
Semantic Web 0 (0) 1 1
IOS Press

Ensuring the Completeness and Soundness of
SPARQL Queries Using Completeness
Statements about RDF Data Sources1

Fariz Darari a,*, Werner Nutt b, Simon Razniewski c, Sebastian Rudolph d

a Faculty of Computer Science, Universitas Indonesia, Indonesia
E-mail: fariz@cs.ui.ac.id
b Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
E-mail: Werner.Nutt@unibz.it
c Max-Planck-Institute for Informatics, Germany
E-mail: srazniew@mpi-inf.mpg.de
d Faculty of Computer Science, TU Dresden, Germany
E-mail: sebastian.rudolph@tu-dresden.de

Abstract. RDF generally follows the open-world assumption: information is incomplete by default. Consequently, SPARQL
queries cannot retrieve with certainty complete answers, and even worse, when they involve negation, it is unclear whether they
produce sound answers. Nevertheless, there is hope to lift this limitation. On many specific topics (e.g., children of Trump,
Apollo 11 crew, EU founders), RDF data sources contain complete information, a fact that can be made explicit through com-
pleteness statements. In this work, we leverage completeness statements to bridge the gap between RDF and SPARQL. We first
develop a technique to check query completeness based on RDF data with completeness information. For queries with negation,
we approach the problem of query soundness checking. We provide a formalization and characterize the soundness problem
via a reduction to the completeness problem. We further develop efficient methods for completeness checking, and conduct
experimental evaluations based on Wikidata to demonstrate the feasibility of our approach.

Keywords: Data quality, data completeness, query completeness, query soundness, RDF, SPARQL

1. Introduction

Over the Web, we are witnessing a growing amount
of data available in RDF. As of January 2017, the
LOD Cloud2 has recorded more than 1,100 RDF data
sources, covering a wide range of application domains5

from government to life sciences. RDF follows the
open-world assumption (OWA), which assumes that
data is inherently incomplete [2]. Yet, given such a
large quantity of RDF data, one might wonder if it is
complete for some topics. As an illustration, consider10

1This paper is an extended and revised version of Darari et al [1].
*Corresponding author. E-mail: fariz@cs.ui.ac.id.
2http://lod-cloud.net/

Wikidata, a collaborative KB whose content is made
available in RDF [3]. For data about the movie Reser-
voir Dogs, Wikidata is incomplete,3 as it is missing
the fact that Michael Sottile was acting in that movie.4

On the other hand, for data about the European Union15

(EU), Wikidata actually stores all of its founding mem-
bers,5 as shown in Figure 1. Nevertheless, the figure
does not provide any indicator about completeness,
leaving the user undecided whether the presented facts
about the EU founders are complete or not.20

3https://www.wikidata.org/wiki/Q72962 (as of March 21, 2017)
4See, e.g., http://www.imdb.com/title/tt0105236/fullcredits
5https://europa.eu/european-union/about-eu/history/

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:fariz@cs.ui.ac.id
mailto:Werner.Nutt@unibz.it
mailto:srazniew@mpi-inf.mpg.de
mailto:sebastian.rudolph@tu-dresden.de
mailto:fariz@cs.ui.ac.id
http://lod-cloud.net/
https://www.wikidata.org/wiki/Q72962
http://www.imdb.com/title/tt0105236/fullcredits
https://europa.eu/european-union/about-eu/history/

2 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

Fig. 1. Wikidata is actually complete for all EU founding members

The incorporation of completeness information can
help users assess the quality of data. Over the Web,
completeness information is in fact already available
in various forms. For instance, Wikipedia provides
a template for adding completeness annotations for25

lists6 and contains around 14,500 pages with the key-
words ‘complete list of’ and ‘list is complete’; IMDb
offers about 37,000 editor-verified (natural language)
statements about the completeness of cast and crew;7

and OpenStreetMap has around 2,300 pages featur-30

ing completeness status information.8 For RDF data,
such information about completeness is particularly
crucial due to RDF’s incomplete nature. In [4], Darari
et al. proposed completeness statements, metadata to
specify which parts of an RDF data source are com-35

plete: for a complete part all facts that hold in real-
ity are captured by the data source. They also pro-
vided an RDF representation of completeness state-
ments, making them machine readable. The availabil-
ity of explicit completeness information opens up the40

possibility of specialized applications for data source
curation, discovery, analytics, and so forth. Moreover,
it can also benefit data access over RDF data sources,
mainly done via SPARQL queries [5]. More specifi-
cally, the quality of query answers can also be made45

more transparent given that now we know the quality
of data sources with regard to completeness.

Query Completeness When data sources are en-
riched with completeness information, the question
naturally arises whether queries can be answered also50

completely. Intuitively, queries that are evaluated only
over parts of data captured by completeness state-

6https://en.wikipedia.org/wiki/Template:Complete_list
7E.g., see http://www.imdb.com/title/tt0105236/fullcredits
8For instance, see http://wiki.openstreetmap.org/wiki/Abingdon

ments, are guaranteed to be complete. Consider the
query “Give the EU founders” over Wikidata:9

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT * WHERE {
wd:Q458 wdt:P112 ?c } # EU founder ?c

Without completeness information, evaluating the55

query would give only query answers, for which we
do not know the completeness. By having the state-
ment that Wikidata is complete for the EU founders,
we can then guarantee that the answers are complete.
Darari et al. [4] characterized such reasoning, that is,60

the checking whether queries can be guaranteed to
be complete by completeness statements. Nonetheless,
their approach is limited in the sense that the specifics
of the graph are not taken into account in the complete-
ness reasoning.65

Let us give an example, illustrating this limitation.
Suppose that in addition to the statement about all EU
founders, we also have the statements that Wikidata
is complete for the official languages of the follow-
ing countries: Belgium, France, Germany, Italy, Lux-70

embourg, and the Netherlands. Let us now consider
the query “Give the EU founders and their official lan-
guages.” We show that the query can be answered com-
pletely by applying a data-aware approach: we enu-
merate the complete EU founders in Wikidata, and for75

each of them, we are complete for its languages. On the
other hand, the data-agnostic approach from Darari et
al. [4] would fail to capture the query completeness: it
can be that all the EU founders are completely differ-
ent than those in Wikidata, and thus, having complete-80

ness statements about the six countries above could not
help in the reasoning. We argue that data-aware rea-
soning can provide more fine-grained insights over the
completeness of query answers, which otherwise can-
not be captured by relying only on the data-agnostic85

approach.

Query Soundness One might wonder whether the in-
formation about completeness can also be leveraged to
check the soundness of query answers. Indeed, for the
positive fragment of SPARQL, the soundness of query90

answers trivially holds, thanks to monotonicity. Now
let us consider queries with negation. The meaning of
such queries on the Semantic Web has always been du-
bious (see, e.g., W3C mailing list discussions in [6]

9Wikidata has internal identifiers for resources, as shown in the
SPARQL query example.

https://en.wikipedia.org/wiki/Template:Complete_list
http://www.imdb.com/title/tt0105236/fullcredits
http://wiki.openstreetmap.org/wiki/Abingdon

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 3

and [7]). The evaluation of SPARQL queries that in-95

clude negation relies on the absence of some informa-
tion. On the other hand, RDF, which follows the OWA,
regards missing information as undecided, that is, it
is unknown whether the missing information is false.
Given this situation, answers of queries with negation100

can never be assured to be sound.
Completeness information can tackle the problem of

query soundness. To illustrate this, consider asking for
“countries that are not EU founders” over Wikidata:

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT * WHERE {
?c wdt:P31 wd:Q6256 # ?c a country
FILTER NOT EXISTS {

wd:Q458 wdt:P112 ?c }} # EU founder ?c

The answers include Spain (= wd:Q29). Without105

any completeness information about Wikidata, we can-
not be sure about its soundness: assume Spain were an
EU founder, but this information were missing from
the data. In that case, Spain is not a correct answer. In
reality, the EU founders are exactly as shown before110

in Figure 1. Knowing this guarantees that Spain is not
an EU founding country. What we can observe here
is that negation in SPARQL, due to its inherent non-
monotonicity, may lead to the problem of judging an-
swer soundness: adding new information may invali-115

date an answer. Soundness of answers is ensured, how-
ever, if we know that the parts of the data over which
the negated parts of a query range are complete and not
open-world.

Contributions An earlier version of our ideas on120

query completeness checking was published in the
Proceedings of the International Conference on Web
Engineering [1]. In that work, we provided a for-
malization of the data-aware completeness entailment
problem and developed a sound and complete algo-125

rithm for the entailment problem. The present paper
significantly extends the previous work in the follow-
ing ways:

1. we formulate the soundness problem for SPARQL
queries with negation in the presence of com-130

pleteness information, and characterize it via a
reduction to completeness checking;

2. we identify the bottlenecks of the completeness
reasoning techniques from [1] and develop imple-
mentation techniques that scale to realistic prob-135

lem sizes;

3. we provide experimental evaluations based on
Wikidata, a real-world data source, that validate
the feasibility of our approach; and

4. we provide a comprehensive complexity analysis140

of the completeness entailment problem, include
the proofs of all theorems as well as more recent
related work, and improve the presentation of the
theoretical parts.

A preliminary result of the soundness problem ap-145

peared in a poster by Darari et al. [8], in which only a
partial characterization was given.

Organization The rest of the article is organized as
follows. Section 2 provides some background about
RDF and SPARQL, and completeness statements. Sec-150

tion 3 motivates and formalizes the problem of query
completeness and query soundness. In Section 4, we
first introduce formal notions, and then present an al-
gorithm for completeness entailment checking using
those notions, and a complexity analysis of the com-155

pleteness entailment problem. We give a characteriza-
tion of the two problem variants of query soundness,
that is, answer soundness and pattern soundness, in
Section 5. We describe our optimization techniques for
completeness checking in Section 6, and report on our160

experimental evaluations for query completeness and
query soundness checking in Section 7. Related work
is presented in Section 8. Section 9 provides a discus-
sion of our framework, while Section 10 gives conclu-
sions and future work. Proofs are provided in the ap-165

pendices.

2. Preliminaries

In this section, we introduce basic notions of RDF
and SPARQL, and provide a formalization of com-
pleteness statements.170

2.1. RDF and SPARQL

We assume three pairwise disjoint infinite sets I
(IRIs), L (literals), and V (variables). We collectively
refer to IRIs and literals as RDF terms or simply terms.
An RDF graph G is represented as a finite set of175

triples (s, p, o) ∈ I × I × (I ∪ L). For simplicity, we
omit namespaces in the abstract representation of RDF
graphs.

The standard query language for RDF is SPARQL [5].
At the core of SPARQL lie triple patterns, which re-180

semble triples, except that in each position also vari-

4 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

ables are allowed. A basic graph pattern (BGP) con-
sists of a set of triple patterns. A mapping µ is a partial
function µ : V → I ∪ L. We define the mapping with
the empty domain as the empty mapping µ∅. Given185

a BGP P, µP denotes the BGP obtained by replac-
ing variables in P with terms according to µ. Eval-
uating P over a graph G gives the set of mappings
JPKG = { µ | µP ⊆ G and dom(µ) = var(P) }. For a
BGP P, we define the freeze mapping ĩd as mapping190

each variable ?v in P to a fresh IRI ṽ. From such a map-
ping, we construct the prototypical graph P̃ := ĩd P
to represent any possible graph that can satisfy the
BGP P.

The standard query type is a SELECT query, which195

has the abstract form Q = (W, P), where P is a graph
pattern and W ⊆ var(P). Under bag semantics for such
queries, JQKG is obtained by projecting the mappings
in JPKG to W, keeping each projection as many times
as there are mappings that give rise to it. In this work,200

we assume bag semantics for SELECT queries as it is
the default semantics of SPARQL [5].

Given two BGPs P1 and P2 where var(P1) ⊆
var(P2), a CONSTRUCT query has the abstract form
(CONSTRUCT P1 P2). Evaluating a CONSTRUCT query205

over G yields a graph where P1 is instantiated with all
the mappings in JP2KG.

SPARQL with Negation SPARQL queries can also
include negation. We introduce notation that is concise
and more convenient for our purposes than the original210

SPARQL syntax [5]. A NOT-EXISTS pattern is con-
structed by negating a BGP using ‘¬∃’. A graph pat-
tern P, as used throughout this paper, is defined as a set
of triple patterns and NOT-EXISTS patterns. The pos-
itive part of P, denoted P+, consists of all triple pat-215

terns in P, and the negative part of P, denoted P−,
consists of the BGPs of all NOT-EXISTS patterns in P.
The evaluation JPKG of a graph pattern P over a graph
G produces a set of mappings and is defined in [5] as:
{ µ ∈ JP+KG | ∀Pi ∈ P− . JµPiKG = ∅ }. We assume220

that graph patterns are consistent, that is, JPKG 6= ∅ for
some graph G.

Example 1. Consider the query “Give the founding
members of the EU” as introduced in Section 1. It
can be written as: ({?c}, {(EU, founder, ?c)}). Con-225

sider also negated version “Give countries that are not
EU founders.” The graph pattern of the query can be
written as: {(?c, a, country),¬∃{ (EU, founder, ?c) }}.
The positive part is {(?c, a, country)}, whereas the
negative part is {{(EU, founder, ?c)}}.230

2.2. Completeness Statements

We want to formalize a mechanism for specify-
ing which parts of a data source are complete. When
talking about the completeness of a data source, one
implicitly compares the information available in the235

source with a possible state of the source that con-
tains all information that holds in the real world. We
model this situation with a pair of graphs: one graph
is the available, possibly incomplete state, while an-
other stands for an ideal, conceptual complete refer-240

ence, which contains the available graph. In this work,
we only consider data sources that may miss informa-
tion, but do not contain wrong information.

Definition 1 (Extension Pair). An extension pair is a
pair (G,G′) of two graphs, where G ⊆ G′. We call G245

the available graph and G′ the ideal graph.

In an application, the state stored in an RDF data
source is our actual, available graph, which consists of
a part of the facts that hold in reality. The full set of
facts that constitute the ideal state are, however, un-250

known. Nevertheless, an RDF data source can be com-
plete for some parts of the reality. In order to make
assertions in this regard, we now introduce complete-
ness statements, as meta-information about the extent
to which the available state captures the ideal state. We255

adopt the definition of completeness statements in [4].

Definition 2 (Completeness Statement). A complete-
ness statement C has the form Compl(PC), where PC

is a non-empty BGP.

For example, we express that a data source is260

complete for all triples about the EU founders us-
ing the statement Ceu = Compl((EU, founder, ?f)).10

To serialize completeness statements in RDF, we re-
fer the reader to [4]. We now define when a com-
pleteness statement is satisfied by an extension pair.265

To a statement C = Compl(PC), we associate the
CONSTRUCT query QC = (CONSTRUCT PC PC).
Note that, given a graph G, the query QC returns the
graph consisting of those instantiations of the pat-
tern PC present in G. For example, the query QCeu =270

(CONSTRUCT {(EU, founder, ?f)} {(EU, founder, ?f)})
returns the founding members of the EU in G. Intu-
itively, an extension pair (G,G′) satisfies a complete-
ness statement C, if the subgraph of G′ identified by C
is also present in G.275

10For the sake of readability, we slightly abuse the notation by
removing the set brackets of the BGPs of completeness statements.

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 5

Definition 3 (Satisfaction of Completeness State-
ments). An extension pair (G,G′) satisfies a complete-
ness statement C, written (G,G′) |= C, if JQCKG′ ⊆ G.

The above definition naturally extends to the sat-
isfaction of a set C of completeness statements, that280

is, (G,G′) |= C iff for all C ∈ C, it is the case that
JQCKG′ ⊆ G.

An important tool for characterizing completeness
entailment is the transfer operator. Given a set C of
completeness statements and a graph G, the transfer285

operator TC maps the graph G to the graph TC(G) =⋃
C∈CJQCKG. The transfer operator evaluates over G

all CONSTRUCT queries associated to the statements
in C and returns the union of the results. We have
the following immediate characterization: for all ex-290

tension pairs (G,G′), it is the case that (G,G′) |= C iff
TC(G′) ⊆ G.

3. Motivation and Formal Framework

In this section, we motivate and formalize the prob-
lem of query completeness and query soundness.295

3.1. Query Completeness

Given an RDF graph and a set of completeness state-
ments, we want to check whether a query can be an-
swered completely.

3.1.1. Motivating Scenario300

Consider the following RDF graph Gcou about mem-
bers countries of the United Nations (UN) and official
languages of the members.

Consider now the query Q0 asking for the UN mem-
bers and their languages:305

Q0 = (W0, P0)
= ({ ?m, ?l }, {(UN,member, ?m), (?m, lang, ?l)})

Evaluating Q0 over the graph gives only one map-
ping result, where the member is mapped to Germany
and the language is mapped to de. Up until now, noth-
ing can be said about the completeness of the query310

since (i) there can be another UN member with an of-

ficial language; (ii) Germany may have another lan-
guage; or (iii) the USA may have an official language.

Let us now consider the same graph as above, en-
riched with completeness information, as displayed315

below. The figure illustrates the set Ccou of three com-
pleteness statements:

– Cun = Compl((UN,member, ?m)), which states
that the graph contains all members of the UN;11

– Cger = Compl((ger, lang, ?l)), which states the320

graph contains all official languages of Germany;
– Cusa = Compl((usa, lang, ?l)), which states the

graph contains all official languages of the USA
(i.e., the USA have no official languages).12

With the addition of completeness information, let us325

see whether we can answer our query completely.
First, from the statement Cun about UN members,

we can infer that the part (UN,member, ?m) of Q0 is
complete. By evaluating that part over Gcou, we know
that all the UN members are Germany and the USA. In330

terms of extension pairs, that means that no extension
G′cou ⊇ Gcou satisfying Cun has UN members other
than Germany and the USA. This allows us to instan-
tiate the query Q0 to the following two queries that in-
tuitively are together equivalent to Q0 itself:335

– Q1 = (W1, P1)
= ({ ?l }, {(UN,member, ger), (ger, lang, ?l)})

– Q2 = (W2, P2)
= ({ ?l }, {(UN,member, usa), (usa, lang, ?l)}),

where we record that the variable ?m has been instan-
tiated by Germany and the USA, respectively.

