (x5, p") = Xp_,p_,- Then
* IR TR .

(Xpy 3 Xp, ) € Py, because I is a model of

R. Since x}s" , € Ty, by (P4), T |= 3p,_, C 3P,
Therefore, since I]f is a model of 7, there is some

iroii—1T, TR
(R (xgp 5 ") y) € P

(ii) r = 1 and hR( ATy = R (I = s
R R
such that (a® v, aIP ) € P} T because Pi(a,xqp,) €
R. Since x}2, € Ty, T = 3Py T 3P; by (P4).
Therefore, since IZ} is a model of 7T, there is some
R i
(xa;Jl’y) € P2
— For length > 1, T = 3P,_, T 3P, by (P4). It
follows that, since by inductive hypothesis there is

R (i1, .
some (x, /1, (xaplmplil)) € P, 1» there then is some

it T, ;
(R () € P
Case x,p." p, such that for every j € [1,1], i; # p,

and P, not rigid, h% (x5 = o
1 g > 'p aPy..P;) — 7P ¢

Since 7 does not contain any role inclusion of the
form P’ C P with P = R1|R1_, R, € NR\NF{F{
and P := R9|R;, R2 € Ngg, and P; is not rigid,
there is no P such that P, C P and P is rigid.
Therefore, sin‘ce‘il =% p, there is no P such that
P(x;j;'l'”’,}, X p) € chasel,(Ap). We obtain
that x5 , occurs in chasef§,(A,) only if there is
B := A|3R|3R™ with A € Ngg, R € Ngg such that
chasels,(A,) = B(x3:" ;). By (P3), T = 3P] C
B, and by (P2) and (P12), there is some j such that
(T.A)) E 3xy.Pi_1(x,y). It follows that xp, ap-
pears in R.

Case x’;};""P such that for some j € [1,1], i; = p,

R (,d1-iTp R iteii—1T, A
hy (Xapy..p,) =y, where (hy(x.p 5 1), ) € P,
We show by induction on the length length = | — r
of the chain of roles that links x;}5™" 5, to the first in-

i1 .0y

dividual x,"" » such that i, = p that there is always
such (h* (x5 5 7). y) € P" .
— If length = 0, then iy = p and there

is no j < [ such that i; = p. We are
thus in one of the following cases. Either (i)

R ilt..i[_ll-p R i1 -il—lzp 1;2
hp (xapl.t.P,_l) =a 2 , (i) h (x aPl.“P,_l) = Xupy»
oo TRy i1 1T, A R dteiim1Z,
(ii1) hp (xapl...P,,l) = Xp ,p_,> (iv) hp (xapl.“P,,l)
. R 1.2, Ry d1ii—1Z, I,Zl
is such that (h;" (xp; p %) by (Xap,p 1)) € P4,

>p
R

Ry teii—1T,y L
or (V) hyy (Xepy..p ) = XP," "
. i1,
i) If R (xp"57") = a 2 by definition of A%,

fedie1 B
X,p ' p_, = a, and therefore x5 , = x/, . Since

xhp, € Ty, by (P1), Py(a, x5p ) € chasef,(A,). By
(PB), either (a) (T,A,) = Ix.Pi(a, x) and there
. IR TR R .

is some (a7 ,y) € P}” because Z,® is a model of
(T, Ap), or (b) there exists B := A|FR|IR~ with
A € NRgg, R € Ngg, such that 7 = B C 3P; and
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there exists j such that (7, .A;) = B(a). In the latter
case, R |= B(a) by construction of R, and since Z*
is a model of R, we obtain Z* |= B(a). Since I is

- IR Iy
amodel of T, there is some (a™» ,y) € P’

. . R
Gi) If AR(xE"25) = xih ., by definition of
KR, Xl = X, and Py is rigid. By (P1),

P1(a, xapl) € chase g(Ail), and therefore by (P8),
either (a) (T, A;,) = 3x.P1(a, x) and Py(a, x,p,) €
R since P; is rigid, or (b) there exists B :=
A|F3R|3R~ with A € Npg, R € Ngg, such that
T E B C 3Py, and there exists j such that
(T,A;) = B(a). In the latter case, (T,A;) =
Ix.P1(a, x), and therefore P1(a, x4p,) € R.In both

IR
cases, (aIP X.p,) € P 1 since Z*% is a model of R.
i1..0; _Jap
Moreover, since x5 p, = X,p,p, € I'n, by (P4),

T E 3P7 T 3P,. Therefore, since ZX is a model
. R TR

of T, there is some (x5 ,y) € Py’ .

