
Semantic Web 0 (0) 1 1
IOS Press

Ontology-mediated query answering over
temporal and inconsistent data
Camille Bourgaux a,*, Patrick Koopmann b and Anni-Yasmin Turhan b

a Laboratoire Traitement et Communication de l’Information, Télécom ParisTech, France
E-mail: camille.bourgaux@telecom-paristech.fr
b Institute of Theoretical Computer Science, Technische Universität Dresden, Germany
E-mails: patrick.koopmann@tu-dresden.de, anni-yasmin.turhan@tu-dresden.de

Abstract. Stream-based reasoning systems process data stemming from different sources and that are received over time. In
this kind of application, reasoning needs to cope with the temporal dimension and should be resilient against inconsistencies
in the data. Motivated by such settings, this paper addresses the problem of handling inconsistent data in a temporal version
of ontology-mediated query answering. We consider a recently proposed temporal query language that combines conjunctive
queries with operators of propositional linear temporal logic and extend to this setting three inconsistency-tolerant semantics
that have been introduced for querying inconsistent description logic knowledge bases. We investigate their complexity for EL⊥
and DL-LiteR temporal knowledge bases. In particular, we consider two different cases, depending on the presence of negations
in the query. Furthermore we complete the complexity picture for the consistent case. We also provide two approaches toward
practical algorithms for inconsistency-tolerant temporal query answering.

Keywords: temporal query answering, inconsistency-tolerance, description logics, computational complexity

1. Introduction

For applications that rely on sensor data, such as
context-aware applications, ontologies can enrich and
abstract the (numerical) stream data by means of back-
ground knowledge. This richer view on the data of-
ten results in more query results than over the data
alone. Since the collected data usually provides an
incomplete description of the observed system, the
closed world assumption employed by database sys-
tems, where facts not present are assumed to be false,
is not appropriate. Most applications that rely on sen-
sor streams observe some kind of running system over
time. In order to be able to react to the behaviour of
the observed system, they need to employ some repre-
sentation of temporal information and a query mech-
anism that can reference this temporal information. If
the sources of the collected data are not reliable, as
it might be in case of faulty sensors, the internal rep-

*Corresponding author. E-mail: camille.bourgaux@telecom-
paristech.fr.

resentation of the observations may contain inconsis-
tencies. In such cases, query mechanisms that rely on
logical reasoning are effectively useless, as everything
would follow from an inconsistent knowledge base.
As a counter measure to this effect, inconsistency-
tolerant semantics for answering ontology-mediated
queries have been devised. In this paper, we investigate
combinations of inconsistency-tolerant and temporal
query answering, which addresses two aspects vital to
stream reasoning and complex event processing.

In many stream reasoning systems, the collected
data is transformed into an abstract logical represen-
tation, and situation recognition is performed by some
kind of logical inference over the abstract logical rep-
resentation. There are stream reasoning approaches
based on rules, such as answer set programming [1–3],
(datalog) rules and approaches based on ontology lan-
guages [4–7]. While the former apply closed world se-
mantics, the later work under the open world semantics
and thereby can handle incomplete information grace-
fully. The ontology-based approaches mostly employ
the framework of ontology-mediated queries, where

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:camille.bourgaux@telecom-paristech.fr
mailto:patrick.koopmann@tu-dresden.de
mailto:anni-yasmin.turhan@tu-dresden.de
mailto:camille.bourgaux@telecom-paristech.fr
mailto:camille.bourgaux@telecom-paristech.fr

2 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

forms of conjunctive queries are answered over data
that is enriched by an ontology, to perform situation
recognition. The ontology languages that are investi-
gated for situation recognition are mostly those where
reasoning is of lower computational complexity in or-
der to obtain systems with low execution times.

In this paper, we investigate the lightweight descrip-
tion logics (DLs) EL⊥ and DL-LiteR, for which an-
swering conjunctive queries is tractable (respectively
in P and AC0 w.r.t. the size of the data). The low
complexity for query answering in DL-LiteR made it
the choice for the OWL 2 QL profile [8] in the lat-
est version of OWL [9], the W3C-standardized on-
tology language for the Semantic Web. For similar
reasons, the logic EL was picked as the core of the
OWL 2 EL profile. Both DL-LiteR and EL⊥ ad-
mit to use database systems to answer conjunctive
queries and are thus good candidates for implement-
ing ontology-based stream reasoning. In DL-LiteR,
the query can be rewritten using the information from
the ontology such that the resulting query can be eval-
uated over a finite interpretation, i.e. a database [10].
For query answering in EL, the data is augmented in
a query-independent way to build a canonical interpre-
tation, then the query is evaluated over this model and
unsound answers are filtered out [11].

In stream reasoning approaches in general, the tem-
poral information is often represented by associating
data with the time point at which it was collected. Re-
garding the language in which queries can be formu-
lated, many variations that capture the temporal as-
pect have been studied in recent research [2–4, 12].
Window based approaches admit to concentrate on re-
cent substreams when answering queries over the data,
and are the most prominent in implemented systems
[2–4]. Ontology-based approaches mostly cover clas-
sical temporal logics such as linear temporal logic
(LTL) [13] (see [5, 14–17]) or metric variants of tem-
poral logics [18, 19] to enrich the query language.
For a recent overview on temporal ontology-mediated
querying see [19, 20]. Ontology-based approaches for
stream reasoning often admit the use of temporal oper-
ators only in the query language and use classical on-
tologies without any temporal operators together with
sequences of datasets. Each dataset in such a sequence
contains data collected at the same time point. The on-
tology together with the sequence of datasets consti-
tute the temporal knowledge base. Queries can then
refer to the different time points by means of tempo-
ral operators. This kind of setting has been intensively
investigated for temporal conjunctive queries, that is,

queries with temporal operators from LTL appearing
in front of Boolean combinations of atoms, for expres-
sive DLs in [5, 21], for DL-LiteR in [6], and for EL
in [22]. We base our study in this paper on this general
setting.

For stream reasoning systems, erroneous data sources
can be a severe problem, as for instance pointed out
in [23]. If inconsistencies arise in the knowledge base,
the logical reasoning mechanisms are rendered use-
less. There are several directions of research to cope
with this problem. While some employ non-monotonic
reasoning techniques [24, 25], others try to resolve
the inconsistencies [26] directly or perform reason-
ing with respect to inconsistency-tolerant semantics
(see [27] for a recent overview). We follow the lat-
ter road in this paper, since the techniques developed
there are tailored to ontology-mediated queries and of-
ten of lower complexity than the other approaches for
resolving inconsistencies. A prominent approach for
inconsistency-tolerant reasoning is to consider repairs
of the knowledge base, i.e., maximal consistent sub-
sets of the data, and then to perform query answering
with respect to these subsets. Arguably the most natu-
ral and well-known inconsistency-tolerant semantics is
the AR semantics [28, 29], inspired by consistent query
answering in the database setting [30], which consid-
ers the queries that hold in every repair. However, AR
query answering is intractable even for very simple on-
tologies [31], which leads [28, 29] to propose an ap-
proximation of AR tractable for DL-LiteR, namely the
IAR semantics, which queries the intersection of the
repairs. Beside its better computational properties, this
semantics is more cautious, since it provides answers
supported by facts that are not involved in any contra-
dictions, so it may be interesting in our setting when
the observed system should change its behaviour only
if some situation has been recognised with a very high
confidence. Finally, the brave semantics [32] returns
every answer that holds in some repair, so is supported
by some consistent set of facts. This less cautious se-
mantics may be relevant for context recognition, when
critical situations must imperatively be handled.

For the two DLs to be investigated in this paper, an-
swering of (atemporal) conjunctive queries under these
inconsistency-tolerant semantics has already been in-
vestigated for DL-LiteR in [28, 29, 32, 33] and for
EL⊥ in [27, 34]. Attention has then turned to the prob-
lem of designing algorithms and implementing these
alternative semantics. Most work has focused on the
IAR semantics and dialects of DL-Lite, due to the
aforementioned tractability result [29, 35, 36]. A no-

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 3

table exception is the CQAPri system, which imple-
ments all three mentioned semantics—AR, IAR and
brave—for DL-LiteR knowledge bases [37, 38].

So far, inconsistency-tolerant semantics have not
been investigated in combination with temporal rea-
soning. In this paper, we lift inconsistency-tolerant se-
mantics to the case of answering temporal conjunc-
tive queries over lightweight DL temporal knowledge
bases.

1.1. Our contributions

This article extends the conference paper [39]
on temporal query answering in DL-LiteR over in-
consistent data, where the complexity of answering
queries with LTL operators, but without negations,
over DL-LiteR temporal knowledge bases was investi-
gated. The considered ontologies admit the use of rigid
predicates, which are predicates that do not change
their interpretation over time. The initial results were
obtained for the three inconsistency-tolerant semantics
AR, IAR and brave and with respect of three cases
of rigid predicates: no rigid predicates, rigid concepts
only, and rigid concepts together with rigid roles.

Compared to the conference version, the present ar-
ticle includes new complexity results (all results for
EL⊥, as well as some results for DL-LiteR). It also
extends the set of temporal operators, distinguishing
bounded and unbounded variants of the future LTL op-
erators, in order to cover the two different settings that
have been investigated for temporal query answering
in the literature, where temporal knowledge bases are
interpreted w.r.t. finite or infinite sequences of inter-
pretations. Furthermore, we investigate both the case
where negation is admitted in the query language and
the case where it is not.

The complexity upper bounds are often obtained
by non-deterministic procedures that require for in-
stance to guess repairs, which may not be feasibly
computed in practice. Thus algorithms that lend them-
selves to implementation are still to be devised. We
make two contributions toward practical algorithms
for temporal inconsistency-tolerant query answering.
The first is a polynomial reduction of reasoning in
the presence of rigid predicates to reasoning without
such predicates by propagating the rigid facts in the
sequence of datasets. The second is to identify cases
where in the absence of rigid predicates the well-
known methods for classical temporal query answer-
ing and (atemporal) inconsistency-tolerant query an-
swering can straightforwardly be combined. We show

that for the IAR semantics, this yields a sound and
complete algorithm. For the AR semantics, such a
combination of the algorithms always yields a sound
approximation, and additionally yields a sound and
complete procedure if the query contains only a re-
stricted set of operators.

This paper is structured as follows. In the next sec-
tion, we introduce the basic notions of DLs, query
answering, inconsistency-tolerant semantics for atem-
poral knowledge bases and the temporal setting. We
also discuss earlier complexity results. In Section 3,
we lift the introduced inconsistency-tolerant seman-
tics to temporal query answering over inconsistent
data. Section 4 gives an overview over the achieved
complexity results. General versions of algorithms
for testing (non-)entailment of temporal conjunctive
queries under the different semantics are described
in Section 5 in preparation of the complexity analy-
sis. Section 6 shows data and combined complexity of
inconsistency-tolerant temporal query answering for
DL-LiteR and EL⊥ for the case where the query lan-
guage admits negation. In Section 7, we complete the
complexity picture of temporal query answering under
classical semantics by investigating the case where the
query does not contain negation. We then built on these
results to provide the complexity of inconsistency-
tolerant temporal query answering for queries without
negations in Section 8. Finally, Section 9 investigates
two approaches for practical implementations that al-
low to employ well-known methods. The article ends
with a section on conclusions and future work.

To improve readability, some of the proofs have
been moved to the appendix and are only sketched in
the main text.

2. Preliminaries

We briefly recall the syntax and semantics of DLs
and the three inconsistency-tolerant semantics we con-
sider, and then introduce the setting of temporal query
answering we use.

Syntax. A DL knowledge base (KB) K consists of
an ABox A and a TBox T , both constructed from
three countably infinite sets: a set NC of concept names
(unary predicates), a set NR of role names (binary pred-
icates), and a set NI of individual names (constants).
The ABox (dataset) is a finite set of concept asser-
tions A(a) and role assertions R(a, b), where A ∈ NC,

4 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

R ∈ NR, a, b ∈ NI. The TBox (ontology) is a finite set
of axioms whose form depends on the particular DL.

In DL-LiteR, TBox axioms are either concept inclu-
sions B v C or role inclusions P v S , built according
to the following syntax, where A ∈ NC and R ∈ NR:

B :=A | ∃P C :=B | ¬B

P :=R | R− S :=P | ¬P.

Inclusions of the form B1 v B2 or P1 v P2 are called
positive inclusions (PI), those of the form B1 v ¬B2

or P1 v ¬P2 are called negative inclusions (NI).
In EL⊥, the TBox contains concept inclusions of the

form C1 v C2, where C1 and C2 are built according to
the following syntax, where A ∈ NC and R ∈ NR:

C := > | ⊥ | A | ∃R.C | C uC.

An EL⊥ inclusion of the form C1uC2 v ⊥ can also be
written in the form of a negative inclusion C1 v ¬C2.

Semantics. An interpretation is a tuple of the form
I = 〈∆I , ·I〉, where ∆I is a non-empty set and ·I
maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to AI ⊆
∆I , and each R ∈ NR to RI ⊆ ∆I × ∆I . We adopt
the unique name assumption, i.e., for all a, b ∈ NI, we
require aI 6= bI if a 6= b. The function ·I is straight-
forwardly extended to general concepts and roles, e.g.,
>I = ∆I , ⊥I = ∅, (R−)I = {(d, e) | (e, d) ∈ RI},
(¬R)I = ∆I ×∆I \ RI , (∃P)I = {d | ∃e : (d, e) ∈
PI}, (∃P.C)I = {d | ∃e : (d, e) ∈ PI , e ∈ CI}
(C1 uC2)I = CI1 ∩CI2 .

An interpretation I satisfies an inclusion G v H
if GI ⊆ HI ; it satisfies A(a) (resp. R(a, b)) if aI ∈
AI (resp. (aI , bI) ∈ RI). We call I a model of K =
〈T ,A〉 if I satisfies all axioms in T and all assertions
in A. A KB is consistent if it has a model, and we say
that an ABox A is T -consistent (or simply consistent
if T is clear from the context), if the KB 〈T ,A〉 is
consistent.

Queries. A conjunctive query (CQ) takes the form
q = ∃~y.ψ(~x, ~y), where ψ is a conjunction of atoms of
the form A(t) or R(t, t′), with t, t′ individual names or
variables from ~x∪~y. We call the variables in ~x the free
variables in q. A CQ is called Boolean (BCQ) if it has
no free variables (i.e., ~x = ∅). A BCQ q is satisfied
by an interpretation I = 〈∆I , ·I〉, written I |= q, if
there is a homomorphism π mapping the variables and
individual names of q into ∆I such that: π(a) = aI for
every a ∈ NI, π(t) ∈ AI for every concept atom A(t)

in ψ, and (π(t), π(t′)) ∈ RI for every role atom R(t, t′)
in ψ. A BCQ q is entailed fromK, writtenK |= q, iff q
is satisfied by every model of K. Given a CQ q with
free variables ~x = (x1, . . . , xk) and a tuple of individu-
als ~a = (a1, . . . , ak), ~a is a certain answer to q over K
if K |= q(~a), where q(~a) is the BCQ resulting from
replacing each x j in q by a j.

Inconsistency-tolerant semantics. A repair of K =
〈T ,A〉 is an inclusion-maximal subset of A that is T -
consistent. We consider three semantics based on re-
pairs that have been previously introduced in the liter-
ature [28, 29, 32]. A tuple ~a is an answer to q over K
under

– AR semantics, written K |=AR q(~a),
iff 〈T ,A′〉 |= q(~a) for every repair A′ of K;

– IAR semantics, written K |=IAR q(~a),
iff 〈T ,A∩〉 |= q(~a) where A∩ is the intersection of
all repairs of K;

– brave semantics, written K |=brave q(~a),
iff 〈T ,A′〉 |= q(~a) for some repair A′ of K.

Figure 1 summarizes the complexity of BCQ entail-
ment under the different semantics for DL-LiteR and
EL⊥. Data complexity is measured in the size of the
ABox only, while combined complexity is measured in
the size of the whole KB and the query. When com-
plexity is measured w.r.t. the size of the KB (ABox and
TBox), it is called KB complexity. For DL-LiteR and
EL⊥, CQ answering under the classical semantics is
in P w.r.t. KB complexity. We refer to Section 4 for a
reminder on the definitions of the different complexity
classes that appear in this work.

Temporal query answering. We now present our tem-
poral framework inspired from [5] and [17].

Definition 2.1 (TKB). A temporal knowledge base
(TKB) K = 〈T , (Ai)06i6n〉 consists of a TBox T and
a finite sequence of ABoxes (Ai)06i6n. An infinite se-
quence J = (Ii)i>0 of interpretations Ii = 〈∆, ·Ii〉
over a fixed non-empty domain ∆ (constant domain
assumption) is a model of K iff for every i ∈ J0, nK,
Ii is a model of 〈T ,Ai〉, for every i > n, Ii is a
model of T , and for every a ∈ NI and all i, j > 0,
aIi = aI j (rigidity of individual names). Rigid pred-
icates are elements from the set NRC ⊆ NC of rigid
concepts and the set NRR ⊆ NR of rigid roles. A se-
quence of interpretations J = (Ii)i>0 respects rigid
predicates iff for every X ∈ NRC∪NRR and all i, j > 0,
XIi = XI j . A TKB is consistent if it has a model
that respects rigid predicates. A sequence of ABoxes

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 5

Semantics
Data complexity Combined complexity

DL-LiteR EL⊥ DL-LiteR EL⊥
classical in AC0 P-complete NP-complete NP-complete
AR coNP-complete coNP-complete Πp

2-complete Πp
2-complete

IAR in AC0 coNP-complete NP-complete ∆p
2[O(log n)]-complete

brave in AC0 NP-complete NP-complete NP-complete

Figure 1. Complexity of BCQ entailment in DL-LiteR [28, 32] and EL⊥ [27, 34]

(Ai)06i6n is T -consistent, or simply consistent, if the
TKB 〈T , (Ai)06i6n〉 is consistent.

It is sometimes convenient to represent a sequence
of ABoxes as a set of assertions associated with time-
stamps, which we call timed assertions: (Ai)06i6n

then becomes {(α, i) | α ∈ Ai, 0 6 i 6 n}.
A rigid assertion is of the form A(a) with A ∈ NRC

or R(a, b) with R ∈ NRR. We distinguish three cases
depending on which predicates can be rigid: in the
first case there are no rigid predicates (NRC = ∅ and
NRR = ∅), in the second case there are only rigid con-
cepts (NRC 6= ∅ and NRR = ∅), and in the last case there
are both, rigid concepts and rigid roles (NRC 6= ∅ and
NRR 6= ∅). Because rigid concepts can be simulated
with rigid roles using a pair of concept inclusions of
the form A v ∃R, ∃R v A, these three cases cover all
interesting combinations.

We denote by NKC , NKR , NKRC, NKRR, and NKI respec-
tively the sets of concepts, roles, rigid concepts, rigid
roles, and individuals that occur in the TKB K.

Definition 2.2 (TCQ). Temporal conjunctive queries
(TCQs) are built from CQs as follows: each CQ is a
TCQ, and if φ1 and φ2 are TCQs, then so are ¬φ1
(negation), φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunc-
tion),#φ1 (next), b φ1 (bounded next),#−φ1 (strong
previous), −φ1 (weak previous),�φ1 (always),�bφ1
(bounded always), �−φ1 (always in the past), ♦φ1
(eventually), ♦bφ1 (bounded eventually),♦−φ1 (some
time in the past), φ1U φ2 (until), φ1Ub φ2 (bounded un-
til), and φ1S φ2 (since). We further may use ψ1 → ψ2

as a shortcut for ¬ψ1 ∨ ψ2.
We impose the constraint that the past operators#−,

�−, ♦− and S cannot be nested under the unbounded
future operators #, �, ♦ and U (in second position).

Given a TCQ φ, we refer to the TCQs that occur in
φ as subformulas of φ.

Remark 2.3 (Choice of operators). The additional
LTL operators W (weak until), W− (weak since), R
(release), and R− (past release) can be expressed w.r.t.
our operator basis as follows: φ1W φ2 ≡ (φ1U φ2) ∨

(�φ1), φ1W−φ2 ≡ (φ1S φ2) ∨ (�−φ1), φ1R φ2 ≡
φ2W (φ2 ∧ φ1), and φ1R−φ2 ≡ φ2W−(φ2 ∧ φ1).

We will consider in Sections 7, 8 and 9 a special
setting where TCQs do not contain negation symbols,
which sometimes leads to a lower computational com-
plexity. For this reason, we did not introduce �φ as
a shortcut for ¬♦¬φ, as it is often done in the litera-
ture, but instead treat the operators � and �b as na-
tive members of our query language. Similarly, since
the top and bottom concepts > and ⊥ are not allowed
in every DL, ♦ (resp. ♦b) cannot be defined using U
(resp. Ub) as usual in LTL (♦φ1 ≡ true U φ1), unless
we allow for negation (where we can express true us-
ing ∃x.A(x)∨¬∃x.A(x)). We thus keep all these oper-
ators in the set we consider.

Note also that since disjunctions are allowed, TCQs
could be defined with unions of conjunctive queries
(UCQs) instead of CQs. We use CQs for simplicity.

Definition 2.4 (TCQ answering). Given a TCQ φ with
free variables ~x = (x1, . . . , xk) and a tuple of individ-
uals ~a = (a1, . . . , ak), φ(~a) denotes the Boolean TCQ
(BTCQ) resulting from replacing each x j by a j. A tu-
ple ~a is an answer to φ in a sequence of interpreta-
tions J = (Ii)i>0 at time point p iff J , p |= φ(~a),
where the satisfaction of a BTCQ φ by a sequence of
interpretations J is defined by induction on its struc-
ture as shown in Table 1. A tuple ~a is a certain answer
to φ over K at time point p, written K, p |= φ(~a), iff
J , p |= φ(~a) for every model J of K that respects
rigid predicates.

In addition to the standard LTL past and unbounded
future operators, we introduce four bounded future op-
erators that mimic the semantics based on finite se-
quences of interpretations used in [17] and similar
to that of LTL on finite traces (see e.g., [40]). In-
deed, while the standard way of interpreting TKBs
is based on infinite sequences of interpretations, it
can be relevant to limit the scope of querying to the
known time points, especially in the context of data
streams. For instance, a user may want to ask whether
a server has been running some process since it started

6 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

Table 1
Satisfaction of BTCQs by a sequence of interpretations

φ J , p |= φ iff

∃~y.ψ(~y) Ip |= ∃~y.ψ(~y)
¬φ1 J , p 6|= φ1

φ1 ∧ φ2 J , p |= φ1 and J , p |= φ2

φ1 ∨ φ2 J , p |= φ1 or J , p |= φ2

#φ1 J , p + 1 |= φ1

 b φ1 p < n implies J , p + 1 |= φ1

#−φ1 p > 0 and J , p− 1 |= φ1

 −φ1 p > 0 implies J , p− 1 |= φ1

�φ1 ∀k, k > p, J , k |= φ1

�bφ1 ∀k, p 6 k 6 n, J , k |= φ1

�−φ1 ∀k, 0 6 k 6 p, J , k |= φ1

♦φ1 ∃k, k > p, J , k |= φ1

♦bφ1 ∃k, p 6 k 6 n, J , k |= φ1

♦−φ1 ∃k, 0 6 k 6 p, J , k |= φ1

φ1U φ2 ∃k, k > p, J , k |= φ2 and ∀ j, p 6 j < k,J , j |= φ1

φ1Ub φ2 ∃k, p 6 k 6 n, J , k |= φ2 and ∀ j, p 6 j < k,J , j |= φ1

φ1S φ2 ∃k, 0 6 k 6 p, J , k |= φ2 and ∀ j, k < j 6 p,J , j |= φ1

(♦−(Start(a)∧�bexecutes(a, b))), rather than whether
it will continue to run this process forever. Moreover,
we will see in Section 9.1 that using the bounded se-
mantics can be of practical interest since it allows us to
reduce TCQ answering in the presence of rigid predi-
cates to TCQ answering without rigid predicates. We
choose to keep both unbounded and bounded versions
of future operators to cover the two settings that have
been previously studied for TCQ answering.

The constraint that TCQs should not contain past
operators nested under unbounded future operators
will allow us to take advantage of the fact that a TKB
entails the same BCQs for every time point i > n to get
a lower complexity in the case where there is no nega-
tion in the query. Indeed, in this case, the unknown fu-
ture (i > n) can be entirely summarized in one time
point n + 1. It will also be useful to get the data com-
plexity upper bound of brave semantics in the case
where there are no rigid predicates present nor nega-
tion in the queries. Moreover, it turns out that for some
cases in our analysis, this restriction has no impact on
our results. Indeed, [17] shows that Gabbay’s separa-
tion theorem [41] can be used to rewrite a LTL formula
φ containing bounded operators into a logically equiv-
alent LTL formula φ′ that is a Boolean combination
of pure-past and pure-future formulas, although with
an exponential blow-up. It follows that the restriction
we impose does not have any influence over the data
complexity of BTCQ entailment as long as negation is
allowed in the query. Moreover, since past operators
can still be nested under bounded future operators, all

observations made can be referenced in the query lan-
guage which can express most situations that could be
desirable to detect.

It follows from the definition of certain answers
that TCQ answering can be straightforwardly reduced
to BTCQs entailment (using polynomially many tests
w.r.t. data complexity and exponentially many tests
w.r.t. combined complexity). For this reason, we focus
on the latter problem.

Figure 2 summarizes the complexity of BTCQ en-
tailment for DL-LiteR and EL⊥ in the different cases
depending on which kind of predicates are rigid. Our
setting is slightly different from those of [6] and [22]
because we have additional bounded operators and the
restriction that past operators cannot be nested un-
der unbounded future operators. However, the results
shown in these papers apply to our setting. Indeed, the
proofs for the lower bounds do not use past opera-
tors nested under future operators, and for the upper
bounds, we argue that it is possible to reduce the en-
tailment of a BTCQ φ that contains bounded opera-
tors to the entailment of a BTCQ φ′ without bounded
operators independently from the size of the TKB
and linearly w.r.t. the query size. To do that, we add
an assertion end(a) to the last ABox An of the se-
quence, where end and a are both fresh names, and
rewrite the query without unbounded operators using
the following equivalences: b φ1 ≡ #φ1 ∨ end(a),
�bφ1 ≡ φ1U (end(a) ∧ φ1), ♦bφ1 ≡ ¬end(a)U φ1,
φ1Ub φ2 ≡ (φ1 ∧ ¬end(a))U φ2.

3. Temporal query answering over inconsistent
data

We extend the three inconsistency-tolerant seman-
tics to temporal query answering. The main difference
to the atemporal case is that in the presence of rigid
concepts or roles, a TKB K = 〈T , (Ai)06i6n〉 may be
inconsistent even if each KB 〈T ,Ai〉 is consistent. In-
deed, in this case there need not exist a sequence of
interpretations J = (Ii)i>0 such that Ii is a model of
〈T ,Ai〉 for every i ∈ J0, nK and which also respects
rigid predicates. That is why we need to consider as re-
pairs the T -consistent sequences of subsets of the ini-
tial ABoxes that are component-wise maximal.