Our task is now transformed to checking whether340

Q1 and Q2 can be answered completely. As for
Q2, we know from the statement Cusa that our data
graph is complete with regard to (usa, lang, ?l). This
again allows us to instantiate the query Q2 wrt. the
graph Gcou. However, now we come to the situation345

where there is no matching part in Gcou: instantiating
the (usa, lang, ?l) returns nothing (i.e., the USA has
no official languages). In other words, for any possible

11For the sake of example, let us suppose that this is true.
12See, e.g., https://www.cia.gov/library/publications/the-world-f

actbook/geos/us.html

https://www.cia.gov/library/publications/the-world-factbook/geos/us.html
https://www.cia.gov/library/publications/the-world-factbook/geos/us.html

6 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

extension G′cou of Gcou, as guaranteed by Cusa, the ex-
tension G′cou is also empty for the part (usa, lang, ?l).350

Thus, there is no way that Q2 will return an answer, so
it can be safely removed. Here we can also see that we
are complete for Q2.

Now, only the query Q1 is left. Again, from the
statement Cger, we know that we are complete for the355

part (ger, lang, ?l) of Q1. This allows us to instantiate
the query Q1 to the query Q3, that is intuitively equiv-
alent to Q1 itself:

Q3 = (W3, P3)
= ({ }, {(UN,member, ger), (ger, lang, de)}),

where we record that the variable ?m has been instan-360

tiated by Germany and ?l by de. However, our graph
is complete for Q3 as it contains the whole ground
body of Q3. In this case, no extension G′cou of Gcou

can contain more information about Q3. Now, trac-
ing back our reasoning steps, we know that our Q3 is365

in fact intuitively equivalent to our original query Q0.
Since we are complete for Q3, we are also complete
for Q0, wrt. our graph and completeness statements.
In other words, our statements and graph can guaran-
tee the completeness of the query Q0. Concretely, this370

means that de is the only official language of Ger-
many, the only UN member with an official language.

In summary, we have reasoned about the complete-
ness of a query given a set of completeness statements
and a graph. The reasoning is basically done as fol-375

lows: (i) we find parts of the query that can be guar-
anteed to be complete by the completeness statements;
(ii) we produce equivalent query instantiations by eval-
uating those complete query parts over the graph and
applying the obtained mappings to the query itself; (iii)380

for all the query instantiations, we repeat the above
steps until no further complete parts can be found. The
original query is complete iff all the BGPs of the gen-
erated queries are contained in the data graph.

Note that using the data-agnostic completeness rea-385

soning approach of [4], it is not possible to derive
the same conclusion. Without looking at the available
graph, we cannot conclude that Germany and the USA
are all the UN members, since it could be the case
that the members are completely different items. Con-390

sequently, just knowing that the official languages of
Germany and the USA are complete does not help in
the reasoning.

3.1.2. Formalization of Completeness Reasoning
When querying a data source, we want to know395

whether the data source provides sufficient informa-
tion to retrieve all answers to the query, that is, whether

the query is complete wrt. the real world. For instance,
when querying for members of the UN, it would be in-
teresting to know whether we really get all such coun-400

tries. Intuitively, a query is complete over an extension
pair whenever all answers we retrieve over the ideal
graph are also retrieved over the available graph. We
now define query completeness wrt. extension pairs.

Definition 4 (Query Completeness). To express that a405

query Q is complete, we write Compl(Q). An exten-
sion pair (G,G′) satisfies Compl(Q), if the result of
Q evaluated over G′ also appears in Q over G, that
is, JQKG′ ⊆ JQKG.13 In this case we write (G,G′) |=
Compl(Q).410

The above definition can be naturally adapted to the
completeness of a BGP P, written Compl(P), that is
used in subsequent content: An extension pair (G,G′)
satisfies Compl(P), written (G,G′) |= Compl(P), if
JPKG′ ⊆ JPKG.415

Now, the question arises as to when some meta-
information about data completeness can provide a
guarantee for query completeness. In other words, the
available state contains all data, as guaranteed by com-
pleteness statements, that is required for computing the420

query answers, so one can trust the result of the query.
In the following, we define completeness entailment.

Definition 5 (Completeness Entailment). Let C be a
set of completeness statements, G a graph, and Q a
query. Then C and G entail the completeness of Q,425

written C,G |= Compl(Q), if for all extension pairs
(G,G′) |= C, it holds that (G,G′) |= Compl(Q).

In our motivating scenario, we have seen that the
graph about the UN and the completeness statements
there entail the completeness of the query Q0 asking430

for members of the UN and their official languages.
As we follow the default of SPARQL and assume

bag semantics for query evaluation, we can therefore
focus on the BGPs used in the body of queries for com-
pleteness entailment. The following proposition pro-435

vides an initial characterization of completeness entail-
ment, which will serve as a starting point to develop
formal notions for completeness checking and an al-
gorithm in Section 4. Basically, for a set of complete-
ness statements, a graph, and a BGP, the completeness440

entailment holds, iff extending the graph with a possi-
ble BGP instantiation (by some mapping) such that the

13For monotonic queries, the other direction, that is, JQKG′ ⊇
JQKG , comes for free. Hence, we sometimes use the ‘=’ condition
when queries are monotonic.

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 7

extension satisfies the statements, always results in the
inclusion of the BGP instantiation in the graph itself.

Proposition 1. Let C be a set of completeness state-445

ments, G a graph, and P a BGP. Then the following are
equivalent:

1. C,G |= Compl(P);
2. for every mapping µ such that dom(µ) = var(P)

and (G,G ∪ µP) |= C, it is the case that µP ⊆ G.450

In other words, the completeness entailment does
not hold, iff we can find a possible BGP instantiation
(by some mapping) such that the extension satisfies the
statements, but the BGP instantiation is not contained
in the graph. The idea here is that, as demonstrated in455

our motivating example, by using completeness state-
ments we always try to find complete parts of BGPs
and instantiate them over the graph, until either all the
instantiations are included in the graph (= the success
case), or there is one instantiation that is not included460

there (= the failure case).

3.2. Query Soundness

Here, we motivate the second main problem of this
work, query soundness. The problem comes in two
variants: answer soundness and pattern soundness.465

3.2.1. Answer Soundness
In a nutshell, a mapping is a sound answer for a

query with negation over a given graph if it continues
to be an answer over all possible completions of the
graph. For an example, consider the following graph
pattern, asking for countries where en is no official
language and whose official languages (if any) do not
include an official language of an EU founder:

Pl = {(?c, a, country),
¬∃{ (?c, lang, en) },
¬∃{ (?c, lang, ?l), (?f , lang, ?l),

(EU, founder, ?f)}}
}.

For the sake of example, consider the following
graph about countries:

Gl = {(ger, a, country), (usa, a, country),
(sgp, a, country), (spa, a, country),
(ger, lang, de), (spa, lang, es),
(EU, founder, ger)}.

For this graph, consider also the set Cl of the follow-
ing four completeness statements: the first two are Cger

and Cusa as we have had before in the motivating sce-470

nario of query completeness. The other two are Cspa

for all official languages of Spain and Ceu for all EU
founders.14 Note that we do not claim anything about
the completeness of the official languages of Singapore
(= sgp).475

Evaluating the graph pattern over the graph in
the standard way results in JPlKGl = {{?c 7→ usa},
{?c 7→ sgp}, {?c 7→ spa}}. We want to verify whether
these answers are sound, that is, whether they cannot
have been returned due to possibly incomplete infor-480

mation. This amounts to checking that there is no valid
extension of Gl wrt. Cl over which the answers are not
returned.

Let us analyze {?c 7→ usa}. First, we check if
(usa, lang, en) is certainly not true. Indeed, since we485

know by the graph and the statement Cusa that the USA
has no official languages, the triple (usa, lang, en)
must not be true. Second, we check if {(usa, lang, ?l),
(?f , lang, ?l), (EU, founder, ?f)} surely fails. This is
clearly the case for the same reason as before, namely490

that there is no official language of the USA. From this
reasoning, we conclude that the answer {?c 7→ usa} is
sound.

Next, let us analyze {?c 7→ sgp}. We check if
(sgp, lang, en) is indeed not true, that is, there is no495

valid extension where (sgp, lang, en) is true. Now we
have a problem: due to the lack of completeness in-
formation, it might be that in reality, en is an offi-
cial language of Singapore, but the fact is missing in
our data. Thus, we cannot guarantee the soundness of500

{?c 7→ sgp}.
Last, let us analyze {?c 7→ spa}. First, we check

if the triple (spa, lang, en) is not true. Since we know
by Cspa and the graph that Spain’s official language is
only es, then (spa, lang, en) must not be true. Second,505

we check if the BGP {(spa, lang, ?l), (?f , lang, ?l),
(EU, founder, ?f)} evaluates to false. From the graph
and the statements Cger and Ceu, we know that de is
the only official language of Germany as the only EU
founder, which is different from es. Thus, the pattern510

must evaluate to false. We therefore conclude that the
answer {?c 7→ spa} is sound.

In summary, our analysis established for which an-
swers the NOT-EXISTS patterns of the query pattern
are surely false and thus whether the answer is sound.515

3.2.2. Pattern Soundness
Consider now the graph pattern asking for countries

where en is no official language and that are not EU

14For the sake of example, suppose this is true.

8 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

founders:

P f = {(?c, a, country),¬∃{ (?c, lang, en) },
¬∃{ (EU, founder, ?c) }}.

Consider also the set C f consisting of two complete-
ness statements: Clang for all languages of countries
and Ceu for all EU founders. We will show that the520

statements guarantee that all answers returned by P f

are sound, independently of the queried graph. In such
a case, we say that the pattern itself is sound.

Let us see why C f guarantees for any possible graph
the soundness of all answers to P f . Consider a graph G525

and suppose that pattern evaluation over G returns
{?c 7→ c̃} for an IRI c̃. Consider also an arbitrary ex-
tension G′ of G such that (G,G′) |= C f . To show that
{?c 7→ c̃} is sound, we must make sure that neither
over G nor over G′ does c̃ have en as an official lan-530

guage and is c̃ an EU founder. By the statement Clang,
it is the case that G is complete for all languages of
countries. Therefore, G is also complete for all lan-
guages of c̃. The fact that c̃ is returned by P f over G
means that en is not among its official languages ac-535

cording to G, and due to completeness, also not ac-
cording to G′. Moreover, the fact that c̃ is returned over
G means that c̃ is not an EU founder according to G,
and, since G is complete for all EU founders due to
Ceu, also not according to G′. Thus we can be sure that540

the answer {?c 7→ c̃} is sound. Since the answer and
the graph were arbitrary, we conclude that the set C f of
completeness statements entails the soundness of P f .

In this scenario, as opposed to answer soundness, we
have reasoned for a graph pattern whether the sound-545

ness of an arbitrary answer over an arbitrary graph can
be guaranteed by a set of completeness statements.

3.3. Formalization of Soundness Reasoning

Let us first define what soundness of an answer
means. Consider a graph pattern P, a mapping µ, and550

an extension pair (G,G′). We say that (G,G′) satisfies
the soundness of µ for P, written Sound(µ, P) if, when-
ever µ ∈ JPKG, then also µ ∈ JPKG′ . As for µ 6∈ JPKG it
is trivial that (G,G′) |= Sound(µ, P), we are only inter-
ested in the soundness of answers occurring in JPKG.555

Given a set C of completeness statements, a graph G,
a graph pattern P, and a mapping µ ∈ JPKG, we say
that C and G entail the soundness of µ for P, writ-
ten as C,G |= Sound(µ, P), if for all extension pairs
(G,G′) |= C it holds that (G,G′) |= Sound(µ, P). In560

our motivating scenario we saw that usa is a sound an-

swer while sgp is not, thus Cl,Gl |= Sound({?c 7→
usa}, Pl), whereas Cl,Gl 6|= Sound({?c 7→ sgp}, Pl).

In defining pattern soundness, as opposed to answer
soundness, we are concerned with a graph pattern as565

a whole, and abstract from any specific answers of the
pattern. For a graph pattern P, we express that P is
sound by writing Sound(P). Given an extension pair
(G,G′), we say the P is sound over (G,G′), written
(G,G′) |= Sound(P), if JPKG ⊆ JPKG′ . Given a set570

C of completeness statements and a graph pattern P,
we say that C entails the soundness of P, written as
C |= Sound(P), if for all extension pairs (G,G′) |= C,
it holds that (G,G′) |= Sound(P). In our motivating
scenario, it is the case that Cf |= Sound(Pf).575

It follows immediately from the definitions that all
answers of a sound pattern are sound.

Proposition 2. Let C be a set of completeness state-
ments and P be a graph pattern. Then, C |= Sound(P)
iff C,G |= Sound(µ, P) for every graph G and map-580

ping µ.

4. Checking Query Completeness

In this section, we introduce formal notions and
present an algorithm for checking the entailment of
query completeness. We also analyze the complexity585

of the entailment problem.

4.1. Formal Notions

First, we need a notion for a BGP with a stored map-
ping from variable instantiations. This allows us to rep-
resent BGP instantiations wrt. our completeness entail-590

ment procedure. Let P be a BGP and µ be a mapping
such that dom(µ) ∩ var(P) = ∅. We define the pair
(P, µ) as a partially mapped BGP, which is a BGP with
a stored mapping. Over a graph G, the evaluation of
(P, µ) is defined as J(P, µ)KG = { µ ∪ ν | ν ∈ JPKG }.595

It is easy to see that P ≡ (P, ∅). Furthermore, we de-
fine the evaluation of a set of partially mapped BGPs
over a graph G as the union of evaluating each of them
over G.

Example 2. Consider our motivating scenario. Over600

the BGP P0 of the query Q0, instantiating the vari-
able ?m to ger results in the BGP P1 of the query Q1.
Pairing P1 with this instantiation gives the partially
mapped BGP (P1, { ?m 7→ ger }). Moreover, it is
the case that J(P1, { ?m 7→ ger })KGcou = { { ?m 7→605

ger, ?l 7→ de } }.

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 9

Next, we want to formalize the equivalence between
partially mapped BGPs wrt. a set C of completeness
statements and a graph G. We need this notion to en-
sure the equivalence of the BGP instantiations that re-610

sulted from the evaluation of complete BGP parts.

Definition 6 (Equivalence under C and G). Let (P, µ)
and (P′, ν) be partially mapped BGPs, C be a set of
completeness statements, and G be a graph. We define
that (P, µ) is equivalent to (P′, ν) wrt. C and G, written615

(P, µ) ≡C,G (P′, ν), if for all (G,G′) |= C, it holds that
J(P, µ)KG′ = J(P′, ν)KG′ .

The above definition naturally extends to sets of par-
tially mapped BGPs.

Example 3. Consider the queries in our motivat-620

ing scenario. It is the case that { (P0, ∅) } ≡Ccou,Gcou

{ (P1, { ?m 7→ ger }), (P2, { ?m 7→ usa }) } ≡Ccou,Gcou

{ (P3, { ?m 7→ ger, ?l 7→ de }) }.
Next, we would like to figure out which parts of a

BGP contain variables that can be instantiated com-
pletely. The idea is that, we ‘match’ completeness
statements to the BGP and the graph, and return the
matched parts of the BGP. Note that in the matching
we consider also the graph since it might be the case
that for a single completeness statement, some parts of
it have to be matched to the BGP, while the rest to the
graph. For this reason, we define

crucC,G(P) = P ∩ ĩd
−1

(TC(P̃ ∪G)) (1)

as the crucial part of P wrt. C and G. It is the case that
we are complete for the crucial part, that is, C,G |=625

Compl(crucC,G(P)). Later on, we will see that the cru-
cial part can be used to guide the instantiation process
during completeness entailment checking.

Example 4. Consider the query Q0 = (W0, P0) in our
motivating scenario. We have that crucCcou,Gcou(P0) =630

P0 ∩ ĩd
−1

(TCcou(P̃0 ∪Gcou)) = { (UN,member, ?m) }
with ĩd = { ?m 7→ m̃, ?l 7→ l̃ }. Consequently, we can
have a complete instantiation of the UN members.

The operator below implements the instantiations of
a partially mapped BGP wrt. its crucial part.635

Definition 7 (Equivalent Partial Grounding). Let C be
a set of completeness statements, G be a graph, and
(P, ν) be a partially mapped BGP. We define the oper-
ator equivalent partial grounding:

epg((P, ν), C,G) = { (µP, ν ∪ µ) |

µ ∈ JcrucC,G(P)KG }.

The following shows that such instantiations pro-
duce a set of partially mapped BGPs equivalent to the
original partially mapped BGP, hence the name equiv-
alent partial grounding. It holds basically since the in-
stantiation is done over the crucial part, which is com-640

plete wrt. C and G.

Proposition 3 (Equivalent Partial Grounding). Let C
be a set of completeness statements, G a graph, and
(P, ν) a partially mapped BGP. Then

{ (P, ν) } ≡C,G epg((P, ν), C,G).645

Example 5. Consider our motivating scenario. We
have that:

– epg((P2, { ?m 7→ usa }), Ccou,Gcou) = ∅
– epg((P3, { ?m 7→ ger, ?l 7→ de }), Ccou,Gcou) =
{(P3, {?m 7→ ger, ?l 7→ de})}650

– epg((P0, ∅), Ccou,Gcou) = { (P1, { ?m 7→ ger }),
(P2, { ?m 7→ usa }) }

Generalizing from the example above, there are
three cases of the operator epg((P, ν), C,G):

– If JcrucC,G(P)KG = ∅, it returns an empty set.655

– If JcrucC,G(P)KG = { µ∅ }, it returns {(P, ν)}.
– Otherwise, it returns a non-empty set of partially

mapped BGPs, where some variables in P are in-
stantiated.

From these three cases and the finite number of660

triple patterns with variables of a BGP, it holds that the
repeated applications of the epg operator, with the first
and second cases above as the base cases, are terminat-
ing. Note that the difference between these two base
cases is in the effect of their corresponding epg oper-665

ations, as illustrated in Example 5: for the first case,
the epg operation returns an empty set, whereas for the
second case, it returns back the input partially mapped
BGP. Intuitively, the first case corresponds to the non-
existence of the query answer in any possible exten-670

sion of the graph that satisfies the set of completeness
statements (e.g., the USA’s official languages case).

