Semantic Web 0 (0) 1 1
10S Press

Decentralized Messaging for RDF Stream
Processing on the Web

Jean-Paul Calbimonte ",

& Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland, HES-SO
Valais-Wallis, Sierre, Switzerland
E-mail: jean-paul.calbimonte @hevs.ch

Abstract. The presence of data streams on the Web is constantly increasing in terms of volume and relevance, for a large number of
applications domains and use-cases. As a consequence, there is a growing need for coherent data and processing models for streams,
including data and metadata semantics that can help integrating, interpreting, and reusing them. RDF Stream Processing (RSP)
introduced theoretical foundations and concrete technologies to deal with these issues, ranging from continuous query processors
to stream reasoners. However, most of these efforts lack support for communication and interaction at the Web level. This paper
proposes a decentralized model and implementation, RSP actors, for enabling Web interactions among RSP engines, based on the
actor paradigm. The RSP actors proposed in this work, use a message-passing mechanism for asynchronous communication of
RDF streams and metadata, and is designed to encapsulate the functionalities of existing RSP query engines, Complex Event
Processors, or stream reasoners. Furthermore, we have used and extended the Linked Data Notifications recommendation of W3C,
as a building block for a specific HTTP-based implementation of the model. The RSP actors code-base is open-sourced, and
provides three concrete implementations of well known RSP/stream reasoners developed by the RSP community, to show the

feasibility of the approach.

Keywords: RDF Streams, Stream Processing, Linked Data Notifications, Actors, Semantic Streams

1. Introduction

Data on the Web is increasingly dynamic, and the
velocity at which it is produced, processed and con-
sumed, is raising new challenges to the research com-
munity. Examples are prevalent in different domains.
For instance, for wearable and fitness data management,
streams of physiological data, along with user annota-
tions, flow from IoT devices to Web services and cloud
processing environments in a continuous manner [1].
Similarly, for use cases in energy production and con-
sumption [2], large and heterogeneous streams of data
are generated on a daily basis, at the same time that inte-
gration and query processing mechanisms are needed to
produce valuable insights. Also on the financial domain,
events processing is used to help in decision making
and to analyze trends in the stock market [3]. Other
countless examples could be drawn from domains such

*Corresponding author. E-mail: jean-paul.calbimonte @hevs.ch.

as environmental monitoring, criminality surveillance,
robotics, or personalized health, to name some. They
all share the need for technical solutions to cope with
the dynamicity and velocity of data streams, and the
complexity of managing heterogeneity. In addition, they
require these aspects to be considered in the context of
the Web, which is inherently decentralized, distributed,
and linked.

This general challenge has gathered the attention of
the Web research community, which in the last decade
answered through different initiatives that can be placed
under the Stream Reasoning umbrella [4]. Processing
models, query languages, stream systems, stream rea-
soning engines, among others, have been produced as
a result, with a certain number of common character-
istics: (i) the usage of foundational standard seman-
tic models such as RDF [5] and OWL [6], with ex-
tensions for the case of data streams; (ii) the defini-
tion of extensions for standard query processing lan-
guages (e.g. SPARQL [7]); and (iii) the design of al-

1570-0844/0-1900/$35.00 © 0 — IOS Press and the authors. All rights reserved

mailto:jean-paul.calbimonte@hevs.ch
mailto:jean-paul.calbimonte@hevs.ch

2 J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web

gorithms and techniques for optimizing and scaling
stream processing. Examples of the first aspect include
RSP-QL [8], LARS [9], and RSEP-QL [10], which
provide foundational models that capture and repre-
sent data streams and/or complex events, within RDF.
For the second aspect, different query languages such
as CQELS [11], EP-SPARQL [12], C-SPARQL [13],
SPARQLStream [14], TEF-SPARQL [15], and oth-
ers, have been designed and implemented, focusing
on multiple (and to some extent overlapping) cases
of RDF stream query processing. Finally, the third as-
pect includes query optimization techniques[11, 16],
stream materialization[17], Ontology-based data access
approaches[18], ontology evolution [19], etc.