Definition 3.1 (Repair of a TKB). A repair of a
TKB K = 〈T , (Ai)06i6n〉 is a sequence of ABoxes
(A′i)06i6n such that {(α, i) | α ∈ A′i , 0 6 i 6 n}
is a maximal T -consistent subset of {(α, i) | α ∈ Ai,

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 7

Rigid predicates
Data complexity Combined complexity

DL-LiteR EL⊥ DL-LiteR EL⊥
NRC = NRR = ∅ ALOGTIME-complete P-complete PSPACE-complete PSPACE-complete
NRC 6= ∅,NRR = ∅ ALOGTIME-complete coNP-complete PSPACE-complete PSPACE-complete
NRC 6= ∅,NRR 6= ∅ ALOGTIME-complete coNP-complete PSPACE-complete CONEXPTIME-complete

Figure 2. Complexity of BTCQ entailment in DL-LiteR [6] and EL⊥ [22]

0 6 i 6 n}. We denote the set of repairs of K
by Rep(K).

The next example illustrates the impact rigid predi-
cates can have on repairs.

Example 3.2. Consider the TKBK = 〈T , (Ai)06i61〉.
The TBox expresses that web servers and applica-
tion servers are two distinct kinds of servers, and the
ABoxes provide information about a server a that exe-
cutes two processes b and c.

T = {WebServer v Server, AppServer v Server,

WebServer v ¬AppServer}

A0 = {WebServer(a), executes(a, b)}

A1 = {AppServer(a),WebServer(a), executes(a, c)}

Assume that no predicate is rigid. The TKBK is incon-
sistent because the timed assertions (AppServer(a), 1)
and (WebServer(a), 1) violate the negative inclusion
in T . Specifically, AppServer(a) and WebServer(a)
cannot both be true at time point 1. It follows that
K has two repairs that correspond to the two dif-
ferent ways of restoring consistency: (A′i)06i61 and
(A′′i)06i61, where

A′0 = A′′0 = A0

A′1 = {AppServer(a), executes(a, c)}

A′′1 = {WebServer(a), executes(a, c)}.

Now assume that AppServer is rigid. There is then
a new reason for K being inconsistent: the timed as-
sertions (WebServer(a), 0) and (AppServer(a), 1) vi-
olate the negative inclusion of T due to the rigidity
of AppServer, which implies that AppServer(a) and
WebServer(a) should be both entailed at time point 0.
Therefore, K has now the two repairs (A′i)06i61 and
(A′′i)06i61, where

A′0 = {executes(a, b)}

A′1 = {AppServer(a), executes(a, c)}

A′′0 = A0

A′′1 = {WebServer(a), executes(a, c)}.

Note that even though (A′i)06i61 is maximal (adding
WebServer(a) to A′0 renders the TKB inconsis-
tent), A′0 is not a repair of 〈T ,A0〉, because it is not
maximal.

We extend the semantics AR, IAR, and brave to
the temporal case in the natural way by regarding se-
quences of ABoxes.

Definition 3.3 (AR, IAR, brave semantics for TCQs).
A tuple ~a is an answer to a TCQ φ over a TKB K =
〈T , (Ai)06i6n〉 at time point p under

– AR semantics, written K, p |=AR φ(~a),
iff 〈T , (A′i)06i6n〉, p |= φ(~a) for every repair
(A′i)06i6n of K;

– IAR semantics, written K, p |=IAR φ(~a),
iff 〈T , (Air

i)06i6n〉, p |= φ(~a),
with Air

i =
⋂

(A′j)06 j6n∈Rep(K)A′i for all i ∈ J0, nK;
– brave semantics, written K, p |=brave φ(~a),

iff 〈T , (A′i)06i6n〉, p |= φ(~a) for some repair
(A′i)06i6n of K.

The following relationships between the semantics,
which already hold in the atemporal case, are implied
by their definition:

K, p |=IAR φ(~a)⇒ K, p |=AR φ(~a)⇒ K, p |=brave φ(~a)

We illustrate the effect of the different semantics in the
temporal case in the following example.

Example 3.4 (Example 3.2 cont’d). Consider the fol-
lowing three temporal conjunctive queries.

φ1 = �b(∃y.executes(x, y))

φ2 = �b(∃y.Server(x) ∧ executes(x, y))

φ3 = �b(∃y.AppServer(x) ∧ executes(x, y))

If there are no rigid predicates, the intersection of
the repairs is (Air

i)06i61, with Air
0 = A0 and Air

1 =

8 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

{executes(a, c)}. We have K, 0 |=IAR φ1(a), because
in every model of the intersection of the repairs a ex-
ecutes b at time point 0 and c at time point 1. For φ2,
K, 0 |=AR φ2(a), since every model of every repair
assigns a to WebServer at time point 0 and to either
AppServer (in models of (A′i)06i61) or WebServer
(in models of (A′′i)06i61) at time point 1. However,
K, 0 6|=IAR φ2(a). Finally, K, 0 6|=brave φ3(a), because
no repair entails AppServer(a) at time point 0.

If AppServer is rigid, the intersection of the re-
pairs is (Air

i)06i61 with Air
0 = {executes(a, b)} and

Air
1 = {executes(a, c)}. So, still K, 0 |=IAR φ1(a).

Since every model of every repair assigns a to Server
at time points 0 and 1 (either because a is a web server
or because a is an application server),K, 0 |=AR φ2(a),
but K, 0 6|=IAR φ2(a). Finally, K, 0 |=brave φ3(a),
because every model of 〈T , (A′i)06i61〉 assigns a to
AppServer at any time point by rigidity of AppServer,
but K, 0 6|=AR φ3(a).

We conclude this section by pointing out some char-
acteristics of the case without rigid predicates that will
be useful later. If there are no rigid predicates, the in-
terpretations Ii of a model J = (Ii)i>0 of K that re-
spects rigid predicates are independent, besides the in-
terpretation of the individual names. We thus obtain
the following proposition.

Proposition 3.5. If NRC = NRR = ∅, then a TKB
K = 〈T , (Ai)06i6n〉 is consistent iff every 〈T ,Ai〉
is consistent. Moreover, if K is consistent, for every
p ∈ J0, nK, I ′p is a model of 〈T ,Ap〉 iff there exists a
model J = (Ii)i>0 of K such that Ip = I ′p.

Proof. If NRC = NRR = ∅, a sequence of interpre-
tations J = (Ii)i>0 is a model of K that respects
rigid predicates iff it is a model of K. It follows that
K is consistent iff there exists J = (Ii)i>0 such
that for every i ∈ J0, nK, Ii is a model of 〈T ,Ai〉,
for every i > n, Ii is a model of T , and for ev-
ery a ∈ NI and all i, j > 0, aIi = aI j . We show
that this is the case iff each 〈T ,Ai〉 has a model. Let
I ′0 = 〈∆I′0 , ·I′0〉, . . . , I ′n = 〈∆I′n , ·I′n〉 be models of
〈T ,A0〉, . . . 〈T ,An〉 respectively, and p ∈ J0, nK. For
every i ∈ J0, nK, let Ii = 〈∆, ·Ii〉, where ∆ = ∆I

′
p ,

and ·Ii is defined as follows: aIi = aI
′
p for every

a ∈ NI, AIi = {aI
′
p | aI

′
i ∈ AI

′
i } for every A ∈ NC,

and RIi = {(aI
′
p , bI

′
p) | (aI

′
i , bI

′
i) ∈ RI

′
i } for ev-

ery R ∈ NR. Since we adopted the unique name as-
sumption, each Ii is a model of 〈T ,Ai〉. It follows
that J = (Ii)i>0 with Ii = ∅ for i > n is such that
for every i ∈ J0, nK, Ii is a model of 〈T ,Ai〉, for ev-

ery i > n, Ii is a model of T , and for every a ∈ NI

and all i, j > 0, aIi = aI j . Moreover, J is such that
Ip = I ′p. The other direction is trivial since Ip is a
model of 〈T ,Ap〉.

It follows that CQs can be answered at time point p
by answering them over the KB 〈T ,Ap〉.

Proposition 3.6. If NRC = NRR = ∅, then for ev-
ery BCQ q = ∃~y.ψ(~y) and p ∈ J0, nK, K, p |= q iff
〈T ,Ap〉 |= q.

Proof. K, p |= q iff for every model J = (Ii)i>0 of
K that respects rigid predicates, Ip |= q. By Propo-
sition 3.5, this is the case iff for every model Ip of
〈T ,Ap〉, Ip |= q, which is equivalent to 〈T ,Ap〉 |= q.

4. Complexity analysis overview

In the next four sections, we investigate the com-
plexity of inconsistency-tolerant BTCQ entailment in
DL-LiteR and EL⊥. Apart from the different DLs, we
also consider two settings of query languages: in the
first setting, all TCQs as defined in Section 2 are con-
sidered, in the second setting, we analyze the com-
plexity for TCQs that do not use any negation opera-
tors. For classical semantics, some complexities have
been investigated earlier for the different settings we
consider. For the case where negations are allowed in
the queries, the complexity of BTCQ entailment un-
der the classical semantics has been studied in [6] for
DL-LiteR and in [22] for EL (cf. Section 2, Figure
2). Furthermore, it has also been shown in [17, 42]
that in DL-LiteR, TCQs without negation (and with a
bounded future semantics) can be rewritten into FO-
queries for temporal databases, but only for a restricted
framework without rigid roles and with rigid concepts
only for TCQs that are rooted. We follow a simi-
lar route in this paper and consider TCQs with and
without negations explicitly, for which we analyze the
data and combined complexity for EL⊥ and DL-LiteR
TKBs.

Most of our complexity upper bounds are based on
a set of general algorithms for BTCQ entailment under
the different inconsistency-tolerant semantics, which
we present in Section 5. Those allow to deduce com-
plexity upper bounds for the different settings based
on the complexity of BTCQ entailment under classical
semantics, on the complexity of recognizing repairs,
and on the complexity of consistency checking. In Sec-

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 9

tion 6, we establish the complexity of these basic tasks,
and give complexity results for our two DLs of inter-
est, EL⊥ and DL-LiteR, regarding both data and com-
bined complexity. In the cases where the general algo-
rithms are insufficient to give tight bounds, we try to
provide specialized algorithms.

We then study the complexity of the entailment of
BTCQs without negation. In Section 7, we first in-
vestigate this case under classical semantics, and ob-
serve that in some cases, disallowing negations leads to
lower worst case complexities, even if we alleviate the
limitations imposed in [17, 42]. These lower complex-
ities allow us to also improve the complexity bounds
for inconsistency-tolerant reasoning when there are no
negations in the TCQs in Section 8. Furthermore, we
take advantage of the absence of negations to tighten
an upper bound for brave semantics without rigid pred-
icates.

We recall the definitions of the complexity classes
that appear in this section.

– P: problems solvable in polynomial time.
– NP: problems solvable in non-deterministic polyno-

mial time.
– coNP: problems whose complement is in NP.
– ∆p

2[O(log n)]: problems solvable in polynomial time
with at most logarithmically many calls to an NP
oracle.

– Σp
2: problems solvable in non-deterministic polyno-

mial time with an NP oracle.
– Πp

2: problems whose complement is in Σp
2.

– AC0: problems that can be solved by a uniform fam-
ily of circuits of constant depth and polynomial size,
with unbounded-fanin AND and OR gates. We have
AC0 ⊆ P.

– ALOGTIME: problems solvable in logarithmic time
by a random access alternating Turing machine. We
have AC0 ⊆ ALOGTIME ⊆ P.

– PSPACE: problems solvable in polynomial space.
– EXPTIME: problems solvable in exponential time.
– NEXPTIME: problems which are solvable in non-

deterministic exponential time.
– CONEXPTIME: problems whose complement is

in NEXPTIME.

For the remainder of this paper, L is a DL which is
interpreted w.r.t. standard interpretations, as defined in
Section 2. We will consider in particular the cases L
= DL-LiteR and L = EL⊥. Furthermore, we assume
K = 〈T , (Ai)06i6n〉 to be the TKB we evaluate our
query against, and φ to be the considered query.

5. General algorithms for inconsistency-tolerant
BTCQ entailment

Our complexity bounds are based on a set of gen-
eral algorithms for deciding BTCQ entailment under
the different semantics, which are inspired from known
algorithms for inconsistency-tolerant BCQ entailment
in the atemporal case (see e.g., [34]).

Non-Entailment under AR semantics. The procedure
ARNonEntailment decides whether φ is not entailed
by K at time point p under AR semantics, and is de-
fined as follows.

1. Guess a sequence of ABoxes (A′i)06i6n ⊆ (Ai)06i6n.
2. Verify that (A′i)06i6n is a repair of K and that
〈T , (A′i)06i6n〉, p 6|= φ.

Entailment under brave semantics. The procedure
braveEntailment decides whether φ is entailed by K at
time point p under brave semantics, and is defined as
follows.

1. Guess a sequence of ABoxes (A′i)06i6n ⊆ (Ai)06i6n.
2. Verify that (A′i)06i6n is a repair of K and that
〈T , (A′i)06i6n〉, p |= φ.

Non-Entailment under IAR semantics. The proce-
dure IARNonEntailment decides whether φ is not en-
tailed by K at time point p under IAR semantics, and
is defined as follows.

1. Guess

(a) a set B = {(α1, i1), . . . , (αm, im)} ⊆ (Ai)06i6n

of timed assertions, together with
(b) m subsets of the data (A′1i)06i6n ⊆ (Ai)06i6n,

. . . , (A′mi)06i6n ⊆ (Ai)06i6n such that for ev-
ery j ∈ J1,mK, α j /∈ A′ ji j

.

2. Verify that

(a) for every j ∈ J1,mK, (A′ ji)06i6n is a repair
of K, and

(b) 〈T , (Ai)06i6n\B〉, p 6|= φ.

Note that, since m 6 |(Ai)06i6n|, Step 2a has to
verify only a linear number of repairs. We show that
the algorithm decides non-entailment under IAR se-
mantics. Indeed, if for every (α j, i j) there exists a re-
pair (A′ ji)06i6n of K that does not contain (α j, i j),
then (α j, i j) is not in the intersection of the repairs
of K. Thus (Ai)06i6n\{(α1, i1), . . . , (αm, im)} is a su-
perset of the intersection (Air

i)06i6n of the repairs
of K. It follows that if 〈T , (Ai)06i6n\B〉, p 6|= φ,
then K, p 6|=IAR φ. In the other direction, assume that

10 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

K, p 6|=IAR φ, and let B = {(α1, i1), . . . , (αm, im)} =
(Ai)06i6n\(Air

i)06i6n. For each (α j, i j), there exists a
repair (A′ ji)06i6n of K that does not contain the timed
assertion (α j, i j), and 〈T , (Ai)06i6n\B〉, p 6|= φ.

Entailment under IAR semantics. We give an alter-
native procedure for IAR, IAREntailment, which de-
cides whether φ is entailed under IAR semantics at
time point p.

1. Compute the maximal size kmax of a minimal T -
inconsistent subset of (Ai)06i6n by binary search,
asking an oracle if there exists a T -inconsistent set
of timed assertions B ⊆ (Ai)06i6n such that for ev-
ery (α, i) ∈ B, B\{(α, i)} is consistent and |B| > k,
where k is the input. Note that verifying whether
a candidate fulfils these conditions requires only a
polynomial number of consistency checks.

2. Compute the minimal inconsistent subsets of K
by checking the consistency of every subset of
(Ai)06i6n of size at most kmax.

3. Call the oracle to determine whether φ is entailed at
time point p by the TKB from which the minimal
inconsistent subsets have been removed.

We show that the intersection of the repairs of K is ob-
tained by removing the minimal inconsistent subsets
of K. Let B ⊆ (Ai)06i6n be a minimal inconsistent
subset of K and (α, i) ∈ B. Since B\{(α, i)} is consis-
tent, (α, i) is not in the repairs that contain B\{(α, i)}.
In the other direction, if a timed assertion (α, i) does
not appear in some repair (A′i)06i6n ofK, since the re-
pairs are maximal, (A′i)06i6n ∪{(α, i)} is inconsistent
so (α, i) is in some minimal inconsistent subset of K.

6. Complexity of inconsistency-tolerant BTCQ
entailment with negations in the query

In this section, we investigate the complexity of
BTCQ entailment for general BTCQs, that is, BTCQs
that may contain negations. For this, we first estab-
lish the complexities of consistency checking and re-
pair recognition, i.e., the task of deciding whether a se-
quence of ABoxes is a repair of K. We then build on
these results to prove the complexity of inconsistency-
tolerant temporal query entailment using the algo-
rithms described in the last section, while showing
matching lower bounds. In order to show data com-
plexity bounds for DL-LiteR that are below P, we fol-
low a different route, by defining an abstract structure
that captures BTCQ entailment under IAR and brave

semantics and can be verified in ALOGTIME. We thus
obtain the following theorem.

Theorem 6.1. The results in Figure 3 hold.

6.1. Consistency checking and repair recognition
for TKBs

We reduce these tasks to the atemporal case by
defining an atemporal KB K̃ based on K. For K =
〈T , (Ai)06i6n〉, K̃ is defined in Figure 4. We first show
a correspondence between the models ofK that respect
rigid predicates and the models of K̃.

Lemma 6.2. K is consistent iff K̃ is consistent.

Proof. (⇐) We construct a function temp from the
models of K̃ to those of K that respect rigid predi-
cates. Assume K̃ is consistent, and let Ĩ be a model of
〈T̃ , Ã〉. We define temp(Ĩ) = J = (Ii)i>0 as follows.
For every i ∈ J0, nK, we set

– aIi = aĨ for every a ∈ NI,
– AIi = AĨ for every A ∈ NRC,
– RIi = RĨ for every R ∈ NRR,
– AIi = AĨi for every A ∈ NC\NRC, and
– RIi = RĨi for every R ∈ NR\NRR,

and for every i > n, we set

– aIi = aĨ for every a ∈ NI,
– AIi = AĨ for every A ∈ NRC,
– RIi = RĨ for every R ∈ NRR,
– AIi = AĨn+1 for every A ∈ NC\NRC, and
– RIi = RĨn+1 for every R ∈ NR\NRR.

We show that the sequence of interpretations temp(Ĩ)
is a model of K that respects rigid predicates.

1. For every i ∈ J0, nK, Ii is a model of Ai. If A(a) ∈
Ai, then either A ∈ NRC and A(a) ∈ Ã, or A /∈ NRC

and Ai(a) ∈ Ã. In both cases, aIi = aĨ ∈ AIi . We
can argue in the same way for the role assertions
in Ai.

2. For every i ∈ J0, n +1K, Ii is a model of T . Slightly
abusing notation, we denote by RenameNotRig(Ii, i)
the interpretation obtained from Ii by renaming ev-
ery non-rigid predicate X by Xi. (We can see an
interpretation as an infinite set of assertions.) The
interpretations of all rigid predicates and of all Ai

and Ri are the same in RenameNotRig(Ii, i) and Ĩ.
Since Ĩ is a model of T̃ , and T̃ does not con-

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 11

Data complexity Combined complexity

classical AR IAR brave classical AR IAR brave

EL⊥

NRC = NRR = ∅ P coNP coNP NP PSPACE PSPACE PSPACE PSPACE

NRC 6= ∅,NRR = ∅ coNP coNP coNP Σp
2 PSPACE PSPACE PSPACE PSPACE

NRC 6= ∅,NRR 6= ∅ coNP coNP coNP Σp
2 CONEXPTIME CONEXPTIME CONEXPTIME CONEXPTIME

DL-LiteR

NRC = NRR = ∅ ALOGTIME coNP in P in NP PSPACE PSPACE PSPACE PSPACE

NRC 6= ∅,NRR = ∅ ALOGTIME coNP in P NP PSPACE PSPACE PSPACE PSPACE

NRC 6= ∅,NRR 6= ∅ ALOGTIME coNP in P NP PSPACE PSPACE PSPACE PSPACE

Figure 3. Data [left] and combined [right] complexity of BTCQ entailment for BTCQs with negations. All complexities are tight, except those
preceded by “in”, which are upper bounds. The results for the classical semantics come from [22] for EL⊥ and [6] for DL-LiteR.

T̃ =

n+1⋃
i=0

RenameNotRig(T , i)

Ã =

n⋃
i=0

RenameNotRig(Ai, i)

where for every set of axioms O, the function
RenameNotRig(O, i) substitutes every non-rigid
predicate X by Xi in every axiom α ∈ O.

Figure 4. KB K̃ = 〈T̃ , Ã〉 representing K = 〈T , (Ai)06i6n〉.

tain any axiom that involves two non-rigid predi-
cates Xi and X j with i 6= j, RenameNotRig(Ii, i) is a
model of T̃ . Moreover RenameNotRig(T , i) ⊆ T̃ ,
and therefore RenameNotRig(Ii, i) is a model of
RenameNotRig(T , i). Hence, Ii is a model of T .

3. For every i > n + 1, Ii = In+1 is a model of T .
4. For every i > 0, for every A ∈ NRC , AIi = AĨ ,

and for every R ∈ NRC, RIi = RĨ . Therefore, J
respects rigid predicates.

We obtain that temp(Ĩ) is a model of K that respects
rigid predicates.

(⇒) For the other direction, we construct a function
atemp from the models of K that respect rigid pred-
icates to those of K̃. Assume K is consistent, and let
J = (Ii)i>0 be a model of K that respects rigid predi-
cates. We define atemp(J) = Ĩ as follows.

– aĨ = aI0 (= aIi for every i > 0) for every a ∈ NI,
– AĨ = AI0 for every A ∈ NRC,

– RĨ = RI0 for every R ∈ NRR,
– AĨi = AIi for every A ∈ NC\NRC and i ∈ J0, nK, and
– RĨi = RIi for every R ∈ NR\NRR and i ∈ J0, nK.

Again, we show that Ĩ is a model of K̃ by considering
the ABox and the TBox separately.

1. Ĩ is a model of Ã. If A(a) ∈ Ã with A ∈ NRC ,
then aĨ = aI0 ∈ AĨ , and if Ai(a) ∈ Ã for some
A /∈ NRC, then A(a) ∈ Ai and aĨ = aIi ∈ AĨ . The
situation is the same for the role assertions in Ã.

2. Ĩ is a model of T̃ . If we rename the non-rigid
predicates, RenameNotRig(Ii, i) coincides with Ĩ
on the interpretation of all rigid predicates and all
Ai and Ri. Since each Ii is a model of T , each
interpretation RenameNotRig(Ii, i) is a model of
RenameNotRig(T , i), and since T̃ does not contain
any axiom that involve two non-rigid predicates Xi

and X j with i 6= j, each RenameNotRig(Ii, i) is a
model of T̃ . It follows that Ĩ is a model of T̃ .

We thus shown a direct correspondence between the
models of K and those of K̃, and obtain that K is sat-
isfiable iff K̃ is satisfiable.

It follows that consistency checking of TKBs can be
polynomially reduced to consistency checking of KBs.

Lemma 6.3. If for a DL L, consistency checking of
L KBs is in P, then consistency checking of L TKBs is
in P as well.

Proof. By Lemma 6.2, the TKB K is consistent iff the
KB K̃ is consistent. If consistency checking is in P for
L KBs, the consistency of K can then be checked in

12 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

time polynomial in the size of T̃ and Ã. Since the size
of T̃ is polynomial in |T | and n, and the size of Ã
is at most the size of (Ai)06i6n, we obtain that TKB
consistency checking is in P.

We next show that repair recognition can be done
with a polynomial number of consistency checks.

Lemma 6.4. If for a DL L, consistency checking of
L TKBs is in P, then repair recognition, i.e., deciding
whether a sequence of ABoxes (A′i)06i6n is a repair
of K, is in P.

Proof. Assume consistency checking of L TKBs is
in P. Then, we can verify in P whether a sequence of
ABoxes (A′i)06i6n is a repair of K as follows.

1. For every i, check that A′i ⊆ Ai.
2. Check that (A′i)06i6n is T -consistent.
3. For every (α, j) ∈ (Ai)06i6n\(A′i)06i6n, check that

(A′i)06i6n ∪ {(α, j)} is T -inconsistent.

Note that Lemmas 6.3 and 6.4 apply to DL-LiteR
and EL⊥.

6.2. Combined complexity

We now are ready to establish the complexity of
BTCQ entailment under inconsistency-tolerant seman-
tics. We start with the combined complexity. The fol-
lowing upper bounds follow straightforwardly from
the procedures described in Section 5.

Proposition 6.5. If repair recognition is in P and
BTCQ entailment under the classical semantics is in
PSPACE w.r.t. combined complexity, then BTCQ entail-
ment under AR, IAR and brave semantics is in PSPACE
w.r.t. combined complexity.

Proof. If verifying that a sequence of ABoxes is a re-
pair is in P and verifying the entailment, and thus
also the non-entailment, of a BTCQ is in PSPACE, the
procedures ARNonEntailment, IARNonEntailment, and
braveEntailment all run in NPSPACE=PSPACE. More-
over, CONPSPACE=PSPACE.

Proposition 6.5 applies to DL-LiteR and EL⊥ in
all cases except for EL⊥ with rigid roles, for which
BTCQ entailment under classical semantics is CO-
NEXPTIME-hard [22].

Proposition 6.6. BTCQ entailment from an EL⊥ TKB
under AR, IAR and brave semantics is in CONEXP-
TIME w.r.t. combined complexity, even if NRR 6= ∅.

Proof. For the AR and IAR semantics, we modify the
procedures ARNonEntailment and IARNonEntailment
described in Section 5 so that they also guess a certifi-
cate of the non-entailment of φ in the first step. Then, in
the second step, the non-entailment of φ can be decided
by simply verifying this certificate. The certificate can
be checked in EXPTIME, since the non-entailment of φ
can be decided in NEXPTIME.

For the brave semantics’ upper bound, we give a
NEXPTIME procedure to decideK, p 6|=brave φ. For ev-
ery subset (A′i)06i6n of (Ai)06i6n, guess either “not
a repair” or a certificate of the non-entailment of φ
from 〈T , (A′i)06i6n〉 at time point p. Note that there
are 2|(Ai)06i6n| such subsets. For every such subset,
verify in EXPTIME whether it is indeed not a repair, or
whether 〈T , (A′i)06i6n〉, p 6|= φ.

The matching PSPACE and CONEXPTIME com-
bined complexity lower bounds for EL⊥ and DL-LiteR
follow from the consistent case (cf. Section 2).

6.3. Data complexity for EL⊥ TKBs

We now prove the data complexity results, starting
with EL⊥. We first consider the case without rigid
predicates.

Proposition 6.7. BTCQ entailment from an EL⊥ TKB
with NRC = NRR = ∅ is

– coNP-complete w.r.t. data complexity under AR and
IAR semantics, and

– NP-complete w.r.t. data complexity under brave se-
mantics.