As for the second case, we need a different treat-
ment. We first define that a partially mapped BGP
(P, ν) is saturated wrt. C and G, if epg((P, ν), C,G) =675

{ (P, ν) }, that is, if the second case above applies. Note
that the notion of saturation is independent from the
mapping in a partially mapped BGP: given a map-
ping ν, a partially mapped BGP (P, ν) is saturated wrt.
C and G iff (P, ν′) is saturated wrt. C and G for any680

mapping ν′. Thus, wrt. C and G we say that a BGP P
is saturated if (P, µ∅) is saturated.

10 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

Saturated BGPs hold the key as to whether our com-
pleteness entailment check succeeds or not: complete-
ness of saturated BGPs is simply checked by testing685

whether they are contained in the graph G.

Lemma 1 (Completeness Entailment of Saturated
BGPs). Let P be a BGP, C a set of completeness state-
ments, and G a graph. Suppose P is saturated wrt. C
and G. Then:

C,G |= Compl(P) iff P̃ ⊆ G.

By consolidating all the above notions, we are ready
to provide an algorithm to check data-aware complete-
ness entailment.

4.2. Algorithm690

From the above notions, we have defined the cruc
operator to find parts of a BGP that can be instantiated
completely. The instantiation process wrt. the crucial
part is facilitated by the epg operator. We have also
learned that repeating the application of the epg oper-695

ator results in saturated BGPs for which we have to
check whether they are contained in the graph or not,
in order to know whether our original BGP is com-
plete. Algorithm 1 computes, given a set of complete-
ness statements C, a graph G, and a BGP P, all map-700

pings that have two properties: each BGP instantiation
of the mappings constitutes a saturated BGP wrt. C and
G; and the original BGP is equivalent wrt. C and G
with the BGP instantiations produced from all the re-
sulting mappings of the algorithm.705

ALGORITHM 1: sat(Porig, C,G)

Input: A BGP Porig, a set C of completeness
statements, a graph G

Output: A set Ω of mappings
1 Pworking ← { (Porig, µ∅) }
2 Ω← ∅
3 while Pworking 6= ∅ do
4 (P, ν)← takeOne(Pworking)
5 Pequiv ← epg((P, ν), C,G)
6 if Pequiv = { (P, ν) } then
7 Ω← Ω ∪ { ν }
8 else
9 Pworking ← Pworking ∪Pequiv

10 end
11 end
12 return Ω

Let us now describe how Algorithm 1 works. Con-
sider a BGP Porig, a set C of completeness state-
ments, and a graph G. First, we transform our origi-
nal BGP Porig into its equivalent partially mapped BGP
(Porig, µ∅) and put it in Pworking. Then, in each iter-710

ation of the while loop, we take and remove a par-
tially mapped BGP (P, ν) from Pworking via the method
takeOne. Afterwards, we compute epg((P, ν), C,G).
As discussed above there might be three result cases
here: (i) If epg((P, ν), C,G) = ∅, then we simply re-715

move (P, ν) and will not consider it anymore in the
later iteration; (ii) If epg((P, ν), C,G) = { (P, ν) }, that
is, (P, ν) is saturated, then we add the mapping ν to
the set Ω; and (iii) otherwise, we add to Pworking a set
of partially mapped BGPs instantiated from (P, ν). We720

keep iterating until Pworking = ∅, and finally return the
set Ω.

The following proposition follows from the con-
struction of the above algorithm and Proposition 3.

Proposition 4. Let P be a BGP, C a set of complete-725

ness statements, and G a graph. Then the following
properties hold:

– {(P, µ∅)} ≡C,G { (µP, µ) | µ ∈ sat(P, C,G) };
– µP is saturated wrt. C and G, for all mappings
µ ∈ sat(P, C,G).730

From the above proposition, we can derive the fol-
lowing theorem, which shows the soundness and com-
pleteness of the algorithm to check completeness en-
tailment.

Theorem 1 (Completeness Entailment Check). Let P735

be a BGP, C a set of completeness statements, and G a
graph. Then the following are equivalent:

1. C,G |= Compl(P);

2. µ̃P ⊆ G, for all µ ∈ sat(P, C,G).

Example 6. Consider our motivating scenario. Then740

sat(P0, Ccou,Gcou) = { { ?m 7→ ger, ?l 7→ de } }.
For every mapping µ in sat(P0, Ccou,Gcou), it holds
that µ̃P0 ⊆ Gcou. Thus, by Theorem 1 the entailment
Ccou,Gcou |= Compl(P0) holds.

From looking back at the initial characterization of745

completeness entailment in Proposition 1, it actually
does not give us a concrete way to compute a set of
mappings to be used in checking completeness entail-
ment. Now, by Theorem 1 it is sufficient for complete-
ness entailment checking to consider only the map-750

pings in sat(P, C,G), which we know how to compute.

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 11

4.2.1. Simple Practical Optimizations
In what follows we provide two simple optimization

techniques of the algorithm: early failure detection and
completeness skip. More elaborate optimizations are755

given in Section 6.

Early Failure Detection. In our algorithm, the contain-
ment checks for saturated BGPs are done at the end.
Indeed, if there is a single saturated BGP not contained
in the graph, we cannot guarantee query completeness760

(recall Theorem 1). Thus, instead of having to col-
lect all saturated BGPs and then check the containment
later on, we can improve the performance of the algo-
rithm by performing the containment check right af-
ter the saturation check (Line 6 of the algorithm). So,765

as soon as there is a failure in the containment check,
we stop the loop and conclude that the completeness
entailment does not hold.

Completeness Skip. Recall the definition of epg as
epg((P, ν), C,G) = { (µP, ν∪µ) | µ ∈ JcrucC,G(P)KG },770

which relies on the cruc operator. Now, suppose that
crucC,G(P) = P, implying that we are complete for
the whole part of the BGP P. Thus, we actually do
not have to instantiate P in the epg operator, since we
know that the instantiation results will be contained775

in G anyway due to P’s completeness wrt. C and G. In
conclusion, whenever crucC,G(P) = P, we just remove
the corresponding (P, ν) from Pworking and thus skip its
instantiations.

4.3. Complexity780

In this subsection, we analyze the complexity of
the problem of data-aware completeness entailment.
While the complexity of checking data-agnostic com-
pleteness entailment is NP-complete [4], the addition
of the data graph to the entailment increases the com-785

plexity, which is now ΠP
2-complete. The hardness is by

reduction from the validity problem of a ∀∃3SAT for-
mula.

Proposition 5. Deciding the entailment C,G |=
Compl(P), given a set C of completeness statements, a790

graph G, and a BGP P, is ΠP
2-complete.

One might wonder, if some parts of the inputs were
fixed, what would be the complexity of the entailment
problem. We answer this question in the following se-
ries of propositions.795

First, let us fix the input graph G. This does not
change the complexity, that is, the problem is still ΠP

2-
complete. The reason is that the reduction from the va-

lidity problem of a ∀∃3SAT formula can be done even
with a fixed graph.800

Proposition 6. Deciding the entailment C,G |=
Compl(P), given a set C of completeness statements, a
fixed graph G, and a BGP P, is ΠP

2-complete.

Now, we want to see the complexity when the BGP
P is fixed. Recall that in the algorithm, P dominates805

the complexity of the instantiation process in the epg
operator. When it is fixed, the size of the instantiations
is bounded polynomially, reducing the complexity of
the entailment problem to NP-complete. Note it is still
NP-hard even when the input graph G is fixed.810

Proposition 7. Deciding the entailment C,G |=
Compl(P), given a set C of completeness statements,
a graph G, and a fixed BGP P, is NP-complete. The
complexity remains the same even when the graph is
fixed.815

Let us now see the complexity when the set of state-
ments C is fixed. In the algorithm, C dominates the
complexity of the TC operator used in computing the
crucial part. When it is fixed, the TC operator can
be applied in PTIME, reducing the complexity of the820

entailment problem to CoNP-complete. Again, fixing
also the graph does not change the complexity.

Proposition 8. Deciding the entailment C,G |=
Compl(P), given a fixed set C of completeness state-
ments, a graph G, and a BGP P, is CoNP-complete.825

The complexity stays the same even when the graph is
fixed.

Finally, the following proposition tells us that fixing
both the set of statements C and the BGP P reduces the
complexity to PTIME.830

Proposition 9. Deciding the entailment C,G |=
Compl(P), given a fixed set C of completeness state-
ments, a graph G, and a fixed BGP P, is in PTIME.

This result corresponds to some practical cases when
queries are assumed to be of limited length15 and835

hence, so are completeness statements (which are es-
sentially also queries).

Our complexity results with various inputs fixed are
summarized in Table 1. From this complexity study, it
is therefore of our interest to investigate how well the840

problem of completeness entailment may be solved in
practice. In later sections, we will provide optimization
techniques, as well as experimental evaluations of the
problem.

15as also customary in database theory when analyzing the data
complexity of query evaluation [9]

12 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

Table 1
Complexity table for the data-aware completeness entailment prob-
lem with various inputs fixed (‘×’ denotes ‘fixed’)

input complexity

C G P

X X X ΠP
2-C

X × X ΠP
2-C

X X × NP-C

X × × NP-C

× X X CoNP-C

× × X CoNP-C

× X × in PTIME

5. Checking Query Soundness845

In this section, we leverage completeness reasoning
for checking answer and pattern soundness.

5.1. Checking Answer Soundness

We will use data-aware completeness reasoning to
judge whether an answer obtained by evaluating a850

graph pattern over a graph is sound.

Example 7. Remember the motivating scenario of
answer soundness in Section 3.2.1. Consider the
mapping {?c 7→ usa} ∈ JPlKGl . After instantiat-
ing the variable ?c in the two negated subpatterns
with usa, we obtain the patterns (usa, lang, en) and
(usa, lang, ?l), (?f , lang, ?l), (EU, founder, ?f). Using
the techniques for completeness checking in Sec-
tion 4, we find that both the entailment Cl,Gl |=
Compl((usa, lang, en)) and the entailment

Cl,Gl |= Compl((usa, lang, ?l), (?f , lang, ?l),
(EU, founder, ?f))

hold. Therefore, these subpatterns will fail over every
extension of Gl compatible with Cl, and {?c 7→ usa}
will continue to be an answer, that is formally, Cl,Gl |=
Sound({?c 7→ usa}, Pl).855

In contrast, consider the mapping {?c 7→ sgp} ∈
JPlKGl . For the extension G′l = Gl ∪ {(sgp, lang, en)},
however, we have {?c 7→ sgp} /∈ JPlKG′

l
, since

instantiating the negated subpattern (?c, lang, en) to
(sgp, lang, en) results in a triple satisfied by G′l .860

Clearly, (Gl,G′l) |= Cl, from which we conclude that
Cl,Gl 6|= Compl((sgp, lang, en)). In short, {?c 7→ sgp}
is not a sound answer for Pl over Gl, because Cl and Gl

do not entail the completeness of the instantiated triple
pattern {?c 7→ sgp}(?c, lang, en).865

The main theorem of this subsection generalizes the
observations of the example. Intuitively, it states that

the soundness of some answer-mapping of a graph
pattern over a graph is guaranteed exactly if all the
graph pattern’s NOT-EXISTS-BGPs, after applying the870

answer-mapping to them, are complete for the graph.

Theorem 2. (ANSWER SOUNDNESS) Let G be a
graph, C a set of completeness statements, P a graph
pattern, and µ ∈ JPKG a mapping. Then the following
are equivalent:875

1. C,G |= Sound(µ, P);
2. C,G |= Compl(µPi), for all Pi ∈ P−.

In fact, Theorem 2 holds for a wider class of graph
patterns than defined in this subsection. We only need
that the positive part of the pattern be monotonic, that880

is, a mapping remains a solution over all extensions of
the graph G. We do not make this formal to keep the
exposition simple.

Complexity From Theorem 2, the check whether an
answer is sound wrt. a set of completeness statements885

and a graph can be reduced to a linear number of data-
aware completeness checks (as discussed in Section 4).
From this, it follows that the complexity of the an-
swer soundness entailment problem is in ΠP

2 . More-
over, the answer soundness problem is also ΠP

2-hard as890

the completeness problem can be reduced to it by us-
ing Theorem 2. Nevertheless, from a practical perspec-
tive, one may expect graph patterns (including BGPs
used to construct completeness statements) to be short,
giving us a potentially manageable answer soundness895

check. Section 7 reports an experimental study of an-
swer soundness checking in practical settings.

5.2. Checking Pattern Soundness

As shown in our motivating scenario, it might be
the case that completeness statements guarantee the900

soundness of a graph pattern as such, that is, all an-
swers returned by the graph pattern are known to be
sound, no matter the specifics of the graph. To charac-
terize pattern soundness, we follow the same strategy
as before: we reduce the problem of soundness check-905

ing to completeness checking.
First, we generalize completeness statements to con-

ditional completeness statements, which express the
completeness of a BGP under the condition of an-
other BGP. Given two BGPs P and P′, the complete-910

ness of P wrt. P′ is denoted as Compl(P | P′). Given
an extension pair (G,G′), we define that (G,G′) |=

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 13

Compl(P | P′) if J(var(P), P ∪ P′)KG′ ⊆s JPKG.16

This means that the conditional completeness state-
ment is satisfied by the extension pair, whenever the915

evaluation of the BGP P over the graph G contains
the evaluation of P under the condition of P′ over the
graph G′. For example, the conditional completeness
statement Compl((?c, lang, en) | (?c, a, country)) de-
notes the completeness of all things having English920

as their language, provided that those things are of
type country. Note that conditional completeness state-
ments are more general than completeness statements
as introduced in Subsection 2.2, since a complete-
ness statement Compl(P) can be expressed as a con-925

ditional completeness statement with the empty con-
dition Compl(P | ∅). We define that the entailment
C |= Compl(P | P′) holds if for all extension pairs
(G,G′) satisfying C, it is the case that (G,G′) |=
Compl(P | P′). The following proposition states that930

such entailment holds iff the TC application over the
prototypical graph P̃ ∪ P̃′ contains P̃. Recall that the
prototypical graph represents any possible graph that
satisfies a BGP.

Proposition 10. For a set C of completeness state-
ments and BGPs P and P′, it is the case that

C |= Compl(P | P′) iff P̃ ⊆ TC(P̃ ∪ P̃′).

In the motivating scenario of pattern soundness, it
holds that C f |= Compl((?c, lang, en) | (?c, a, country))
due to the inclusion

{(c̃, lang, en)} ⊆ {(c̃, lang, en)(c̃, a, country)}

= TC f ({(c̃, lang, en), (c̃, a, country)})}.

This means that the set C f of statements guarantees the935

completeness of all things whose official language is
English, under the condition that those things are of
type country.

The following lemma states that the soundness of
a graph pattern can be guaranteed if each BGP of the940

NOT-EXISTS patterns is complete under the condition
of the positive part of the graph pattern.

Lemma 2. Let C be a set of completeness statements
and P a graph pattern. Then C |= Sound(P) provided
that C |= Compl(Pi | P+) for all Pi ∈ P−.945

One might wonder whether the converse of the
above lemma also holds. However, the following coun-
terexample shows that it does not.

16We use ‘⊆s’ for set inclusion.

Example 8. Consider the following graph patterns:

P1 = {(?c, a, country),¬∃{(?c, lang, en)},
¬∃{(?c, lang, en), (?c, lang, fr)}}

P2 = {(?c, a, country),

¬∃{(?c, lang, en), (?c, lang, ?l)}}.

Both return as answers mappings { ?c 7→ c̃ }, where
c̃ is a country that does not have the language en.950

The reason is that, after instantiating ?c with c̃, all
three negated subpatterns are empty over a graph G
if and only if the triple (c̃, lang, en) is not present
in G. Consider next also the completeness statement
C = {Compl((?c, lang, en))}. If the triple (c̃, lang, en)955

is not present in G, and (G,G′) |= C, then the triple is
not present in G′ either. Hence, all three negated sub-
patterns fail and { ?c 7→ c̃ } is also an answer to P1

and P2 over G′. We thus have C |= Sound(P1) and
C |= Sound(P2) despite the violation of the right-hand960

side of Lemma 2.

Taking a closer look, one notices that both graph
patterns in fact contain redundancies, which can be
checked via query containment under set semantics
(written vs). For P1, the second NOT-EXISTS pattern965

is superfluous due to the first one being more gen-
eral; whereas for P2, the triple pattern (?c, lang, ?l)
is superfluous since the emptiness of the BGP of the
NOT-EXISTS pattern only depends on the triple pat-
tern (?c, lang, en). Consequently, for both cases having970

only the statement Compl((?c, lang, en)) is sufficient
to guarantee their soundness.

To avoid such redundancies, we propose a normal
form for graph patterns, called non-redundant form
(NRF). A graph pattern P is in NRF if it satisfies two975

conditions: there are no redundant negated patterns,
and there are no non-minimal negated patterns. This
can be formalized as follows:

– The BGP Pi ∈ P− is redundant if there is a dis-
tinct P j ∈ P− such that

(var(P+), P+ ∪ Pi) vs (var(P+), P+ ∪ P j).

– The BGP Pi ∈ P− is non-minimal if there is a
non-empty strict subpattern P′i ⊂ Pi such that

(var(P+), P+ ∪ P′i) vs (var(P+), P+ ∪ Pi).

A non-NRF graph pattern can be transformed into
an equivalent NRF graph pattern with a polynomial980

14 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

number of NP-checks, by repeating the containment
check and redundant part removal until the two condi-
tions above are satisfied. As graph patterns tend to be
small in practice, we expect that such a transformation
is feasible.985

With this notion in place, we can obtain the main
theorem of this subsection. The theorem states that
given an NRF graph pattern, the check whether it is
sound can be reduced to the check whether each BGP
among the NOT-EXISTS patterns is complete under the990

condition of the positive part. Thus, the theorem en-
sures that the converse of Lemma 2 holds for NRF
graph patterns.

Theorem 3. (PATTERN SOUNDNESS) Let C be a set
of completeness statements and P a graph pattern in995

NRF. Then the following are equivalent:

1. C |= Sound(P);
2. C |= Compl(Pi | P+) for all Pi ∈ P−.

Example 9. In the motivating scenario of pattern
soundness, it holds that

C f |= Compl((?c, lang, en) | (?c, a, country))

C f |= Compl((EU, founder, ?c) | (?c, a, country)).