Even if this family of scientific outcomes constitutes
anotable progress, some of the original challenges were
not sufficiently addressed. A key issue that falls in this
category is the availability of these RDF streams (and
their processing engines and reasoners) on the Web,
and through Web standards. In the same way that the
Linked Data [21] principles provided general guidelines
to publish and consume RDF stored data, emerging ap-
proaches have started to propose analogous solutions
for the provision of RDF streams on the Web [22-24].
However, these ideas still need to be materialized into
concrete specifications, and consequently implementa-
tions that validate the overall concept.

In this paper, we propose a decentralized model
for exposing RDF streams and RDF Stream Process-
ing (RSP) engines on the Web, based on the actor
paradigm [25]. This abstraction provides a well-defined
framework for message exchange among RSP engines,
which can be encapsulated as actors that receive/send
RDF stream messages, and perform different types of
processing over them. Furthermore, we show how this
model can be further specialized for the case where
the actor interactions are governed by a concrete pro-
tocol, more precisely the Linked Data Notifications
(LDN) [26] recommendation of W3C. Through this
protocol, actors are characterized as either senders, re-
ceivers and consumers of notifications —in this case
RDF stream items— using standard RDF vocabularies
and a well-defined set of HTTP-based interactions.

The RSP actors model proposed in this work, pro-
vides a simple but effective way of defining interactions
among multiple RDF stream processors, reasoners or
producers, allowing the definition of communication
channels and workflows on the Web. Therefore, this
model fills an important gap for RSP engines, given that
in most cases, these engines stop at the processing level,
without indicating how the streams would be fed, and

how the processing results would be consumed on the
Web. This scenario follows the vision presented years
ago in [20], as depicted in Figure 1, and we believe that
the RSP actors model and protocol presented in this
paper will contribute to its achievement. In this con-
text, the usage of LDN as a standard protocol for send-
ing, receiving and consuming RDF stream elements,
opens the possibility of enabling wide-interoperability
of RSP engines, regardless of their implementation. As
described in this paper, and following a first assess-
ment on the matter [27], the usage of LDN with cer-
tain extensions has a certain potential for adoption as a
Web-based interchange mechanism for RDF streams.

To validate the feasibility of this approach, we pro-
vide an openly available implementation of the actor-
based model, which includes a generic interface that
can be specialized for concrete RSP engines and/or
stream reasoners. As examples, we provide implemen-
tations of interfaces for well-known engines (CQELS
and C-SPARQL), as well as an OWL-API-based stream
reasoner (TrOWL [28]). We also include in the open-
sourced package the LDN implementation , which ex-
tends the actor interfaces through an asynchronous
HTTP fagade.

The remainder of the paper is structured as follows:
we introduce basic definitions and concepts in Section 2.
Then, we describe in details the RSP actors model in
Section 3. We provide details on the LDN-based com-
munication in Section 4. Implementation details are pre-
sented in Section 5, and evaluation results in Section 6.
Section 7 describes related works before a discussion
in Section 8 and conclusions in Section 9.

2. Preliminaries

The foundations of the work presented in this paper
are: RDF stream data and processing models, the actor
paradigm, and Linked Data Notifications. We briefly
introduce them in the following sections.

2.1. RDF Stream Processing

RDF Stream Processing (RSP) emerged as a response
to the increasing need to model, integrate, query, rea-
son upon, and process streams of data using semantic-
enabling models such as RDF. RDF streams can be
characterized as potentially infinite time-ordered se-
quences [29] of RDF data elements. Each of these ele-
ments may be annotated with a timestamp, which could
be a point-in-time annotation, or an interval [30]. Al-

J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web 3

Wave

RDF stream

/\ RDF stream
RDF stream
Triple CSPARQ'-/\
RDF stream

Morph
streams

RDF stream ‘ —/

Fig. 1. Network of RSP actors communicating and sharing RDF streams with one another. The vision of a decentralized Web of streams requires

common agreements to enable interoperability. [20].

though different variations of this RDF model have
been used in the literature, the W3C RSP Community
Group' has defined an abstract model that we will refer
to in this paper?. This model introduces the notion of
an RDF stream as a sequence of timestamped graphs.
Each graph can have different time annotations, iden-
tified through timestamp predicates. Considering the
case where each graph has a single time annotation,
an RDF stream S is defined as a sequence of pairs
(G, t) where G is an RDF graph, and 7 is the timestamp:
S = (Gl, ll), (Gz,lg), (G3, lg), (G4, l4), An RDF
stream can be identified by an IRI, allowing it to be
referenced for querying, reuse, reasoning, integration,
etc.