Proof. The upper bounds follow from the proce-
dures described in Section 5: since verifying that a
sequence of ABoxes is a repair as well as verify-
ing the non-entailment and entailment of a BTCQ
take polynomial time w.r.t. data complexity, the pro-
cedures ARNonEntailment, IARNonEntailment, and
braveEntailment run in NP w.r.t. data complexity. The
lower bounds follow from the atemporal case.

Next, we prove the complexity of BTCQ entailment
with rigid predicates. The following proposition estab-
lishes the upper bounds for the case where both rigid
concepts and rigid roles are allowed.

Proposition 6.8. BTCQ entailment from an EL⊥ TKB
with NRC 6= ∅ and NRR 6= ∅ is

– in coNP w.r.t. data complexity under AR and IAR
semantics, and

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 13

– in Σp
2 w.r.t. data complexity under brave semantics.

Proof. For AR and IAR semantics, we modify the pro-
cedures described in Section 5 to also guess a certifi-
cate for the non-entailment of φ. This certificate can
be checked in P, since the non-entailment of φ can be
decided in NP. The upper bound for brave semantics
is obtained using the procedure braveEntailment de-
scribed in Section 5.

We show that these results are tight even if we only
have rigid concepts.

Proposition 6.9. BTCQ entailment from an EL⊥ TKB
with NRC 6= ∅ is

– coNP-hard w.r.t. data complexity under AR and IAR
semantics, and

– Σp
2-hard w.r.t. data complexity under brave seman-

tics.

Proof (Sketch). The lower bounds for AR and IAR se-
mantics follow from the atemporal case. For brave se-
mantics, we show that the complement of brave TCQ
entailment is Πp

2-hard by reduction from QBF2,∀.
Let Φ = ∀x1 . . . xm∃y1 . . . yr ϕ be a QBF2,∀-formula,

where ϕ =
∧h

i=0 `
0
i ∨ `1i ∨ `2i is a 3-CNF formula over

the propositional variables {x1, . . . , xm, y1, . . . , yr}.
Based on Φ, we define the TKBK = 〈T , (Ai)06i63h+2〉
and the TCQ φ as follows, where NRC = {T}.

T = {∃Pos.T v Sat,∃Neg.F v Sat,

∃FromPos.Sat v T,∃FromNeg.Sat v F,

∃FromY.Sat v T, T u F v ⊥,

T u ∃ValY.T v ⊥}

φ =¬�b(NotFirst(c) ∨ Sat(c)∨

#Sat(c) ∨##Sat(c))

For each clause `0i ∨ `1i ∨ `2i , we define the following
three ABoxes A3i+k (0 6 k 6 2):

A3i =B ∪ B3i

A3i+k =B ∪ B3i+k ∪ {NotFirst(c)}, 1 6 k 6 2,

where

B ={T(x j), F(x j) | 1 6 j 6 m}∪

{ValY(y j,¬y j), | 1 6 j 6 r}

B3i+k ={Pos(c, x j), FromPos(x j, c)} if `k
i = x j

B3i+k ={Neg(c, x j), FromNeg(x j, c)} if `k
i = ¬x j

B3i+k ={FromY(y j, c)} if `k
i = y j

B3i+k ={FromY(¬y j, c)} if `k
i = ¬y j.

We show that Φ is valid iff K, 0 6|=brave φ.
Since T is rigid and disjoint from F, the repairs of K

correspond to the valuations of the x j.
Assume Φ is valid. We can then show that for ev-

ery repair (A′i)06i63h+2 of K, we can define a model
J = (Ii)i>0 of 〈T , (A′i)06i63h+2〉 that respects rigid
predicates and such that J , 0 |= �b(NotFirst(c) ∨
Sat(c)∨#Sat(c)∨##Sat(c)). Indeed, since Φ is valid,
there exists a valuation νY of the y j that satisfies ϕ to-
gether with the valuation of the x j corresponding to
(A′i)06i63h+2. This valuation can be used to define J
as follows.

– yIi
j ∈ TIi iff νY(y j) = true

– ¬yIi
j ∈ TIi iff νY(y j) = false

– if there exists some d such that (dIi , cIi) ∈ FromYIi

and dIi ∈ TIi , then cIi ∈ SatIi .

It is then easy to see that at each time point p ∈
J0, 3h + 2K, either NotFirst(c) is true, or p = 3i and
Sat(c) is true at time point 3i + k, where `k

i is the
first satisfied literal of the clause `0i ∨ `1i ∨ `2i . Since
J , 0 6|= φ, then 〈T , (A′i)06i63h+2〉, 0 6|= φ. Thus
K, 0 6|=brave φ.

Now assume K, 0 6|=brave φ. We can then show that
for every valuation νX of the x j, there exists a valuation
νY of the y j such that ϕ is satisfied. Indeed, there exists
a model J of the repair corresponding to νX and of
the TBox that respects rigid predicates and is such that
J , 0 6|= φ, i.e.,

J, 0 |= �b(NotFirst(c)∨Sat(c)∨#Sat(c)∨##Sat(c)).

This model can be used to define νY . For this, we set
νY(y j) = true if there exists k such that J , k |= T(y j),
and νY(y j) = false if there exists k such that J , k |=
T(¬y j). Since J , 0 |= �b(NotFirst(c) ∨ Sat(c) ∨
#Sat(c)∨##Sat(c)), for every clause `0i ∨`1i ∨`2i , we
have that J , 3i + k |= Sat(c) for some k ∈ J0, 2K, and
we can show that `k

i is then evaluated to true. It follows
that νX ∪ νY satisfies every clause `0i ∨ `1i ∨ `2i . Hence,
ϕ[x j ← νX(x j), y j ← νY(y j)] evaluates to true for ev-
ery valuation νX , which implies that Φ is valid.

14 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

6.4. Data complexity for DL-LiteR TKBs

It remains to show the data complexity results for
DL-LiteR. We first consider the case where NRC 6= ∅.
For AR and brave semantics, the upper bounds fol-
low from the guess and check procedures described
in Section 5 (for brave semantics, guess together with
the repair a certificate that it entails φ at time point
p). The lower bound for AR follows from the atempo-
ral case, which establishes a tight coNP-bound even if
NRC = NRR = ∅. In contrast, for brave semantics, BCQ
entailment is tractable in the atemporal setting. How-
ever, we cannot directly extend this result to the tem-
poral case. Indeed, the data complexity upper bound
for brave CQ answering in DL-LiteR relies on the fact
that the size of the minimal sets of assertions that sup-
port the query is bounded by the query size. This is
not true in the temporal setting, as can already be seen
by the query φ = �−A(a), whose entailment at time
point p can depend on p assertions in the TKB. In fact,
we show that in the presence of rigid concepts, brave
BTCQ entailment becomes NP-hard.

Proposition 6.10. If NRC 6= ∅, then brave BTCQ en-
tailment from DL-LiteR TKBs is NP-hard w.r.t. data
complexity.

Proof. We show NP-hardness of brave BTCQ entail-
ment from DL-LiteR TKBs by reduction from SAT.
Let ϕ = c0 ∧ ... ∧ cn be a CNF formula over variables
x1, ..., xm. We define the following problem of BTCQ
entailment under brave semantics, with two rigid con-
cepts T and F. Let K = 〈T , (Ai)06i6n〉 be such that:

T = {∃Pos v Sat, ∃Neg v Sat,

∃Pos− v T, ∃Neg− v F, T v ¬F}

Ai = {Pos(a, x j) | x j ∈ ci} ∪

{Neg(a, x j) | ¬x j ∈ ci} for 0 6 i 6 n

Let φ = �−Sat(a). We show that ϕ is satisfiable iff
K, n |=brave φ. Indeed, since T and F are rigid, a re-
pair (A′i)06i6n of K is such that each x j has either
only Pos or only Neg incoming edges in (A′i)06i6n.
We can thus define a valuation ν of the variables such
that ν(x j) = true if (A′i)06i6n does not contain a timed
assertion of the form (Neg(c, x j), k), and ν(x j) = false
otherwise. The clause ci is satisfied by ν iff there ex-
ists x j such that either x j ∈ ci and ν(x j) = true or
¬x j ∈ ci and ν(x j) = false, that is, iff there exists x j

such that either Pos(a, x j) ∈ A′i or Neg(a, x j) ∈ A′i ,

which holds exactly iff 〈T , (A′i)06i6n〉, i |= Sat(a).
It follows that ϕ is satisfiable iff there exists a repair
(A′i)06i6n of K that entails φ at time point n.

For the case NRC = NRR = ∅, we have an ALOG-
TIME lower bound from the classical semantics, and it
is open whether the NP upper bound can be improved.

In contrast, for IAR semantics, we can give a
tractable upper bound even if NRR 6= ∅. The reason is
that, in DL-LiteR TKBs, the size of a minimal incon-
sistent subset is at most two, as in the atemporal case.

Fact 6.11 ([28], Lemma 1). Because of the DL-LiteR
syntax, the following holds: for every DL-LiteR TBox
T , the size of a minimal T -inconsistent set of (timed)
assertions is at most two.

Therefore, we can always compute the intersection
of all repairs in polynomial time.

Proposition 6.12. BTCQ entailment from a DL-LiteR
TKB under IAR semantics is in P w.r.t. data complexity,
even if NRR 6= ∅ and NRC 6= ∅.

Proof. The size of the minimal T -inconsistent subsets
of (Ai)06i6n is bounded by 2. We can thus skip the
first step of the procedure IAREntailment described in
Section 5 and compute the minimal inconsistent sub-
sets in P by checking the consistency of every timed
assertion and pair of timed assertions (with a quadratic
number of consistency checks), and then verify the en-
tailment of the query in P w.r.t. data complexity over
the TKB from which they have been removed.

7. BTCQ entailment under classical semantics
without negation in the query

This section completes the complexity picture for
BTCQ entailment under the classical semantics by in-
vestigating the case where TCQs do not contain nega-
tion. We show that the absence of negation in the query
induces a complexity drop in several cases. These re-
sults are based on a more general property: we show
that for any DL L, if L has the canonical model prop-
erty for CQ answering over KBs, then L has also
the canonical model property for TCQ answering over
TKBs for TCQs without negation. We use the canoni-
cal model to prove that for the classical semantics, the
complexity upper bounds of the atemporal case trans-
fer to the temporal case.

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 15

We first show that BCQ entailment from a TKB K
can be reduced to BCQ entailment from the KB K̃ de-
fined Section 6, Figure 4. For this, we define a simi-
lar transformation for BCQs as we did for TKBs. Let
q = ∃~y.ψ(~y) be a BCQ and p > 0 be a time point.
Consider

q̃p = RenameNotRig(q, p)

where RenameNotRig(q, p) replaces every non-rigid
predicate X in q by Xp if p 6 n, and by Xn+1 other-
wise.

Lemma 7.1. K, p |= q iff K̃ |= q̃p.

Proof. The following proof is written for the case p ∈
J0, n + 1K. For the case p > n + 1, p is replaced by
n + 1 in the predicates names.

Assume that K, p |= q, and let Ĩ be a model of K̃.
Let J = (Ii)i>0 = temp(Ĩ) be the correspond-
ing model of K that respects rigid predicates, as de-
fined in the proof for Lemma 6.2. For any BCQ ψ
without existential variables, we denote by atoms(ψ)
the set of (ground) atoms of ψ. Since Ip |= q, there
then exists a mapping π from the set of constants and
variables that appear in ψ into ∆ such that for every
X(~d) ∈ atoms(ψπ), where ψπ is the BCQ obtained by
replacing the terms of ψ by their image by π, we have
~d ∈ XIp . It follows that for every X(~d) ∈ atoms(ψπ),
if X is rigid then ~d ∈ XĨ , and otherwise ~d ∈ XĨp .
Thus, Ĩ |= RenameNotRig(q, p), i.e., Ĩ |= q̃p. Hence
K̃ |= q̃p.

In the other direction, assume that K̃ |= q̃p and
let J = (Ii)i>0 be a model of K that respects
rigid predicates. Let Ĩ = atemp(J) be as defined
in the proof for Lemma 6.2. Since Ĩ |= q̃p, there
then exists a mapping π from the set of constants
and variables that appear in ψ into ∆ such that
for every X(~d) ∈ atoms(RenameNotRig(ψπ, p)), we
have ~d ∈ XĨ . It follows that for every X(~d) ∈
atoms(RenameNotRig(ψπ, p)) such that X is rigid,
~d ∈ XIp . Furthermore, we have ~d ∈ XIp for every
Xp(~d) ∈ atoms(RenameNotRig(ψπ, p)) such that X is
not rigid. Thus, Ip |= q, and we obtain K, p |= q.

Moreover, the size of q̃p is the same as q. Hence:

Lemma 7.2. If BCQ entailment from an L KB is in P
w.r.t. KB complexity and in NP w.r.t. combined com-
plexity, then so is BCQ entailment from an L TKB.

Proof. Since deciding whether K̃ |= q̃p is polynomial
both in |T̃ | and in |Ã|, it is polynomial in |T | and
|(Ai)06i6n|. It follows that deciding whetherK, p |= q
is in P w.r.t. KB complexity.

Moreover, since deciding whether K̃ |= q̃p is in
NP w.r.t. |T̃ |, |Ã| and |q̃p|, then verifying a certificate
that K̃ |= q̃p can be done in polynomial time w.r.t.
|T̃ |, |Ã| and |q̃p|, so in polynomial time w.r.t. |T |, n,
|(Ai)06i6n| and |q|. It follows that deciding whether
K, p |= q is in NP w.r.t. combined complexity.

We next define the notion of canonical model prop-
erty for BCQ entailment and for entailment of BTCQ
without negation.

Definition 7.3 (Canonical model property). A DL L
has the canonical model property for BCQ entailment
iff for every L KB 〈T ,A〉, there exists a model I〈T ,A〉
such that for every BCQ q, 〈T ,A〉 |= q iff I〈T ,A〉 |= q.
We call I〈T ,A〉 the canonical model of 〈T ,A〉.

A DL L has the canonical model property for en-
tailment of BTCQ without negation iff for any L TKB
〈T , (Ai)06i6n〉, there exists a model J〈T ,(Ai)06i6n〉
such that for every BTCQ without negation φ and ev-
ery time point p,

〈T , (Ai)06i6n〉, p |= φ iff J〈T ,(Ai)06i6n〉, p |= φ.

We call the model J〈T ,(Ai)06i6n〉 the canonical model
of 〈T , (Ai)06i6n〉.

Note that it is justified to speak of the canonical
model of a KB or TKB K because such a model can
be homomorphically mapped into any other model of
K. Indeed, for every assertion α built over NI, NC and
NR, if α holds in the canonical model of K then it also
holds in every model of K.

The following theorem gives the relation between
the canonical model property for BCQ entailment and
for BTCQ entailment and shows why the presence or
absence of negations in the query matters.

Theorem 7.4. If L has the canonical model property
for BCQ entailment, then L has also the canonical
model property for the entailment of BTCQ without
negation.

Proof. Let ĨK̃ be the canonical model of K̃ and JK =

(Ii)i>0 = temp(ĨK̃). We show that JK is the canon-
ical model of K for BTCQs without negation, that is,
for every BTCQ φ that does not contain any negation,
K, p |= φ iff JK, p |= φ.

16 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

Since JK is a model of K that respects rigid predi-
cates, ifK, p |= φ then JK, p |= φ. For the other direc-
tion, we show by induction on the structure of φ that if
JK, p |= φ, then K, p |= φ.

If φ = q is a BCQ, by Lemma 7.1, K, p |= q
iff K̃ |= q̃p, which is exactly the case iff ĨK̃ |= q̃p.
By construction of JK, it follows that K, p |= q iff
JK, p |= q.

Assume that for two BTCQs φ1, φ2 and any p > 0,
JK, p |= φi implies K, p |= φi (i ∈ {1, 2}). We can
show the following for BTCQs built from φ1, φ2.

– If JK, p |= φ1 ∧ φ2 then JK, p |= φ1 and JK, p |=
φ2. Hence by assumption, K, p |= φ1 and K, p |=
φ2, thus K, p |= φ1 ∧ φ2.

– If JK, p |= φ1∨φ2 then JK, p |= φ1 or JK, p |= φ2.
Hence by assumption,K, p |= φ1 orK, p |= φ2, thus
K, p |= φ1 ∨ φ2.

– If JK, p |= #φ1 then JK, p + 1 |= φ1. Hence by
assumption, K, p + 1 |= φ1, thus K, p |= #φ1.

– We can show similarly that if JK, p |= b φ1
then K, p |= b φ1, that if JK, p |= #−φ1 then
K, p |= #−φ1, and that if JK, p |= −φ1 then
K, p |= −φ1.

– If JK, p |= �φ1 then for every k > p, JK, k |= φ1.
Hence by assumption, for every k > p, K, k |= φ1,
thus K, p |= �φ1.

– We can show similarly that if JK, p |= �bφ1 then
K, p |= �bφ1, and that if JK, p |= �−φ1 then
K, p |= �−φ1.

– IfJK, p |= ♦φ1 then there exists k > p,JK, k |= φ1.
Hence by assumption, there exists k > p,K, k |= φ1,
thus K, p |= ♦φ1 .

– We can show similarly that if JK, p |= ♦bφ1 then
K, p |= ♦bφ1, and that if JK, p |= ♦−φ1 then
K, p |= ♦−φ1.

– If JK, p |= φ1U φ2 then there exists k > p, JK, k |=
φ2 and for every j such that p 6 j < k, JK, j |= φ1.
Hence by assumption, there exists k > p, K, k |= φ2
and for every j such that p 6 j < k, K, j |= φ1, thus
K, p |= φ1U φ2.

– We can show similarly that if JK, p |= φ1Ub φ2 then
K, p |= φ1Ub φ2, and that if JK, p |= φ1S φ2 then
K, p |= φ1S φ2.

We conclude that for every BTCQ without negation φ,
the following holds: if JK, p |= φ, then K, p |= φ.

Remark 7.5. If φ contains some negation, the preced-
ing induction does not work and JK is not a canoni-
cal model for TCQ answering: JK, p |= ¬φ does not
guarantee that J , p 6|= φ for every model J that re-

spects rigid predicates. For example, consider T = ∅
and Ai = ∅ for every i ∈ J0, nK. We have JK, 0 6|=
∃x.A(x), but we can easily construct a model J for
〈T , (Ai)06i6n〉 such that J , 0 |= ∃x.A(x).

The following proposition is a direct consequence
of the existence of a canonical model for entailment of
BTCQ without negation.

Proposition 7.6. If L has the canonical model prop-
erty for BCQ entailment, for every L TKBs K and K′,
if K and K′ coincide for BCQ entailment, then K and
K′ coincide for entailment of BTCQ without negation,
i.e., if for every time point p and BCQ q, K, p |= q
iff K′, p |= q, then for every time point p and BTCQ
without negation φ, K, p |= φ iff K′, p |= φ.

Proof. If for every time point p and BCQ q, K, p |= q
iff K′, p |= q, we can then show by induction on the
structure of φ that K, p |= φ iff K′, p |= φ. For φ =
∃~y.ψ(~y), this holds by assumption. Assume that for two
BTCQs φ1, φ2, K, p |= φi iff K′, p |= φi (i ∈ {1, 2}).
Then, since by Theorem 7.4 L has the canonical model
property for entailment of BTCQ without negation, by
applying the definitions of BTCQ satisfaction of Ta-
ble 1 to the canonical models of K and K′, we obtain
the following about formulas composed of φ1 and φ2.

– K, p |= φ1 ∧ φ2 iff K, p |= φ1 and K, p |= φ2,
which is the case iff K′, p |= φ1 and K′, p |= φ2 by
assumption, i.e., iff K′, p |= φ1 ∧ φ2.

– K, p |= φ1 ∨ φ2 iff K, p |= φ1 or K, p |= φ2, which
is the case iff K′, p |= φ1 or K′, p |= φ2 by assump-
tion, i.e., iff K′, p |= φ1 ∨ φ2.

– K, p |= #φ1 iff K, p + 1 |= φ1, which is the case iff
K′, p+1 |= φ1 by assumption, i.e., iffK′, p |= #φ1.

– We show in the same way that K, p |= b φ1 iff
K′, p |= b φ1, that K, p |= #−φ1 iff K′, p |=
#−φ1, and that K, p |= −φ1 iff K′, p |= −φ1.

– K, p |= �φ1 iff for every k, k > p,K, k |= φ1, which
is the case iff for every k, k > p, K′, k |= φ1 by
assumption, i.e., iff K′, p |= �φ1.

– We show in the same way that K, p |= �bφ1 iff
K′, p |= �bφ1, and that K, p |= �−φ1 iff K′, p |=
�−φ1.

– K, p |= ♦φ1 iff there exists k, k > p, K, k |= φ1,
which is the case iff there exists k, k > p,K′, k |= φ1
by assumption, i.e., iff K′, p |= ♦φ1.

– We show in the same way that K, p |= ♦bφ1 iff
K′, p |= ♦bφ1, and that K, p |= ♦−φ1 iff K′, p |=
♦−φ1.

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 17

– K, p |= φ1U φ2 iff there exists k, k > p, K, k |= φ2
and for every j, p 6 j < k, K, j |= φ1, which is the
case iff there exists k, k > p, K′, k |= φ2 and for
every j, p 6 j < k, K′, j |= φ1 by assumption, i.e.,
iff K′, p |= φ1U φ2.

– We show in the same way that K, p |= φ1Ub φ2
iff K′, p |= φ1Ub φ2, and that K, p |= φ1S φ2 iff
K′, p |= φ1S φ2.

We conclude that for every BTCQ without negation φ
and time point p, K, p |= φ iff K′, p |= φ.

We now prove a central proposition for TCQ an-
swering over TKBs in DLs that have the canoni-
cal model property for entailment of BTCQs with-
out negation. It amounts to reducing the entailment of
BTCQs with unbounded future operators to the entail-
ment of BTCQs with only bounded future operators.
These can then be answered by considering only a fi-
nite number of time points.

Let K∗ be the following TKB:

K∗ =〈T , (Ai)06i6n ∪ (An+1)〉 where

An+1 ={A(a) | A ∈ NRC, A(a) ∈ Ã}∪

{R(a, b) | R ∈ NRR,R(a, b) ∈ Ã}

Proposition 7.7. If L has the canonical model prop-
erty for BCQ entailment, the relations in Table 2 hold
for any L TKB K.

Proof. It is easy to see that by construction JK∗ =
JK. Hence K, p |= φ iff K∗, p |= φ for every BTCQ
without negation φ.

All relations in Table 2 but those for the operators
�, ♦ and U are straightforwardly obtained by apply-
ing the definitions of BTCQ satisfaction of Table 1 to
this canonical model. To show the three remaining re-
lations, we rely on the fact that JK∗ is such that for
every i > n, Ii = In+1 and there is no past opera-
tors nested under unbounded future operators by def-
inition of TCQs. Indeed, if a BTCQ φ1 does not con-
tain any past operators and i > n, JK∗ , i |= φ1 iff
JK∗ , n + 1 |= φ1. Hence we can show the following,
from which the relations of Table 2 follow straightfor-
wardly.

– K∗, p |= �φ1 iff for every k > p, K∗, k |= φ1.
Hence K∗, p |= �φ1 iff ∀k, p 6 k 6 n, K∗, k |= φ1
and K∗, n + 1 |= φ1.

Table 2
Entailment under classical semantics for DLs with the canonical
model property for BCQ entailment

φ K, p |= φ iff K∗, p |= φ iff

∃~y.ψ(~y) K∗, p |= ∃~y.ψ(~y)
φ1 ∧ φ2 K∗, p |= φ1 and K∗, p |= φ2

φ1 ∨ φ2 K∗, p |= φ1 or K∗, p |= φ2

#φ1 K∗, p + 1 |= φ1

 b φ1 p < n implies K∗, p + 1 |= φ1

#−φ1 p > 0 and K∗, p− 1 |= φ1

 −φ1 p > 0 implies K∗, p− 1 |= φ1

�φ1 ∀k, p 6 k 6 n + 1, K∗, k |= φ1

�bφ1 ∀k, p 6 k 6 n, K∗, k |= φ1

�−φ1 ∀k, 0 6 k 6 p, K∗, k |= φ1

♦φ1 ∃k, p 6 k 6 n + 1, K∗, k |= φ1

♦bφ1 ∃k, p 6 k 6 n, K∗, k |= φ1

♦−φ1 ∃k, 0 6 k 6 p, K∗, k |= φ1

φ1U φ2 ∃k, p 6 k 6 n + 1, K∗, k |= φ2

and ∀ j, p 6 j < k,K∗, j |= φ1

φ1Ub φ2 ∃k, p 6 k 6 n, K∗, k |= φ2 and ∀ j, p 6 j < k,K∗, j |= φ1

φ1S φ2 ∃k, 0 6 k 6 p, K∗, k |= φ2 and ∀ j, k < j 6 p,K∗, j |= φ1

– K∗, p |= ♦φ1 iff there exists k > p, K∗, k |= φ1.
Hence K∗, p |= ♦φ1 iff ∃k, p 6 k 6 n, K∗, k |= φ1
or K∗, n + 1 |= φ1.

– K∗, p |= φ1U φ2 iff ∃k > p, K∗, k |= φ2 and ∀ j,
p 6 j < k,K∗, j |= φ1. Hence K∗, p |= φ1U φ2
iff ∃k, p 6 k 6 n, K∗, k |= φ2 and ∀ j, p 6 j <
k,K∗, j |= φ1, or K∗, n + 1 |= φ2 and ∀ j, p 6 j <
n + 1,K∗, j |= φ1.

In the next theorem, we transfer complexity upper
bounds from the atemporal case to the temporal case
(even with rigid predicates) for queries without nega-
tion and DLs that have the canonical model property
for BCQ entailment. We consider DLs for which BCQ
entailment is in P w.r.t. KB complexity and in NP w.r.t.
combined complexity, such as DL-LiteR and EL⊥.

Theorem 7.8. If L has the canonical model property
for BCQ entailment and is such that BCQ entailment
from KBs is in P w.r.t. KB complexity and in NP w.r.t.
combined complexity, then the entailment of BTCQs
without negation from L TKBs is in P w.r.t. KB com-
plexity and in NP w.r.t. combined complexity.

Proof. By Lemma 7.2, it is possible to decide whether
K∗, p |= q in P w.r.t. KB complexity for any BCQ q.
Based on this, we can show by induction on the struc-
ture of φ that K∗, p |= φ can be decided in P w.r.t.
KB complexity. Assume that for two BTCQs φ1, φ2
and any p > 0, it is possible to decide in P whether

18 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

K∗, p |= φi. Using the relations in Table 2, we can
prove the following.

– K∗, p |= φ1 ∧ φ2 iff K∗, p |= φ1 and K∗, p |= φ2, so
deciding whether K∗, p |= φ1 ∧ φ2 can be done in P
by checking that K∗, p |= φ1 and K∗, p |= φ2.