By Theorem 3, it is the case C f |= Sound(P f).

Complexity From Theorem 3 and Proposition 10, it1000

follows that the check whether a graph pattern is sound
can be reduced to a linear number of TC applica-
tions, which are basically evaluations of conjunctive
CONSTRUCT queries. Hence, deciding whether a graph
pattern is sound wrt. a set of completeness statements1005

is in NP (and also NP-hard, as checking complete-
ness can also be reduced to checking soundness). From
a practical viewpoint, one may expect graph patterns
of queries and BGPs of completeness statements to
be short, potentially allowing for a feasible soundness1010

check. Section 7 reports an experimental investigation
of pattern soundness checking in practical cases.

Soundness of Queries with Projections We have
provided a full characterization of the soundness of
queries with negation where no projections are in-1015

volved (or where the projection is over all variables in
the positive part of the query body). One may won-
der whether our characterization here can also be used
for queries with negation that involve generic pro-
jections (that is, where some variables can be non-1020

distinguished). The next example shows that in gen-
eral, the condition from Theorem 3 is not a necessary

condition for pattern soundness entailment of queries
with projection.

Example 10. Consider the following boolean query,
which asks whether it is impossible to right-shift any
triple:

Q = ({}, {(?x, ?y, ?z),¬∃{ (?z, ?x, ?y) }}).

Consider also the singleton set of a completeness state-
ment of three possible shifts of triples:

C={Compl((?x, ?y, ?z),(?z, ?x, ?y),(?y, ?z, ?x))}.

We assume bag semantics, thus Q returns a bag of1025

empty mappings {} when evaluated of a graph G. We
show that if G′ is such that (G,G′) |= C, then the
number of empty mappings returned by Q over G′ is
no less than the number retrieved over G. Now sup-
pose that Q returns a copy of {} over G. Then there1030

is a triple (a, b, c) ∈ G such that (c, a, b) /∈ G. If
also (c, a, b) /∈ G′, then Q continues to return a copy
of {} for the same reason as before. Consider there-
fore the case that (c, a, b) ∈ G′. If (b, c, a) /∈ G′, then
Q returns again a copy of {}, this time because the1035

triple (c, a, b) ∈ G′ does not have its right shift in G′.
If, however, also (b, c, a) ∈ G′, then the complete-
ness statement kicks in and enforces that (c, a, b) ∈ G,
which contradicts our original assumption. Thus, C en-
tails the pattern completeness of Q, even though C does1040

not entail Compl((?z, ?x, ?y) | (?x, ?y, ?z)).

We do not know a characterization of pattern sound-
ness for queries involving projections. Nevertheless,
Theorem 3 still gives a sufficient condition for sound-
ness in this case.1045

Combining Soundness and Completeness Reasoning
A graph pattern with negation can be both sound and
complete. Theorem 3 characterizes when a graph pat-
tern P in NRF is sound wrt. a set C of completeness
statements. One can show that P is complete if and1050

only if the positive part P+ is complete. Via both char-
acterizations, we can then check whether a graph pat-
tern is sound and/or complete.

MINUS Operator SPARQL knows two operators for
expressing negation, NOT-EXISTS and MINUS. While1055

in the presentation we have focused on negation via
NOT-EXISTS, our results apply also to queries with the
MINUS negation where there is a shared variable be-
tween the positive part and each of the negative parts.

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 15

6. Optimizing Completeness Checking1060

Up until now, we have shown how completeness
entailment can be characterized, and how soundness
checking amounts to completeness checking. In this
section, we present techniques to optimize both data-
agnostic and data-aware completeness checking and in1065

the next section, we report on experiments with them.
Similarly to queries, which are short in many prac-

tical cases [10, 11], we conjecture that also complete-
ness statements would be of limited length. At the
same time, it is conceivable that the number of com-1070

pleteness statements is large in practice. Neverthe-
less, for a given query, most statements are likely to
be irrelevant. For example, the statement “all players
of Arsenal” is irrelevant to the query “Give founders
of the EU.” Consequently, an efficient implementa-1075

tion should filter out such irrelevant statements. More-
over, as users are likely to provide completeness state-
ments of similar topics, we introduce completeness
templates. By providing a compact representation of
completeness statements, completeness templates en-1080

able multiple statements to be processed simultane-
ously.

6.1. Data-agnostic Completeness Checking

By Theorem 3, pattern soundness checking can be
reduced to the (data-agnostic) check whether a set1085

of completeness statements entails a conditional com-
pleteness statement. Proposition 10 states that one
can check whether Compl(P | P′) is entailed by a
set of statements C by evaluating the union of the
CONSTRUCT queries QC , for all C ∈ C, over the pro-1090

totypical graph P̃ ∪ P̃′. A statement C contributes
to this evaluation only if the result of QC over this
graph is non-empty. Clearly, a necessary condition for
C to contribute is that all terms in C (i.e., the IRIs
and literals) occur among the terms in P ∪ P′, writ-1095

ten terms(C) ⊆ terms(P ∪ P′). We call such a C
term-relevant for Compl(P | P′). We can retrieve all
such term-relevant C by evaluating the subset query
asking for the statement set {C ∈ C | terms(C) ⊆
terms(P ∪ P′) }.1100

A simple and, as we will show later, efficient way to
implement such subset queries is to build a hashmap
of all statements where the key of C is terms(C). With
this hashmap, we can answer the subset query by re-
trieving for all non-empty subsets S ⊆ terms(P ∪ P′)1105

the statements C with terms(C) = S . The complete-
ness check can then be done only with these state-

ments, which are potentially much fewer than the orig-
inal statements.

Example 11. Consider the following set Corg of 10,0001110

completeness statements:

– Clang = Compl((?c, a, country), (?c, lang, ?l))
– Ceu = Compl((EU, founder, ?f))
– Corg1 = Compl((org1, founder, ?f))
– . . .1115

– Corg9998 = Compl((org9998, founder, ?f)).

The corresponding hashmap is:

– {a, country, lang} 7→ {Clang},
– {EU, founder} 7→ {Ceu},
– {org1, founder} 7→ {Corg1},1120

– . . .
– {org9998, founder} 7→ {Corg9998}.

Consider the query P f from Subsubsection 3.2.2,

P f = {(?c, a, country), ¬∃{ (?c, lang, en) },
¬∃{ (EU, founder, ?c) }},

and let P1 = {(?c, lang, en)} (i.e., the BGP of the first1125

NOT-EXISTS pattern) and P2 = {(EU, founder, ?c)}
(i.e., the BGP of the second NOT-EXISTS pattern). To
verify query soundness wrt. Corg, according to Theo-
rem 3 we check whether both Corg |= Compl(P1 | P+

f)

and Corg |= Compl(P2 | P+
f). By applying TCorg ac-1130

cording to Proposition 10, we conclude that both en-
tailments hold. However, rather than evaluating all
the statements in Corg over the prototypical graph, we
can now use the term hashmap to rule out irrelevant
statements, as follows. Consider the former case. The1135

set of terms from the BGP is terms(P1 ∪ P+
f) =

{ a, country, lang, en }. From these four terms, we gen-
erate 15 non-empty subsets: {a}, {country}, . . . , and
the set terms(P1 ∪ P+

f) itself. By looking up the state-
ments for these subsets using the hashmap, we end1140

up with the singleton set {Clang }. Note that the other
9,999 statements are irrelevant and thus are left out. By
performing an analogous operation for the latter case,
we retrieve the singleton {Ceu }. Thus, instead of con-
sidering 10,000 statements in the reasoning, we now1145

consider only 2.

6.2. Data-aware Completeness Checking

For the data-aware setting, reasoning needs also ac-
cess to the data graph. The previous approach to opti-
mization of data-agnostic reasoning, which leaves out1150

statements whose terms are not among the terms of

16 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

the query, is no more applicable, since parts of the
statements can now be mapped to the data graph. We
present a new data structure, called completeness tem-
plates, that bundles similar statements, and a new com-1155

pleteness checking algorithm that works on these tem-
plates and generalizes the earlier one in Section 4.

Completeness Templates Templates support users in
creating completeness statements about similar top-
ics, as they occur for instance in IMDb, which reports
completeness for movie cast and crew,17 or in Open-
StreetMap, which uses a wiki to record the complete-
ness of objects in different areas.18 A completeness
template is a 3-tuple τ = (C,Vτ,Ω), where C is a com-
pleteness statement, Vτ ⊆ var(C) is a set of variables,
called meta-variables, and Ω is a set of mappings from
Vτ to terms (i.e., IRIs or literals). We also refer to the
BGP of the completeness statement C of the template
τ as Pτ. As an example of a completeness template, we
generalize the statement set

{Compl((en, lang, ?l)),Compl((ger, lang, ?l)),

. . . ,Compl((spa, lang, ?l))}

to the template (Compl((?c, lang, ?l)), {?c},Ω), where
Ω = { { ?c 7→ en }, { ?c 7→ ger }, . . . , { ?c 7→ spa } }.
A template τ = (C,Vτ,Ω) represents the statement set1160

Cτ = {Compl(µPC) | µ ∈ Ω }, obtained by instanti-
ating C with the mappings in Ω. This definition natu-
rally extends to sets of completeness templates. Note
that a completeness statement C can be expressed as
the completeness template (C, ∅, {µ∅}), where µ∅ is1165

the empty mapping.

Template-based Transfer Operator A key part of
the algorithm for checking data-aware completeness,
given a statement set C and a data graph G, is to iden-
tify the crucial part P0 of P, that is, the maximal subset
P0 ⊆ P such that P̃0 ⊆ TC(P̃ ∪ G). Given a set T of
completeness templates, analogously to Eq. (1), such
a part satisfies the equation

P0 = P ∩ ĩd
−1

(TCT (P̃ ∪G)). (2)

A baseline approach to compute P0 in Eq. (2) is to in-
stantiate templates to yield completeness statements,
and then apply the TC-operator wrt. the statements.

17See e.g., http://www.imdb.com/title/tt0105236/fullcredits
18See e.g., http://wiki.openstreetmap.org/wiki/Abingdon

This may be costly if there are many instances of those1170

templates. Now, templates allow us to leverage query
evaluation for data-aware completeness reasoning by
exploiting that a template represents many statements.
Essentially, to check whether the TC-operator maps a
triple in P̃ by an instantiation of a template τ, we first1175

evaluate Pτ (by treating the meta-variables like vari-
ables) over the union graph P̃ ∪ G, with the condition
that at least one triple pattern in Pτ is mapped to a triple
in P̃ (since otherwise the mapping does not contribute
to P0), and verify in a second step which of the result-1180

ing mappings are compatible with the instantiations of
the template τ. In this way, all instances of τ can be
processed simultaneously.

To formalize the above idea, we first define pri-
oritized evaluation of a BGP over a pair of graphs1185

(G1,G2). In such an evaluation, we consider the first
graph G1 as the mandatory and the second as the op-
tional graph, which means that at least one triple pat-
tern of the BGP is mapped to a triple in G1, while there
is no need to map any triple pattern to G2. Formally,1190

prioritized evaluation of a BGP P over (G1,G2) is de-
fined as JPK(G1,G2) = { µ | µ ∈ JPKG1∪G2

and µP′ ⊆
G1 for some P′ ⊆ P, P′ 6= ∅ }. In the case of complete-
ness checking, the mandatory graph will be the frozen
BGP P̃ and the optional graph will be the data graph G.1195

Example 12. Consider the BGP Pusa ={(usa, lang, ?l)},
asking for languages of the USA, the graph

Gorg= {(org1, founder, ger), (ger, lang, de),
(org2, founder, usa), (org2, founder, ger)},

and the completeness template τorg = (C, {?org},Ω),
where

C = Compl((?c, lang, ?lang), (?org, founder, ?c))

and Ω = {{?org 7→ org1}, {?org 7→ org2}, {?org 7→
org3}}. It is the case that JPτorgK(P̃usa,Gorg)

= {{ ?c 7→
usa, ?lang 7→ l̃, ?org 7→ org2 }}, where Pτorg is the
BGP of the statement C of the template τorg.

Next, in the prioritized evaluation of a BGP Pτ1200

over (P̃,G), we apply a pruning technique based on
the following observation. Each answer mapping µ ∈
JPτK(P̃,G) determines a non-empty subset P′τ ⊆ Pτ

such that µP′τ ⊆ P̃ and µP′′τ ⊆ G for its complement
P′′τ := Pτ \ P′τ. Since frozen variables only occur in1205

P̃ and not in G, we conclude that for every variable ?v
that occurs both in P′τ and P′′τ it must be the case that
µ(?v) is not a frozen variable.

http://www.imdb.com/title/tt0105236/fullcredits
http://wiki.openstreetmap.org/wiki/Abingdon

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 17

The algorithm with pruning proceeds as follows.
For each non-empty subset P′τ ⊆ Pτ, we first eval-
uate P′τ over P̃, which yields partial answers λ. We
try to complete each such partial answer λ by evalu-
ating the instantiated complement λ(P′′τ) over G and
joining the answers resulting from this with λ itself.
We prune the answers λ of the first evaluation step by
keeping only those mappings for which no term λ(?v),
?v ∈ var(P′′τ), is a frozen variable. We call such a λ
pure. Clearly, for non-pure mappings the subsequent
evaluation over G can only result in the empty set. For-
mally, we compute the union⋃

P′
τ ⊆ Pτ

P′
τ 6= ∅

⋃
λ ∈ JP′

τKP̃
λ is pure

{ λ } on Jλ(Pτ \ P′τ)KG,

which equals JPτK(P̃,G) as just explained.
Each set T of completeness templates gives rise to

a template-based transfer operator TT . Given a frozen
BGP P̃, and a graph G, the operator maps the pair to
the set of triples

TT (P̃,G) =
⋃
τ ∈ T

τ = (C, Vτ,Ω)

{µPτ | µ ∈ JPτK(P̃,G) on Ω}.

The above operator computes for each template τ the1210

prioritized evaluation of the BGP Pτ over (P̃,G), keeps
only those mappings compatible with Ω, and then
takes the union. The crucial point here is that we can
first evaluate the BGP of the template, and only after
that we check which answers correspond to instanti-1215

ations by Ω. By the definition of completeness tem-
plates and the prioritized evaluation of BGPs, it is the
case that P0 as in Eq. (2) can alternatively be computed
using TT , as stated in Proposition 11.

Proposition 11. Given a BGP P, a graph G, and a set
T of completeness templates, it is the case that

P0 = P ∩ ĩd
−1

(TCT (P̃ ∪G))

= P ∩ ĩd
−1

(TT (P̃,G)).

Partial Matching As there can be many complete-1220

ness templates, we want to rule out irrelevant ones,
that is, ones that do not contribute to query complete-
ness. Clearly, templates cannot contribute if their triple
patterns do not overlap with the query (modulo vari-
able generalization). If a template does overlap with1225

the query, however, we say that it partially matches the
query.

Let us first sketch an idea how to retrieve such par-
tially matching templates. Again, we rely on hashmaps.
We use each triple pattern of a template as a hashkey,1230

by which the template can be retrieved. Thus, a tem-
plate with three triple patterns, for example, can be re-
trieved in three different ways. To find templates that
are potentially applicable to a frozen BGP P̃, we per-
form a hashmap lookup for each triple pattern of P and1235

for all possible generalizations of that triple pattern
where non-predicate terms are replaced by a variable.

Let us formalize the above idea. Our main goal here
is partial matching: retrieving only completeness tem-
plates having a triple pattern that can potentially be1240

mapped to a triple in a frozen BGP P̃. To this end, we
first introduce a signature operator that abstracts away
concrete variables by replacing every occurrence of a
variable with the reserved IRI _var. The signature of
an element t ∈ I ∪ L ∪ V is defined as1245

σ(t) =

{
t, if t ∈ I ∪ L
_var, if t ∈ V.

The signature of a triple pattern (s, p, o) is de-
fined as σ((s, p, o)) = (σ(s), σ(p), σ(o)). Further-
more, the signature of a BGP P is defined as σ(P) =
{σ((s, p, o)) | (s, p, o) ∈ P }. As an illustration,1250

the signature of the BGP Pusa = { (usa, lang, ?l) } is
σ(Pusa) = { (usa, lang,_var) }.

Next, we index completeness templates according
to (the signatures of) their triple patterns. For this pur-
pose, we define a mapping M from signature triples to
sets of completeness templates such that the signature
triple is in the signature of the template’s BGP:

M((s, p, o)) = { τ ∈ T | (s, p, o) ∈ σ(Pτ) }.

In practice, such a mapping can be realized by standard
hashmaps, providing fast retrieval operations. Given
a signature triple (s, p, o), the generalization opera-1255

tor gen((s, p, o)) computes the set of all generaliza-
tions where non-predicate terms can become variables.
As an illustration, the generalization of the signature
triple (usa, lang,_var) is the set { (usa, lang,_var),
(_var, lang,_var) }.1260

Now, we are ready to define the operator pmatch
that, given a set of templates T , retrieves those ele-
ments of T that can potentially ‘transfer’ at least one
triple in the frozen BGP P̃. Technically, pmatchmaps

18 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

P and T to the set of partially matched templates wrt.
P and T , denoted pmatch(P, T), and defined as⋃
(s,p,o)∈σ(P)

{M((s′, p′, o′)) | (s′, p′, o′) ∈ gen((s, p, o))}.

The operator computes, for each triple in the signa-
ture of the BGP P, the generalizations of that triple
and then maps the generalizations to their correspond-
ing templates in T . By the construction of the map-
ping M and the generalization operator, it is the case1265

that pmatch(P, T) preserves P0 in Eq. (2), as stated
in Proposition 12.

Proposition 12. Given a BGP P, a graph G, and a set
T of completeness templates, it holds that

P0 = P ∩ ĩd
−1

(TCT (P̃ ∪G))

= P ∩ ĩd
−1

(TCpmatch(P,T)
(P̃ ∪G)).

This means that instead of taking all the tem-
plates in T , it is enough to consider only the sub-
set pmatch(P, T), which is potentially much smaller1270

than T .

7. Experimental Evaluation

This section reports our experimental evaluation of
query completeness and query soundness reasoning.