One of the first types of processing studied for RDF
streams is querying. Different languages have been pro-
posed with this purpose, usually extending SPARQL [7]
with features such as: continuous querying, windowing,
CEP operators, etc. Examples of such RSP query lan-
guages and engines include C-SPARQL [31], SPAR-
QLStream [14], EP-SPARQL [12], Strider [32], or
CQELS [11], which share certain features, but differ
on a number of syntax and semantics aspects. As a con-
crete example of these languages, the CQELS query in
Listing 1 requests the average temperature (avgtemp)
grouped by sensor in the last 2 hours, as recorded by the
stream identified as http://hevs.ch/streams/s1.

PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX ex: <http://example.org/vocab#>
PREFIX qudt: <http://qudt.org/l.1/schema/qudt#>
PREFIX cf-property: <http://purl.oclc.org/NET/ssnx/cf/cf-
property#>
SELECT (AVG(?temp) AS ?avgtemp) ?sensor
WHERE {
STREAM <http://hevs.ch/streams/s1> [RANGE 2 HOUR] {
?0bs sosa:hasResult ?result;
sosa:observedProperty cf-property:air_temperature;

11'1ttps ://www.w3.org/community/rsp/
2https ://w3id.org/rsp/abstract-model

sosa:madeBySensor ?sensor.
?result qudt:numericValue ?temp. }
} GROUP BY ?sensor

Listing 1: CQELS: Query the average temperature in
the last 2 hours.

Another prominent form of stream processing is stream
reasoning. Different approaches have addressed the
challenge of continuously providing entailments over
ontologies that dynamically change over time, with ax-
ioms that are added and removed constantly. As it is
seen in Figure 2, an ontology may evolve over time, rep-
resented as consecutive O1, O, At each time, new
ontology axioms can be added or removed form the
ABox or TBox, and the corresponding entailments must
be produced. Incremental materialization, truth mainte-
nance systems, OBDA and other techniques [18, 28, 31]
have been developed in order to address these cases
in stream reasoners. Nevertheless, both RSP engines,

HumiditySensor C Sensor

+add axioms

/ﬂ
_/v
- remove axioms
HumldltySensor(sensorl)

Time

Fig. 2. Ontology stream: axioms are added and removed over time.

including those with CEP support, and stream reason-
ers, have mostly been designed without much consid-
erations of how they integrate and interact with other
entities on the Web. As explained in detail in Section 7,
different efforts have emerged in order to fill this gap,
although mostly targeting RDF stream publication, and
architectures that need to be further specified and im-
plemented.

https://www.w3.org/community/rsp/
https://w3id.org/rsp/abstract-model

4 J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web

2.2. The Actor Model

Actors were first thought as a model for concurrency
computing, starting form the seminal work of Hewitt et
al. [25]. Later on, this theory evolved and became the
foundation of several implementations in different pro-
gramming languages. In essence, actors are lightweight
objects that encapsulate a state and a behavior. These
objects share no mutable state among them, and in fact
the only way to communicate is through message pass-
ing (See Figure 3). To manage the incoming messages,
each actor has a mailbox, which serves as a queue to
buffer and sequentially process them, as specified by its
inherent behavior. This actor behavior may prescribe
to modify its internal state, send messages to other ac-
tors, or create new actors. The asynchronous message-

=3 .
1
|
. message H

Actor ' i

Actor

Fig. 3. Actors and their message-passing interactions.

passing communication that governs actor interactions
is a key feature that allows providing a loose-coupled
architecture where blocking operators are avoided, as
each actor is solely responsible of maintaining its lo-
cal state. These characteristics are particularly inter-
esting for stream processing systems, especially for
those where high scalability and parallel processing of
streams are needed. Immutable state, no-sharing and
asynchronous processing are common requirements for
this type of systems, and examples of implementations
that use some of these principles include programming
languages such as Scala, Erlang, C#, etc.