– K∗, p |= φ1 ∨ φ2 iff K∗, p |= φ1 or K∗, p |= φ2, so
deciding whether K∗, p |= φ1 ∨ φ2 can be done in
P by deciding whether K∗, p |= φ1 and K∗, p |= φ2
and checking that at least one is true.

– K∗, p |= #φ1 iff K∗, p + 1 |= φ1, so deciding
whether K∗, p |= #φ1 can be done in P by checking
whether K∗, p + 1 |= φ1.

– K∗, p |= b φ1 iff p < n implies K∗, p + 1 |= φ1,
so deciding whether K∗, p |= b φ1 can be done in
P by checking whether p > n or K∗, p + 1 |= φ1.

– We show in the same way that we can decide in
P whether K∗, p |= #−φ1 and whether K∗, p |=
 −φ1.

– K∗, p |= �φ1 iff for every k, p 6 k 6 n+1,K∗, k |=
φ1, so deciding whether K∗, p |= �φ1 can be done
in P by checking for each p 6 k 6 n+1 thatK∗, k |=
φ1.

– We show in the same way that we can decide in
P whether K∗, p |= �bφ1 and whether K∗, p |=
�−φ1.

– K∗, p |= ♦φ1 iff there exists k, p 6 k 6 n + 1,
K∗, k |= φ1, so deciding whether K∗, p |= ♦φ1 can
be done in P by deciding for each p 6 k 6 n + 1
whether K∗, k |= φ1, and checking that it is true for
at least one k.

– We show in the same way that we can decide in P
whetherK∗, p |= ♦bφ1 and whetherK∗, p |= ♦−φ1.

– K∗, p |= φ1U φ2 iff there exists k, p 6 k 6 n + 1,
K∗, k |= φ2, and for every j, p 6 j < k, K∗, j |= φ1,
so deciding whether K∗, p |= φ1U φ2 can be done
in P by deciding for each p 6 k 6 n + 1 whether
K∗, k |= φ1 and whether K∗, k |= φ2, and checking
that the condition holds.

– We show in the same way that we can decide in P
whether K∗, p |= φ1Ub φ2 and whether K∗, p |=
φ1S φ2.

The number of subqueries in φ is linear w.r.t. the size of
φ, and independent from the TKB size. It follows that
the total number of polynomial checks is also polyno-
mially bounded. Therefore, we obtain that for every
BTCQ φ without negation, K∗, p |= φ can be decided
in P w.r.t. the size ofK∗. SinceK, p |= φ iffK∗, p |= φ
and the size of K∗ is polynomial in the size of K, de-
ciding whether K, p |= φ is in P w.r.t. KB complexity.

For the NP membership of entailment of BTCQs
without negation w.r.t. combined complexity, we de-
scribe how to guess a certificate that K, p |= φ that can
be checked in P. This certificate consists of:

– a sequence of functions (νi)06i6n+1 that associate to
each BCQ q of φ true or false, and

– for each BCQ q of φ and time point i ∈ J0, n + 1K
such that νi(q) = true: a certificate that q̃i =

RenameNotRig(q, i) is entailed from K̃.

There are polynomially many pairs of a time point and
a BCQ, and the certificate that q̃i is entailed from K̃ can
be checked in polynomial time, since BCQ entailment
is in NP. Moreover, we can show that, since φ contains
neither negations nor past operators nested under un-
bounded future operators, deciding whether the propo-
sitional abstraction of φ is satisfied by the sequence
of truth assignments that assign the propositional ab-
straction of q to νi(q) for every i ∈ J0, n + 1K and to
νn+1(q) for every i > n + 1 can be done in polyno-
mial time w.r.t. the size of the query and the length
of the sequence of ABoxes. Indeed, identify φ and the
BCQs in it with their propositional abstractions, and
denote by w = w0w1...wnwn+1... the trace over 2BCQ(φ)

(where BCQ(φ) is the set of BCQs of φ), such that
wi = {q | νi(q) = true} for i 6 n + 1, wi = wn+1 for
i > n+1. Since wi = wn+1, for i > n+1, we can show
similar relations as those in Table 2 for the entailment
of LTL formulas without past operators nested under
unbounded future operators or negations from w. We
can then use a similar induction as we did when we
proved the data complexity to show that w, p |= φ can
be decided by checking which queries are in wi. For
this, the number of queries to be tested is polynomial
in n and the size of φ.

As a consequence of Theorems 7.4 and 7.8, and
since EL⊥ and DL-LiteR have the canonical model
property for BCQ entailment (cf. [11] for EL⊥, and
[43] for DL-LiteR), we obtain the following theorem.

Theorem 7.9. For DL-LiteR and EL⊥, entailment of
BTCQs without negation is in P w.r.t. KB complexity
and in NP w.r.t. combined complexity, even if NRR 6= ∅.

Besides these results for DL-LiteR and EL⊥, the
Theorems 7.4 and 7.8 hold for all Horn-DLs satisfying
the complexity constraints in the precondition of The-
orem 7.8. For instance, this holds for DL-LiteNhorn [44].

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 19

8. Complexity of inconsistency-tolerant BTCQ
entailment without negation in the query

The following proposition gives general complex-
ity upper bounds for BTCQ entailment under the AR,
IAR and brave semantics. By Theorem 7.9, they hold
in particular for L = EL⊥ and L = DL-LiteR when
negations are not allowed in the TCQs.

Proposition 8.1. IfL is such that consistency checking
of a L TKB is in P and BTCQ entailment from a L TKB
is in P w.r.t. data complexity and in NP w.r.t. combined
complexity, then BTCQ entailment from a L TKB

– under AR semantics is in coNP w.r.t. data complexity
and in Πp

2 w.r.t. combined complexity;
– under IAR semantics is in coNP w.r.t. data complex-

ity and in ∆p
2[O(log n)] w.r.t. combined complexity;

– under brave semantics is in NP w.r.t. data complex-
ity and in NP w.r.t. combined complexity.

Proof. The data complexities follow from the proce-
dures described in Section 5: since verifying that a se-
quence of ABoxes is a repair as well as non-entailment
and entailment of a BTCQ can be decided in poly-
nomial time, ARNonEntailment, IARNonEntailment
and braveEntailment take non-determistic polynomial
time.

For the combined complexity of brave BTCQ entail-
ment, a certificate that 〈T , (A′i)06i6n〉, p |= φ can be
guessed together with (A′i)06i6n, and verified in P.

For the combined complexity of IAR, we use the
procedure IAREntailment of Section 5 with an NP or-
acle to decide the existence of a minimal inconsistent
subset of size at least k in the first step, and to decide
the entailment of φ in the last step.

For EL⊥, matching lower bounds for all semantics
come from the atemporal case [27, 34].

For DL-LiteR, we can obtain matching lower bounds
from the atemporal case for the combined complex-
ity of all semantics as well as for the data complexity
of the AR semantics [28, 32]. Moreover, the proof of
Proposition 6.10 does not use negation in the query,
and therefore the data complexity lower bound for
brave semantics with rigid predicates applies also in
this case. Regarding IAR semantics, entailment of
BTCQs with negations under IAR semantics is already
in P (see Figure 3), so this better upper bound ap-
plies. Finally, we show that for brave semantics and
DL-LiteR, in the case where there are no rigid predi-
cates, we can improve the NP upper bound of Figure 3
to a P bound.

We describe a method for brave entailment of BTCQ
without negation when NRC = NRR = ∅ that proceeds
by type elimination over a set of tuples built from the
query and that represent the TCQs that are entailed at
each time point. First, we define the structure on which
the method operates. We consider the set BCQ(φ) of
leaves of φ, that is, the set of all BCQs in φ, and the set
F(φ) of subformulas of φ. In what follows, we iden-
tify the BCQs of BCQ(φ) and the BTCQs of F(φ) with
their propositional abstractions: if we write that a KB
or a TKB entails some elements of BCQ(φ) or F(φ),
we consider them as BCQs or BTCQs, and if we write
that some elements of BCQ(φ) or F(φ) entail others,
we consider the elements of BCQ(φ) as propositional
variables and those of F(φ) as propositional LTL for-
mulas built over these variables.

Definition 8.2. A brave-justification structure J for
the BTCQ without negation φ in the TKB K is a set
of tuples of the form (i, Lnow, Fnow, Fprev, Fnext), where
0 6 i 6 n, Lnow ⊆ BCQ(φ), Fnow ⊆ F(φ), Fprev ⊆
F(φ), and Fnext ⊆ F(φ).

Note that the size of a brave-justification structure
for φ in K = 〈T , (Ai)06i6n〉 is linearly bounded in
n and independent of the size of the ABoxes. A tuple
(i, Lnow, Fnow, Fprev, Fnext) is justified in J iff it fulfils
all of the following conditions.

1. 〈T ,Ai〉 |=brave
∧

q∈Lnow
q.

2. If i > 0, there exists (i−1, L′now, F
′
now, F

′
prev, F

′
next) ∈

J such that Fprev = F′now and Fnow = F′next.
3. If i < n, there exists (i+1, L′now, F

′
now, F

′
prev, F

′
next) ∈

J such that Fnext = F′now and Fnow = F′prev.
4. For every ψ ∈ BCQ(φ), if Fnow |= ψ, then ψ ∈

Lnow.
5. For every ψ ∈ F(φ), if Fnow |= ψ, then ψ ∈ Fnow.
6. For every ψ ∈ F(φ), if

∧
q∈Lnow

q∧#−(
∧
χ∈Fprev

χ)∧
#(

∧
χ∈Fnext

χ) |= ψ, then ψ ∈ Fnow.
7. For every ψ, ψ′ ∈ F(φ):

if ψ∨ψ′ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow,
if ♦ψ ∈ Fnow, then either ψ ∈ Fnow or ♦ψ ∈ Fnext,
if ♦bψ ∈ Fnow, then either ψ ∈ Fnow or ♦bψ ∈ Fnext,
if ♦−ψ ∈ Fnow, then either ψ ∈ Fnow or ♦−ψ ∈
Fprev,
if ψ′Uψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow
and ψ′Uψ ∈ Fnext,
if ψ′Ub ψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow
and ψ′Ub ψ ∈ Fnext,
if ψ′Sψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow
and ψ′Sψ ∈ Fprev, and
if ψ is of the form �ϕ, then either ψ /∈ Fnow or
〈∅, (∅)06i6n〉, n + 1 |= �ϕ.

20 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

8. If i = n, then
for all ψ ∈ F(φ) that are of the form b ϕ, ψ ∈
Fnow,
for all ψ ∈ F(φ) that are of the form #ϕ and such
that 〈∅, (∅)06i6n〉, n + 1 6|= �ϕ, we have ψ /∈ Fnow,
for all ψ ∈ F(φ) that are of the form ♦bϕ,�bϕ, or
ϕ′Ub ϕ, ψ ∈ Fnow iff ϕ ∈ Fnow,
for all ψ ∈ F(φ) that of the form ♦ϕ, ϕ′Ub ϕ and
such that 〈∅, (∅)06i6n〉, n + 1 6|= �ϕ, ψ ∈ Fnow iff
ϕ ∈ Fnow.

9. If i = 0, then
for all ψ ∈ F(φ) that are of the form −ϕ, ψ ∈
Fnow,
for all ψ ∈ F(φ) that are of the form #−ϕ, ψ /∈
Fnow, and
for all ψ ∈ F(φ) that are of the form♦−ϕ,�−ϕ, ϕ′Sϕ,
ψ ∈ Fnow iff ϕ ∈ Fnow.

We give the intuition behind the elements of the tuples
that fulfil these conditions. The first element i is the
time point we are considering, Lnow is a set of BCQs
whose conjunction is entailed under brave semantics
by 〈T ,Ai〉 (Condition 1), and Fnow is the set of for-
mulas that can be entailed together with Lnow, depend-
ing on what is entailed in the previous and next time
points, this information being stored in Fprev and Fnext

respectively (Condition 6). Conditions 2 and 3 ensure
that there is a sequence of tuples representing every
time point from 0 to n such that this information is
coherent between consecutive tuples. Condition 4 ex-
presses that Lnow is exactly the set of BCQs contained
in Fnow and Condition 5 that Fnow is maximal in the
sense that it contains its consequences. Condition 7
enforces that Fnow, Fprev and Fnext respect the seman-
tics of LTL operators and Conditions 8 and 9 enforce
this semantics at the ends of the finite sequence. (Note
that we use here the fact that past operators cannot be
nested below unbounded future operators, and that no
BCQ can be entailed under brave semantics after time
point n because there are no rigid predicates.)

A brave-justification structure J is correct if every
tuple is justified, and φ is justified at time point p by J
if there is (p, Lnow, Fnow, Fprev, Fnext) ∈ J such that
φ ∈ Fnow. We show that φ is entailed from K at time
point p under brave semantics iff there is a correct
brave-justification structure for φ in K that justifies φ
at time point p. The main idea is to link the tuples of
a sequence ((i, Lnow, Fnow, Fprev, Fnext))06i6n to a con-
sistent TKB K′ = 〈T , (Ci)06i6n〉 such that for every
i, Ci ⊆ Ai and 〈T , Ci〉 |=

∧
q∈Lnow

q. We show in the
appendix that there is such a K′ such that K′, p |= φ

iff there is such a sequence of tuples that is a correct
brave-justification structure for φ in K and justifies φ
at time point p.

The data complexity of brave entailment of BTCQ
without negation when there are no rigid predicates
follows from the characterization of brave BTCQ en-
tailment with brave-justification structures.

Proposition 8.3. For DL-LiteR, if NRC = NRR =
∅, then entailment of BTCQs without negation under
brave semantics is in P w.r.t. data complexity.

Proof. We describe a polynomial procedure that de-
cides the existence of a brave-justification structure for
φ in K that justifies φ at time point p. We start with
a brave-justification structure J for φ in K that con-
tains all possible tuples. We then remove the unjusti-
fied tuples as follows: (i) remove every tuple that does
not satisfy Conditions 1, 4, 5, 6, 7, 8 or 9, and (ii)
repeat the following steps until a fix-point has been
reached: iterate over the tuples from time point 0 to
n, eliminating those which do not satisfy Condition 3,
and then iterate from n to 0 eliminating those which
do not satisfy Condition 2. For the resulting brave-
justification structure, we check whether it contains a
tuple (p, Lnow, Fnow, Fprev, Fnext) such that φ ∈ Fnow.
If yes, we return “entailed at time point p”, otherwise,
we return “not entailed at time point p”. Since the size
of J is linear in n, this process requires at most quadrat-
ically many steps. The verification that a given tuple
is justified requires polynomial time w.r.t. data com-
plexity (the verification of Condition 3 or Condition 2
is linear in n, and only the brave entailment of a BCQ
from a DL-LiteR KB for Condition 1 depends on the
size of the ABox, which can be performed in AC0 w.r.t.
data complexity). Therefore, the complete procedure
runs in polynomial time w.r.t. data complexity.

The following theorem summarizes the complexity
results for the case without negation in the TCQ.

Theorem 8.4. The results in Figure 5 hold.

9. Toward practical algorithms

Until now, work on TCQ answering has primar-
ily focussed on complexity analysis for different DL
languages [5, 6, 21]. Attempts towards practical al-
gorithms or implementations are as of now scarce
[42, 45]. The only attempt toward more practical al-
gorithms close to our scenario that we are aware of

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 21

Data complexity Combined complexity

classical AR IAR brave classical AR IAR brave

EL⊥

NRC = NRR = ∅ P coNP coNP NP NP Πp
2 ∆p

2[O(log n)] NP
NRC 6= ∅,NRR = ∅ P coNP coNP NP NP Πp

2 ∆p
2[O(log n)] NP

NRC 6= ∅,NRR 6= ∅ P coNP coNP NP NP Πp
2 ∆p

2[O(log n)] NP

DL-LiteR

NRC = NRR = ∅ in ALOGTIME coNP in P in P NP Πp
2 NP NP

NRC 6= ∅,NRR = ∅ in ALOGTIME coNP in P NP NP Πp
2 NP NP

NRC 6= ∅,NRR 6= ∅ in ALOGTIME coNP in P NP NP Πp
2 NP NP

Figure 5. Data [left] and combined [right] complexity of BTCQ entailment for BTCQs without negation. All results are tight but those preceded
by “in” which are upper bounds. The complexities lower than in the case of BTCQs with negation are in bold.

has been made for DL-LiteR and TCQs without nega-
tion in [42], and partially implemented [46]. Some of
the results have then been generalized in [17] to query
languages that are rewritable in the atemporal case. In
this section, we will mainly focus on DL-LiteR TKBs
and TCQs without negation, building on this previous
work. However, some of our results also apply to other
DLs and we will discuss the case of EL⊥.

Three different algorithms for answering TCQs
without negation over DL-LiteR TKBs without rigid
predicates are provided in [17, 42]. The first approach
is to rewrite the TCQ into a query in ATSQL [47],
an SQL variant for temporal databases. The second
method first rewrites the TCQ into an equivalent TCQ
that does not contain future operators, and then itera-
tively computes the answers for each time point. The
third algorithm computes the answers of the TCQ it-
eratively as well, but does not eliminate the future op-
erators beforehand. For this, it uses a data structure
called answer formulas, which represents the TCQs in
which some parts have already been evaluated. This
structure contains sets of already computed answers
to subqueries, as well as variables that serve as place-
holders for subqueries that have to be evaluated at the
next time point.

Our first contribution is a method for handling rigid
predicates (both concepts and roles) in polynomial
time for TCQ answering over DL-LiteR TKBs under
the classical semantics. Indeed, [17, 42] consider only
rigid concepts (but not rigid roles) for which they pro-
vide a method that is restricted to TCQs that are rooted,
i.e., in which each CQ contains an individual or an an-
swer variable that is connected to all the other terms
through roles. As a second contribution, we show that

in the absence of rigid predicates, it is sometimes
possible to combine the algorithms for inconsistency-
tolerant query answering in the atemporal case with
algorithms for temporal query answering in the con-
sistent case in order to perform inconsistency-tolerant
temporal query answering.

9.1. TCQ answering under classical semantics in the
presence of rigid predicates for DL-LiteR and
TCQ without negation nor unbounded future
operators

In this section, we show how TCQ answering with
rigid predicates can be reduced to TCQ answering
without rigid predicates, enabling us to use the algo-
rithms that have been proposed for this latter case. In
all the section K is a DL-LiteR TKB and φ a TCQ
without negation nor unbounded future operators (#,
�, ♦, U). This restriction amounts to using the setting
of [17, 42] in which the semantics is defined w.r.t. finite
sequences of interpretations, and is necessary to reduce
TCQ answering with rigid predicates to TCQ answer-
ing without rigid predicates. Indeed, consider for in-
stance the query �A(a). Such a query can be entailed
with rigid predicates, e.g., if A is rigid, but not without
rigid predicates since for p > n, the interpretation of
every predicate is empty in the pth component of the
canonical model of a TKB without rigid predicates.

To the best our knowledge, the only algorithm that
has been proposed for TCQ answering with rigid pred-
icates and aims at practicality is described in [17, 42],
and deals only with rigid concepts and rooted TCQs.
We briefly describe this algorithm, which aims at han-
dling streaming data by computing the answers to the

22 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

query at the last available time point. The key idea is
to check all sets of potentially rigid concept assertions
and test their compatibility with each of the ABoxes
from the sequence together with the TBox. Unfortu-
nately, the original algorithms omits the test whether
the checked set of rigid concept assertions covers also
the rigid information from the tested ABox together
with the TBox. As we found this small flaw in the orig-
inal algorithm, we present here a mended variant.

The algorithm first constructs every possible set R
of assertions built from the rigid concepts and indi-
viduals in the TKB K. Note that there are 2|N

K
RC|∗|N

K
I |

such sets. It then runs, in parallel, for each such set R
an instance of the algorithm for TCQ answering with-
out rigid predicates on the TKB that is obtained by
adding the assertions inR to every ABox of the TKB.
For each time point i, it takes into account the new
dataset available by eliminating the incompatible in-
stances, i.e., those for which

1. 〈T ,Ai ∪R〉 is inconsistent, or
2. a rigid concept assertion entailed by 〈T ,Ai〉 does

not belong toR.1

The answers at time point i are then obtained by taking
the intersection of the answers returned by all active
instances.

We follow a similar idea in the sense that we also
add assertions to the TKB that propagate the effects
of the rigid predicates. We show that this way, for
DL-LiteR, TCQ answering with rigid predicates can
be reduced to TCQ answering without rigid predicates
in polynomial time.

In order to show that TCQ answering with rigid
predicates can be reduced to TCQ answering without,
we construct in polynomial time a set of assertions
R that captures all information about rigid concepts
and roles that is relevant for consistency checking and
TCQ answering. Then, TCQ answering over K with
NRC 6= ∅, NRR 6= ∅ can be performed by TCQ answer-
ing over 〈T , (Ai ∪ R)06i6n〉 with NRC = NRR = ∅.
Without any restriction on the TBox, R may be infi-
nite, as illustrated in the following example.

Example 9.1. Consider K with T = {∃R− v
∃R, R v S }, where S is rigid, A0 = {R(a, b)}, and
Ai = ∅ for i ∈ J1, nK.

1This condition is new and added after consultation with the au-
thors of [17, 42].

Every model of K that respects rigid predicates sat-
isfies φ = ∃x1...xk+1.S (x1, x2) ∧ ... ∧ S (xk, xk+1)
for every k > 0 and at every time point. Since with
NRC = NRR = ∅, K entails such a query only at
time point 0, R should be such that 〈T ,R〉 entails
such a query, so that 〈T , (Ai ∪ R)06i6n〉 entails it at
every time point. Moreover, there exist models of K
that respect rigid predicates and for which neither
∃x1...xk.S (x1, x2)∧ ...∧S (xk, x1) nor ∃xy.R(x, y) hold
at any time point i > 0. Therefore, R cannot contain
cycles of S , nor R-assertions . Consequently, R has to
contain an infinite chain of S -assertions.

This problem motivates us to disallow rigid roles
that have non-rigid sub-roles. In other words, we re-
strict ourselves in the following to TBoxes T that en-
tail no role inclusions of the form P1 v P2 with
P1 := R1|R−1 , R1 ∈ NR\NRR and P2 := R2|R−2 ,
R2 ∈ NRR. This condition avoids chains of rigid roles
in the anonymous part of the canonical model JK that
cannot be entailed by a single rigid assertion. In the
example above, if rigid roles are only allowed to have
rigid sub-roles, then R has to be rigid. In this case,
adding the single assertion R(x, y) to every Ai is suffi-
cient for ∃x1...xk+1.R(x1, x2) ∧ ... ∧ R(xk, xk+1) to be
entailed at every time point and for every k > 0.

As a first step, we explicitly construct the canonical
model JK of the DL-LiteR TKB K. This model will
be used to prove that K with NRC 6= ∅, NRR 6= ∅ and
〈T , (Ai ∪ R)06i6n〉 with NRC = NRR = ∅ entail the
same BTCQs without negation nor unbounded future
operators.

We build a sequence of (possibly infinite) ABoxes
(chaseKrig(Ai))06i6n+1 similar to the chase presented
in [48] for KBs. Let S be a set of DL-LiteR assertions.
We say a PI α is applicable in S to an assertion β ∈ S
if one of the following conditions is satisfied:

– α = A1 v A2, β = A1(a) and A2(a) /∈ S,
– α = A v ∃P, β = A(a) and there exists no b such

that P(a, b) ∈ S,
– α = ∃P v A, β = P(a, b) and A(a) /∈ S
– α = ∃P1 v ∃P2, β = P1(a1, a2) and there exists no

b such that P2(a1, b) ∈ S, or
– α = P1 v P2, β = P1(a1, a2), and P2(a1, a2) /∈ S.

A PI α is applied to an assertion β by adding a new
assertion βnew to S such that α is not applicable to β in
S ∪ {βnew} anymore.

Definition 9.2 (Rigid chase of a TKB). Let K =
〈T , (Ai)06i6n〉 be a DL-LiteR TKB. Let (A′i)06i6n+1

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 23

be such that A′i = Ai ∪ {β | ∃k, β ∈ Ak and β is rigid}
for i ∈ J0, nK and A′n+1 = ∅. Finally, let Tp be the set
of positive inclusions in T , and Ni be the number of
assertions inA′i . Assume that the assertions in eachA′i
are enumerated from N1+· · ·+Ni−1+1 to N1+· · ·+Ni

following their lexicographic order. Consider the se-
quences of sets S j = (S j

i)06i6n+1 of assertions de-
fined by

S0 =(A′i)06i6n+1

S j+1 =S j ∪ Snew = (S j
i ∪ S

new
i)06i6n+1,

where Snew is defined in terms of the assertion βnew
obtained as follows: let β ∈ S j

iβ be the first assertion in

S j such that there exists a PI in Tp applicable in S j
iβ to

β and let α be the lexicographically first PI applicable
in S j

iβ to β. In case α, β are of the form

– α = A1 v A2 and β = A1(a) then βnew = A2(a)
– α = A v ∃P and β = A(a) then βnew = P(a, anew)
– α = ∃P v A and β = P(a, b) then βnew = A(a)
– α = ∃P1 v ∃P and β = P1(a, b) then βnew =

P(a, anew)
– α = P1 v P2 and β = P1(a1, a2) then βnew =

P2(a1, a2)

where anew is constructed from α and β as follows:

– if a ∈ NKI then anew = xiβ
aP

– otherwise a /∈ NKI , then let a = xi1...il
a′P1...Pl

and define
anew = xi1...iliβ

a′P1...PlP.

If βnew is rigid, then Snew = ({βnew})06i6n+1, other-
wise, Snew = (Snew

i)06i6n+1 with Snew
iβ = {βnew} and

Snew
i = ∅ for i 6= iβ.
Let N be the total number of assertions in S j. The

assertion(s) added are numbered as follows: if βnew is
not rigid, βnew is numbered by N + 1, otherwise for
every i ∈ J0, n + 1K, the assertion βnew ∈ Snew

i added
to S j

i is numbered by N + 1 + i.
We call the rigid chase ofK, denoted by chaserig(K) =

(chaseKrig(Ai))06i6n+1, the sequence of sets of asser-
tions obtained as the infinite union of all S j, i.e.,

(chaseKrig(Ai))06i6n+1 = (
⋃
j∈N
S j

i)06i6n+1.

Based on the rigid chase of K, we construct the se-
quence of interpretations JK = (Ii)i>0, where Ii =
〈∆, ·Ii〉 is defined as follows.

– ∆ = NKI ∪ ΓN , where ΓN is the set of individuals
that appear in chaserig(K) and not in K.

– For every a ∈ ∆, aIi = a.
– For every A ∈ NC, AIi = {a | A(a) ∈ chaseKrig(Ai)}

if i 6 n, AIi = {a | A(a) ∈ chaseKrig(An+1)} if
i > n.

– For every R ∈ NR, RIi = {(a, b) | R(a, b) ∈
chaseKrig(Ai)} if i 6 n, RIi = {(a, b) | R(a, b) ∈
chaseKrig(An+1)} if i > n.