7.1. Query Completeness Evaluation1275

Having described optimization techniques for data-
aware completeness reasoning, we now would like
to analyze how well these techniques can provide a
speed-up, in particular wrt. a realistic scenario, and
how feasible it is to perform data-aware completeness1280

reasoning at all. This subsection reports our evalua-
tion of Wikidata-based completeness reasoning exper-
iments. First, we describe our experimental setup, and
then discuss the results of the experiments.

7.1.1. Experimental Setup1285

The reasoning program and experiment framework
were implemented in Java using the Apache Jena li-
brary19 and are available online.20 We used the direct-

19http://jena.apache.org/
20http://completeness.inf.unibz.it/data-aware-completeness-exp

eriment/

statement fragment (i.e., the fragment with no quali-
fiers nor references) of Wikidata as our data graph,1290

consisting of around 110 mio triples.21 We chose Wiki-
data mainly because of its relatively large size, recent
popularity, and good data quality, making it suitable
for our data-aware experiment. The graph was loaded
into a Jena TDB triple store.1295

Our queries were generated based on human-made,
openly available queries on the Wikidata query page.22

We extracted the BGPs of the queries and transformed
the vocabulary of the queries to the direct statement
vocabulary. These BGPs acted as a ‘base’ for gener-1300

ating our experiment queries: (i) for each base, we
evaluated it over the Wikidata graph; (ii) we took ran-
domly 20 of the result mappings of the base, projected
on the first variable of the base;23 and (iii) we gener-
ated queries by instantiating the query bases with these1305

projected mappings. The completeness statements are
generated in a similar way: (i) for each base, we eval-
uated it over the Wikidata graph; (ii) from the answer
mappings, we took randomly 50% of them, projected
to the first variable of the base; and (iii) we generated1310

completeness statements by instantiating the base with
the respective mappings as the statements’ BGPs. In
this setting, we also naturally represented complete-
ness statements by completeness templates as follows:
we took the base BGP as the template’s BGP, and the1315

projected mappings as the template’s mappings.
We measured the runtime of completeness reason-

ing with optimizations and query evaluation. Each
measurement was repeated 10 times and we took the
median. The experiments were done on a laptop with1320

Intel Core i5 2.50 GHz-processor and 8 GB memory.

7.1.2. Results and Discussion
In the experiments, we observed the query eval-

uation time and completeness reasoning time from
1,160 queries, with the average query length of 2.58.1325

There were 445,628 completeness statements gener-
ated, with the average completeness statement length
of 2.43 (i.e., the number of triple patterns in the BGP
of completeness statements). Furthermore, those state-
ments were represented by 66 completeness templates,1330

corresponding to the number of base BGPs to gener-
ate the queries. On average, query evaluation took 2.23

21https://tools.wmflabs.org/wikidata-exports/rdf/exports
/20160201/

22https://www.mediawiki.org/w/index.php?title=Wikibase/Index
ing/SPARQL_Query_Examples&oldid=2099085

23We imposed some ordering over the triple patterns in the BGPs.

http://jena.apache.org/
http://completeness.inf.unibz.it/data-aware-completeness-experiment/
http://completeness.inf.unibz.it/data-aware-completeness-experiment/
https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160201/
https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160201/
https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085
https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 19

ms, whereas completeness reasoning took 140.09 ms,
which was still relatively fast.

Table 2
Average runtime comparison of query evaluation and completeness
reasoning grouped by query length, where |Q| is the query length,
NQ is the number of queries, tQ is the average of query evaluation
time, and tC is the average of completeness reasoning time.

|Q| NQ tQ tC

1 228 2.82 ms 5.43 ms

2 355 1.86 ms 131.51 ms

3 387 2.53 ms 138.22 ms

4 125 1.63 ms 326.45 ms

5 42 1.36 ms 155.45 ms

6 3 2.41 ms 114.26 ms

8 20 1.93 ms 670.66 ms

To get more detailed observations, we broke down1335

the experiment results by query length (as shown in Ta-
ble 2). There is no clear pattern for both query evalua-
tion and completeness reasoning as it is not always the
case that the longer the query gets, the longer the run-
time becomes. Interestingly though, the completeness1340

reasoning time for queries of length 1 is much faster
than the others. This is likely due to smaller partial
matches with templates and easier prioritized evalua-
tion in the reasoning, in the sense that processing such
queries does not even need to see the data graph when-1345

ever the corresponding templates’ BGPs are also of
length 1 (recall Subsection 6.2). Overall, though com-
pleteness reasoning is slower than query evaluation, it
is still relatively fast (i.e., always below 700 ms). To
get an idea of how long plain completeness reasoning1350

takes (i.e., without optimizations), we chose randomly
10 queries for each query length group and measured
the reasoning time. We then computed the average rea-
soning time with a weighting scheme that respects the
query distribution as in Table 2. The average reason-1355

ing time was 15 s, which is relatively slow. A possi-
ble explanation is that for plain completeness reason-
ing, all the statements were applied repeatedly over
the union of the frozen BGP P̃ and the data graph G.
We then measured the reasoning time for those queries1360

using only the partial matching technique, where we
constructed a single completeness template for every
completeness statement. In this case, the average rea-
soning time was 401.8 ms, as opposed to 140.09 ms,
where completeness templates to represent multiple1365

statements were additionally used. Without using tem-
plates, partial matching might still get many complete-

ness statements that have to be individually evaluated
over P̃ ∪ G, as opposed to the template’s simulta-
neous processing. This shows that both optimization1370

techniques, that is, completeness templates and partial
matching, may help speed up the reasoning.

7.2. Query Soundness Evaluation

From the characterizations in Section 5, we are able
to check query soundness by reducing it to query1375

completeness checks. For this reason, we can reuse
the optimization techniques of completeness reason-
ing as described in Section 6. More specifically, we
reuse the term-relevance technique for optimizing pat-
tern soundness checking, and the completeness tem-1380

plates and partial matching techniques for optimizing
answer soundness checking. In this subsection, we an-
alyze how soundness reasoning behaves in a realis-
tic scenario, in particular: how feasible it is to per-
form soundness reasoning, how much speed-up can be1385

gained with the optimization techniques, and how does
pattern soundness checking compare to answer sound-
ness checking. This subsection reports our experimen-
tal evaluation based on Wikidata. First, we describe
our experimental setup, and then discuss the results of1390

the experiments.

7.2.1. Experimental Setup
The reasoning program and experiment framework

were implemented in Java using the Apache Jena li-
brary, and are available online.24 As it was the case1395

for the data-aware completeness experiment in Sub-
section 7.1, we also used the direct statements frag-
ment of Wikidata as our data graph. The graph was
loaded into a Jena TDB triple store.

Queries Similarly to the query completeness exper-1400

iment, we took Wikidata sample queries, and used
them as templates to generate queries, this time with
negation.25 We extracted the BGPs of the queries and
transformed the vocabulary of the queries to the di-
rect statements vocabulary. We wanted to have queries1405

with negation of various shapes. For this reason, from
the BGPs of the queries we generated different sets of
queries with negation, differing in the triple patterns
that are negated:

– QoneTP, the last triple pattern is negated;1410

24http://completeness.inf.unibz.it/soundness-experiment/
25https://www.mediawiki.org/w/index.php?title=Wikibase/Index

ing/SPARQL_Query_Examples&oldid=2099085

http://completeness.inf.unibz.it/soundness-experiment/
https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085
https://www.mediawiki.org/w/index.php?title=Wikibase/Indexing/SPARQL_Query_Examples&oldid=2099085

20 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

– QoneTPoneTP, the last two triple patterns are in-
dependently negated, forming two NOT-EXISTS

patterns;
– QtwoTPs, the last two triple patterns are negated

together, forming one NOT-EXISTS pattern; and1415

– QthreeTPs, the last three triple patterns are negat-
ed together, forming one NOT-EXISTS pattern.

The number of triple patterns negated was set to at
most three, which was reasonable, since most real-
world queries are of length up to three [12]. We pro-1420

jected out all variables in the positive part to corre-
spond to graph pattern evaluation.

Completeness Statements We used two different
methods of generating completeness statements de-
pending on whether we wanted to perform either an-1425

swer soundness or pattern soundness checking. As for
the generation of statements for answer soundness, we
wanted to perform it in such a way that there will be a
variety of sound and possibly unsound answers. So, we
generated the statements as follows: (i) given a query,1430

we evaluated the query and obtained all the answer-
mappings; (ii) for 25% of these answer-mappings, we
applied them to the BGP of each NOT-EXISTS pat-
tern of the query and constructed completeness state-
ments out of these instantiated BGPs. This way, we can1435

guarantee that these 25% answer-mappings are sound,
while the remainder mappings are possibly unsound.

In this setting, we can naturally represent complete-
ness statements by completeness templates (see Sub-
section 6.2). We took the BGP of the NOT-EXISTS1440

patterns as the templates’ BGP and the sound answer
mappings as the templates’ mappings.

In the particular case of QtwoTPs, however, we also
generated completeness statements in an additional
way, which differs on how we get BGPs for complete-1445

ness statements: instead of taking the whole instanti-
ated BGP of the NOT-EXISTS pattern, we also gener-
ated completeness statements separately per triple pat-
tern in the instantiated BGP. The first triple pattern26

in the instantiated BGP was taken as is, and the sec-1450

ond was (again) instantiated with the answer-mappings
from the evaluation of the first triple pattern over the
graph.

For the generation of statements for checking pat-
tern soundness, we simply transformed the union of1455

the positive part and each BGP of the NOT-EXISTS

patterns to a completeness statement.

26We fixed an ordering.

We had five different cases for our experimental
evaluation by combining different query sets and com-
pleteness statements:1460

– oneTP is where the last triple pattern is negated;
– oneTPoneTP is where the last two triple patterns

are independently negated;
– twoTPsTO (‘TO’ for together) is where the last

two triple patterns are negated together and the1465

statements are for the whole BGP;
– twoTPsSE (‘SE’ for separate) is where the last

two triple patterns are negated together, but the
statements are obtained separately per triple pat-
tern; and1470

– threeTPsTO (‘TO’ for together) is where the last
three triple patterns are negated together and the
statements are for the whole BGP.

In each case, to perform answer soundness check-
ing, we did not use the statements generated based1475

on pattern soundness since that would have made all
the answers sound. On the other hand, to perform pat-
tern soundness checking, we also used all the state-
ments generated based on answer soundness, as oth-
erwise there would have been too few statements (=1480

the number of queries per case). We measured the run-
time of soundness reasoning for both pattern and an-
swer, and also that of query evaluation. For each case,
we removed the measurements where the query evalu-
ation returned 0 answers, as answer soundness check-1485

ing would have become trivial. Each measurement was
repeated 10 times and we took the median. Moreover,
to get the result summary of each experiment case, we
also took the median over the case’s results. We used
median to avoid the effect of extreme values (that is,1490

some queries returned a large number of results, up to
about 120,000 results). The experiments were done on
a laptop with Intel Core i7 2.50 GHz-processor and
16 GB memory.

7.2.2. Experimental Results and Discussion1495

To get an idea of how soundness checking performs
without our optimization techniques, we first ran ex-
periments to measure the runtime of pattern soundness
and answer soundness checking with no optimization
of the twoTPsTO and threeTPsTO cases. Here, we1500

set the timeout to 5 minutes. For pattern soundness
checking, the median runtime for the twoTPsTO case
was about 1.5 s and for the threeTPsTO case about
1.2 s. It is already reasonably fast, likely due to the
fact that pattern soundness checking need not see the1505

data graph, and depends solely on the query and com-

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 21

Table 3
The number of statements |C|, the number of queries NQ, and the median of query length |Q|, of query answers |JQKG|, of query evaluation time
tQ, of answer soundness checking time tAS, of answer soundness checking time per answer tAS/a, and of pattern soundness checking time tPS for
different cases. All times are in milliseconds.

Case |C| NQ |Q| |JQKG| tQ tAS tAS/a tPS

oneTP 37,769 57 3 24 14 1.57 0.069 0.19

oneTPoneTP 119,462 25 3 82 47 5.8 0.073 0.37

twoTPsTO 126,320 39 3 180 12.7 43.3 0.27 0.21

twoTPsSE 138,705 39 3 180 12.7 17.3 0.1 0.21

threeTPsTO 93,080 13 4 12,099 114 3,873 0.68 0.23

pleteness statements. For answer soundness checking,
however, we experienced many timeouts, 22 timeouts
out of 39 queries for the twoTPsTO case and 11 time-
outs out of 13 queries for the threeTPsTO case. Time-1510

outs still occurred even when we performed answer
soundness checking with partial matching as the only
optimization, where we translated each completeness
statement trivially into an individual template, without
generalization. We experienced 6 timeouts out of 391515

queries for the twoTPsTO case and 6 timeouts out of
13 queries for the threeTPsTO case. This indicates
that without the usage of templates, checking answer
soundness is hardly feasible.

Now let us see the performance of soundness check-1520

ing with all our optimizations. Table 3 summarizes the
results of the experiments for all the five cases. Among
those cases, the number of statements generated varies,
with around 37,000 for Case oneTP, and over 93,000
for the others. Likewise, the number of queries also1525

varies (recall that we do not include queries producing
0 answer) with Case oneTP having the most and Case
threeTPsTO having the least. The median length of
queries is either 3 or 4, and the median size of query
results varies from around 24 to 12,099. Median query1530

evaluation time ranges from 12 ms to 114 ms.
Median pattern soundness checking always takes

less than a millisecond, which is more than 1000×
faster than the check without optimization. The term-
relevance principle probably helps rule out irrelevant1535

completeness statements before performing the actual
check.

As for answer soundness checking, we experienced
no timeouts, and the runtime is quite comparable to
query evaluation time, except for Case threeTPsTO.1540

This is possibly due to the large number of answers
returned, all of which have to be checked for sound-
ness. When we break down the time per answer, the
computation is less than a millisecond, with the worst

case of 0.68 ms for the threeTPsTO case. Also, it1545

is likely that the more triple patterns there are in the
negation part, the longer the soundness check per an-
swer takes. Overall, completeness templates and par-
tial matching can help improve the feasibility of an-
swer soundness checking, especially when the number1550

of query answers is low-to-medium.
Let us look more closely at answer soundness

checking. Figure 2 shows the comparison between
the number of query answers, query evaluation time,
and answer soundness checking time for cases oneTP,1555

twoTPsTO, and threeTPsTO. We omitted the figure
of oneTPoneTP since it is similar to that of oneTP,
and of twoTPsSE as it is similar to that of twoTPsTO.
The x-axis is the query order based on the number of
query answers in an ascending manner. The y-axis is1560

in log-scale and shows the respective unit (number for
the query answers, and ns for the time). There is strong
evidence of a positive correlation between the number
of query answers and the answer soundness checking
time. Moreover, we also see the following trend for1565

all the cases: At first, when query answers are just a
few, query evaluation tends to be slower than answer
soundness checking. When the number of query an-
swers increases, the answer soundness checking time
outgrows the query evaluation time. When queries be-1570

come more complicated, the cross-over point happens
earlier. This probably has to do with the increasing
soundness checking time per answer whenever the
number of negated triple patterns increases, as dis-
cussed above.1575

To summarize, we have performed an experiment
over a realistic setting based on Wikidata. We have op-
timized reasoning by representing sets of completeness
statements using templates and by using hashmaps to
apply only potentially useful statements and templates.1580

As a result, pattern soundness checking can be done
quickly, whereas answer soundness checking, though

22 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

0 10 20 30 40 50 60

100

102

104

106

108

1010

0 10 20 30 40
10−1

102

105

108

1011

0 2 4 6 8 10 12 14
10−1

102

105

108

1011

|JQKG| tQ tAS

Fig. 2. Comparison between the number of query answers (|JQKG|), query evaluation time (tQ), and answer soundness checking time (tAS) for
the experiment cases: oneTP, twoTPsTO, and threeTPsTO. The x-axis is for query rank (from the lowest to the highest of number of
query answers) and the y-axis is for number of answers or runtime in ns.

slower than pattern soundness checking, can still be
done relatively fast. Moreover, the performance of an-
swer soundness checking positively correlates with the1585

number of query answers. Our optimization techniques
have been shown to give a significant speed-up over
both reasoning problems. We would also recommend
that in practice, before applying answer soundness
checking, pattern soundness checking should be done1590

first since it takes less time, and by Proposition 2, if
pattern soundness holds, then all answers are sound.

8. Related Work

In this section, we discuss related work for query
completeness and query soundness.1595

Query Completeness Data completeness concerns
the breadth, depth, and scope of information [13] and
is deemed to be one of the most significant data quality
dimensions [14]. In the field of relational databases,
Motro [15] and Levy [16] were among the first to1600

investigate data completeness. Motro developed a
sound technique to check query completeness based on
database views, while Levy introduced the notion of
local completeness statements to denote which parts of
a database are complete. Razniewski and Nutt [17] fur-1605

ther extended their results by reducing completeness
reasoning to containment checking, for which many al-
gorithms are known, and characterizing the complex-
ity of reasoning for different classes of queries. In [18],
Razniewski et al. proposed completeness patterns and1610

defined a pattern algebra to check the completeness
of queries. The work incorporated database instances,
yet provided only a sound algorithm for completeness

checking. In our work, a sound and complete algorithm
for data-aware completeness checking and a compre-1615

hensive complexity analysis of the checking are given.
We now move on to the Semantic Web. Fürber

and Hepp [19] distinguished three types of complete-
ness: ontology completeness, concerning which on-
tology classes and properties are represented; popu-1620

lation completeness, referring to whether all objects
of the real-world are represented; and property com-
pleteness, measuring the missing values of a specific
property. Those three types of completeness together
with the interlinking completeness, i.e., the degree to1625

which instances in the dataset are interlinked, are con-
sidered to be the bases of the completeness dimension
for RDF data sources [20]. Our work considers com-
pleteness statements which are built upon BGPs, and
hence have more flexibility in expressing completeness1630

(e.g., “complete for all children of the US presidents
who were born in Hawaii”). Mendes et al. [21] pro-
posed Sieve, a framework for expressing quality as-
sessment and fusion methods, where completeness is
also considered. With Sieve, users can specify how to1635

compute quality scores and express a quality prefer-
ence specifying which characteristics of data indicate
higher quality. Ermilov et al. [22] presented LODStats,
a statistics aggregation of RDF datasets published over
various data portals such as data.gov, publicdata.eu, and1640

datahub.io. They discussed several use cases that could
be facilitated from such an aggregation, including cov-
erage analysis (e.g., most frequent properties and most
frequent namespaces of a dataset). As opposed to Sieve
and LODStats, our work puts more focus on describ-1645

ing completeness of data sources, and leveraging such
completeness descriptions for checking query com-

data.gov
publicdata.eu
datahub.io

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 23

pleteness (and soundness). In the context of crowd-
sourcing, Chu et al. [23] developed KATARA, a hy-
brid data cleaning system, which not only cleans data,1650

but may also add new facts to increase the complete-
ness of the KB; whereas Acosta et al. [24] developed
HARE, a hybrid SPARQL engine to enhance answer
completeness. As opposed to our work, KATARA and
HARE cannot be used to check whether queries are1655

complete in the sense that all answers are returned, as
they concentrate more on increasing the degree of KB
and query completeness.