2.3. Linked Data Notifications

The Linked Data Notifications (LDN) [26] W3C Rec-
ommendation? is a recent standardization effort for de-
centralized data interchange of notifications on the Web.
The protocol specified by LDN has the potential to be

3https ://www.w3.0org/TR/1dn/

used for virtually any type of notifications, including
social media activity, sensor updates, or document up-
dates, to name some examples. Even though the adop-
tion of this recommendation is still to be assessed, its
generality and simplicity make it an interesting option
for different types of applications on the Web, for which
extensions and/or profiles could be defined.

The LDN protocol defines three basic types of ac-
tors: sender, receiver, and consumer, and the notifica-
tions refer to (or are about) a certain target. The target
is detached of its inbox, which is the endpoint where
notifications can be consumed or sent. As the name
reflects it, senders may send notifications to an inbox,
receivers may accept them and make them available,
and consumers may retrieve them. The fact that a tar-
get is not necessarily attached to its inbox, makes it
possible to separate a Web resource from the endpoint
where notifications will be handled. As it can be seen
in Figure 4 (left), a discovery process allows senders
and consumers to retrieve the inbox location through
a simple GET/HEAD HTTP request. Once the inbox lo-
cation is known, senders can POST notifications to it,
and consumers may GET the references to notifications
contained in the inbox (see Figure 4, right).

The design principles of LDN imply that notifica-
tions are not merely transient messages that flow within
a system, but Web resources that can be identified, ac-
cessed and shared across applications. In this way, no-
tifications that were posted by one application can be
retrieved by a different one, without the need of any
inter-dependence between the two, or the notifications
themselves, which reside in the inbox (Figure 5). The
LDN specification does not provide further details on
certain aspects, such as how the inbox contents should
be handled, how notifications should be persisted, or
how optimizations could be made for accessing and
producing them. This openness leaves certain freedom
for implementers to use it as a core interaction model,
upon which specific formats, profiles and constraints
can be added.

3. RSP Actors: Decentralized Communication

In order to successfully make RDF streams available
on the Web, a recent work [23] outlined a set of re-
quirements, some of them derived from the more gen-
eral guidelines for stream processors [33]. These can
be summarized as: (1) prioritizing active paradigms
for data exchange, (2) combination of streaming and
stored data, (3) availability, distribution and scalability,

https://www.w3.org/TR/ldn/

J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web 5

GET/HEAD GET/HEAD

Receiver
%

GET

Sender |e—- T -[Consumer] [Sender] notifications™

Consumer

Fig. 4. LDN. Left: Discovery process of a target inbox from a sender and consumer. Right: sending and retrieving notifications from an LDN

inbox.

Receiver

Inbox

Consumer

GET

Idp:contains

notifications

Fig. 5. Retrieving individual notifications from a receiver in LDN.

(4) wide range of stream operations, (5) availability of
stream metadata, (6) support for a variety of streams,
and (7) reuse of existing protocols and standards. While
we endorse these requirements in general, in this pa-
per we emphasize the need for guaranteeing that RSP
engines interact among each other in a decentralized
manner, following the nature of the Web. This implies
a departure from the usual setting in previous RSP ap-
proaches, where a server-centric paradigm was usually
followed. This is reflected, for instance, on the inter-
action patterns of a continuous query workflow, where
the entire focus is solely on the query engine server.

We propose a model centered on what we call RSP
actors, i.e. autonomous agents that can be deployed in
a distributed fashion, and that are able to communicate
and exchange RDF streams and their corresponding
metadata (Figure 6). As described in the actor model
(Section 2.2) each RSP actor encapsulates a state and
behavior, and manages incoming messages through its
inbox. Each actor may act as a sender or receiver of two
main types of messages:

— RDF stream elements: these are RDF triples or
graphs from a given RDF stream, as defined in Sec-
tion 2.1. The stream delivery of these messages,
either pulled or pushed, can be applied in different
scenarios, e.g. feeding a stream, delivering query
answers, pushing reasoning entailments, etc.