We show that JK is a model of K that respects rigid
predicates, and that for any BTCQ without negation φ
such that Nφ

I ⊆ NKI , K, p |= φ iff JK, p |= φ.

Lemma 9.3. If K is consistent, then JK is a model
of K that respects rigid predicates.

Proof (Sketch). Since for every i ∈ J0, nK, Ai ⊆
chaseKrig(Ai), we directly obtain Ii |= Ai. We can show
that for every i, Ii further satisfies every positive inclu-
sion of T with similar arguments as those used in [48].
Indeed, every PI applicable to an assertion β in S j

i at
step j of the construction of the rigid chase becomes
not applicable to β in Sk

i for some k > j, because there
are neither infinitely many assertions before β, nor in-
finitely many PIs applied to some assertion that pre-
cedes β. Finally, we show that Ii satisfies every neg-
ative inclusion of T because otherwise K would be
inconsistent. Moreover, the model JK respects rigid
predicates because, if an assertion β of chaseKrig(Ai) is
rigid, either β ∈ Ai and by construction β ∈ S0k = A′k
for every k, or β has been derived at some step j by ap-
plying some PI to an assertion of S j and β ∈ S j+1

k for
every k. We obtain that in both cases, β ∈ chaseKrig(Ak)
for every k.

Next, we show that JK is the canonical model of K
for entailment of BTCQ without negation.

Lemma 9.4. If K is consistent, then for every BTCQ
without negation φ such that Nφ

I ⊆ NKI , K, p |= φ iff
JK, p |= φ.

Proof (Sketch). Since JK = (Ii)i>0 with Ii = 〈∆, ·Ii〉
is a model of K that respects rigid predicates, the first
direction is straightforward, and we only need to show
that JK, p |= φ implies K, p |= φ. Let J = (I ′i)i>0

with I ′i = 〈∆′, ·I′i 〉 be a model of K that respects rigid
predicates. We show by structural induction on φ that
if JK, p |= φ, then J , p |= φ. For the case where φ
is a CQ ∃~y.ψ(~y), we show that if there exists a homo-
morphism π of ∃~y.ψ(~y) into Ip, then I ′p |= ∃~y.ψ(~y), by
defining a homomorphism h from ∆ into ∆′.

24 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

We are now ready to introduce the set R that, if
added to every ABox of the TKB, allows us to reduce
TCQ answering with rigid predicates to TCQ answer-
ing without.

Proposition 9.5. LetR be as defined in Figure 6. The
setR is computable in polynomial time and such that

1. K is consistent iff KR = 〈T , (Ai ∪ R)06i6n〉 is
consistent with NRC = NRR = ∅, and

2. for any BTCQ φ without negation nor unbounded
future operators and such that Nφ

I ⊆ NKI , K, p |= φ
iff KR, p |= φ with NRC = NRR = ∅.

The size of R is polynomial in the size of NKC ,N
K
R ,

and NKI , and since query answering as well as sub-
sumption checking are in P, R can be computed in
polynomial time. The first three parts of R contain in-
formation about the participation of individuals of NKI
in rigid predicates. The last two witness the partici-
pation in rigid predicates of the role-successors w.r.t.
non-rigid roles, thus take into account also anonymous
individuals that are created in chaserig(K) when ap-
plying PIs whose right-hand side is an existential re-
striction of a non-rigid role. Note that the individuals
created in chaserig(K) when applying such a PI with a
rigid role are witnessed by the individuals xaP or xP1P2

if they do not follow from a rigid role assertion, and
do not need to be witnessed otherwise, since the asser-
tion P2(xP1 , xP1P2) is sufficient to trigger the genera-
tion of the whole anonymous part implied by the fact
that xP1P2

is in the range of P2.
We break the proof of Proposition 9.5 into several

lemmas.

Lemma 9.6. K is consistent iff KR is consistent with
NRC = NRR = ∅.

Proof. By Proposition 3.5, KR is consistent with
NRC = NRR = ∅ iff each 〈T ,Ai ∪R〉 is consistent. We
show that also K is consistent iff each 〈T ,Ai ∪ R〉 is
consistent.

If K is not consistent, let B be a minimal incon-
sistent subset of K. Then B is either internal to some
Ai, and 〈T ,Ai ∪ R〉 is inconsistent, or is of the form
B = {(α, i), (β, j)}with i 6= j. In the latter case, {α, β}
violates some negative inclusion in the closure of the
TBox that involves at least a rigid concept A or a rigid
role R by assigning an individual a (or two individ-
uals a, b) to two disjoint concepts (or roles). We can
then assume w.l.o.g. that we are in one of the follow-
ing cases: (i) 〈T , α〉 |= A(a), (ii) 〈T , α〉 |= ∃x.R(a, x),
(iii) 〈T , α〉 |= ∃x.R(x, a), or (iv) 〈T , α〉 |= R(a, b).

It follows that respectively (i) 〈T ,Ai〉 |= A(a), (ii)
〈T ,Ai〉 |= ∃x.R(a, x), (iii) 〈T ,Ai〉 |= ∃x.R(x, a), or
(iv) 〈T ,Ai〉 |= R(a, b). By construction of R, we then
conclude that (i) A(a) ∈ R, (ii) R(a, xaR) ∈ R, (iii)
R(xaR− , a) ∈ R, or (iv) R(a, b) ∈ R respectively, and
therefore 〈T ,A j ∪R〉 is inconsistent.

In the other direction, assume there exists i ∈ J0, nK,
such that 〈T ,Ai ∪ R〉 is inconsistent, and let B be a
minimal inconsistent subset of 〈T ,Ai ∪R〉. If B is in-
ternal to Ai, K is clearly inconsistent. Otherwise, B is
of the form {α, β} and involves at least one assertion
from R. The assertions α and β assign an individual
x to two disjoint concepts C1,C2, or two individuals
x, y to two disjoint roles R1,R2. We distinguish three
cases. In the case where x = xaP (resp. x = xP1P2

),
since P(a, xaP) (resp. P2(xP1

, xP1P2
)) is the only asser-

tion of R that contains x, we obtain that ∃P− (resp.
∃P−2) is unsatisfiable. Since there exists j such that
〈T ,A j〉 |= ∃x.P(a, x) (resp. 〈T ,A j〉 |= ∃xy.P1(x, y)
and T |= ∃P−1 v ∃P2), it follows that A j is incon-
sistent. In the case where x = xP1

, since xP1
appears

only in concepts that subsume ∃P−1 , the fact that x is
assigned to two disjoint concepts implies that ∃P−1 is
unsatisfiable. Therefore, and since there exists j such
that 〈T ,A j〉 |= ∃xy.P1(x, y), A j is inconsistent. Fi-
nally, in the case where x ∈ NKI , since α or β is in R,
at least one of C1,C2 (or R1,R2) is rigid. If some A j

is inconsistent, so is K. Otherwise, every A j is consis-
tent. If α /∈ Ai, let cα ∈ A jα be an assertion responsi-
ble for the entailment that triggered the addition of α
to R, and otherwise let (cα, jα) = (α, i). If β /∈ Ai, let
cβ ∈ A jβ be an assertion responsible for the entailment
that triggered the addition of β to R, and otherwise
(cβ, jβ) = (β, i). Then {(cα, jα), (cβ, jβ)} is inconsis-
tent because cα and cβ lead to a (or a, b) being assigned
to two disjoint concepts (or disjoint roles) such that at
least one of them is rigid.

We now assume that K and KR are consistent. Note
that if this is not the case, they both trivially entail
any BTCQ. The two following lemmas show that if a
Boolean conjunctive query q = ∃~y.ψ(~y) is such that
Nq

I ⊆ NKI , then for every p ∈ J0, nK, KR, p |= q iff
K, p |= q.

Lemma 9.7. Let q = ∃~y.ψ(~y) be such that Nq
I ⊆ NKI .

For every p ∈ J0, nK, if KR, p |= q then K, p |= q.

Proof (Sketch). This lemma can be shown by defin-
ing a homomorphism from the canonical model of
〈T ,Ap ∪R〉 into Ip.

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 25

R ={A(a) | A ∈ NKRC, a ∈ NKI ,∃i, 〈T ,Ai〉 |= A(a)} ∪

{R(a, b) | R ∈ NKRR, a, b ∈ NKI ,∃i, 〈T ,Ai〉 |= R(a, b)} ∪

{P(a, xaP) | R ∈ NKRR, P := R|R−, a ∈ NKI ,∃i, 〈T ,Ai〉 |= ∃x.P(a, x)} ∪

{A(xP1) | S ∈ NKR \NKRR, P1 := S |S−, A ∈ NKRC,∃i, 〈T ,Ai〉 |= ∃xy.P1(x, y) and T |= ∃P−1 v A} ∪

{P2(xP1
, xP1P2

) | S ∈ NKR \NKRR, P1 := S |S−,R ∈ NKRR, P2 := R|R−,∃i, 〈T ,Ai〉 |= ∃xy.P1(x, y)

and T |= ∃P−1 v ∃P2}

Figure 6. Set of rigid assertions added to every ABox of K

Lemma 9.8. Let q = ∃~y.ψ(~y) be such that Nq
I ⊆ NKI .

For every p ∈ J0, nK, if K, p |= q then KR, p |= q.

Proof (Sketch). The lemma can be shown by consider-
ing a model IRp of 〈T ,Ap ∪R〉, and defining a homo-
morphism of Ip into IRp .

Since by Lemmas 9.7 and 9.8, K and KR with
NRC = NRR = ∅ coincide on the entailment of BCQs
for every time point p ∈ J0, nK, we can show as in
Proposition 7.6 that they coincide on entailment of
BTCQs without negation nor unbounded future opera-
tors.

Lemma 9.9. Let φ be a BTCQ without negation nor
unbounded future operators and such that Nφ

I ⊆ NKI .
K, p |= φ iff KR, p |= φ with NRC = NRR = ∅.

It follows that TCQs can be answered in K with
rigid predicates by answering TCQs in KR without
rigid predicates and pruning answers that contain in-
dividual names not in NKI . Note that every model of
KR is a model of K, but does not respect rigid predi-
cates in general. We can reduce BTCQ entailment over
K with rigid predicates to BTCQ entailment over KR
without rigid predicates only because our TCQs do not
allow LTL operators to be nested in existential quan-
tifications. This prevents existentially quantified vari-
ables to link different time points. To see this, con-
sider the query ∃xy.�b(R(a, x)∧R(x, y)) and the TKB
K = 〈T , (Ai)06i6n〉 with T = {B v ∃R,∃R− v ∃R},
R ∈ NRR and Ai = {B(a)}. For this TKB, we would
have R = {R(a, xaR)}, and therefore xaR could have a
different R-successors in each interpretation of a model
of KR, thus y cannot be mapped to the same object at
every time point.

Remark 9.10. In the case of streaming data, if we
want to take into account a newly available dataset, we
do not need to fully recomputeR: we only need to add
the new rigid assertions that can be derived from the
new dataset. Moreover, if we only reason over a win-
dow of n time points from our stream, we can anno-
tate the assertions inRwith a counter that is initialised
with n and decremented with each new time point.
Assertions are then removed from R if their counter
reaches 0. Here, we implicitly assume that the counter
for an assertion is reset to n whenever it is again de-
rived from the next dataset.

Remark 9.11. The main goal of the approaches pre-
sented in [17, 42] for TCQ answering in DL-LiteR is to
obtain the query answers at the last time point without
storing all the data for all previous time points. Their
algorithm uses a bounded history encoding, which
means that the space required by the algorithm is con-
stant w.r.t. the number n of previous time points: only
the current dataset and some auxiliary relations re-
quired for computing the query answers are stored and
updated at each time point.

Unfortunately, with rigid predicates present, our ap-
proach does not achieve bounded history encoding,
since the answers of the subqueries of φ at previous
time points may change when new rigid assertions are
derived from the last dataset. However, if the algo-
rithm of [17, 42] has this property, it requires exponen-
tial space w.r.t. NKRC and NKI which can also be prob-
lematic, while our algorithm requires only polynomial
space and time. To achieve bounded history encoding
(but in exponential time w.r.t. NKRC, NKRR and NKI), we
could adapt the algorithm of [17, 42] to support rigid
roles. We would consider all possible setsR built from
NKRC, NKRR and NKI following the form of Figure 6, then
verify at each time point whether R is consistent with

26 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

Ai and T and contains all rigid assertions that can be
derived from Ai as described in Figure 6.

A possible direction to alleviate the restrictions on
the TBox that forbid rigid roles that have non-rigid
sub-roles would be to use ideas similar to those de-
veloped in [43] for CQ answering over DL-LiteR KB
using the combined approach. This CQ answering ap-
proach saturates the data by adding to the ABox every
assertion that can be derived, introducing individual
names to witness existential role restrictions, and then
uses a special rewriting to prune spurious answers. In
our setting, we could model infinite chains of rigid
roles by adding cycles of rigid roles to R, then prune
the spurious answers resulting from these cycles.

Regarding EL⊥, we conjecture that we could have
a similar approach for rigid predicates. The main dif-
ference would be that since in EL⊥ several assertions
may be needed to derive one,Rwould have to be com-
puted iteratively, taking into account its own assertions
to derive new ones until a fix-point is reached. More-
over, the problem of infinite chains of rigid roles that
cannot be entailed by a polynomial set of assertions
would appear as soon as NRR 6= ∅. The combined ap-
proach for EL [11] could provide ideas to overcome
this difficulty.

9.2. Inconsistency-tolerant TCQ answering without
rigid predicates

In this section K is a L TKB and φ a TCQ without
negation.

When NRC = NRR = ∅, an important consequence
of Proposition 3.5 is that the repairs of K are all
possible sequences (A′i)06i6n where A′i is a repair
of 〈T ,Ai〉, so the intersection of the repairs of K is
(A∩i)06i6n where A∩i is the intersection of the repairs
of 〈T ,Ai〉. This allow us to show that the entailment
(resp. IAR entailment) of a BTCQ without negation
from a consistent (resp. possibly inconsistent) TKB in
a DL L that has the canonical model property for BCQ
entailment can be equivalently defined w.r.t. the entail-
ment (resp. IAR entailment) of the BCQs it contains as
follows:

Proposition 9.12. If L has the canonical model prop-
erty for BCQ entailment and NRC = NRR = ∅, then the
entailments shown in Table 3 hold for S = classical
when K is consistent, and for S = IAR.

Table 3
Entailment under classical or IAR semantics from a L TKB without
rigid predicates and such that L has the canonical model property
for BCQ entailment

φ K, p |=S φ iff

∃~y.ψ(~y) p 6 n and 〈T ,Ap〉 |=S ∃~y.ψ(~y)
φ1 ∧ φ2 K, p |=S φ1 and K, p |=S φ2

φ1 ∨ φ2 K, p |=S φ1 or K, p |=S φ2

#φ1 K, p + 1 |=S φ1

 b φ1 p < n implies K, p + 1 |=S φ1

#−φ1 p > 0 and K, p− 1 |=S φ1

 −φ1 p > 0 implies K, p− 1 |=S φ1

�φ1 ∀k, k > p, K, k |= φ1

�bφ1 ∀k, p 6 k 6 n, K, k |= φ1

�−φ1 ∀k, 0 6 k 6 p, K, k |=S φ1

♦φ1 ∃k, k > p, K, k |= φ1

♦bφ1 ∃k, p 6 k 6 n, K, k |= φ1

♦−φ1 ∃k, 0 6 k 6 p, K, k |=S φ1

φ1U φ2 ∃k, k > p, K, k |= φ2 and ∀ j, p 6 j < k,K, j |= φ1

φ1Ub φ2 ∃k, p 6 k 6 n, K, k |=S φ2 and ∀ j, p 6 j < k,K, j |=S φ1

φ1S φ2 ∃k, 0 6 k 6 p, K, k |=S φ2 and ∀ j, k < j 6 p,K, j |=S φ1

Proof. For the consistent case, all relations in Table 3
but the first one are straightforwardly obtained by ap-
plying the definitions of BTCQ satisfaction of Table 1
to the canonical model of K. Moreover, by Proposi-
tion 3.6, if p 6 n, then K, p |= ∃~y.ψ(~y) iff 〈T ,Ap〉 |=
∃~y.ψ(~y). Finally, K, p 6|= ∃~y.ψ(~y) if p > n, because
there exists a model of K whose pth component inter-
prets every predicate as the empty set.

For IAR semantics, let (Air
i)06i6n denote the inter-

section of the repairs of K andA∩i denote the intersec-
tion of the repairs of 〈T ,Ai〉.

– K, p |=IAR ∃~y.ψ(~y) iff 〈T , (Air
i)06i6n〉, p |= ∃~y.ψ(~y),

i.e., iff p 6 n and 〈T ,Air
p〉 |= ∃~y.ψ(~y) because

(Air
i)06i6n is consistent. Since the repairs of K

are the sequences of the repairs of the 〈T ,Ai〉,
Air

p = A∩p , so K, p |=IAR ∃~y.ψ(~y) iff p 6 n and
〈T ,Ap〉 |=IAR ∃~y.ψ(~y).

– K, p |=IAR φ1 ∧ φ2 iff 〈T , (Air
i)06i6n〉, p |=

φ1 ∧ φ2, i.e., iff 〈T , (Air
i)06i6n〉, p |= φ1 and

〈T , (Air
i)06i6n〉, p |= φ2 because (Air

i)06i6n is con-
sistent. It follows that K, p |=IAR φ1 ∧ φ2 iff
K, p |=IAR φ1 and K, p |=IAR φ2.

– We show all remaining relations in the same way,
applying the definition of IAR semantics and using
the fact that (Air

i)06i6n is consistent.

This is a remarkable result, since it implies that an-
swering temporal CQs under IAR semantics can be

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 27

done with the algorithms developed for the consistent
case (see [17, 42] for algorithms for DL-LiteR with-
out unbounded future operators) by replacing classical
CQ answering by IAR CQ answering (see [29, 36, 37]
for algorithms for DL-LiteR). The following example
shows that this is unfortunately not true for brave or
AR semantics.

Example 9.13. Consider the TKBK = 〈T , (Ai)06i6n〉
and TCQ φ.

T ={T v ¬F}

Ai ={T (a), F(a)} for 0 6 i 6 n

φ =�−(T (a) ∧ −F(a))

Now,K, k |=brave T (a)∧ −F(a) for every 0 6 k 6 n,
but K, n 6|=brave φ. This is because the same repair
cannot entail T (a) ∧ −F(a) both at time point k
and k + 1, since it would contain both (T (a), k) and
(F(a), k) which is not possible. For AR semantics,
consider φ = T (a) ∨ F(a) over the TKB K: while φ
holds under AR semantics at each time point, neither
T (a) nor F(a) does.

However, if the operators allowed in the TCQ are re-
stricted to ∧,#, b ,#−, −,�,�b, and�−, then AR
TCQ answering can be done with the algorithms devel-
oped for the consistent case by simply replacing clas-
sical CQ answering by AR CQ answering (see [37] for
algorithms for DL-LiteR). Indeed, for these operators,
the relations of Proposition 9.12 hold for S = AR.

– K, p |=AR ∃~y.ψ(~y) iff for every repair (A′i)06i6n
of K, 〈T , (A′i)06i6n〉, p |= ∃~y.ψ(~y), i.e., iff for ev-
ery repair (A′i)06i6n of K, p 6 n and 〈T ,A′p〉 |=
∃~y.ψ(~y) because (A′i)06i6n is consistent. Since the
repairs of K are the sequences of the repairs of the
〈T ,Ai〉, it is the case iff p 6 n and for every repair
A′p of 〈T ,Ap〉, 〈T ,A′p〉 |= ∃~y.ψ(~y), i.e., iff p 6 n
and 〈T ,Ap〉 |=AR ∃~y.ψ(~y).

– K, p |=AR φ1 ∧ φ2 iff for every repair (A′i)06i6n
of K, 〈T , (A′i)06i6n〉, p |= φ1 ∧ φ2, i.e., iff for ev-
ery repair (A′i)06i6n of K, 〈T , (A′i)06i6n〉, p |= φ1
and 〈T , (A′i)06i6n〉, p |= φ2 because (A′i)06i6n is
consistent. It follows that K, p |=AR φ1 ∧ φ2 iff
K, p |=AR φ1 and K, p |=AR φ2.

– We show all remaining relations in the same way,
applying the definition of AR semantics and using
the fact that TKB repairs are consistent.

The following counter-examples show that this is not
the case for the other operators: ∨,♦,♦b,♦−,U ,Ub ,
and S .

– K, 0 |=AR φ1 ∨ φ2 but K, 0 6|=AR φ1 and K, 0 6|=AR

φ2:

T ={A v ¬B} A0 ={A(a), B(a)}

φ1 =A(a) φ2 =B(a)

– K, 0 |=AR ♦φ1 (resp. K, 0 |=AR ♦bφ1) but for every
k (resp. such that 0 6 k 6 2), K, k 6|=AR φ1:

T ={A v ¬B} A0 ={A(a)}

A1 ={A(a), B(a)} A2 ={B(a)}

φ1 =A(a) ∧#B(a)

– K, 0 |=AR φ1U φ2 (resp. K, 0 |=AR φ1Ub φ2) but
for every k (resp. such that 0 6 k 6 2), either
K, k 6|=AR φ2 or there exists j, such that 0 6 j < k
and K, j 6|=AR φ1:

T ={A v ¬B} A0 ={A(a)}

A1 ={A(a), B(a)} A2 ={B(a)}

φ1 =A(a) φ2 =B(a)

– We can construct similar counter-examples for ♦−

and S .

Interestingly, contrary to the brave semantics, even
for general TCQs the “if” direction of Proposition 9.12
is true.

– If K, p |=AR φ1 or K, p |=AR φ2, then K, p |=AR

φ1 ∨ φ2.
– If there exists k > p such that K, k |=AR φ1, then
K, p |=AR ♦φ1.

– If there exists k such that p 6 k 6 n and K, k |=AR

φ1, then K, p |=AR ♦bφ1.
– If there exists k such that 0 6 k 6 p and K, k |=AR

φ1, then K, p |=AR ♦−φ1.
– If there exists k > p such that K, k |=AR φ2 and for

every j such that p 6 j < k, K, j |=AR φ1, then
K, p |=AR φ1U φ2.

– If there exists k such that p 6 k 6 n, K, k |=AR φ2
and for every j such that p 6 j < k, K, j |=AR φ1,
then K, p |=AR φ1Ub φ2.

– If there exists k such that 0 6 k 6 p, K, k |=AR φ2
and for every j such that k < j 6 p, K, j |=AR φ1,
then K, p |=AR φ1S φ2.

It follows that even for unrestricted TCQs, combin-
ing algorithms for TCQ answering with algorithms for

28 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

AR query answering will provide a sound approxima-
tion of AR answers.

For brave semantics, it would be useful to charac-
terize the queries for which this method would be cor-
rect. Indeed, for many pairs of a TBox and a query,
the minimal subsets of the TKB such that the query
can be mapped into them cannot be inconsistent. For
instance, for DL-LiteR TKBs, this is the case if no
pair of predicates that may be involved at the same
time point appears in an NI entailed by the TBox. Con-
sider for instance T = {A v ¬C, B v ¬C} and
φ = ∃x.A(x) ∧ ♦(∃x.B(x) ∧ #(∃x.C(x))). For φ to
be entailed at time point p, ∃x.A(x) should hold at p,
∃x.B(x) at time point i > p and ∃x.C(x) at i + 1 > p,
so there cannot be a conflict between the C and the A
or B timed assertions used to satisfy the different CQs.

10. Conclusions and future work

For stream reasoning handling the temporal dimen-
sion of the collected data and being resilient against
errors in the data are expedient requirements. In the
presence of erroneous data handling inconsistencies
is even indispensable for logic-based approaches to
stream reasoning. In this paper we have lifted stan-
dard inconsistency-tolerant semantics AR, IAR and
brave to a temporal query answering setting that has
been widely studied in the literature—namely, where
the data is associated with time points and only the
query language admits the use of temporal operators
from LTL. We have presented complexity results and
techniques to combine temporal with inconsistency-
tolerant query answering over lightweight DL tempo-
ral knowledge bases suited for ontology-mediated sit-
uation recognition.

Our main contribution is a complexity analysis of
the three semantics, focusing on the DLs EL⊥ and
DL-LiteR, where we distinguished the cases based
on whether rigid concept or role names occur in the
TKB, and on whether the query contains negation.
We provided general algorithms that allow us to de-
rive the complexity of temporal inconsistency-tolerant
query answering from the complexities of consistency
checking and classical entailment of temporal conjunc-
tive queries. We furthermore completed the complex-
ity picture for the classical semantics for TCQs with-
out negations. Indeed, for the case where the query lan-
guage does not provide negation, we devised a gen-
eral approach to assess the complexity by the use of

the canonical model property for B(T)CQ answering
and thus not only limited to a particular DL. This ap-
proach allows to derive the complexity of temporal
query answering from the complexity of conjunctive
queries entailment for DLs that have this canonical
model property.

Encouragingly, our analysis shows that either with
or without negation in the query, in most cases,
inconsistency-tolerant reasoning and temporal query
answering can be combined without increasing the
computational complexity. Furthermore, our results
show that disallowing negation in the query language
results in a drop in the combined complexity of TCQ
answering, and, in the case of EL⊥ with rigid pred-
icates, even in the data complexity. This raises hope
that ontology-based stream reasoning applications in
temporal settings which are resilient against noise in
the data, can be feasibly implemented and used.

As a second major contribution, we investigated two
techniques useful for developing practical algorithms
for inconsistency-tolerant temporal query answering.
We first showed that in DL-LiteR, under the classi-
cal semantics and for queries without negation nor un-
bounded temporal operators, rigid predicates can be
handled by adding a set of assertions of polynomial
size to each ABox from the TKB. However, our ap-
proach that adds this set of assertionsR to every ABox
of the TKB to reduce TCQ answering with rigid predi-
cates to TCQ answering without rigid predicates works
only for BTCQ entailment under the classical seman-
tics.

We then showed that in the case without rigid pred-
icates and for queries without negation, TCQ answer-
ing under IAR semantics can be implemented by com-
bining algorithms developed for TCQ answering un-
der the classical semantics with algorithms for CQ
answering under IAR semantics over atemporal KBs.
Moreover, we showed that when disallowing some of
the operators in the queries, the same method can be
used for AR semantics, while for full TCQs without
negation, it provides for a sound approximation of the
AR answers. Unfortunately, this is not the case for
brave semantics which are relevant for practical appli-
cations, such as recognizing highly critical situations.
Thus it would be useful to characterize the queries and
TBoxes for which this method is correct. Now, fully
fledged practical algorithms still remain to be found for
inconsistency-tolerant temporal query answering with
rigid predicates.

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 29

Acknowledgements

This work has been supported by the DFG in CRC
912 (HAEC) and the DAAD. The authors would like
to thank Stefan Borgwardt for helpful discussions.