Galárraga et al. [25] proposed a rule mining sys-
tem that is able to operate under the Open-World As-1660

sumption (OWA) by simulating negative examples us-
ing the Partial Completeness Assumption (PCA). The
PCA assumes that if the dataset knows some r-attribute
of x, then it knows all r-attributes of x. This heuristic
was also employed by Dong et al. [26] (called Local1665

Closed-World Assumption in their paper) to develop
Knowledge Vault, a Web-scale system for probabilis-
tic knowledge fusion. Our completeness statements are
in fact a generalization of the assumption used in the
above work.1670

Query Soundness The use of negation in querying
can be traced back to Codd’s relational calculus [27],
where a tuple is included in the complement of a re-
lation if it is not explicitly given in the relation. Re-
iter [28] and Clark [29] generalized this to rule-based1675

systems. They assumed that the failure to find a proof
of a fact implies that the negation is true, and called this
the closed-world assumption (CWA). SPARQL, the
standard query language for RDF, supports negation by
such a non-existence check [5, 30]. However, since the1680

semantics of RDF imposes the open-world assump-
tion (OWA) [2], there remains a conceptual mismatch
when negation in SPARQL over RDF datasets is eval-
uated in a closed-world style. In other words, there is a
missing gap between the normative semantics of nega-1685

tion in SPARQL, which is based on the negation-as-
failure (‘negation from the failure to find a proof of
the fact’) [31], and the classical negation (‘the negated
fact truly holds’) [32] due to RDF’s openness. More-
over, the fact that RDF is a positive language, means1690

that one viable way of having negated facts in RDF is
by imposing some (partial) completeness assumption
over RDF data: whenever P is complete, then all facts
not in P are false.

In the Semantic Web, Polleres et al. [33] first ob-1695

served this mismatch. They proposed to restrict the
scope of negation to particular data sources, thus limit-

ing the search for negative information. In their work,
no assumption was made as to whether the knowl-
edge in these data sources is complete. In description1700

logics (DLs), Lutz et al. [34] proposed closed predi-
cates, that is, concepts and roles that are interpreted to
be complete, to enable a combination between open-
and closed-world reasoning. A similar concept was
also employed by Analyti et al. [35]. They proposed1705

ERDF, an extended RDF that supports negation, as
well as derivation rules. ERDF allows one to have lo-
cal closed-world information via default closure rules
for properties and classes. As opposed to these two ap-
proaches, which considered only a simple partial CWA1710

over atomic classes and properties (e.g., all cars, all
child relationships, . . .), our work supports more ex-
pressive completeness information in the sense that we
can use BGPs to capture completeness. From the prac-
tical side of the Semantic Web, negation is featured1715

in test queries of many popular SPARQL benchmarks
such as SP2Bench [36], Berlin SPARQL Benchmark
(BSBM) [37], and FedBench [38], in which the closed-
world assumption (CWA) is employed. Our work does
not only provide formalizations, but also optimization1720

techniques for checking the soundness of queries with
negation, for which we have experimentally shown to
improve the feasibility of the soundness checking in
realistic settings based on Wikidata.

More recently, Gutierrez et al. [39] proposed an al-1725

ternative semantics for SPARQL based on certain an-
swers. They argued that the proposed semantics is
more suitable to capture RDF peculiarities, such as
OWA, unique name assumption (UNA), and blank
nodes. For queries with negation, they showed that the1730

queries do not have certain answers, since more facts
can be arbitrarily added to falsify the query answers.
In our work, we combine between open- and closed-
information in RDF, enabling SPARQL queries with
negation to have answers that are guaranteed to re-1735

main. That is, when queries are guaranteed to be sound
by completeness statements, new data that might be
added to the graph is restricted by the statements,
hence the answers will not be falsified.

9. Discussion1740

Here we discuss issues related to our framework:
creation of completeness information, no-value infor-
mation, blank nodes, and RDFS extension.

24 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

Creation of Completeness Information Our frame-
work relies on the availability of machine-readable1745

completeness information. We found a widespread in-
terest in collecting completeness information in var-
ious forms, for example on Wikipedia, IMDb, and
OpenStreetMap. The techniques we develop may serve
as an incentive to standardize such information and to1750

make it available in RDF, since then not only is such
information useful for managing data quality, but also
for assessing query quality in terms of completeness
and soundness.

Ideas for approaches to automating the generation1755

of completeness information were collected in [40].
Galárraga et al. [41] investigated various signals, such
as popularity, update frequency, and cardinality, that
can be used to identify complete parts of a KB via
rule-mining techniques. Mirza et al. [42, 43] developed1760

techniques for relation cardinality extraction from text,
which can be leveraged to generate completeness state-
ments in the following way: when the extracted car-
dinality of a relation matches with the relation count
in a KB, then a completeness statement can be gen-1765

erated. COOL-WD is a collaborative, web-based sys-
tem for managing and consuming completeness infor-
mation about Wikidata, which currently stores over
10,000 real completeness statements [44], and is avail-
able at http://cool-wd.inf.unibz.it. Additionally, COOL-1770

WD demonstrates how provenance information, such
as authorship, timestamp, and external reference, can
be added to completeness statements, which can then
serve as a basis for trust determination over query com-
pleteness and soundness checking (e.g., “this query is1775

complete based on the completeness assertions X, Y ,
and Z, given by A and B on date D, with references to
R and S ”).

No-Value Information Completeness statements can
also be used to represent no-value information. Such1780

information is particularly useful to distinguish be-
tween a value that does not exist due to data incom-
pleteness or due to its inapplicability. Wikidata, for in-
stance, contains about 19,000 pieces of no-value infor-
mation over 269 properties.27 In our motivating sce-1785

nario, there is the completeness statement about the
official languages of the USA with no corresponding
data in the graph. In this case, we basically say that the
USA has no official languages. As a consequence of
having no-value information, we can be complete for1790

queries despite having the empty answer. Such a fea-

27as of Feb 18, 2017

ture is similar to that proposed in [45]. The only differ-
ence is that here we need to pair completeness state-
ments with a graph that has no corresponding data cap-
tured by the statements, while in that work, no-value1795

statements are used to directly say that some parts of
data do not exist.

Blank Nodes The use of blank nodes in RDF has
been a controversial topic in the Semantic Web com-
munity [46, 47]. In Linked Data applications, blank1800

nodes add complexity to data processing and data in-
terlinking due to the local scope of their labels [48,
49]. With respect to SPARQL, there are semantic
mismatches with the RDF semantics of blank nodes,
e.g., when COUNT and NOT-EXISTS features are em-1805

ployed [50]. Nevertheless, blank nodes are used in
practice to some degree: (i) for modeling unknown
nulls [45, 50], and (ii) for modeling n-ary relations as
auxiliary instances in reification [51].

For the former usage, completeness of a topic that1810

contains a blank node is contradictory, as we argue that
completeness statements should capture only “known
and complete” information. For instance, one may
state that a graph is complete for triples of the form
(john, child, ?y), while the graph contains the triple1815

(john, child,_:b), indicating that John is complete for
his unknown child, which does not really make sense.
Nevertheless, a graph with completeness statements
may still have blank nodes as long as they are not cap-
tured by the statements.1820

For the latter case, Skolemization as a way to sys-
tematically replace blank nodes with fresh, Skolem
IRIs may be leveraged with almost interchangeable
behavior [2, 52, 53], except that Skolem IRIs have
a global scope instead of a local scope. This way,1825

completeness statements can capture n-ary relation in-
formation encoded originally with blank nodes, and
completeness reasoning (which involves SPARQL
queries) behaves well (i.e., no semantic mismatches
as per [50]). Nevertheless, in practice Semantic Web1830

developers often tend to directly use IRIs instead of
blank nodes for representing auxiliary resources, for
instance by Wikidata [49].28

RDFS Extension RDFS [54] adds lightweight se-
mantics to describe the structure and interlinking1835

of data, usually sufficient for Linked Data publish-
ers [48]. Main RDFS inference capabilities consist of

28For instance, the resource IRI of Wikidata for the marriage be-
tween Donald Trump and Ivana Trump is http://www.wikidata.org/e
ntity/statement/q22686-f813c208-48b2-9a72-3c53-cdaed80518d2.

http://cool-wd.inf.unibz.it
http://www.wikidata.org/entity/statement/q22686-f813c208-48b2-9a72-3c53-cdaed80518d2
http://www.wikidata.org/entity/statement/q22686-f813c208-48b2-9a72-3c53-cdaed80518d2

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 25

class and property hierarchies, as well as property do-
mains and ranges [48, 55], which are widely used in
practice [56]. Darari et al. [4] formalized the incorpo-1840

ration of RDFS in data-agnostic completeness reason-
ing. Using a similar technique as in [4], it is also rela-
tively easy to extend our data-aware completeness rea-
soning framework with the RDFS semantics. The idea
is that we strengthen our syntactic characterization of1845

computing the epg operator (see Subsection 4.1) via
the closure operation wrt. RDFS ontologies [55]. More
precisely, in the crucial part, the closure has to be com-
puted before and after the TC operation over P̃ ∪ G.
Also, the evaluation of the crucial part needs to be done1850

over the materialized graph G wrt. the RDFS ontology.
As for query soundness checking, a similar procedure
based on RDFS closure needs to be employed as well.
For pattern soundness reasoning, we include the clo-
sure computation in the query set containment check-1855

ing for Non-Redundant Form (NRF), and in the query
completeness checking (as in Proposition 10). For an-
swer soundness checking, we can simply rely on the
data-aware completeness checking with RDFS incor-
poration we just sketched. In summary, the addition of1860

the closure computation ensures that the semantics of
RDFS is incorporated in the reasoning, while not in-
creasing the complexity as the RDFS closure compu-
tation can be done in PTIME [55].

10. Conclusions and Future Work1865

The open-world assumption of RDF and the closed-
world evaluation of SPARQL have created a gap on
how we should treat the completeness and soundness
of query answers. This paper bridges the gap between
RDF and SPARQL via completeness statements, meta-1870

data about (partial) completeness of RDF data sources.
In particular, we have introduced the problem of query
completeness checking over RDF data annotated with
completeness statements. We also developed an al-
gorithm and performed a complexity analysis for the1875

completeness problem. Then, we formulated the prob-
lem of soundness for SPARQL queries with negation,
and characterized it via a reduction to completeness
checking. We proposed optimizations for complete-
ness checking, and provided experimental evidence1880

that our techniques are feasible in realistic settings
over Wikidata for both query completeness and sound-
ness problems.

Our current approach tackles the core fragment of
SPARQL, and can be easily adapted to provide suf-1885

ficient characterizations of richer fragments (e.g., in-
volving union, arithmetic filter, or—for queries with
negation—the selection operator), setting a solid basis
for future investigations into the full characterization
of those fragments. Also, while the current complete-1890

ness statements are constructed using BGPs, one might
wonder what happens if richer constructors are added,
to enable statements like “Complete for all students
who were born after 1991 and who do not speak Ger-
man.” On the practical side, the availability of struc-1895

tured completeness information remains a core issue.
We hope that our work provides a further incentive
for standardization and data publication efforts in this
area. Another future direction is to study how (Seman-
tic) Web data publishers and users perceive the prob-1900

lem of completeness, and how they want to benefit
from data completeness. Extensive case studies may be
conducted in various application domains like health-
care, economics, or government. The purpose is to an-
alyze whether our approach is sufficient or not for their1905

requirements, and if not, on which side it can be im-
proved.

References

[1] F. Darari, S. Razniewski, R.E. Prasojo and W. Nutt, Enabling
fine-grained RDF data completeness assessment, in: ICWE,1910

2016.
[2] P.J. Hayes and P.F. Patel-Schneider (eds), RDF 1.1 Semantics,

W3C Recommendation, 25 February 2014.
[3] D. Vrandecic and M. Krötzsch, Wikidata: a free collaborative

knowledgebase, Commun. ACM 57(10) (2014), 78–85.1915

[4] F. Darari, W. Nutt, G. Pirrò and S. Razniewski, Completeness
Statements about RDF Data Sources and Their Use for Query
Answering, in: ISWC, 2013. ISBN 978-3-642-41334-6.

[5] S. Harris and A. Seaborne (eds), SPARQL 1.1 Query Language,
W3C Recommendation, 21 March 2013.1920

[6] semantic-web@w3.org Mail Archives: Open
world issue (opening vs closing days) and
SPARQL CONSTRUCT, Accessed: 2017-01-15
from https://lists.w3.org/Archives/Public/semantic-
web/2008May/0152.html.1925

[7] semantic-web@w3.org Mail Archives: The Open world as-
sumption shoe does not always fit - was: RE: [ontolog-forum]
Fwd: Ontolog invited speaker session - Dr. Mark Greaves
on the Halo Project - Thu 2008.06.19, Accessed: 2017-01-
15 from https://lists.w3.org/Archives/Public/public-semweb-1930

lifesci/2008Jun/0084.html.
[8] F. Darari, S. Razniewski and W. Nutt, Bridging the Semantic

Gap between RDF and SPARQL using Completeness State-
ments, in: ISWC Posters & Demonstrations Track, 2014.

[9] M.Y. Vardi, The Complexity of Relational Query Languages1935

(Extended Abstract), in: Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, May 5-7, 1982, San Fran-
cisco, California, USA, 1982, pp. 137–146.

26 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

[10] L. Rietveld and R. Hoekstra, Man vs. machine: Differences in
SPARQL queries, in: USEWOD, 2014.1940

[11] M. Saleem, M.I. Ali, A. Hogan, Q. Mehmood and
A.N. Ngomo, LSQ: The Linked SPARQL Queries Dataset, in:
ISWC, 2015.

[12] M. Arias, J.D. Fernández, M.A. Martínez-Prieto and P. de la
Fuente, An Empirical Study of Real-World SPARQL Queries,1945

in: Proceedings of the 1st International Workshop on Usage
Analysis and the Web of Data (USEWOD’11), 2011.

[13] R.Y. Wang and D.M. Strong, Beyond Accuracy: What Data
Quality Means to Data Consumers, J. of Management Informa-
tion Systems 12(4) (1996), 5–33.1950

[14] C. Batini and M. Scannapieco, Data and Information Quality -
Dimensions, Principles and Techniques, Data-Centric Systems
and Applications, Springer, 2016.

[15] A. Motro, Integrity = Validity + Completeness, ACM Trans.
Database Syst. 14(4) (1989), 480–502.1955

[16] A.Y. Levy, Obtaining Complete Answers from Incomplete
Databases, in: VLDB, Morgan Kaufmann, 1996, pp. 402–412.
ISBN 1-55860-382-4.

[17] S. Razniewski and W. Nutt, Completeness of Queries over In-
complete Databases, PVLDB 4(11) (2011), 749–760.1960

[18] S. Razniewski, F. Korn, W. Nutt and D. Srivastava, Identifying
the Extent of Completeness of Query Answers over Partially
Complete Databases, in: ACM SIGMOD 2015, 2015, pp. 561–
576.

[19] C. Fürber and M. Hepp, SWIQA - a Semantic Web Information1965

Quality Assessment Framework, in: ECIS 2011, 2011.
[20] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and

S. Auer, Quality assessment for Linked Data: A Survey, Se-
mantic Web 7(1) (2016), 63–93.

[21] P.N. Mendes, H. Mühleisen and C. Bizer, Sieve: Linked Data1970

Quality Assessment and Fusion, in: EDBT/ICDT Workshops,
2012, pp. 116–123.

[22] I. Ermilov, J. Lehmann, M. Martin and S. Auer, LODStats: The
Data Web Census Dataset, in: The Semantic Web - ISWC 2016
- 15th International Semantic Web Conference, Kobe, Japan,1975

October 17-21, 2016, Proceedings, Part II, 2016, pp. 38–46.
[23] X. Chu, J. Morcos, I.F. Ilyas, M. Ouzzani, P. Papotti, N. Tang

and Y. Ye, KATARA: A Data Cleaning System Powered by
Knowledge Bases and Crowdsourcing, in: ACM SIGMOD
2015, 2015, pp. 1247–1261.1980

[24] M. Acosta, E. Simperl, F. Flöck and M. Vidal, HARE: A Hy-
brid SPARQL Engine to Enhance Query Answers via Crowd-
sourcing, in: K-CAP 2015, 2015, pp. 11–1118.

[25] L.A. Galárraga, C. Teflioudi, K. Hose and F.M. Suchanek,
AMIE: Association Rule Mining under Incomplete Evidence1985

in Ontological Knowledge Bases, in: WWW 2013, 2013,
pp. 413–422.

[26] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Mur-
phy, T. Strohmann, S. Sun and W. Zhang, Knowledge vault:
a web-scale approach to probabilistic knowledge fusion, in:1990

ACM SIGKDD 2014, 2014, pp. 601–610.
[27] E.F. Codd, Relational Completeness of Data Base Sublan-

guages, In: R. Rustin (ed.): Database Systems (1972).
[28] R. Reiter, On Closed World Data Bases, in: Logic and Data

Bases, H. Gallaire and J. Minker, eds, Springer US, Boston,1995

MA, 1978, pp. 55–76. ISBN 978-1-4684-3384-5.
[29] K.L. Clark, Negation as Failure, in: Logic and Data Bases,

1978, pp. 113–141.

[30] E. Prud’hommeaux and A. Seaborne (eds), SPARQL Query
Language for RDF, W3C Recommendation, 15 January 2008.2000

[31] R. Reiter, Towards a Logical Reconstruction of Relational
Database Theory, in: On Conceptual Modelling (Intervale),
1982, pp. 191–233.