ST AR (i Ty A by def

(111) P (qul...P/_l) - XP1—2P1—1’ y el-

inition of ‘R, since xp,,p,_, appears in R,

Pi_1(xp_y,Xp_op_,) € R, and therefore
R R R

Z, 7 . i
(xPI 27 P; 2P 1) € Plpl Since lelP lIP € FN7
by (P4), T Elpf . C 3P, and there is some

IR
(xaP[,zP[,l’y) E P p
. wil—2T, i1 i1 7 A
(iv) If (7 lalpl'.'..pz,,;)’hf(xlah'f_é,i)) € Pl
since x;,, ”P € 'y, by (P4), T = 3P,_, C 3P,
i1 eit—1 T, oA
and there is some (A (x5 5 ™").y) € P," .
W) If AR (" 3Ty = x| by (P2) and since i) =
p, we obtain Py( ;lpl’,}] 1,x'all;‘1p p) € chaseng(A ).
By (P6), since chasels,(A,) = 3Pi( Al ) and
i1 # p, there exists B := A|3R|3R~ withA €
Nrc,R € Ngg, such thatA’T E B C 3P, and
Chaserlg('Ai/fl) ': B(xizlPlll}’ll,l) By (P3), T ':
3P, C B,and R |= B(xp,_,) (since xp,_, oc-
curs in R and B is rigid). We obtain that (7, R) =
3x.P(xp,_,,x). Since I is a model of (T, R),

R IR
. » P
there is some (x,/ ,y) € P,

— For length > 0, since x’[}Pl” p € L'y, by (P4),
T = 3P,_, C 3P, Since by 1nduct1ve hypothesis

. Y
there is some (x, 7y (x5 5" )) € Pl 1» there then

is some (W (x5 77).y) € Py . u

Claim 2. hz,z is a homomorphism of Z,, into 1'17,2.

Proof of claim For every a € NI* and concept A, if
alr € A%, ie., A(a) € chaseng(A ), then by (P5),
either (i) (T, A,) k= A(a), and since Z is a model
of (T, Ap), then ¥ (a®r) = a%r € AT or (ii) there
exists B := C|3R|3R with C € NRC, R € Ngg,
such that T = B C A, and there exists j such that
(T, A;) E B(a). In the latter case R = B(a). There-
fore, since I;z is a model of R, Z]f = B(a), and

I = A(a) because T is a model of 7. It follows
that A% (a™r) = a% € AT For every pair a,b € Nf

and role P, if (a®»,b?r) € PZr, by (P7), similar argu-
ments can be used to prove that (kX (a®r), kX (b™r)) =
(@ b5 ) € PLr .

For every xi:" , € Ty, such that x;lpl”zlél € AL,
by (P3), T |= 3P; C A, and by construction of h[7,2,
()

IR
(x.y) € P",

= y is such that either (i) there exists
and since I]f is a model of 7, we have

y € AIIZZ, or (i) y = xi;z, P, is not rigid, and for ev-
ery j € [1,1], i; # p. In the latter case, by (P6), there
exists B := C|3R|3R~ with C € Ngg, R € Ngg, such
that 7 |= B C A and chasel§,(A;) | B(xs:" p). By
P3), T E 3P, C B. Therefore, by construction of
R.R = B(xp,) and (T, R) = A(xp,). It follows that
y € AT,

For every pair x,y € I'y and role P, such that
(xTr,yTr) € P%r, by (P10), either (i) x = x5,
y = X pp,, and T = Py C P, or (i) x =
x;1P1”l’1j111"1+1 y = xizlPl”P and T ): Pl+1 C P. We
can assume w.l.o.g. that we are in the first case (other-
wise, we consider (yXr, xTr) € P~Zr). If i | = p, by
definition of A, we have (h?f(xIP), R(ytr)) € Pljl
Otherwise, by (P11), there exists P’ := R|R~ with
R € Ngg such that 7 | Py C PP C P and
P'(x,y) € chaseng(A,-, +.)- In this case, there are two
possibilities.

(i) If P; is not rigid, given that 7 = P31 C P and
P’ is rigid, P,y 1 is rigid by our hypothesis on the

R .
TBox. It follows that /% (y*) = Xplp,., - If there is

no i; = p, then hz,a(xll’) = xff . Therefore, since
Piya(xp,. xpp,,,) € R, then (R (x%0), kR (7)) €

Iy . e .
P, 7. Otherwise, there ex1sts ij = p, and we obtain

(R ("), WX (y™r)) € P,jl by definition of /%
@) If P, is then hR( r) s such that

(R (), W) € PPy

rigid,
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R
Since in any case, (A} (xr),hX(y™)) € P]Ij;l and
I is a model of T, we obtain (A (x%r),hX(y™)) €
P

Finally, if € N and x € Ly, (a¥r,x%) €

PLr oonly if x = xjp . If iy = p, by definition of
R

KR, (hR(a%), iR (%)) € P\’ , and since by (PS),

T = P1 C P, we obtain (hf(azp),h[?(xzp)) e PL.

If iy # p, by (P9), there exists P’ rigid such that

T = P1 C P/ C P, so by our hypothesis on the TBox,
P4 is rigid. By (P1) and (P8), there is some j such that

(T, Aj) E 3x.Pi(a,x). Therefore, Pi(a,x.,p,) € R
R R
and (R (a%), KR (D)) = (a% ,xp,) € P’ . We

obtain (R (a®), kR (x%)) € P n

It follows from Claim 2 that hZ} o m is a homo-
morphism of 3y.4(¥) into 1'17,2. Therefore, we have

shown that if 7, = 3y.y(¥), then Kr,p = Iy ().
This means that if XC,p |E V¢ (¥), then Kr,p E

Fy(y). H
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