References

[1] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu
and T. Schaub, Stream Reasoning with Answer Set Program-
ming: Preliminary Report, in: Proceedings of KR, 2012.

[2] H. Beck, M. Dao-Tran, T. Eiter and M. Fink, LARS: A Logic-
Based Framework for Analyzing Reasoning over Streams, in:
Proceedings of AAAI, 2015.

[3] H. Beck, T. Eiter and C.F. Beckmann, Ticker: A system for in-
cremental ASP-based stream reasoning, TPLP 17(5–6) (2017),
744–763.

[4] Ö.L. Özçep, R. Möller and C. Neuenstadt, A Stream-Temporal
Query Language for Ontology Based Data Access, in: Pro-
ceedings of KI’17, 2014.

[5] F. Baader, S. Borgwardt and M. Lippmann, Temporalizing
Ontology-Based Data Access, in: Proceedings of CADE, 2013.

[6] S. Borgwardt and V. Thost, Temporal Query Answering in DL-
Lite with Negation, in: Proceedings of GCAI, 2015.

[7] S. Brandt, E.G. Kalayci, V. Ryzhikov, G. Xiao and M. Za-
kharyaschev, A Framework for Temporal Ontology-Based
Data Access: A Proposal, in: Proceedings of ADBIS 2017—
Short Papers and Workshops, 2017.

[8] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue
and C. Lutz, OWL 2 Web Ontology Language Profiles, 2012,
Available at http://www.w3.org/TR/owl2-profiles/.

[9] W. OWL Working Group, OWL 2 Web Ontology Language:
Document overview, W3C Recommendation, 2009, Available
at https://www.w3.org/TR/owl2-overview/.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini and
R. Rosati, Tractable Reasoning and Efficient Query Answering
in Description Logics: The DL-Lite Family, Journal of Auto-
mated Reasoning (JAR) 39(3) (2007), 385–429.

[11] C. Lutz, D. Toman and F. Wolter, Conjunctive Query Answer-
ing in the Description Logic EL Using a Relational Database
System, in: Proceedings of IJCAI, 2009.

[12] H. Beck, M. Dao-Tran, T. Eiter and M. Fink, Towards
Ideal Semantics for Analyzing Stream Reasoning, CoRR
abs/1505.05365 (2015). http://arxiv.org/abs/1505.05365.

[13] A. Pnueli, The Temporal Logic of Programs, in: Proceedings
of FOCS, 1977.

[14] A. Artale, R. Kontchakov, F. Wolter and M. Zakharyaschev,
Temporal Description Logic for Ontology-Based Data Access,
in: Proceedings of IJCAI, 2013.

[15] S. Klarman and T. Meyer, Querying Temporal Databases via
OWL 2 QL, in: Proceedings of RR, 2014.

[16] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov,
F. Wolter and M. Zakharyaschev, First-Order Rewritability of
Temporal Ontology-Mediated Queries, in: Proceedings of IJ-
CAI, 2015.

[17] S. Borgwardt, M. Lippmann and V. Thost, Temporalizing
Rewritable Query Languages over Knowledge Bases, Journal
Web Sem. 33 (2015), 50–70.

[18] S. Brandt, E.G. Kalayci, R. Kontchakov, V. Ryzhikov, G. Xiao
and M. Zakharyaschev, Ontology-Based Data Access with a
Horn Fragment of Metric Temporal Logic, in: Proceedings of
AAAI, 2017.

[19] F. Baader, S. Borgwardt, P. Koopmann, A. Ozaki and
V. Thost, Metric Temporal Description Logics with Interval-
Rigid Names, in: Proceedings of FroCoS, 2017.

[20] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov,
F. Wolter and M. Zakharyaschev, Ontology-Mediated Query
Answering over Temporal Data: A Survey (Invited Talk), in:
Proceedings of TIME, 2017.

[21] F. Baader, S. Borgwardt and M. Lippmann, Temporal query
entailment in the Description Logic SHQ, Journal Web Sem.
33 (2015), 71–93.

[22] S. Borgwardt and V. Thost, Temporal Query Answering in the
Description Logic EL, in: Proceedings of IJCAI, 2015.

[23] A. Margara, J. Urbani, F. van Harmelen and H.E. Bal, Stream-
ing the Web: Reasoning over dynamic data, J. Web Sem. 25
(2014), 24–44.

[24] Y. Ren and J.Z. Pan, Optimising ontology stream reasoning
with truth maintenance system, in: Proceedings CIKM, 2011.

[25] A. Mileo, A. Abdelrahman, S. Policarpio and M. Hauswirth,
StreamRule: A Nonmonotonic Stream Reasoning System for
the Semantic Web, in: Proceedings of RR, 2013.

[26] F. Lécué, Diagnosing Changes in An Ontology Stream: A DL
Reasoning Approach, in: Proceedings of AAAI, 2012.

[27] M. Bienvenu and C. Bourgaux, Inconsistency-Tolerant Query-
ing of Description Logic Knowledge Bases, in: Reasoning
Web, Tutorial Lectures, 2016, pp. 156–202.

[28] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi and D.F. Savo,
Inconsistency-Tolerant Semantics for Description Logics, in:
Proceedings of RR, 2010.

[29] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi and D.F. Savo,
Inconsistency-Tolerant Query Answering in Ontology-Based
Data Access, Journal Web Sem. 33 (2015), 3–29.

[30] L.E. Bertossi, Database Repairing and Consistent Query An-
swering, Synthesis Lectures on Data Management, Morgan &
Claypool Publishers, 2011.

[31] M. Bienvenu, On the Complexity of Consistent Query Answer-
ing in the Presence of Simple Ontologies, in: Proceedings of
AAAI, 2012.

[32] M. Bienvenu and R. Rosati, Tractable Approximations of Con-
sistent Query Answering for Robust Ontology-based Data Ac-
cess, in: Proceedings of IJCAI, 2013.

[33] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi and D.F. Savo,
Query Rewriting for Inconsistent DL-Lite Ontologies, in: Pro-
ceedings of RR, 2011.

[34] R. Rosati, On the Complexity of Dealing with Inconsistency in
Description Logic Ontologies, in: Proceedings of IJCAI, 2011.

[35] R. Rosati, M. Ruzzi, M. Graziosi and G. Masotti, Evaluation
of Techniques for Inconsistency Handling in OWL 2 QL On-
tologies, in: Proceedings of ISWC, 2012.

[36] E. Tsalapati, G. Stoilos, G.B. Stamou and G. Koletsos, Effi-
cient Query Answering over Expressive Inconsistent Descrip-
tion Logics, in: Proceedings of IJCAI, 2016.

[37] M. Bienvenu, C. Bourgaux and F. Goasdoué, Querying Incon-
sistent Description Logic Knowledge Bases under Preferred
Repair Semantics, in: Proceedings of AAAI, 2014.

[38] M. Bienvenu, C. Bourgaux and F. Goasdoué, Explaining
Inconsistency-Tolerant Query Answering over Description
Logic Knowledge Bases, in: Proceedings of AAAI, 2016.

http://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-overview/
http://arxiv.org/abs/1505.05365

30 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

[39] C. Bourgaux and A.-Y. Turhan, Temporal Query Answering
in DL-Lite over Inconsistent Data, in: Proceedings of ISWC,
2017.

[40] G. De Giacomo, R. De Masellis and M. Montali, Reasoning on
LTL on Finite Traces: Insensitivity to Infiniteness, in: Proceed-
ings of AAAI, 2014.

[41] D.M. Gabbay, The Declarative Past and Imperative Future: Ex-
ecutable Temporal Logic for Interactive Systems, in: Proceed-
ings of Temporal Logic in Specification, 1987.

[42] S. Borgwardt, M. Lippmann and V. Thost, Temporal Query An-
swering in the Description Logic DL-Lite, in: Proceedings of
FroCoS, 2013.

[43] C. Lutz, I. Seylan, D. Toman and F. Wolter, The Combined
Approach to OBDA: Taming Role Hierarchies Using Filters,
in: Proceedings of ISWC, 2013.

[44] R. Kontchakov, C. Lutz, D. Toman, F. Wolter and M. Za-
kharyaschev, The Combined Approach to Query Answering in
DL-Lite, in: Proceedings of KR, 2010.

[45] D. Calvanese, E.G. Kalayci, V. Ryzhikov and G. Xiao, Towards
Practical OBDA with Temporal Ontologies - (Position Paper),
in: In Proceedings of RR, 2016, pp. 18–24.

[46] V. Thost, J. Holste and Ö.L. Özçep, On Implementing Tempo-
ral Query Answering in DL-Lite (extended abstract), in: Pro-
ceedings of DL, 2015.

[47] J. Chomicki, D. Toman and M.H. Böhlen, Querying ATSQL
databases with temporal logic, ACM Trans. Database Syst.
26(2) (2001), 145–178.

[48] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro and R. Rosati, Ontologies and
Databases: The DL-Lite Approach, in: Reasoning Web, Tuto-
rial Lectures, 2009, pp. 255–356.

[49] C. Bourgaux and A.-Y. Turhan, Temporal Query Answering
in DL-Lite over Inconsistent Data, 2017, LTCS-Report 17-06,
Chair for Automata Theory, TU Dresden. See https://lat.inf.
tu-dresden.de/research/reports.html.

Appendix A. Omitted proofs

We start by defining the notions of conflicts and
causes that will be used in some proofs. A conflict for
a KB K = 〈T ,A〉 is a minimal T -inconsistent subset
of A. A cause for a BCQ q w.r.t. K is a minimal T -
consistent subset C ⊆ A such that 〈T , C〉 |= q. The
following definitions extend these notions to the tem-
poral setting.

Definition A.1 (Conflicts of a TKB). A conflict of a
TKB K = 〈T , (Ai)06i6n〉 is a sequence of ABoxes
(A′i)06i6n such that {(α, i) | α ∈ A′i , 0 6 i 6 n} is a
minimal T -inconsistent subset of {(α, i) | α ∈ Ai, 0 6
i 6 n}.

The conflicts of a DL-LiteR TKB are at most binary,
i.e., contain at most two timed assertions (Fact 6.11).

Definition A.2 (Causes for a BTCQ in a TKB).
A cause for a BTCQ φ at time point p in K =
〈T , (Ai)06i6n〉 is a sequence of ABoxes (Ci)06i6n

such that {(α, i) | α ∈ Ci, 0 6 i 6 n} is a minimal
T -consistent subset of {(α, i) | α ∈ Ai, 0 6 i 6 n}
such that 〈T , (Ci)06i6n〉, p |= φ.

Note that a KB (resp. TKB) is consistent iff it has no
conflict, and that a BCQ (resp. BTCQ) is entailed from
a KB (resp. a TKB) K under brave semantics iff it has
some cause in K, since such a cause can be extended
to a repair that entails the query.

A.1. Proofs of complexity results

Hardness-results.

Proposition 6.9. BTCQ entailment from an EL⊥ TKB
with NRC 6= ∅ is

– coNP-hard w.r.t. data complexity under AR and IAR
semantics, and

– Σp
2-hard w.r.t. data complexity under brave seman-

tics.

Proof. The lower bounds for AR and IAR semantics
follow from the atemporal case, so that we only have
to provide the lower bound for brave semantics.

We show that the complement of brave TCQ entail-
ment is Πp

2-hard by reduction from QBF2,∀. Let Φ =
∀x1 . . . xm∃y1 . . . yr ϕ be a QBF2,∀-formula, where ϕ =∧h

i=0 `
0
i ∨ `1i ∨ `2i is a 3-CNF formula over the propo-

sitional variables {x1, . . . , xm, y1, . . . , yr}. Based on Φ,
we define the TKB K = 〈T , (Ai)06i63h+2〉 and the
TCQ φ as follows, where NRC = {T}.

T ={∃Pos.T v Sat,∃Neg.F v Sat,

∃FromPos.Sat v T, ∃FromNeg.Sat v F,

∃FromY.Sat v T, T u F v ⊥,

T u ∃ValY.T v ⊥}

φ =¬�b(NotFirst(c) ∨ Sat(c)∨

#Sat(c) ∨##Sat(c))

For each clause `0i ∨ `1i ∨ `2i , we define the following
three ABoxes A3i+k (0 6 k 6 2):

A3i =B ∪ B3i

A3i+k =B ∪ B3i+k ∪ {NotFirst(c)}, 1 6 k 6 2,

https://lat.inf.tu-dresden.de/research/reports.html
https://lat.inf.tu-dresden.de/research/reports.html

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 31

where

B ={T(x j), F(x j) | 1 6 j 6 m}∪

{ValY(y j,¬y j), | 1 6 j 6 r}

B3i+k ={Pos(c, x j), FromPos(x j, c)} if `k
i = x j

B3i+k ={Neg(c, x j), FromNeg(x j, c)} if `k
i = ¬x j

B3i+k ={FromY(y j, c)} if `k
i = y j

B3i+k ={FromY(¬y j, c)} if `k
i = ¬y j.

We show that Φ is valid iff K, 0 6|=brave φ.
The repairs of K correspond to the valuations of

the x j. Indeed, since T is rigid and disjoint from F,
each pair of timed assertions {(T(x j), i1), (N(x j), i2)}
is inconsistent, so every x j is such that a repair of K
contains either (T(x j), i) for every i, or (F(x j), i) for
every i. For each repair A′ = (A′i)06i63h+2 of K,
we denote by νA

′

X the valuation of the x j defined by
νA
′

X (x j) = true if T(x j) ∈ A′1. Correspondingly, for
every valuation νX of the x j, we denote by AνX =
(AνX

i)06i63h+2 the repair of K defined by T(x j) ∈ AνX
i

for every i if νX(x j) = true.

Assume that Φ is valid and let A′ = (A′i)06i63h+2

be a repair of K. Since Φ is valid, then there exists
a valuation νY of the y j such that ϕ[x j ← νA

′

X (x j)]
is satisfied by νY . Let J = (Ii)i>0 be a model of
〈T , (A′i)06i63h+2〉 that respects rigid predicates and
such that for every i,

– yIi
j ∈ TIi iff νY(y j) = true,

– ¬yIi
j ∈ TIi iff νY(y j) = false, and

– if there exists some d such that (dIi , cIi) ∈ FromYIi

and dIi ∈ TIi , then cIi ∈ SatIi .

One can verify that such a model always exists.
First, because the role ValY links only individuals of
the type y j and ¬y j, and we only assign T to one of
them, these additional constraints respect the TBox ax-
iom T u ∃ValY.T v ⊥. Second, the assignment of c to
Sat respects ∃FormY.Sat v T by construction.

It is easy to see that J , 0 |= �b(NotFirst(c) ∨
Sat(c) ∨ #Sat(c) ∨ ##Sat(c)). Indeed, at each time
point p ∈ J0, 3h + 2K, either NotFirst(c) is true, or p =
3i and we show that Sat(c) is true at time point 3i + k,
where `k

i is the first literal of the clause `0i ∨ `1i ∨ `2i
satisfied by νA

′

X ∪ νY .

– If `k
i = x j, then νA

′

X (x j) = true. Thus, by construc-
tion, T(x j) ∈ A′3i+k, and therefore J , 3i + k |=

T(x j). Moreover, since J , 3i + k |= Pos(c, x j), also
J , 3i + k |= Sat(c), because J is a model of T .

– If `k
i = ¬x j, then νA

′

X (x j) = false. Thus, by con-
struction, F(x j) ∈ A′3i+k, and therefore J , 3i + k |=
F(x j). Moreover, since J , 3i + k |= Neg(c, x j), we
obtain J , 3i + k |= Sat(c) because J is a model of
T .

– If `k
i = y j, then νY(y j) = true. Thus J , 3i + k |=

T(y j), and since J , 3i + k |= FromY(y j, c), by con-
struction of J , it follows that J , 3i + k |= Sat(c).

– If `k
i = ¬y j, then νY(y j) = false. Thus J , 3i + k |=

T(¬y j), and since J , 3i + k |= FromY(¬y j, c), by
construction ofJ , it follows thatJ , 3i+k |= Sat(c).

It follows that J , 0 6|= φ, so 〈T , (A′i)06i63h+2〉, 0 6|= φ.
Hence, K, 0 6|=brave φ.

In the other direction, assume thatK, 0 6|=brave φ, and
let νX be a valuation of the x j. Since (AνX

i)06i63h+2 is
a repair of K, 〈T , (AνX

i)06i63h+2〉, 0 6|= φ, so there ex-
ists a model J = (Ii)i>0 of 〈T , (AνX

i)06i63h+2〉 that
respects rigid predicates and is such that J , 0 6|= φ,
i.e., J , 0 |= �b(NotFirst(c) ∨ Sat(c) ∨ #Sat(c) ∨
##Sat(c)). Let νY be the (partial) valuation of the y j
defined as follows: νY(y j) = true if there exists k such
that J , k |= T(y j), and νY(y j) = false if there exists
k such that J , k |= T(¬y j). The valuation νY is well
defined because J is a model of T and respects rigid
predicates. Therefore, if J , k |= T(y j) for some k, then
J , k |= T(y j) for every k, and J , k 6|= T(¬y j). Other-
wise, we would have J , k |= T u ∃ValY.T(y j) which
contradicts our TBox axioms.

Since J , 0 |= �b(NotFirst(c) ∨ Sat(c) ∨#Sat(c) ∨
##Sat(c)), for every clause `0i ∨ `1i ∨ `2i , we have that
J , 3i + k |= Sat(c) for some k ∈ J0, 2K. We then show
that νX ∪ νY satisfies `k

i .

– If `k
i = x j, since J , 3i + k |= Sat(c), J , 3i + k |=

FromPos(x j, c) and J respects ∃FromPos.Sat v T,
then J , 3i + k |= T(x j). It follows that (T(x j), k) ∈
(AνX

i)06i63h+2 for every k (otherwise, by maximal-
ity of repairs, (F(x j), k) ∈ (AνX

i)06i63h+2 and J
assigns x j to T and F at some time point). Hence,
νX(x j) = true.

– If `k
i = ¬x j, since J , 3i + k |= Sat(c), J , 3i + k |=

FromNeg(x j, c) and J respects ∃FromNeg.Sat v F,
then J , 3i + k |= F(x j). It follows that (F(x j), k) ∈
(AνX

i)06i63h+2 for every k (otherwise (T(x j), k) ∈
(AνX

i)06i63h+2 and J assigns x j to T and F at some
time point). Hence νX(x j) = false.

– If `k
i = y j, since J , 3i + k |= Sat(c), J , 3i + k |=

FromY(y j, c) and J respects ∃FromY.Sat v T, then
J , 3i + k |= T(y j), so νY(x j) = true.

32 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

– If `k
i = ¬y j, since J , 3i + k |= Sat(c), J , 3i + k |=

FromY(¬y j, c) and J respects ∃FromY.Sat v T,
then J , 3i + k |= T(¬y j), so νY(x j) = false.

It follows that νX∪νY satisfies every clause `0i ∨`1i ∨`2i .
We have thus shown that ϕ[x j ← νX(x j), y j ← νY(y j)]
evaluates to true, and that Φ is valid.

Justification structures for brave entailment of BTCQs
without negation in the case NRC = NRR = ∅. We
prove that if NRC = NRR = ∅ and φ is a BTCQ with-
out negation, then K, p |=brave φ iff there is a correct
brave-justification structure J for φ in K that justifies
φ at time point p. We prove both directions in separate
lemmas.

Lemma A.3. If NRC = NRR = ∅ and there is a correct
brave-justification structure J for φ in K that justifies
φ at time point p, then K, p |=brave φ.

Proof. In order to show K, p |=brave φ, we determine
a cause (Ci)06i6n for φ. To do this, we first select a
sequence of tuples from J as follows:

1. The tuple (p, Lp
now, F

p
now, F

p
prev, F

p
next) is such that

φ ∈ F p
now.

2. If the tuple (i, Li
now, F

i
now, F

i
prev, F

i
next) was selected

and 0 < i 6 p, then select a tuple of the form
(i− 1, Li−1

now , F
i−1
now , F

i−1
prev , F

i−1
next), where F i−1

now = F i
prev

and F i−1
next = F i

now.
3. If the tuple (i, Li

now, F
i
now, F

i
prev, F

i
next) was selected

and p 6 i < n, then select a tuple of the form
(i + 1, Li+1

now, F
i+1
now , F

i+1
prev, F

i+1
next), where F i+1

now = F i
next

and F i+1
prev = F i

now.

Because J is correct and justifies φ at time point p,
such a sequence can always be selected. Based on
this sequence, we construct a sequence of ABoxes
(Ci)06i6n. For this, we take for each of the tuples
(i, Li

now, F
i
now, F

i
prev, F

i
next) a cause Ci ⊆ Ai that entails∧

q∈Li
now

q. Such a cause exists because 〈T ,Ai〉 |=brave∧
q∈Li

now
q by Condition 1. Since each Ci is consis-

tent and rigid predicates are not allowed, the TKB
〈T , (Ci)06i6n〉 is consistent.

We prove that 〈T , (Ci)06i6n〉, p |= φ, by proving
that 〈T , (Ci)06i6n〉, p |= F p

now. To do this, we con-
sider the sets of LTL formulas F i,d

now = {ψ | ψ ∈
F i

now, degree(ψ) 6 d}, where degree(ψ) is the maxi-
mal number of nested LTL operators in ψ, and prove
by induction on d that for all 0 6 i 6 n and for
all ψ ∈ F i,d

now, we have 〈T , (Ci)06i6n〉, i |= ψ, i.e.,
〈T , (Ci)06i6n〉, i |= F i,d

now.

For d = 0, F i,0
now contains only conjunctive queries

of the form ∃~yϕ(~y). Since for every ψ ∈ BCQ(φ),
if F i

now |= ψ then ψ ∈ Li
now (Condition 4), F i,0

now ⊆
Li

now. Then, since 〈T , Ci〉 |=
∧

q∈Li
now

q, it follows that
〈T , (Ci)06i6n〉, i |= F i,0

now.
Assume that for all 0 6 i 6 n, 〈T , (Ci)06i6n〉, i |=

F i,d
now. Let ψ ∈ F i,d+1

now for some 0 6 i 6 n. If ψ ∈ F i,d
now,

then 〈T , (Ci)06i6n〉, i |= ψ. Otherwise, degree(ψ) =
d + 1 and we distinguish the cases based on the syn-
tactical form of ψ.

– ψ = ψ1∧ψ2, where degree(ψ1) 6 d, degree(ψ2) 6
d. Since ψ ∈ F i

now, then F i
now |= ψ1 and F i

now |= ψ2,
so by Condition 5, ψ1 ∈ F i

now and ψ2 ∈ F i
now.

It follows that ψ1 ∈ F i,d
now and ψ2 ∈ F i,d

now, so
〈T , (Ci)06i6n〉, i |= ψ1 and 〈T , (Ci)06i6n〉, i |= ψ2.
Hence 〈T , (Ci)06i6n〉, i |= ψ1 ∧ ψ2.

– ψ = ψ1∨ψ2, where degree(ψ1) 6 d, degree(ψ2) 6
d. Since ψ ∈ F i

now, then by Condition 7 either
ψ1 ∈ F i

now or ψ2 ∈ F i
now. It follows that ψ1 ∈ F i,d

now
or ψ2 ∈ F i,d

now, so that 〈T , (Ci)06i6n〉, i |= ψ1 or
〈T , (Ci)06i6n〉, i |= ψ2. Hence, 〈T , (Ci)06i6n〉, i |=
ψ1 ∨ ψ2.

– ψ = #ψ1, where degree(ψ1) 6 d. By Condition 8,
either i < n, or i = n and 〈∅, (∅)06i6n〉, n + 1 6|= �ϕ.
In the latter case, note that the canonical models
of 〈T , (Ci)06i6n〉 and 〈∅, (∅)06i6n〉 coincide after n
(empty interpretations), and since ψ1 does not con-
tain any past operators, 〈T , (Ci)06i6n〉, n+1 |= �ψ1

is a direct consequence of 〈∅, (∅)06i6n〉, n + 1 |=
�ψ1. Then ψ1 is true at any time point j > n and in
particular, 〈T , (Ci)06i6n〉, n |= #ψ1.
In the former case, since #ψ1 ∈ F i

now = F i+1
prev, we

have that
∧

q∈Li+1
now

q∧#−(
∧
χ∈Fi+1

prev
χ)∧#(

∧
χ∈Fi+1

next
χ) |=

#−#ψ1 |= ψ1, so by Condition 6, ψ1 ∈ F i+1
now .

Hence, ψ1 ∈ F i+1,d
now , 〈T , (Ci)06i6n〉, i + 1 |= ψ1, and

〈T , (Ci)06i6n〉, i |= #ψ1.
– ψ = #−ψ1, where degree(ψ1) 6 d. This case is

similar to #.
– ψ = b ψ1, where degree(ψ1) 6 d. If i < n, since
 b ψ1 ∈ F i

now = F i+1
prev, we have that

∧
q∈Li+1

now
q ∧

#−(
∧
χ∈Fi+1

prev
χ)∧#(

∧
χ∈Fi+1

next
χ) |= #− b ψ1 |= ψ1,

so that by Condition 6, ψ1 ∈ F i+1
now . Hence ψ1 ∈

F i+1,d
now and 〈T , (Ci)06i6n〉, i + 1 |= ψ1, which im-

plies 〈T , (Ci)06i6n〉, i |= ψ1. Otherwise, i = n,
and 〈T , (Ci)06i6n〉, n |= b ψ1 by definition of b .

– ψ = −ψ1 where degree(ψ1) 6 d. This case is
similar to b .

– ψ = �ψ1, where degree(ψ1) 6 d. By Condition 7,
〈∅, (∅)06i6n〉, n + 1 |= �ψ1.

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 33

We show that 〈T , (Ci)06i6n〉, i |= �ψ1 by descend-
ing induction on i.
For i = n, note that the canonical models of
〈T , (Ci)06i6n〉 and 〈∅, (∅)06i6n〉 coincide after n
(empty interpretations), and since ψ1 does not con-
tain any past operators,
〈T , (Ci)06i6n〉, n + 1 |= �ψ1 is a direct con-
sequence of 〈∅, (∅)06i6n〉, n + 1 |= �ψ1. Then
〈T , (Ci)06i6n〉, n |= �ψ1 iff 〈T , (Ci)06i6n〉, n |= ψ1,
that is iff ψ1 ∈ Fn,d

now by induction. This is the case
by Condition 5.
For i < n, we assume by inductive hypothesis that
if �ψ1 ∈ F i+1

now , then 〈T , (Ci)06i6n〉, i + 1 |= �ψ1.
Since�ψ1 ∈ F i

now = F i+1
prev, we have that

∧
q∈Li+1

now
q∧

#−(
∧
χ∈Fi+1

prev
χ) ∧ #(

∧
χ∈Fi+1

next
χ) |= #−�ψ1 |=

�ψ1, so by Condition 6, �ψ1 ∈ F i+1
now , and by

assumption 〈T , (Ci)06i6n〉, i + 1 |= �ψ1. More-
over, since �ψ1 ∈ F i

now, then F i
now |= ψ1, and

ψ1 ∈ F i
now by Condition 5. Hence, ψ1 ∈ F i,d

now and
〈T , (Ci)06i6n〉, i |= ψ1.
It follows that 〈T , (Ci)06i6n〉, i |= �ψ1.