[32] M. Gelfond and V. Lifschitz, Classical Negation in Logic Pro-
grams and Disjunctive Databases, New Generation Comput.2005

9(3/4) (1991), 365–386.
[33] A. Polleres, C. Feier and A. Harth, Rules with Contextually

Scoped Negation, in: ESWC, 2006.
[34] C. Lutz, I. Seylan and F. Wolter, Ontology-Based Data Access

with Closed Predicates is Inherently Intractable (Sometimes),2010

in: IJCAI, 2013.
[35] A. Analyti, G. Antoniou, C.V. Damásio and G. Wagner, Ex-

tended RDF as a Semantic Foundation of Rule Markup Lan-
guages, J. Artif. Intell. Res. (JAIR) 32 (2008), 37–94.

[36] M. Schmidt, T. Hornung, M. Meier, C. Pinkel and G. Lausen,2015

SP2Bench: A SPARQL Performance Benchmark, in: Semantic
Web Information Management - A Model-Based Perspective,
2009.

[37] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark, Int.
J. Semantic Web Inf. Syst. 5(2) (2009), 1–24.2020

[38] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte and
T. Tran, FedBench: A Benchmark Suite for Federated Seman-
tic Data Query Processing, in: ISWC, 2011.

[39] C. Gutierrez, D. Hernández, A. Hogan and A. Polleres, Cer-
tain Answers for SPARQL?, in: Proceedings of the 10th Al-2025

berto Mendelzon International Workshop on Foundations of
Data Management, Panama City, Panama, May 8-10, 2016,
2016. http://ceur-ws.org/Vol-1644/paper13.pdf.

[40] S. Razniewski, F.M. Suchanek and W. Nutt, But What Do We
Actually Know?, in: Proceedings of the 5th Workshop on Au-2030

tomated Knowledge Base Construction, AKBC@NAACL-HLT
2016, San Diego, CA, USA, June 17, 2016, 2016, pp. 40–44.

[41] L. Galárraga, S. Razniewski, A. Amarilli and F.M. Suchanek,
Predicting Completeness in Knowledge Bases, in: Proceedings
of the Tenth ACM International Conference on Web Search2035

and Data Mining, WSDM 2017, Cambridge, United Kingdom,
February 6-10, 2017, 2017, pp. 375–383.

[42] P. Mirza, S. Razniewski and W. Nutt, Expanding Wikidata’s
Parenthood Information by 178%, or How To Mine Relation
Cardinality Information, in: Proceedings of the ISWC 20162040

Posters & Demonstrations Track co-located with 15th Interna-
tional Semantic Web Conference (ISWC 2016), Kobe, Japan,
October 19, 2016., 2016.

[43] P. Mirza, S. Razniewski, F. Darari and G. Weikum, Cardinal
Virtues: Extracting Relation Cardinalities from Text, in: ACL2045

2017 Short Papers, 2017.
[44] R.E. Prasojo, F. Darari, S. Razniewski and W. Nutt, Managing

and Consuming Completeness Information for Wikidata Using
COOL-WD, in: COLD, 2016.

[45] F. Darari, R.E. Prasojo and W. Nutt, Expressing No-Value In-2050

formation in RDF, in: Proceedings of the ISWC 2015 Posters &
Demonstrations Track co-located with the 14th International
Semantic Web Conference (ISWC-2015), Bethlehem, PA, USA,
October 11, 2015., 2015.

[46] semantic-web@w3.org Mail Archives: a blank2055

node issue, Accessed: 2017-01-15 from
https://lists.w3.org/Archives/Public/semantic-
web/2011Mar/0017.html.

http://ceur-ws.org/Vol-1644/paper13.pdf

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 27

[47] Richard Cyganiak: Blank nodes consid-
ered harmful, Accessed: 2017-01-15 from2060

http://richard.cyganiak.de/blog/2011/03/blank-nodes-
considered-harmful/.

[48] T. Heath and C. Bizer, Linked Data: Evolving the Web into a
Global Data Space, Synthesis Lectures on the Semantic Web:
Theory and Technology, Morgan & Claypool, 2011.2065

[49] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez and D. Vran-
decic, Introducing Wikidata to the Linked Data Web, in: The
Semantic Web - ISWC 2014 - 13th International Semantic Web
Conference, Riva del Garda, Italy, October 19-23, 2014. Pro-
ceedings, Part I, 2014, pp. 50–65.2070

[50] A. Hogan, M. Arenas, A. Mallea and A. Polleres, Everything
you always wanted to know about blank nodes, J. Web Sem. 27
(2014), 42–69.

[51] N. Noy and A. Rector (eds), Defining N-ary Rela-
tions on the Semantic Web, W3C Working Group2075

Note, 12 April 2006, Retrieved Jan 10, 2017 from
https://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-
20060412/.

[52] R. Cyganiak, D. Wood and M. Lanthaler (eds), RDF
1.1 Concepts and Abstract Syntax, W3C Recommen-2080

dation, 25 February 2014, Retrieved Jan 15, 2017
from https://www.w3.org/TR/2014/REC-rdf11-concepts-
20140225/.

[53] A. Hogan, Skolemising Blank Nodes while Preserving Isomor-
phism, in: Proceedings of the 24th International Conference2085

on World Wide Web, WWW 2015, Florence, Italy, May 18-22,
2015, 2015, pp. 430–440.

[54] D. Brickley and R.V. Guha, RDF Schema 1.1, W3C Recom-
mendation, 25 February 2014, Retrieved Jan 10, 2017 from
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.2090

[55] S. Muñoz, J. Pérez and C. Gutierrez, Simple and Efficient Min-
imal RDFS, J. Web Sem. 7(3) (2009), 220–234.

[56] A. Polleres, A. Hogan, R. Delbru and J. Umbrich, RDFS and
OWL Reasoning for Linked Data, in: Reasoning Web. Seman-
tic Technologies for Intelligent Data Access - 9th International2095

Summer School 2013, Mannheim, Germany, July 30 - August
2, 2013. Proceedings, 2013, pp. 91–149.

[57] M.R. Garey and D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman &
Co., New York, USA, 1990. ISBN 0716710455.2100

Appendix A. Proof of Proposition 1

Proposition 1. Let C be a set of completeness state-
ments, G a graph, and P a BGP. Then the following are
equivalent:

1. C,G |= Compl(P);2105

2. for every mapping µ such that dom(µ) = var(P)
and (G,G ∪ µP) |= C, it is the case that µP ⊆ G.

Proof. (⇒) We prove the contrapositive. Suppose
there is a mapping µ where dom(µ) = var(P) and
(G,G ∪ µP) |= C, but µP 6⊆ G. We want to show that2110

C,G 6|= Compl(P). For this, we need a counterexam-
ple extension pair (G,G′) such that (G,G′) |= C, but
(G,G′) 6|= Compl(P).

Take the extension pair (G,G ∪ µP). By assump-
tion, we have that (G,G ∪ µP) |= C. We will show2115

that (G,G ∪ µP) 6|= Compl(P). Again, by assumption
we have that µP 6⊆ G. This means that µ 6∈ JPKG, as
opposed to the obvious fact that µ ∈ JPKG∪µP. This
implies that (G,G ∪ µP) 6|= Compl(P). Therefore,
C,G 6|= Compl(P) as witnessed by the counterexample2120

extension pair (G,G ∪ µP).
(⇐) Assume that for all mappings µ such that dom(µ) =
var(P) and (G,G ∪ µP) |= C, it is the case µP ⊆ G.
We want to show that C,G |= Compl(P). Take an ex-
tension pair (G,G′) such that (G,G′) |= C. We need to2125

prove that (G,G′) |= Compl(P). In other words, it has
to be shown that JPKG′ ⊆ JPKG.

Now take a mapping µ ∈ JPKG′ . By the semantics
of BGP evaluation, this implies µP ⊆ G′. We want to
show µ ∈ JPKG. Again, by the semantics of BGP eval-2130

uation it is sufficient to show that µP ⊆ G. By the as-
sumption that (G,G′) |= C and the semantics of the
TC operator, we have that TC(G′) ⊆ G. From this and
µP ⊆ G′ (and also G ⊆ G′ by the definition of an ex-
tension pair), it holds that TC(G∪µP) ⊆ TC(G′) ⊆ G.2135

Therefore, it is the case that (G,G ∪ µP) |= C. By as-
sumption, we have that µP ⊆ G. Since µ was arbitrary,
we can therefore conclude that JPKG′ ⊆ JPKG.

Appendix B. Proof of Proposition 3

Proposition 3 (Equivalent Partial Grounding). Let C2140

be a set of completeness statements, G a graph, and
(P, ν) a partially mapped BGP. Then

{ (P, ν) } ≡C,G epg((P, ν), C,G).

28 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

Proof. Take any G′ such that (G,G′) |= C. We want to
show that

J(P, ν)KG′ =
⋃

(µP,ν∪µ)∈epg((P,ν),C,G)

J(µP, ν ∪ µ)KG′ .

Since dom(ν) ∩ var(P) = ∅ by the construction of a
partially mapped BGP, it is sufficient to show that

J(P, µ∅)KG′ =
⋃

(µP,µ)∈epg((P,µ∅),C,G)

J(µP, µ)KG′ .

By the construction of the epg operator, this corre-
sponds to showing that

J(P, µ∅)KG′ =
⋃

µ∈JcrucC,G(P)KG

J(µP, µ)KG′ .

Recall that the crucial part of P is complete wrt. C
and G, that is, C,G |= Compl(crucC,G(P)). This im-
plies that JcrucC,G(P)KG′ = JcrucC,G(P)KG. Therefore,
it is the case that⋃

µ∈JcrucC,G(P)KG′

J(µP, µ)KG′ =
⋃

µ∈JcrucC,G(P)KG

J(µP, µ)KG′ .

By construction, we have that crucC,G(P) ⊆ P. There-
fore, by the semantics of evaluating partially mapped2145

BGPs, J(P, ∅)KG′ =
⋃
µ∈JcrucC,G(P)KG′ J(µP, µ)KG′ . Thus,

we conclude that

J(P, µ∅)KG′ =
⋃

µ∈JcrucC,G(P)KG′

J(µP, µ)KG′

=
⋃

µ∈JcrucC,G(P)KG

J(µP, µ)KG′ .

Appendix C. Proof of Lemma 1

Lemma 1 (Completeness Entailment of Saturated
BGPs). Let P be a BGP, C a set of completeness state-
ments, and G a graph. Suppose P is saturated wrt. C
and G. Then:

C,G |= Compl(P) iff P̃ ⊆ G.

Proof. (⇒) By contrapositive. Suppose P̃ 6⊆ G. We2150

want to give a counterexample for C,G |= Compl(P).
Let us take the extension pair (G,G ∪ P̃). Note that
since P̃ 6⊆ G, it is the case that JPKG∪P̃ 6⊆ JPKG, imply-
ing (G,G ∪ P̃) 6|= Compl(P).

It is left to show (G,G ∪ P̃) |= C. We would like2155

to prove the following: If P is saturated wrt. C and G,
then (G,G ∪ P̃) |= C. By definition, wrt. C and G a
BGP P is saturated iff (P, µ∅) is saturated. From our
assumption that P is saturated, we therefore know that
(P, µ∅) is also saturated. By the definition of saturation,2160

this means that epg((P, µ∅), C,G) = { (P, µ∅) }. This
implies that JcrucC,G(P)KG = { µ∅ }. Consequently,
µ∅(crucC,G(P)) = crucC,G(P) ⊆ G. Here we know
that crucC,G(P) is ground.

Now we want show that TC(G ∪ P̃) ⊆ G for the2165

following reason: by the definition of TC and the sat-
isfaction of an extension pair wrt. C, it is the case that
TC(G ∪ P̃) ⊆ G implies (G,G ∪ P̃) |= C.

By construction, the TC operator always returns a
subset of the input. There are therefore two compo-2170

nents of the results of TC(G ∪ P̃) for which we have to
check if they are included in G. The first are the parts
of the output included in G, that is, G ∩ TC(G ∪ P̃).
Clearly, G ∩ TC(G ∪ P̃) ⊆ G.

The second one are those included in P̃, that is,2175

P̃ ∩ TC(G ∪ P̃). We want to show that P̃ ∩ TC(G ∪
P̃) ⊆ G. Recall that crucC,G(P) ⊆ G. By definition,
crucC,G(P) = P∩ ĩd

−1
(TC(G ∪ P̃)). Since crucC,G(P)

is ground, we have that crucC,G(P) = P̃∩ ĩd
−1

(TC(G∪
P̃)), so that the melting operator ĩd

−1
does not have2180

any effect, that is, P̃ ∩ ĩd
−1

(TC(G ∪ P̃)) = P̃ ∩
(TC(G∪P̃)). Consequently, we have P̃∩(TC(G∪P̃)) =
crucC,G(P) ⊆ G.

Since both components are in G, we have that
TC(G ∪ P̃) ⊆ G, and therefore (G,G ∪ P̃) |= C.2185

(⇐) Assume P̃ ⊆ G. It is trivial to see that P is ground
(i.e., has no variables), and P ⊆ G. Therefore, it is the
case that for all extension pairs (G,G′), the inclusion
JPKG′ ⊆ JPKG holds, implying (G,G′) |= Compl(P).
By definition, C,G |= Compl(P) holds if for all2190

(G,G′) |= C, we have (G,G′) |= Compl(P). Hence,
C,G |= Compl(P) holds since (G,G′) |= Compl(P)
even for all possible extension pairs (G,G′).

Appendix D. Proof of Theorem 1

Theorem 1 (Completeness Entailment Check). Let P2195

be a BGP, C a set of completeness statements, and G a
graph. Then the following are equivalent:

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 29

1. C,G |= Compl(P);

2. µ̃P ⊆ G, for all µ ∈ sat(P, C,G).

Proof. (⇒) We prove the contrapositive. Assume there2200

exists a mapping µ ∈ sat(P, C,G) such that µ̃P 6⊆
G. From Proposition 4, we have that µP is saturated
wrt. C and G. From Lemma 1, it is the case C,G 6|=
Compl(µP).

From Proposition 4, we have that (P, µ∅) ≡C,G2205

{ (νP, ν) | ν ∈ sat(P, C,G) }. Note that by construc-
tion, each mapping in sat(P, C,G) is incomparable to
the others. Since C,G 6|= Compl(µP), we have the
extension pair (G,G ∪ µ̃P) as a counterexample for
C,G |= Compl(P).2210

(⇐) By the first claim of Proposition 4, we have that
µP is saturated wrt. C and G for each µ ∈ sat(P, C,G).
Thus, from the right-hand side of Theorem 1 and
Lemma 1, we have that C,G |= Compl(µP) for each
µ ∈ sat(P, C,G). Therefore, by the second claim of2215

Proposition 4, we have that C,G |= Compl(P).

Appendix E. Proof of Proposition 5

Proposition 5. Deciding the entailment C,G |=
Compl(P), given a set C of completeness statements, a
graph G, and a BGP P, is ΠP

2-complete.2220

Proof. The membership proof is as follows. It is the
case that C,G 6|= Compl(P) iff there exists a graph G′

containing G where:

– (G,G′) |= C, and
– (G,G′) 6|= Compl(P).2225

We guess a mapping µ over P such that µP 6⊆ G, which
implies that (G,G∪µP) 6|= Compl(P). Then, we check
in CoNP that (G,G∪µP) |= C. If it holds, then C,G 6|=
Compl(P) by the counterexample G′ = G ∪ µP.

Next, we prove the hardness by reduction from the
validity of a ∀∃3SAT formula. The general shape of a
formula is as follows:

ψ = ∀x1, . . . , xm∃y1, . . . , yn γ1 ∧ . . . ∧ γk,

where each γi is a disjunction of three literals over2230

propositions from vars∀ ∪ vars∃ where vars∀ =
{x1, . . . , xm} and vars∃ = {y1, . . . , yn}. We will con-
struct a set C of completeness statements, a graph G,
and a BGP P such that the following claim holds:

C,G |= Compl(P) iff ψ is valid.2235

Our encoding is inspired by the following approach
to check the validity of ψ: Unfold the universally quan-
tified variables x1, . . . , xm in ψ, and then check if for
every formula in the set Ψunfold of the unfolding results,
there is an assignment from the existentially quantified2240

variables y1, . . . , yn to make all the clauses evaluate to
true.

(Encoding) First, we construct29

G = { (0, varg, c), (1, varg, c) }

and the completeness statement

C∀ = Compl({ (?x, varg, ?y) }),

to denote all the assignment possibilities (i.e., 0 and 1)
for the universally quantified variables.

Next, we define

Pground = { (?xi, varg, ?cxi), (?xi, varc, cxi) |

xi ∈ vars∀ }.

The idea is that Pground via C∀ and G will later be in-2245

stantiated with all possible assignments for the univer-
sally quantified variables in ψ.

Now, we define

Pneg = { (0, neg, 1), (1, neg, 0) },

which says that 0 is the negation of 1, and vice versa.
This BGP is used later on to assign values for all the
propositional variables and their negations. Then, we
define

Ptrue = { (1, 1, 1), . . . , (0, 0, 1) },

to denote the seven possible satisfying value combina-
tions for a clause. Our BGP P that we want to check
for completeness is therefore as follows:

P = Ptrue ∪ Pneg ∪ Pground.

Now, we want to encode the structure of the for-
mula ψ. For each propositional variable pi, we encode
the positive literal pi as the variable var(pi) = ?pi

29Recall that we omit namespaces. With namespaces, for ex-
ample, the ‘number’ 0 in the encoding can be written as the IRI
http://example.org/0.

30 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

and the negative literal ¬pi as the variable var(¬pi) =
?¬pi. Given a clause γi = li1 ∨ li2 ∨ li3, the operator
tp(γi) maps γi to (var(li1), var(li2), var(li3)). We then
define the following BGP to encode the structure of ψ:

Pψ = { tp(γi) | γi occurring in ψ }.

To encode the inverse relationship between a posi-
tive literal and a negative literal, we use the following:

Pposs = { (?pi, neg, ?¬pi), (?¬pi, neg, ?pi) |

pi ∈ vars∀ ∪ vars∃}.