— RDF stream metadata: these are essentially meta-
data exchange messages required in order to per-
form tasks, such as: retrieving a stream description,

declaring and RDF stream, filter a set of stream
endpoints, declaring a query, etc.

Each actor has a unique identifier that can be used to
find it, and it can have a set of endpoints, which can be
used to reach the RSP actor resources, i.e. its streams
and respective contents. The state of each RSP actor
includes the metadata of the RDF streams it manages,
as well as other information relative to them, i.e. back
ground RDF datasets, RDF stream buffers, ontology
TBoxes, RDF constraint rules, etc. The behavior of each
actor defines how it proceeds at the arrival of incoming
messages. This typically translates into the implemen-
tation of internal processing mechanisms, such as con-
tinuous query processing, complex event processing,
stream reasoning, etc. To do, so the actor may emit new
messages (e.g. response to a query), create new actors
(e.g. a pushing actor, or a subscriber handler, etc.), or
schedule other actions (see Figure 6).

Regarding the requirements mentioned previously,
this abstract model addresses them in the following
ways. For requirement 1, it natively supports asyn-
chronous message passing, including the ability to push
streams of messages if necessary. Concerning the com-
bination of streams and stored data, the model takes a
no-sharing approach for state information, so in princi-
ple any stored RDF data is only locally accessible and
modifiable. The only allowed procedure to exchange it
is through message delivery, which is fundamental to
also guarantee scalability and distribution (requirement
3). The behavior of each RSP actor allow sufficient
freedom and flexibility to implement different types of
operators and processing mechanisms (requirement 4),
while the explicit definition of RDF stream metadata
covers requirement 5. The variety of streams is not re-
stricted by the model (requirement 6), and the usage of
standards, as we will see later with the usage of HTTP
and LDN, is also advocated.

3.1. Messages and Notifications in RSP Actors

The RSP actor model places special importance to
the messages that are exchanged, as they are the only

6 J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web

mailbox

L T

-_————

metadata
buffering

cache
background RDF
ontology TBox

1RSP Actor!
.]

[EEp——

T
1
|
. 1 X ' message dispatch
1 behavior [g RDF stream pull
_____ N : '\.\N‘ TTTTN fll RDF stream push
! I/\ RSP Actor — : - RsP querying
: h . N e e e - '\N | reasoning
| 1
1 RDF stream 1
! RSP Actor! metadata '\R_SE écfo:l

—_———_——

Fig. 6. RSP Actors. Eahc actor encapsulates a state and behavior, and manages incoming messages through its mailbox.

means for sharing information among them, and co-
ordinating their interactions. The model takes special
considerations about how the messages (also called no-
tifications) are handled, given the differences of dealing
with streaming vs. stored RDF data.

Format & vocabularies. Messages in RSP actors fall
under two fundamental categories: RDF stream ele-
ments, and RDF stream metadata. In both cases RDF
is the underlying data model used to represent the in-
formation that is exchanged, although there are min-
imal expectations on both cases. For RDF stream el-
ements, these are expected to conform to the general
RDF stream abstract model, as described by the W3C
RSP Community Group (see Section 2.1). However,
this abstract model provides high flexibility concerning
the use of a particular vocabulary (e.g. using the SSN
ontology for representing sensor streams, the Event on-
tology for streams of events, or the PROV ontology for
provenance descriptions). Concerning the metadata, it
would be advisable to provide a standard vocabulary
for RDF stream descriptions, as proposed in [23, 24],
although this goes beyond the scope of this paper.

Message storage. RSP engines are designed in such a
way that RDF stream elements flow through them, and
produce continuous results. Therefore, the stream is not
stored anywhere, at least not in the way it is done in
a traditional database or data store. In consequence, if
RDF stream elements are matched to messages in the
RSP actor model, the it follows that these messages are
bound to fade as the time passes.