– ψ = �bψ1 where degree(ψ1) 6 d. We show that
〈T , (Ci)06i6n〉, i |= �bψ1 by descending induction
on i.
For i = n, if �bψ1 ∈ Fn

now, then ψ1 ∈ Fn
now

by Condition 8, and therefore ψ1 ∈ Fn,d
now and

〈T , (Ci)06i6n〉, n |= ψ1. As a consequence, we ob-
tain 〈T , (Ci)06i6n〉, n |= �bψ1.
For i < n, we assume by inductive hypothesis that
if �bψ1 ∈ F i+1

now , then 〈T , (Ci)06i6n〉, i + 1 |=
�bψ1. Then, since �bψ1 ∈ F i

now = F i+1
prev, we have

that
∧

q∈Li+1
now

q∧#−(
∧
χ∈Fi+1

prev
χ)∧#(

∧
χ∈Fi+1

next
χ) |=

#−�bψ1 |= �bψ1. Therefore, by Condition 6,
�bψ1 ∈ F i+1

now , and by assumption 〈T , (Ci)06i6n〉, i+
1 |= �bψ1. Moreover, since �bψ1 ∈ F i

now, then
F i

now |= ψ1, and ψ1 ∈ F i
now by Condition 5. Hence,

ψ1 ∈ F i,d
now and 〈T , (Ci)06i6n〉, i |= ψ1. It follows

that 〈T , (Ci)06i6n〉, i |= �bψ1.
– ψ = �−ψ1, where degree(ψ1) 6 d. This case is

similar to �b.
– ψ = ♦ψ1, where degree(ψ1) 6 d. We prove
〈T , (Ci)06i6n〉, i |= ♦ψ1 by descending induction
on i.
For i = n, if ♦ψ1 ∈ Fn

now, then ψ1 ∈ Fn
now or

〈∅, (∅)06i6n〉, n + 1 6|= �ψ1 by Condition 8.
In the former case, ψ1 ∈ Fn,d

now and 〈T , (Ci)06i6n〉, n |=
ψ1, which implies that 〈T , (Ci)06i6n〉, n |= ♦ψ1.
In the latter case we can show as in the proof for #
that 〈T , (Ci)06i6n〉, n+1 |= �ψ1, which implies that
〈T , (Ci)06i6n〉, n + 1 |= ♦ψ1.

For i < n, we assume by inductive hypothesis that
if ♦ψ1 ∈ F i+1

now , then 〈T , (Ci)06i6n〉, i + 1 |= ♦ψ1.
Since ♦ψ1 ∈ F i

now, by Condition 7, either (i) ψ1 ∈
F i

now, ψ1 ∈ F i,d
now and 〈T , (Ci)06i6n〉, i |= ψ1, and

therefore 〈T , (Ci)06i6n〉, i |= ♦ψ1, or (ii) ♦ψ1 ∈
F i

next = F i+1
now , and by assumption 〈T , (Ci)06i6n〉, i +

1 |= ♦ψ1. It follows that 〈T , (Ci)06i6n〉, i |= ♦ψ1.
– ψ = ♦bψ1, where degree(ψ1) 6 d. This case is

similar as for ♦ψ1.
– ψ = ♦−ψ1, where degree(ψ1) 6 d. This case is

similar to ♦.
– ψ = ψ1Uψ2 where degree(ψ1) 6 d, degree(ψ2) 6

d. We show that 〈T , (Ci)06i6n〉, i |= ψ1Uψ2 by de-
scending induction on i.
For i = n, if ψ1Uψ2 ∈ Fn

now, then ψ2 ∈ Fn
now, or

〈∅, (∅)06i6n〉, n 6|= �ψ2 by Condition 8.
In the former case, ψ2 ∈ Fn,d

now and 〈T , (Ci)06i6n〉, n |=
ψ2, which implies that 〈T , (Ci)06i6n〉, n |= ψ1Uψ2.
In the latter case, we can show as in the proof for
that 〈T , (Ci)06i6n〉, n + 1 |= �ψ2, which im-
plies that 〈T , (Ci)06i6n〉, n + 1 |= ψ1Uψ2. Then
〈T , (Ci)06i6n〉, n |= �ψ1Uψ2 iff 〈T , (Ci)06i6n〉, n |=
ψ1 or 〈T , (Ci)06i6n〉, n |= ψ2, that is iff ψ1 ∈ Fn,d

now
or ψ1 ∈ Fn,d

now by induction. This is the case by Con-
dition 5.
For i < n, we assume by inductive hypothesis
that if ψ1Uψ2 ∈ F i+1

now , then 〈T , (Ci)06i6n〉, i +
1 |= ψ1Uψ2. Then, since ψ1Uψ2 ∈ F i

now, by
Condition 7, either (i) ψ2 ∈ F i

now, ψ2 ∈ F i,d
now

and 〈T , (Ci)06i6n〉, i |= ψ2, which in turn implies
〈T , (Ci)06i6n〉, i |= ψ1Uψ2, or (ii) ψ1 ∈ F i

now,
ψ1 ∈ F i,d

now, which implies 〈T , (Ci)06i6n〉, i |= ψ1,
and ψ1Uψ2 ∈ F i

next = F i+1
now . Therefore, by assump-

tion we obtain 〈T , (Ci)06i6n〉, i + 1 |= ψ1Uψ2, and
〈T , (Ci)06i6n〉, i |= ψ1Uψ2.

– ψ = ψ1Ub ψ2, where degree(ψ1) 6 d, degree(ψ2) 6
d. This case can be shown in the same way as for U .

– ψ = ψ1Sψ2, where degree(ψ1) 6 d, degree(ψ2) 6
d. This case is similar to U .

Lemma A.4. If NRC = NRR = ∅ and K, p |=brave φ,
then there is a brave-justification structure for φ in K
that is correct and justifies φ at time point p.

Proof. AssumeK, p |=brave φ. Then there exists a TKB
K′ = 〈T , (Ci)06i6n〉, such that Ci ⊆ Ai and K′ is
consistent and K′, p |= φ. Based on K′, we construct
a brave-justification structure J for φ in K that jus-
tifies φ at time point p. The elements of the tuples
(i, Li

now, F
i
now, F

i
prev, F

i
next) are selected as follows:

34 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

1. Li
now is the largest subset of BCQ(φ) such that
K′, i |=

∧
q∈Li

now
q,

2. F i
now is the largest subset of F(φ) such that K′, i |=

F i
now,

3. F i
prev = F i−1

now for i > 0,
4. F i

next = F i+1
now for i < n, and

5. F0
prev = Fn

next = ∅.

We show that J is correct and justifies φ at time point p.
The latter case is easy: since K′, p |= φ, we have φ ∈
F p

now, and therefore φ is justified by J at time point p. It
remains to show that J is correct, i.e., that every tuple
of J satisfies the nine conditions of the definition of
justified tuples.

Conditions 1, 2, 3 and 4 follow straightforwardly
from the construction. Condition 5 is satisfied because
if ψ ∈ F(φ) is such that ψ /∈ F i

now, then K′, i 6|= ψ and
F i

now 6|= ψ.
For Condition 6, we show that for every ψ ∈

F(φ) and for every 0 6 i 6 n, if
∧

q∈Li
now

q ∧
#−(

∧
χ∈Fi

prev
χ) ∧ #(

∧
χ∈Fi

next
χ) |= ψ, then K′, i |= ψ,

which in turn implies ψ ∈ F i
now. Since K′ entails ev-

ery CQ in Li
now at time point i, every TCQ in F i

prev at
time point i − 1, and every TCQ in F i

next at time point
i + 1, every TCQ that corresponds to a formula en-
tailed by Li

now, #−(
∧
χ∈Fi

prev
χ) or #(

∧
χ∈Fi

next
χ) is en-

tailed from K′ at time point i. Hence, if
∧

q∈Li
now

q ∧
#−(

∧
χ∈Fi

prev
χ) ∧#(

∧
χ∈Fi

next
χ) |= ψ, then K′, i |= ψ.

For Condition 7, we do a case analysis based on the
structure of the elements in Fnow, using the Proposi-
tion 9.12 and the fact that NRC = NRR = ∅.

– If K′, i |= ψ ∨ ψ′, then K′, i |= ψ or K′, i |= ψ′.
Therefore, if ψ ∨ ψ′ ∈ F i

now, either ψ ∈ F i
now, or

ψ′ ∈ F i
now.

– If K′, i |= ♦ψ, then K′, i |= ψ or K′, i + 1 |= ♦ψ.
Therefore, if ♦ψ ∈ F i

now, either ψ ∈ F i
now or ♦ψ ∈

F i+1
now = F i

next.
– If K′, i |= ♦bψ, then K′, i |= ψ or K′, i + 1 |= ♦bψ.

Therefore, if ♦bψ ∈ F i
now, either ψ ∈ F i

now or ♦bψ ∈
F i+1

now = F i
next.

– If K′, i |= ♦−ψ, then K′, i |= ψ or K′, i− 1 |= ♦−ψ.
Therefore, if ♦−ψ ∈ F i

now, either ψ ∈ F i
now or

♦−ψ ∈ F i−1
now = F i

prev.
– If K′, i |= ψUψ′, then K′, i |= ψ′, or K′, i |= ψ and
K′, i+1 |= ψUψ′. Therefore, if ψUψ′ ∈ F i

now, either
ψ′ ∈ F i

now, or ψ ∈ F i
now and ψUψ′ ∈ F i

next.
– If K′, i |= ψUb ψ′, then K′, i |= ψ′ or K′, i |= ψ and
K′, i + 1 |= ψUb ψ′. Therefore, if ψUb ψ′ ∈ F i

now,
either ψ′ ∈ F i

now, or ψ ∈ F i
now and ψUb ψ′ ∈ F i

next.

– If K′, i |= ψSψ′, then K′, i |= ψ′, or K′, i |= ψ and
K′, i− 1 |= ψSψ′. Therefore, if ψSψ′ ∈ F i

now, then
either ψ′ ∈ F i

now, or ψ ∈ F i
now and ψSψ′ ∈ F i

prev.
– If ψ is of the form �ϕ and ψ ∈ Fnow, i.e., K′, i |=
�ϕ, then for every j > n, K′, j |= ϕ. Since there
are no past operators in ϕ, and no BCQ is entailed
from K′ at time point j > n in the absence of rigid
predicates, the only possibility is that ϕ is trivially
entailed at any time point j > n. It follows that
〈∅, (∅)06i6n〉, n + 1 |= �ϕ.

The proof of Condition 8 is as follows.

– If ψ ∈ F(φ) is of the form b ϕ , thenK′, n |= ψ and
also ψ ∈ Fn

now.
– Assume ψ ∈ F(φ) is of the form #ϕ and such

that 〈∅, (∅)06i6n〉, n + 1 6|= �ϕ. Note that, because
〈∅, (∅)06i6n〉, n + 1 6|= �ϕ, ϕ cannot be trivially en-
tailed at any time point j > n, and consequently also
not at n + 1. In the absence of rigid roles, and be-
cause ψ cannot contain past operators, we therefore
have K′, n + 1 6|= ϕ, which implies K′, n 6|= #ϕ and
ψ /∈ Fn

now
– if ϕ ∈ Fn

now, then K′, n |= ϕ, which in turn im-
plies K′, n |= ♦ϕ, K′, n |= ♦bϕ, K′, n |= �bϕ,
K′, n |= ϕ′Uϕ and K′, n |= ϕ′Ub ϕ. It follows that
if any of those entailed TCQs are in F(φ), then they
are also in Fn

now For the other direction, we do a case
analysis.

∗ Assume ♦ϕ ∈ Fn
now and 〈∅, (∅)06i6n〉, n + 1 6|=

�ϕ. Note that, because 〈∅, (∅)06i6n〉, n+1 6|= �ϕ,
ϕ cannot be trivially entailed at any time point
j > n. If this would be the case, due to the ab-
sence of rigid predicates, ϕ would also be triv-
ially entailed at all time points j > n. Because
K′, n |= ♦ϕ, we must have K′, n |= ϕ, since ϕ
cannot be entailed at any time point j > n in the
absence of rigid predicates, and ii) ϕ does not con-
tain past operators. Therefore, ϕ ∈ Fn

now.
∗ If ♦bϕ ∈ Fn

now, then K′, n |= ♦bϕ, which in turn
implies K′, n |= ϕ and ϕ ∈ Fn

now.
∗ If �bϕ ∈ Fn

now, then K′, n |= �bϕ, which in turn
implies K′, n |= ϕ and ϕ ∈ Fn

now.
∗ Assume ϕ′Uϕ ∈ Fn

now and 〈∅, (∅)06i6n〉, n + 1 6|=
�ϕ. Similar to the case for ♦, then K′, n |= ϕ′Uϕ
and K′, n |= ϕ, because i) ϕ cannot be entailed at
time point j > n in the absence of rigid predicates,
and ii) ϕ does not contain past operators. Conse-
quently, ϕ ∈ Fn

now.
∗ If ϕ′Ub ϕ ∈ Fn

now, also K′, n |= ϕ′Ub ϕ, which in
turn implies K′, n |= ϕ and ϕ ∈ Fn

now.

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 35

Condition 9 can be shown similarly to Condition 8.
We have shown that every tuple in J is justified, and

consequently that J is correct and justifies φ at p.

A.2. Proofs of Section 9

The following properties of chaserig(K) will be use-
ful for the proofs of Subsection 9.1.

Proposition A.5. chaserig(K) satisfies the following
properties.

(P1) xi1
aP1
∈ ΓN =⇒ P1(a, xi1

aP1
) ∈ chaseKrig(Ai1)

(P2) xi1...il
aP1...Pl

∈ ΓN , l > 1 =⇒ Pl(xi1...il−1

aP1...Pl−1
, xi1...il

aP1...Pl
) ∈

chaseKrig(Ail)

(P3) chaseKrig(Ai) |= B(xi1...il
aP1...Pl

) =⇒ T |= ∃P−l v B

(P4) xi1...il
aP1...Pl

∈ ΓN , l > 1 =⇒ T |= ∃P−l−1 v ∃Pl

(P5) chaseKrig(Ai) |= B(a), a ∈ NKI =⇒ 〈T ,Ai〉 |=
B(a) or there exists B′ := A|∃R|∃R− with A ∈
NRC,R ∈ NRR such that T |= B′ v B and there ex-
ists j such that 〈T ,A j〉 |= B′(a)

(P6) chaseKrig(Ai) |= B(xi1...il
aP1...Pl

) =⇒ i = il or there
exists B′ := A|∃R|∃R− with A ∈ NRC,R ∈ NRR such
that T |= B′ v B and chaseKrig(Ail) |= B′(xi1...il

aP1...Pl
)

(P7) P(a, b) ∈ chaseKrig(Ai), a, b ∈ NKI =⇒
〈T ,Ai〉 |= P(a, b) or there exists P′ := R|R− with
R ∈ NRR such that T |= P′ v P and there exists j
such that 〈T ,A j〉 |= P′(a, b)

(P8) P(a, xi1
aP1

) ∈ chaseKrig(Ai), a ∈ NKI , i1 = i =⇒
T |= P1 v P and 〈T ,Ai〉 |= ∃x.P1(a, x) or there
exists B := A|∃R|∃R− with A ∈ NRC,R ∈ NRR such
that T |= B v ∃P1 and there exists j such that
〈T ,A j〉 |= B(a)

(P9) P(a, xi1
aP1

) ∈ chaseKrig(Ai), a ∈ NKI , i1 6= i =⇒
there exists P′ := R|R− with R ∈ NRR such that
T |= P1 v P′ v P

(P10) P(x, y) ∈ chaseKrig(Ai), x, y ∈ ΓN =⇒ x =

xi1...il
aP1...Pl

, y = xi1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P or

x = xi1...ilil+1

aP1...PlPl+1
, y = xi1...il

aP1...Pl
and T |= Pl+1 v P−

(P11) P(xi1...il
aP1...Pl

, xi1...ilil+1

aP1...PlPl+1
) ∈ chaseKrig(Ai), il+1 6= i

=⇒ there exists P′ := R|R− with R ∈ NRR

such that T |= Pl+1 v P′ v P and
P′(xi1...il

aP1...Pl
, xi1...ilil+1

aP1...PlPl+1
) ∈ chaseKrig(Ail+1

)

(P12) Pl(xi1...il−1

aP1...Pl−1
, xi1...il

aP1...Pl
) ∈ chaseKrig(Ail) =⇒

∃ j, 〈T ,A j〉 |= ∃xy.Pl−1(x, y)

Proof. We refer to [49] for the detailed proof of these
properties.

Lemma 9.3. If K is consistent, then JK is a model
of K that respects rigid predicates.

Proof. We first show that JK is a model of K, i.e., that
for every i ∈ J0, nK, Ii |= Ai and for every i > 0,
Ii |= T . It is easy to see that for every i ∈ J0, nK,
Ii |= Ai because Ai ⊆ chaseKrig(Ai). We can show
that Ii satisfies every positive inclusion of T with sim-
ilar arguments as those used in [48]. We only consider
the case i 6 n + 1 explicitly. For the case i > n + 1,
we assume Ai to be replaced by An+1 in what fol-
lows. If a PI α ∈ Tp is not satisfied, there is an as-
sertion β ∈ chaseKrig(Ai) such that α is applicable to
β in chaseKrig(Ai). This is impossible given that every
PI applicable to β in S j

i at step j of the construction of
the rigid chase becomes not applicable to β in Sk

i for
some k > j. Indeed, because each PI can only be ap-
plied once to a given assertion, there are only finitely
many assertions before β, and only finitely many PIs
are applied to the assertions that precede β. Finally, we
show that because K is consistent, Ii satisfies every
negative inclusion of T . Indeed, if a negative inclusion
would not be satisfied, this would imply the existence
of a conflict B in chaseKrig(Ai). If B = {α}, the timed
assertion (α′, j) ∈ (Ai)06i6n from which α has been
derived by applying PIs from Tp is clearly inconsis-
tent. Otherwise B = {α, β} with α derived from (α′, j)
and β derived from (β′, k). If j = k, {(α′, j), (β′, k)}
is clearly inconsistent. If j 6= k, since α and β be-
long to chaseKrig(Ai), if j 6= i (resp. k 6= i), there ex-
ists α′′ ∈ chaseKrig(Ai) rigid such that α derives from
α′′, which derives from α′ (resp. β′′ ∈ chaseKrig(Ai)
rigid such that β derives from β′′, which derives from
β′). Therefore, and because no sequence of interpre-
tations that respects rigid predicates can be a model
of {(α′, j), (β′, k)} and T , {(α′, j), (β′, k)} is inconsis-
tent.

Moreover, the model JK respects rigid predicates,
because if an assertion β of chaseKrig(Ai) is rigid, either

36 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

β ∈ Ai and by construction β ∈ S0k = A′k for every k,
or β has been derived at some step j by applying some
PI to an assertion of S j and β ∈ S j+1

k for every k, so
that in both cases β ∈ chaseKrig(Ak) for every k.

Lemma 9.4. If K is consistent, then for every BTCQ
without negation φ such that Nφ

I ⊆ NKI , K, p |= φ iff
JK, p |= φ.

Proof. Since JK = (Ii)i>0 with Ii = 〈∆, ·Ii〉 is
a model of K that respects rigid predicates, the first
direction is clear, and we only need to show that
JK, p |= φ implies K, p |= φ. Let J = (I ′i)i>0 with
I ′i = 〈∆′, ·I′i 〉 be a model ofK that respects rigid pred-
icates. We show by structural induction on φ that if
JK, p |= φ, then J , p |= φ.

If φ is a BCQ ∃~y.ψ(~y), we show that if there ex-
ists a homomorphism π of ∃~y.ψ(~y) into Ip, then I ′p |=
∃~y.ψ(~y). We define a mapping h from ∆ into ∆′, where
we assume w.l.o.g. that ∆ and ∆′ are disjoint.

1. For every a ∈ NKI , set h(aIp) = aI
′
p .

2. For every xi1
aP1
∈ ΓN , set h(xi1Ip

aP1
) = y, where

(aI
′
p , y) ∈ P

I′i1
1 . (If there are several such y, choose

one of them randomly.)
3. For every xi1...il

aP1...Pl
∈ ΓN with l > 1, set h(xi1...ilIp

aP1...Pl
) =

y, where (h(xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′il
l . (If there are sev-

eral such y, choose one of them randomly.)

We first show that h is well defined, i.e., that in the
two latter cases, there always exists a y as required. We
show this by induction on l. For l = 1, because xi1

aP1
∈

ΓN , by (P1) P1(a, xi1
aP1

) ∈ chaseKrig(Ai1). Therefore, by
(P8), either (i) 〈T ,Ai1〉 |= ∃x.P1(a, x), and since I ′i1
is a model of 〈T ,Ai1〉, there is some (aI

′
p , y) ∈ P

I′i1
1 ,

or (ii) there exists B := A|∃R|∃R− with A ∈ NRC, R ∈
NRR, such that T |= B v ∃P1, and there exists j such
that 〈T ,A j〉 |= B(a). In the latter case, since J is a
model of K that respects rigid predicates, I ′i1 |= B(a).
Since I ′i1 is a model of T , there is some (aI

′
p , y) ∈

P
I′i1
1 . Then, for l > 1, since xi1...il

aP1...Pl
∈ ΓN , by (P4),

T |= ∃P−l−1 v ∃Pl. Since by induction there is an

(x, h(xi1...il−1Ip
aP1...Pl−1

)) ∈ P
I′il
l−1, it follows that there is some

(h(xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′il
l .

Next, we show that h is a homomorphism of Ip

into I ′p, which then implies that h ◦ π is a homomor-
phism of ∃~y.ψ(~y) into I ′p. We only consider the case

p 6 n explicitly, and assume Ap to be replaced with
An+1 for the case p > n.

For every a ∈ NKI and concept A, if aIp ∈
AIp , i.e., A(a) ∈ chaseKrig(Ap), then by (P5), ei-
ther (i) 〈T ,Ap〉 |= A(a), and since I ′p is a model
of 〈T ,Ap〉, also h(aIp) = aI

′
p ∈ AI

′
p , or (ii) there

exists a concept B = C|∃R|∃R− with C ∈ NRC,
R ∈ NRR, such that T |= B v A and there ex-
ists j such that 〈T ,A j〉 |= B(a). In the latter case,
since J is a model of K that respects rigid predi-
cates, I ′p |= B(a). Since I ′p is a model of T , it fol-
lows that I ′p |= A(a), so h(aIp) = aI

′
p ∈ AI

′
p . For

every pair a, b ∈ NKI and role P, if (aIp , bIp) ∈ PIp ,
by (P7), similar arguments can be used to prove that
(h(aIp), h(bIp)) = (aI

′
p , bI

′
p) ∈ PI

′
p .

For every xi1...il
aP1...Pl

∈ ΓN , such that xi1...ilIp
aP1...Pl

∈ AIp ,
i.e., A(xi1...il

aP1...Pl
) ∈ chaseKrig(Ap), by (P6) we are in one

of the following cases.

1. il = p. By (P3), T |= ∃P−l v A and by construction

of h, h(xi1...pIp
aP1...Pl

) = y with (h(xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′p
l

(note that if l = 1, xi1...il−1

aP1...Pl−1
= a). Since I ′p is a

model of T , it follows that y ∈ AI
′
p .

2. There exists B := C|∃R|∃R− with C ∈ NRC,R ∈
NRR such that T |= B v A and chaseKrig(Ail) |=
B(xi1...il

aP1...Pl
). As in case (i), by (P3) and definition of

h we have that h(xi1...ilIp
aP1...Pl

) = y ∈ BI
′
il . Since B is

rigid, y ∈ BI
′
p . Since I ′p is a model of T , it follows

that y ∈ AI
′
p .

For every pair x, y ∈ ΓN and role P such that
(xIp , yIp) ∈ PIp , by (P10) x = xi1...il

aP1...Pl
, y =

xi1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P, or x = xi1...ilil+1

aP1...PlPl+1
,

y = xi1...il
aP1...Pl

and T |= Pl+1 v P−. We can assume
w.l.o.g. that we are in the first case. (Otherwise we
consider (yIp , xIp) ∈ P−Ip .) If il+1 = p, by defini-

tion of h, (h(xIp), h(yIp)) ∈ P
I′p
l+1, and since I ′p is a

model of T , (h(xIp), h(yIp)) ∈ PI
′
p . Otherwise, by

(P11), there exists P′ := R|R− with R ∈ NRR such that
T |= Pl+1 v P′ v P and P′(x, y) ∈ chaseKrig(Ail+1).
With the same arguments as in the first case, we show
that (h(xIp), h(yIp)) ∈ P′I

′
il+1 , and since P′ is rigid

(h(xIp), h(yIp)) ∈ P′I
′
p . Since I ′p is a model of T , it

follows that (h(xIp), h(yIp)) ∈ PI
′
p .

Finally, if a ∈ NKI and x ∈ ΓN , then (aIp , xIp) ∈
PIp only if x = xi1

aP1
. If i1 = p, by definition

of h, (h(aIp), h(xIp)) ∈ P
I′p
1 . Since by (P8), T |=

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 37

P1 v P and I ′p is a model of T , it follows that
(h(aIp), h(xIp)) ∈ PI

′
p . If i1 6= p, by (P9), there ex-

ists P′ rigid such that T |= P1 v P′ v P, and

since by definition of h, (h(aIp), h(xIp)) ∈ P
I′i1
1 , then

(h(aIp), h(xIp)) ∈ P′I
′
i1 . Since J respects rigid pred-

icates, it follows that (h(aIp), h(xIp)) ∈ P′I
′
p and

(h(aIp), h(xIp)) ∈ PI
′
p .

We have thus shown that JK, p |= ∃~y.ψ(~y) implies
J , p |= ∃~y.ψ(~y).

Now for the inductive step, assume that for two
BTCQs φ1, φ2 such that Nφ1

I ⊆ NKI and Nφ2
I ⊆ NKI , we

have that JK, p |= φi implies J , p |= φi (i ∈ {1, 2}).
We show that then, for every BTCQ φ that we can con-
struct in one step from φ1 and φ2, JK, p |= φ also im-
plies J , p |= φ. We distinguish the cases based on φ.

– If JK, p |= φ1 ∧ φ2, then JK, p |= φ1 and JK, p |=
φ2, and therefore by assumption, J , p |= φ1 and
J , p |= φ2. Hence, J , p |= φ1 ∧ φ2.

– IfJK, p |= φ1∨φ2, thenJK, p |= φ1 orJK, p |= φ2,
and therefore by assumption, J , p |= φ1 or J , p |=
φ2. Hence, J , p |= φ1 ∨ φ2.