This pattern will later be instantiated accordingly wrt.
Pneg. Now, for capturing the assignments of the univer-
sally quantified variables in P, we use

P∀ = { (?xi, varc, cxi) | xi ∈ vars∀ }.

We are now ready to construct the following com-
pleteness statement:

Cψ = Compl(Ptrue ∪ Pposs ∪ P∀ ∪ Pψ).

In summary, our encoding consists of the following
ingredients: the set C = {C∀,Cψ } of completeness
statements, the graph G, and the BGP P. Let us now2250

prove the claim mentioned above.

(Proof for Encoding) Recall the approach we men-
tioned above to check the validity of the formula ψ.
To simulate the unfolding of the universally quantified
variables, we rely on the equivalent partial grounding2255

operator epg((P, µ∅), C,G) as in Algorithm 1 which in-
volves the cruc operator. Accordingly, crucC,G(P) =

P∩ĩd
−1

(TC(P̃∪G)) by definition. By construction, the
statement C∀ captures the (?xi, varg, ?cxi) part of the
BGP P where xi ∈ vars∀. Thus, by the construction of2260

G, it is the case that epg((P, µ∅), C,G) consists of 2m

partially mapped BGPs, where m is the number of the
universally quantified variables in ψ. Each of the par-
tially mapped BGPs corresponds to an assignment for
the universally quantified variables in the set Ψunfold of2265

the unfolding results of ψ.
Now, we prove the simulation of the next step, the

existential checking. For each partially mapped BGP
(µP, µ) in the unfolding results epg((P, µ∅), C,G), it is
either epg((µP, µ), C,G) = ∅ or epg((µP, µ), C,G) =2270

{ (µP, µ) }. Let us see what this means.
By construction, the former case happens whenever

TC(µ̃P∪G) = µ̃P holds, from the fact that JµPKG = ∅.

Furthermore, it is the case that TC(µ̃P ∪ G) = µ̃P
iff there is a mapping ν from the encoding ?yi of2275

the existentially quantified variables in Pψ such that
ν(µPψ) ⊆ Ptrue. Note that the mapping ν simulates
a satisfying assignment for the corresponding existen-
tially quantified formula in the set Ψunfold. Whenever
this holds for all (µP, µ) ∈ epg((P, µ∅), C,G), from2280

Proposition 3 we can conclude that (P, µ∅) ≡C,G ∅,
and therefore C,G |= Compl(P). Also, because we
have the satisfying assignments for all the correspond-
ing existentially quantified formulas in the set Ψunfold,
the formula ψ evaluates to true.2285

The latter case happens whenever TC(µ̃P∪G) 6= µ̃P,
since there is no mapping ν from the encoding ?yi of
the existentially quantified variables in Pψ such that
ν(µPψ) ⊆ Ptrue. This simulates the failure in find-
ing a satisfying assignment for the corresponding ex-2290

istentially quantified formula in the set Ψunfold. This
implies that ψ evaluates to false. However, whenever
the latter case happens, it means that (µP, µ) is satu-
rated. By construction, it is the case µ̃P 6⊆ G. From
Lemma 1 and Proposition 3, we conclude that C,G 6|=2295

Compl(P).

Appendix F. Proof of Proposition 6

Proposition 6. Deciding the entailment C,G |=
Compl(P), given a set C of completeness statements, a2300

fixed graph G, and a BGP P, is ΠP
2-complete.

Proof. The membership follows immediately from
Proposition 5, while the hardness follows from the re-
duction proof of that proposition, in which the graph is
fixed.2305

Appendix G. Proof of Proposition 7

Proposition 7. Deciding the entailment C,G |=
Compl(P), given a set C of completeness statements,
a graph G, and a fixed BGP P, is NP-complete. The
complexity remains the same even when the graph is2310

fixed.

Proof. The membership relies on Algorithm 1 and
Theorem 1. Recall that the algorithm contains the epg
operator, which performs grounding based on the cru-
cial part over the graph G. However, now since the2315

BGP is fixed, the size of the grounding results is there-

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 31

fore bounded polynomially. Consequently, the only
source of complexity is from the finding of the crucial
part of BGPs, which can be done in NP (note that the
completeness statements are not fixed).2320

In the hardness proof we will see that the hard-
ness follows even when the graph is fixed. The proof
for NP-hardness is by means of reduction from the
3-colorability problem of directed graphs, which is
known to be NP-hard [57]. We encode the problem2325

graph Gp = (V, E), i.e., the directed graph we want
to check whether it is 3-colorable, as a set triples(Gp)
of triple patterns. We associate to each vertex v ∈ V ,
a new variable ?v. Then, we define triples(Gp) as the
union of all triple patterns (?s, edge, ?o) created from2330

each pair (s, o) ∈ E where ?s is the associated variable
of s, edge is an IRI and ?o is the associated variable of
o. Let the BGP Pcol be:

{ (r, edge, g), (r, edge, b), (g, edge, r), (g, edge, b),
(b, edge, r), (b, edge, g) }2335

Next, we create the completeness statement

Cp = Compl(triples(Gp) ∪ Pcol).

Let G be the empty graph. Then, the following claim
holds:

The problem graph Gp is 3-colorable iff2340

{Cp },G |= Compl(Pcol).

Proof of the claim: (⇒) Assume Gp is 3-colorable.
Thus, there must be a mapping µ from all the vertices
in Gp to an element from the set { r, g, b } such that no
adjacent nodes have the same color. This mapping can2345

then be reused for mapping the CONSTRUCT query of
the statement Cp to the frozen version of the BGP Pcol,
which then ensures the completeness of Pcol.

(⇐) We will prove the contrapositive. Assume that Gp

is not 3-colorable. Thus, there is no mapping from the2350

vertices in Gp to an element from the set { r, g, b } such
that any adjacent node has a different color. Consider
the an extension pair (G,G′), where G′ is the color
graph { (r, edge, g), . . . , (b, edge, g) }. From the con-
struction of Cp, it is the case that (G,G′) |= {Cp } but2355

JPcolKG 6= JPcolKG′ . Thus, {Cp },G 6|= Compl(Pcol).

Appendix H. Proof of Proposition 8

Proposition 8. Deciding the entailment C,G |=
Compl(P), given a fixed set C of completeness state-2360

ments, a graph G, and a BGP P, is CoNP-complete.
The complexity stays the same even when the graph is
fixed.

Proof. The membership proof is as follows. It is the
case that C,G 6|= Compl(P) iff there exists a graph G′2365

containing G where:

– (G,G′) |= C, and
– (G,G′) 6|= Compl(P).

We guess a mapping µ over P such that µP 6⊆ G, which
implies that (G,G∪µP) 6|= Compl(P). Then, we check2370

in PTIME (since C is now fixed) the entailment (G,G∪
µP) |= C. If it holds, then C,G 6|= Compl(P) by the
counterexample G′ = G ∪ µP.

In the hardness proof we will see that the hardness
follows even when the graph is fixed. The proof for2375

CoNP-hardness is by means of a reduction from the
3-uncolorability problem of directed graphs. We en-
code the problem graph Gp = (V, E), i.e., the di-
rected graph for which we want to check whether it
is 3-uncolorable, as a set triples(Gp) of triple pat-2380

terns. We associate to each vertex v ∈ V , a new vari-
able ?v. Then, we define triples(Gp) as the union of
all triple patterns (?s, edge, ?o) created from each pair
(s, o) ∈ E where ?s is the associated variable of s,
edge is an IRI and ?o is the associated variable of o.2385

Let the BGP P be:

triples(Gp) ∪ { (a, b, c) }

Let the graph G be the color graph:

{ (r, edge, g), (r, edge, b), (g, edge, r), (g, edge, b),
(b, edge, r), (b, edge, g) }.2390

Next, we create the completeness statement

C = Compl((?x, edge, ?y)).

Then, the following claim holds:

The problem graph Gp is 3-uncolorable iff

{C },G |= Compl(P).2395

Proof of the claim: (⇒) The proof relies on Algo-
rithm 1 and Theorem 1. Assume Gp is 3-incolorable.
By construction, the part triples(Gp) of the BGP P can
be grounded completely due to the statement C, that is,
the crucial part operator cruc returns exactly that part.2400

However, as Gp is 3-uncolorable, there is no map-
ping µ from all the vertices in Gp to an element from
the set { r, g, b } such that no adjacent nodes have the
same color. Thus, the epg operator returns an empty

32 Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries

set as evaluating triples(Gp) over G yields the empty2405

answer. This means that the grounding does not out-
put any BGP that needs to be checked anymore for
its completeness. Hence, it is the case that {C },G |=
Compl(P).

(⇐) We will prove the contrapositive. Assume that2410

Gp is 3-colorable. Thus, there must be a mapping µ
from all the vertices in Gp to an element from the
set { r, g, b } such that no adjacent nodes have the
same color. Take such a mapping µ arbitrarily. By con-
struction, the part triples(Gp) of the BGP P can be2415

grounded completely due to the statement C, that is,
the crucial part operator cruc returns exactly that part.
Since the graph Gp is 3-colorable, we can then reuse
the mapping µ for mapping triples(Gp) to G. The epg
operator results therefore include that mapping, which2420

is then applied to the remaining part of P, that is,
the triple pattern (a, b, c). Note that the triple pattern
consists only of constants, so the mapping application
has no effect. Now we have to check the complete-
ness of (a, b, c). As no completeness statements can be2425

evaluated over that remaining part, it is then the case
that we are already saturated for (a, b, c). By Theo-
rem 1, the BGP P can be guaranteed to be complete
iff all saturated instantiations wrt. {C } are in G. How-
ever, clearly (a, b, c) is not in G. Thus, we have that2430

{C },G 6|= Compl(P).

Appendix I. Proof of Proposition 9

Proposition 9. Deciding the entailment C,G |=
Compl(P), given a fixed set C of completeness state-
ments, a graph G, and a fixed BGP P, is in PTIME.2435

Proof. The proof relies on Algorithm 1 and Theo-
rem 1. Recall that the algorithm contains the epg op-
erator, which performs grounding based on the crucial
part over the graph G. However, now since the BGP
is fixed, the size of the grounding result is therefore2440

bounded polynomially. Moreover, now that the com-
pleteness statements are fixed, the crucial part can then
be found in PTIME. Hence, the overall procedure can
be executed in PTIME.

Appendix J. Proof of Theorem 22445

Theorem 2. (ANSWER SOUNDNESS) Let G be a
graph, C a set of completeness statements, P a graph
pattern, and µ ∈ JPKG a mapping. Then the following
are equivalent:

1. C,G |= Sound(µ, P);2450

2. C,G |= Compl(µPi), for all Pi ∈ P−.

Proof. (⇐) Let µ ∈ JPKG be a mapping. Suppose that
for all Pi ∈ P−, we have C,G |= Compl(µPi). Take
an extension pair (G,G′) satisfying C. We will show
that µ ∈ JPKG′ . Since µ ∈ JPKG and G ⊆ G′, it holds2455

that µ ∈ JP+KG′ . It is left to show that for all Pi ∈
P−, we have JµPiKG′ = ∅. Take an arbitrary Pi ∈ P−.
The inclusion JµPiKG′ ⊆ JµPiKG holds because C,G |=
Compl(µPi). Moreover, the equality JµPiKG = ∅ holds
because µ ∈ JPKG. Hence, it is the case that JµPiKG′ =2460

∅.
(⇒) We prove the contrapositive. Suppose there is a
BGP Pw ∈ P− (‘w’ for witness) such that C,G 6|=
Compl(µPw). We will show that C,G 6|= Sound(µ, P).
Since it is the case that C,G 6|= Compl(µPw), there2465

must be a mapping ν such that: (i) dom(ν) = var(µPw);
(ii) (G,G ∪ νµPw) |= C; and (iii) νµPw 6⊆ G. This im-
plies that ν 6∈ JµPwKG and ν ∈ JµPwKG∪νµPw . Now, we
will show that (G,G ∪ νµPw) 6|= Sound(µ, P). Since
ν ∈ JµPwKG∪νµPw , it holds that µ 6∈ JPKG∪νµPw . On2470

the other hand, it is the case that µ ∈ JPKG from our
assumption. Thus, (G,G ∪ νµPw) 6|= Sound(µ, P).

Appendix K. Proof of Proposition 10

Proposition 10. For a set C of completeness state-
ments and BGPs P and P′, it is the case that

C |= Compl(P | P′) iff P̃ ⊆ TC(P̃ ∪ P̃′).

Proof. (⇒) Suppose that C |= Compl(P | P′). By def-2475

inition of the entailment, for all (G,G′) |= C, the in-
clusion J(var(P), P ∪ P′)KG′ ⊆s JPKG holds. Consider
the extension pair (G,G′) where G = TC(P̃ ∪ P̃′) and
G′ = P̃∪P̃′. By construction, (G,G′) |= C holds. From
our assumption, it follows that J(var(P), P∪P′)KG′ ⊆s2480

JPKG. We define the operator πW(µ) by projecting the
mapping µ to the variables in W. By construction, we
have that πvar(P)(ĩd) ∈ J(var(P), P ∪ P′)KG′ where ĩd
is the freeze mapping of the BGP P∪ P′ (as defined in
Subsection 2.1). From the set inclusion, it follows that2485

πvar(P)(ĩd) ∈ JPKG. This implies that πvar(P)(ĩd)P =

P̃ ⊆ G = TC(P̃ ∪ P̃′).
(⇐) Assume P̃ ⊆ TC(P̃ ∪ P̃′). By this assumption
and the prototypicality of P̃∪ P̃′, which represents any
possible graph satisfying P ∪ P′, it is the case that2490

C |= Compl(P | P′).

Darari et al. / Ensuring the Completeness and Soundness of SPARQL Queries 33

Appendix L. Proof of Lemma 2

Lemma 2. Let C be a set of completeness statements
and P a graph pattern. Then C |= Sound(P) provided
that C |= Compl(Pi | P+) for all Pi ∈ P−.2495

Proof. Assume that for all Pi ∈ P−, it is the case
that C |= Compl(Pi | P+). Take any extension pair
(G,G′) |= C and suppose there is a mapping µ ∈ JPKG.
We want to show that µ ∈ JPKG′ . By G ⊆ G′, it holds
that µ ∈ JP+KG′ . Thus, it is left to show that for all2500

Pi ∈ P−, it is the case that JµPiKG′ = ∅.
Take any negation part Pi. By C |= Compl(Pi |

P+) and (G,G′) |= C, it is the case that (G,G′) |=
Compl(Pi | P+). Consequently, by J(var(Pi), Pi ∪
P+)KG′ ⊆s JPiKG and JµPiKG = ∅, it must be the case2505

that JµPiKG′ = ∅. As Pi was arbitrary, it is the case that
µ ∈ JPKG′ .

Appendix M. Proof of Theorem 3

Theorem 3. (PATTERN SOUNDNESS) Let C be a set
of completeness statements and P a graph pattern in2510

NRF. Then the following are equivalent:

1. C |= Sound(P);
2. C |= Compl(Pi | P+) for all Pi ∈ P−.

Proof. (⇐) This is a direct consequence of Lemma 2.
(⇒) We give a proof by contrapositive. Suppose there2515

is a BGP Pw ∈ P− (‘w’ for witness) such that C 6|=
Compl(Pw | P+). By Proposition 10, it is the case that
P̃w 6⊆ TC(P̃w∪ P̃+). Let us prove that for the extension
pair (G,G′) = (P̃+ ∪TC(P̃w ∪ P̃+), P̃w ∪ P̃+), it is the
case that (G,G′) |= C, but (G,G′) 6|= Sound(P).2520

By the definition of TC , it holds that (G,G′) |= C.
We now have to show that (G,G′) 6|= Sound(P). By
construction, ĩd 6∈ JPKP̃w∪P̃+ = JPKG′ where ĩd is
the freeze mapping wrt. P+. We will show that ĩd ∈
JPKP̃+∪TC(P̃w∪P̃+) = JPKG.2525

By construction, ĩd ∈ JP+KP̃+∪TC(P̃w∪P̃+). Thus, it
is left to show that for every BGP Pi ∈ P−, it is the
case JĩdPiKP̃+∪TC(P̃w∪P̃+) = ∅. Due to the consistency
of P and the non-containment property between dif-
ferent negation parts, due to the absence of redundant
negations in an NRF graph pattern, there is no negation
part P j 6= Pw such that:

JĩdP jKP̃+∪TC(P̃w∪P̃+) 6= ∅.

Now, it is left to show that for the BGP Pw, it also holds

JĩdPwKP̃+∪TC(P̃w∪P̃+) = ∅.

However, this holds from the consistency of P and
the minimality of negated patterns in an NRF graph
pattern. Thus, we have shown that ĩd 6∈ JPKG′ but
ĩd ∈ JPKG, serving as a counterexample for (G,G′) |=
Sound(P).2530

	Introduction
	Preliminaries
	RDF and SPARQL
	Completeness Statements

	Motivation and Formal Framework
	Query Completeness
	Motivating Scenario
	Formalization of Completeness Reasoning

	Query Soundness
	Answer Soundness
	Pattern Soundness

	Formalization of Soundness Reasoning

	Checking Query Completeness
	Formal Notions
	Algorithm
	Simple Practical Optimizations

	Complexity

	Checking Query Soundness
	Checking Answer Soundness
	Checking Pattern Soundness

	Optimizing Completeness Checking
	Data-agnostic Completeness Checking
	Data-aware Completeness Checking

	Experimental Evaluation
	Query Completeness Evaluation
	Experimental Setup
	Results and Discussion

	Query Soundness Evaluation
	Experimental Setup
	Experimental Results and Discussion

	Related Work
	Discussion
	Conclusions and Future Work
	References
	Appendix A. Proof of Proposition 1
	Appendix B. Proof of Proposition 3
	Appendix C. Proof of Lemma 1
	Appendix D. Proof of Theorem 1
	Appendix E. Proof of Proposition 5
	Appendix F. Proof of Proposition 6
	Appendix G. Proof of Proposition 7
	Appendix H. Proof of Proposition 8
	Appendix I. Proof of Proposition 9
	Appendix J. Proof of Theorem 2
	Appendix K. Proof of Proposition 10
	Appendix L. Proof of Lemma 2
	Appendix M. Proof of Theorem 3