– If JK, p |= #φ1, then JK, p+1 |= φ1, and therefore
by assumption, J , p+1 |= φ1. Hence, J , p |= #φ1.

– In the same way as in the last case, we can show
that JK, p |= b φ1 implies J , p |= b φ1, that
JK, p |= #−φ1 implies J , p |= #−φ1, and that
JK, p |= −φ1 implies J , p |= −φ1.

– If JK, p |= �φ1, then for every k > p, JK, k |=
φ1, and therefore, by assumption, for every k > p,
J , k |= φ1. Hence, J , p |= �φ1.

– In the same way as in the last case, we can show
that JK, p |= �bφ1 implies J , p |= �bφ1 and that
JK, p |= �−φ1 implies J , p |= �−φ1.

– If JK, p |= ♦φ1, then there exists k > p, JK, k |=
φ1, and therefore by assumption J , k |= φ1. Hence,
J , p |= ♦φ1.

– In the same way as in the last case, we can show
that JK, p |= ♦bφ1 implies J , p |= ♦bφ1, and that
JK, p |= ♦−φ1 implies J , p |= ♦−φ1.

– If JK, p |= φ1U φ2, then there exists k > p such that
JK, k |= φ2 and for every j, p 6 j < k, JK, j |= φ1.
Therefore, by assumption J , k |= φ2, and for every
j, p 6 j < k, J , j |= φ1. Hence, J , p |= φ1U φ2.

– We can show in the same way as in the last case that
JK, p |= φ1Ub φ2 implies J , p |= φ1Ub φ2, and that
JK, p |= φ1S φ2 implies J , p |= φ1S φ2.

We conclude by induction that for every BTCQ φwith-
out negation such that Nφ

I ⊆ NKI , JK, p |= φ implies
J , p |= φ. It follows that JK, p |= φ impliesK, p |= φ.

We have thus shown that for every BTCQ φ without
negation such that Nφ

I ⊆ NKI , we have K, p |= φ iff
JK, p |= φ.

Lemma 9.7. Let q = ∃~y.ψ(~y) be such that Nq
I ⊆ NKI .

For every p ∈ J0, nK, if KR, p |= q then K, p |= q.

Proof. Assume that KR, p |= ∃~y.ψ(~y). By Proposi-
tion 3.6, since NRC = NRR = ∅, 〈T , (Ap ∪ R)〉 |=
∃~y.ψ(~y). Let IRp = 〈∆I

R
p , ·I

R
p 〉 be the canonical model

of 〈T , (Ap ∪ R)〉. There exists a homomorphism π of
∃~y.ψ(~y) into IRp . We first define a mapping σ from

{xI
R
p | x ∈ NKI or occurs inR} into {xIp | x ∈

NKI ∪ΓN , x occurs in chaseKrig(Ap)}, where we assume

∆ and ∆I
R
p to be disjoint, by

– σ(aI
R
p) = aIp for a ∈ NKI ,

– σ(x
IRp
aP) = xIp such that P(a, x) ∈ chaseKrig(Ap),

– σ(x
IRp
P) = xIp such that there exists P(y, x) ∈⋃n

i=0 chaseKrig(Ai), and

– σ(x
IRp
PP′) = xIp such that P′(y, x) ∈ chaseKrig(Ap)

with σ(x
IRp
P) = yIp .

Claim 1. σ is well defined.

Proof of claim. If xaP occurs in R, there exists i
such that 〈T ,Ai〉 |= ∃x.P(a, x). Since Ii is a model
of 〈T ,Ai〉, it follows that there is some P(a, x) ∈
chaseKrig(Ai). Moreover, since P is rigid, P(a, x) ∈
chaseKrig(Ap).

If xP occurs inR, there exists i such that 〈T ,Ai〉 |=
∃xy.P(x, y). Since Ii is a model of 〈T ,Ai〉, it follows
that there exist x, y ∈ NKI ∪ ΓN such that P(y, x) ∈
chaseKrig(Ai). Moreover, x occurs in chaseKrig(Ap) be-
cause there exists B := A|∃R|∃R− with A ∈ NRC

and R ∈ NRR such that T |= ∃P− v B, and there-
fore there is a rigid assertion β |= B(x) such that
β ∈ chaseKrig(Ap).

If xPP′ occurs in R, then xP also occurs in R. It
follows that there exist i and y ∈ NKI ∪ ΓN such that

P(y, σ(x
IRp
P)) ∈ chaseKrig(Ai). Moreover, by construc-

tion of R, P′ is rigid and such that T |= ∃P− v ∃P′.
Since Ii is a model of T , there then exists x ∈
NKI ∪ ΓN such that P′(σ(x

IRp
P), x) ∈ chaseKrig(Ai).

Hence, P′(σ(x
IRp
P), x) ∈ chaseKrig(Ap). �

Claim 2. σ is a partial homomorphism of IRp into Ip.

38 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

Proof of claim. For every a ∈ NKI and concept A,
if aI

R
p ∈ AI

R
p , since IRp is the canonical model of

〈T , (Ap ∪ R)〉, then 〈T , (Ap ∪ R)〉 |= A(a). Let
{α} be a cause for A(a). If α ∈ Ap, then α ∈
chaseKrig(Ap). In this case, since Ip is a model of T
and 〈T , α〉 |= A(a), then σ(aI

R
p) = aIp ∈ AIp . Oth-

erwise, α ∈ R, and α is either of the form A′(a)
with A′ ∈ NRC, or of the form P(a, b) or P(a, xaP),
where P is rigid. In the first two cases, there exists
i such that 〈T ,Ai〉 |= α. Therefore, since Ii is a
model of 〈T ,Ai〉, α ∈ chaseKrig(Ai). Since α is rigid,
α ∈ chaseKrig(Ap), and therefore, since Ip is a model of

T and 〈T , α〉 |= A(a), we obtain that σ(aI
R
p) = aIp ∈

AIp . In the last case, if α = P(a, xaP), there exists i
such that 〈T ,Ai〉 |= ∃x.P(a, x). Since Ii is a model of
〈T ,Ai〉, there is some P(a, x) ∈ chaseKrig(Ai). Since
P is rigid, P(a, x) ∈ chaseKrig(Ap), and since Ip is
a model of T and 〈T , P(a, x)〉 |= A(a), we obtain
σ(aI

R
p) = aIp ∈ AIp .

For every pair a, b ∈ NKI and role P, if (aI
R
p , bI

R
p) ∈

PI
R
p , we can use similar arguments to show that

(σ(aI
R
p), σ(bI

R
p)) = (aIp , bIp) ∈ PIp .

For every xaP that occurs in R and A ∈ NC, if

x
IRp
aP ∈ AI

R
p , since IRp is the canonical model of

〈T , (Ap∪R)〉, then 〈T , (Ap∪R)〉 |= A(xaP). Let {α}
be a cause for A(xaP). By construction, the only asser-
tion ofAp∪R that involves xaP is P(a, xaP). Therefore,
α = P(a, xaP) and 〈T , P(a, xaP)〉 |= A(xaP). Since

σ(x
IRp
aP) = xIp is such that P(a, x) ∈ chaseKrig(Ap),

and Ip is a model of T , then σ(x
IRp
aP) ∈ AIp .

For every a ∈ NKI , x /∈ NKI that occurs in R and
role P, if (aI

R
p , xI

R
p) ∈ PI

R
p , since IRp is the canon-

ical model of 〈T , (Ap ∪ R)〉, then 〈T , (Ap ∪ R)〉 |=
P(a, x). Let {α} be a cause for P(a, x). By construc-
tion of R, x = xaP1 and α = P1(a, xaP1), and by

definition of σ, (σ(aI
R
p), σ(x

IRp
aP1P)) ∈ PIp

1 . Since
〈T , P1(a, x)〉 |= P(a, x) and Ip is a model of T , it fol-

lows that (σ(aI
R
p), σ(x

IRp
aP1P)) ∈ PIp .

For every xP1
that occurs in R and A ∈ NC, if

x
IRp
P1
∈ AI

R
p , since IRp is the canonical model of

〈T , (Ap ∪ R)〉, then 〈T , (Ap ∪ R)〉 |= A(xP1
). Let

{α} be a cause for A(xP1
). By construction, either α =

A′(xP1
) with A′ ∈ NRC and T |= ∃P−1 v A′, or α =

P2(xP1
, xP1P2

) with P2 rigid and T |= ∃P−1 v ∃P2.

Sinceσ(x
IRp
P1

) = xIp is such that there exists i such that
P1(y, x) ∈ chaseKrig(Ai) and Ii is a model of T , then

A′(x) ∈ chaseKrig(Ai) (resp. there is some P2(x, z) ∈
chaseKrig(Ai)). Therefore A′(x) ∈ chaseKrig(Ap) (resp.
there is some P2(x, z) ∈ chaseKrig(Ap)). Because Ip is

a model of T , it follows that σ(x
IRp
P1

) ∈ AIp .
For every xP1P2

that occurs in R and A ∈ NC,

if x
IRp
P1P2

∈ AI
R
p , since IRp is the canonical model

of 〈T , (Ap ∪ R)〉, then 〈T , (Ap ∪ R)〉 |= A(xP1P2
).

Let {α} be a cause for A(xP1P2
). By construction,

α = P2(xP1
, xP1P2

), P2 is rigid, and T |= ∃P−1 v
∃P2. Since σ(x

IRp
P1P2

) = xIp is such that there exists

P2(y, x) ∈ chaseKrig(Ap) (with yI
R
p = σ(x

IRp
P1

)) and Ip

is a model of T , then σ(x
IRp
P1P2

) ∈ AIp .
Finally, for every x, y /∈ NKI that occur in R

and for every role P, if (xI
R
p , yI

R
p) ∈ PI

R
p , since

IRp is the canonical model of 〈T , (Ap ∪ R)〉, then
〈T , (Ap ∪ R)〉 |= P(x, y). Let {α} be a cause for
P(x, y). By construction, x = xP1

, y = xP1P2
, α =

P2(xP1
, xP1P2

), and P2 is rigid, and therefore, as pre-

viously, (σ(x
IRp
P1

), σ(x
IRp
P1P2

)) ∈ PIp . �

Claim 3. σ can be extended to a homomorphism σ′ of
IRp into Ip.

Proof of claim. Since IRp is the canonical model of
〈T , (Ap ∪ R)〉, Ip is a model of T , and σ preserves
the concept or role memberships, we can extend σ to
a homomorphism σ′ of IRp into Ip by mapping the

anonymous part of IRp rooted in xI
R
p ∈ {xI

R
p | x ∈

NKI or occurs inR} to the part of Ip rooted in σ(xI
R
p).
�

From Claim 3, it follows that σ′ ◦ π is a homo-
morphism of ∃~y.ψ(~y) into Ip. We have thus shown
that if KR, p |= ∃~y.ψ(~y), then Ip |= ∃~y.ψ(~y), i.e.,
JK, p |= ∃~y.ψ(~y). Hence, if KR, p |= ∃~y.ψ(~y), then
K, p |= ∃~y.ψ(~y).

Lemma 9.8. Let q = ∃~y.ψ(~y) be such that Nq
I ⊆ NKI .

For every p ∈ J0, nK, if K, p |= q then KR, p |= q.

Proof. Assume that K, p |= ∃~y.ψ(~y). Then, Ip |=
∃~y.ψ(~y), and there exists a homomorphism π of ∃~y.ψ(~y)

into Ip. Let IRp = 〈∆I
R
p , ·I

R
p 〉 be a model of

〈T , (Ai ∪ R)〉. We define a mapping hRp from {xIp |
x ∈ NKI ∪ ΓN , x occurs in chaseKrig(Ap)} into ∆I

R
p ,

where we again assume that ∆ and ∆I
R
p are disjoint.

– For every a ∈ NKI , we set hRp (aIp) = aI
R
p

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 39

– For every xi1
aP1

, where i1 6= p and P1 is rigid, we set

hRp (xi1Ip
aP1

) = x
IRp
aP1

– For every xi1...il
aP1...Pl

with l > 1, such that for every
j ∈ J1, lK, i j 6= p, Pl is rigid, and Pl−1 is not rigid,

we set hRp (xi1...ilIp
aP1...Pl

) = x
IRp
Pl−1Pl

– For every xi1...il
aP1...Pl

with l > 1, such that for every
j ∈ J1, lK, i j 6= p, and Pl and Pl−1 are rigid, we set

hRp (xi1...ilIp
aP1...Pl

) = y, where (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l

If there are several such y, we choose one of them
randomly.

– For every xi1...il
aP1...Pl

such that for every k ∈ J1, lK, i j 6=

p, and Pl not rigid, we set hRp (xi1...ilIp
aP1...Pl

) = x
IRp
Pl

– For every xi1...il
aP1...Pl

such that for some j ∈ J1, lK, i j =

p, we set hRp (xi1...ilIp
aP1...Pl

) = y, where (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈

P
IRp
l . If there are several such y, we choose one of

them randomly.

Claim 1. hRp is well defined.

Proof of claim. We distinguish the cases based on the
argument of hRp .

– Case xi1
aP1

with i1 6= p and P1 is rigid, hRp (xi1Ip
aP1

) =

x
IRp
aP1

.
Since xi1

aP1
∈ ΓN , by (P1) and (P8), ∃x.P1(a, x) is

entailed by some 〈T ,A j〉. Therefore, xaP1 appears
inR.

– Case xi1...il
aP1...Pl

with l > 1, such that for every j ∈
J1, lK, i j 6= p, Pl is rigid and Pl−1 is not rigid,

hRp (xi1...ilIp
aP1...Pl

) = x
IRp
Pl−1Pl

.
Since xi1...il

aP1...Pl
∈ ΓN , by (P4), T |= ∃P−l−1 v ∃Pl,

and by (P2) and (P12), there is some j such that
〈T ,A j〉 |= ∃xy.Pl−1(x, y). Moreover, Pl is rigid and
Pl−1 is not rigid, and therefore xPl−1Pl appears inR.

– Case xi1...il
aP1...Pl

with l > 1, such that every j ∈ J1, lK,
i j 6= p, and Pl and Pl−1 are rigid, hRp (xi1...ilIp

aP1...Pl
) = y,

where (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

We show by induction on the length length = l − r
of the sequence of rigid roles Pr...Pl−1 that there is

always such a (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

– If length = 1, we are in one of the following cases.

(i) r > 1 and hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

. Then

(x
IRp
Pl−2

, x
IRp
Pl−2Pl−1

) ∈ P
IRp
l−1, because IRp is a model of

R. Since xi1...il
aP1...Pl

∈ ΓN , by (P4), T |= ∃P−l−1 v ∃Pl.
Therefore, since IRp is a model of T , there is some

(hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

(ii) r = 1 and hRp (xi1...il−1Ip
aP1...Pl−1

) = hRp (xi1Ip
aP1

) = x
IRp
aP1

is

such that (aI
R
p , x

IRp
aP1

) ∈ P
IRp
1 because P1(a, xaP1

) ∈
R. Since xi1i2

aP1P2
∈ ΓN , T |= ∃P−1 v ∃P2 by (P4).

Therefore, since IRp is a model of T , there is some

(x
IRp
aP1

, y) ∈ P
IRp
2 .

– For length > 1, T |= ∃P−l−1 v ∃Pl by (P4). It
follows that, since by inductive hypothesis there is

some (x, hRp (xi1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1, there then is some

(hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

– Case xi1...il
aP1...Pl

such that for every j ∈ J1, lK, i j 6= p,

and Pl not rigid, hRp (xi1...ilIp
aP1...Pl

) = x
IRp
Pl

.
Since T does not contain any role inclusion of the
form P′ v P with P′ := R1|R−1 , R1 ∈ NR\NRR

and P := R2|R−2 , R2 ∈ NRR, and Pl is not rigid,
there is no P such that Pl v P and P is rigid.
Therefore, since il 6= p, there is no P such that
P(xi1...il−1

aP1...Pl−1
, xi1...il

aP1...Pl
) ∈ chaseKrig(Ap). We obtain

that xi1...il
aP1...Pl

occurs in chaseKrig(Ap) only if there is
B := A|∃R|∃R− with A ∈ NRC, R ∈ NRR such that
chaseKrig(Ap) |= B(xi1...il

aP1...Pl
). By (P3), T |= ∃P−l v

B, and by (P2) and (P12), there is some j such that
〈T ,A j〉 |= ∃xy.Pl−1(x, y). It follows that xPl ap-
pears inR.

– Case xi1...il
aP1...Pl

such that for some j ∈ J1, lK, i j = p,

hRp (xi1...ilIp
aP1...Pl

) = y, where (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

We show by induction on the length length = l − r
of the chain of roles that links xi1...il

aP1...Pl
to the first in-

dividual xi1...ir
aP1...Pr

such that ir = p that there is always

such (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

– If length = 0, then il = p and there
is no j < l such that i j = p. We are
thus in one of the following cases. Either (i)

hRp (xi1...il−1Ip
aP1...Pl−1

) = aI
R
p , (ii) hRp (xi1...il−1Ip

aP1...Pl−1
) = x

IRp
aP1

,

(iii) hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

, (iv) hRp (xi1...il−1Ip
aP1...Pl−1

)

is such that (hRp (xi1...il−2Ip
aP1...Pl−2

), hRp (xi1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1,

or (v) hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−1

.

(i) If hRp (xi1...il−1Ip
aP1...Pl−1

) = aI
R
p , by definition of hRp ,

xi1...il−1

aP1...Pl−1
= a, and therefore xi1...p

aP1...Pl
= xp

aP1
. Since

xp
aP1
∈ ΓN , by (P1), P1(a, xp

aP1
) ∈ chaseKrig(Ap). By

(P8), either (a) 〈T ,Ap〉 |= ∃x.P1(a, x), and there

is some (aI
R
p , y) ∈ P

IRp
1 because IRp is a model of

〈T ,Ap〉, or (b) there exists B := A|∃R|∃R− with
A ∈ NRC, R ∈ NRR, such that T |= B v ∃P1 and

40 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

there exists j such that 〈T ,A j〉 |= B(a). In the latter
case,R |= B(a) by construction ofR, and since IRp
is a model ofR, we obtain IRp |= B(a). Since IRp is

a model of T , there is some (aI
R
p , y) ∈ P

IRp
1 .

(ii) If hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
aP1

, by definition of

hRp , xi1...il−1

aP1...Pl−1
= xi1

aP1
and P1 is rigid. By (P1),

P1(a, xi1
aP1

) ∈ chaseKrig(Ai1), and therefore by (P8),
either (a) 〈T ,Ai1〉 |= ∃x.P1(a, x) and P1(a, xaP1) ∈
R since P1 is rigid, or (b) there exists B :=
A|∃R|∃R− with A ∈ NRC, R ∈ NRR, such that
T |= B v ∃P1, and there exists j such that
〈T ,A j〉 |= B(a). In the latter case, 〈T ,A j〉 |=
∃x.P1(a, x), and therefore P1(a, xaP1

) ∈ R. In both

cases, (aI
R
p , x

IRp
aP1

) ∈ P
IRp
1 since IRp is a model ofR.

Moreover, since xi1...il
aP1...Pl

= xi1p
aP1P2

∈ ΓN , by (P4),
T |= ∃P−1 v ∃P2. Therefore, since IRp is a model

of T , there is some (x
IRp
aP1

, y) ∈ P
IRp
2 .

(iii) If hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

, by def-
inition of R, since xPl−2Pl−1

appears in R,
Pl−1(xPl−2 , xPl−2Pl−1) ∈ R, and therefore

(x
IRp
Pl−2

, x
IRp
Pl−2Pl−1

) ∈ P
IRp
l−1. Since xi1...il

aP1...Pl
∈ ΓN ,

by (P4), T |= ∃P−l−1 v ∃Pl, and there is some

(x
IRp
aPl−2Pl−1

, y) ∈ P
IRp
l .

(iv) If (hRp (xi1...il−2Ip
aP1...Pl−2

), hRp (xi1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1,

since xi1...il
aP1...Pl

∈ ΓN , by (P4), T |= ∃P−l−1 v ∃Pl,

and there is some (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

(v) If hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−1

, by (P2) and since il =

p, we obtain Pl(xi1...il−1

aP1...Pl−1
, xi1...p

aP1...Pl
) ∈ chaseKrig(Ap).

By (P6), since chaseKrig(Ap) |= ∃Pl(xi1...il−1

aP1...Pl−1
) and

il−1 6= p, there exists B := A|∃R|∃R− with A ∈
NRC,R ∈ NRR, such that T |= B v ∃Pl and
chaseKrig(Ail−1) |= B(xi1...il−1

aP1...Pl−1
). By (P3), T |=

∃P−l−1 v B, and R |= B(xPl−1
) (since xPl−1

oc-
curs in R and B is rigid). We obtain that 〈T ,R〉 |=
∃x.Pl(xPl−1 , x). Since IRp is a model of 〈T ,R〉,

there is some (x
IRp
Pl−1

, y) ∈ P
IRp
l .

– For length > 0, since xi1...il
aP1...Pl

∈ ΓN , by (P4),
T |= ∃P−l−1 v ∃Pl. Since by inductive hypothesis

there is some (x, hRp (xi1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1, there then

is some (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l . �

Claim 2. hRp is a homomorphism of Ip into IRp .

Proof of claim For every a ∈ NKI and concept A, if
aIp ∈ AIp , i.e., A(a) ∈ chaseKrig(Ap), then by (P5),
either (i) 〈T ,Ap〉 |= A(a), and since IRp is a model

of 〈T ,Ap〉, then hRp (aIp) = aI
R
p ∈ AI

R
p , or (ii) there

exists B := C|∃R|∃R− with C ∈ NRC, R ∈ NRR,
such that T |= B v A, and there exists j such that
〈T ,A j〉 |= B(a). In the latter case R |= B(a). There-
fore, since IRp is a model of R, IRp |= B(a), and
IRp |= A(a) because IRp is a model of T . It follows

that hRp (aIp) = aI
R
p ∈ AI

R
p . For every pair a, b ∈ NKI

and role P, if (aIp , bIp) ∈ PIp , by (P7), similar argu-
ments can be used to prove that (hRp (aIp), hRp (bIp)) =

(aI
R
p , bI

R
p) ∈ PI

R
p .

For every xi1...il
aP1...Pl

∈ ΓN , such that xi1...ilIp
aP1...Pl

∈ AIp ,
by (P3), T |= ∃P−l v A, and by construction of hRp ,

hRp (xi1...ilIp
aP1...Pl

) = y is such that either (i) there exists

(x, y) ∈ P
IRp
l , and since IRp is a model of T , we have

y ∈ AI
R
p , or (ii) y = x

IRp
Pl

, Pl is not rigid, and for ev-
ery j ∈ J1, lK, i j 6= p. In the latter case, by (P6), there
exists B := C|∃R|∃R− with C ∈ NRC, R ∈ NRR, such
that T |= B v A and chaseKrig(Ail) |= B(xi1...il

aP1...Pl
). By

(P3), T |= ∃P−l v B. Therefore, by construction of
R, R |= B(xPl) and 〈T ,R〉 |= A(xPl). It follows that
y ∈ AI

R
p .

For every pair x, y ∈ ΓN and role P, such that
(xIp , yIp) ∈ PIp , by (P10), either (i) x = xi1...il

aP1...Pl
,

y = xi1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P, or (ii) x =

xi1...ilil+1

aP1...PlPl+1
, y = xi1...il

aP1...Pl
and T |= Pl+1 v P−. We

can assume w.l.o.g. that we are in the first case (other-
wise, we consider (yIp , xIp) ∈ P−Ip). If il+1 = p, by

definition of hRp , we have (hRp (xIp), hRp (yIp)) ∈ P
IRp
l+1.

Otherwise, by (P11), there exists P′ := R|R− with
R ∈ NRR such that T |= Pl+1 v P′ v P and
P′(x, y) ∈ chaseKrig(Ail+1). In this case, there are two
possibilities.

(i) If Pl is not rigid, given that T |= Pl+1 v P′ and
P′ is rigid, Pl+1 is rigid by our hypothesis on the

TBox. It follows that hRp (yIp) = x
IRp
PlPl+1

. If there is

no i j = p, then hRp (xIp) = x
IRp
Pl

. Therefore, since
Pl+1(xP1

, xPlPl+1
) ∈ R, then (hRp (xIp), hRp (yIp)) ∈

P
IRp
l+1. Otherwise, there exists i j = p, and we obtain

(hRp (xIp), hRp (yIp)) ∈ P
IRp
l+1 by definition of hRp .

(ii) If Pl is rigid, then hRp (yIp) is such that

(hRp (xI
R
p), hRp (yI

R
p)) ∈ P

IRp
l+1.

C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 41

Since in any case, (hRp (xIp), hRp (yIp)) ∈ P
IRp
l+1 and

IRp is a model of T , we obtain (hRp (xIp), hRp (yIp)) ∈
PI
R
p .
Finally, if a ∈ NKI and x ∈ ΓN , (aIp , xIp) ∈

PIp only if x = xi1
aP1

. If i1 = p, by definition of

hRp , (hRp (aIp), hRp (xIp)) ∈ P
IRp
1 , and since by (P8),

T |= P1 v P, we obtain (hRp (aIp), hRp (xIp)) ∈ PI
R
p .

If i1 6= p, by (P9), there exists P′ rigid such that
T |= P1 v P′ v P, so by our hypothesis on the TBox,
P1 is rigid. By (P1) and (P8), there is some j such that

〈T ,A j〉 |= ∃x.P1(a, x). Therefore, P1(a, xaP1) ∈ R
and (hRp (aIp), hRp (xIp)) = (aI

R
p , x

IRp
aP1

) ∈ P
IRp
1 . We

obtain (hRp (aIp), hRp (xIp)) ∈ PI
R
p . �

It follows from Claim 2 that hRp ◦ π is a homo-
morphism of ∃~y.ψ(~y) into IRp . Therefore, we have

shown that if Ip |= ∃~y.ψ(~y), then KR, p |= ∃~y.ψ(~y).

This means that if K, p |= ∃~y.ψ(~y), then KR, p |=
∃~y.ψ(~y).

	Introduction
	Our contributions

	Preliminaries
	Temporal query answering over inconsistent data
	Complexity analysis overview
	General algorithms for inconsistency-tolerant BTCQ entailment
	Complexity of inconsistency-tolerant BTCQ entailment with negations in the query
	Consistency checking and repair recognition for TKBs
	Combined complexity
	Data complexity for EL TKBs
	Data complexity for DL-LiteR TKBs

	BTCQ entailment under classical semantics without negation in the query
	Complexity of inconsistency-tolerant BTCQ entailment without negation in the query
	Toward practical algorithms
	TCQ answering under classical semantics in the presence of rigid predicates for DL-LiteR and TCQ without negation nor unbounded future operators
	Inconsistency-tolerant TCQ answering without rigid predicates

	Conclusions and future work
	Acknowledgements
	References
	Appendix A. Omitted proofs
	Proofs of complexity results
	Proofs of Section 9