Message resolvability. As a consequence of the pre-
vious observation, it is hard to allow stream messages
to be retrievable after they have been processed by an
RSP actor. This differs to other RDF/Linked Data use

case where data dynamics do not follow a streaming
paradigm. As we will see later, this leads to the intro-
duction of input and output RDF streams, which restrict
RSP actors to either only write or read from a stream. In
any case, resolving a particular stream element is of less
importance in the context of RSP, than resolving the
current contents of a stream, or a view over a stream.

Push message delivery. While on traditional Web stan-
dards, pulling is the primary method for delivering data
(e.g. through HTTP GET/POST requests), it is not al-
ways the most suitable option for data streams. As it will
be described later, our proposed RSP actor implemen-
tation provides alternative delivery methods, allowing
the usage of WebSocket or HTTP Server-sent-events.
The abstract description of the RSP actor leaves the
message delivery method open for either of the options.

Querying. Given the ubiquity of query access pat-
terns in RDF stream processing, it would be natural to
include explicit interaction specifications for register-
ing standing queries, as well as accessing their results
as streaming notifications. This applies not only for
window-based continuous queries, but also for Complex
Event Processing, and for certain use cases in stream
reasoning.

3.2. Stream Receivers, Senders and Consumers

The RSP actor model specifies three main types of
actors: Stream Receiver, Stream Sender, and Stream
Consumer. An RSP actor may play the role of one or
all of these types.

J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web 7

3.2.1. Stream Receiver

The Stream Receiver is a profile for an RSP actor that
is capable of receiving and processing the following
types of messages:

— RetrieveAllStreams: to request metadata of
all RDF streams registered in the receiver actor.

— CreateStream: to request the declaration of an
RDF stream. This message includes the metadata
of the RDF stream to be created.

— RetrieveStream: to request for the metadata
of a given RDF stream in the receiver actor. The
requested stream is identified by its IRI.

— SendStreamItem: to add a stream element to
an existing RDF stream residing in the requested
receiver actor. This message includes the stream
element itself, as well as the RDF stream IRI.

— RetrieveStreamItem: to request for a specific
stream element. The message includes the IRI
of the RDF stream and the element itself. As in
stream systems and element might be volatile, in
the sense that it might not be de-referenceable af-
ter some time, this message includes also views
over stream elements (e.g. based on time recency,
etc.)

— PushStreamItems: to request for stream items
to be pushed back. The message includes the RDF
stream IRL.

— CreateQuery: to request for a continuous query
to be registered. The query includes the reference
to the stream IRIs to be used, and the IRI of the
resulting stream of responses.

Following the actor model, the Stream Receiver will
act upon arrival of any of the above messages to its
inbox. We show in Algorithm 1 a sketch of how the
actor reacts to these messages. The receive method of
the actor is the interface used to indicate what action to
take in each case.

The steps taken are self-explanatory in most cases.
The Stream Receiver calls internal methods, for in-
stance to create a stream (postInputS tream) or to re-
trieve a stream item (retrieveS treamltem). In practice
these methods will be implemented on top of exiting
RSP, CEP or stream reasoners, binding their native im-
plementations to this interface.

The Stream Receiver can manage a number of RDF
streams registered within it. Streams may be of two
different kinds:

— Input streams: these streams are essentially meant
to only receive new items, but are not intended to

Algorithm 1 Stream Receiver: receive function
1: procedure RECEIVE(msg)

2: sender < msg.sender

3: switch msg:

4: case RetrieveAllStreams:

5: send(getAllS treams) to sender

6: case CreateStream:

7: ack < postInputS tream(msg.body)

8: send(ack) to sender

9: case RetrieveStream:

10: send(getS tream(msg.uri) to sender

11: case SendStreamltem:

12: postS treamItem(msg.uri, msg.body)
13: case RetrieveStreamltem:

14: send(retrieveS treamltem(r.uri)) to sender
15: case PushStreamlItems:

16: handler < pushS treamltems(msg.uri)
17: handler.onReceive(data) :

18: send(data) to sender

19: case CreateQuery:
20: ackgetspostQuery(msg.body)
21: send(ack) to sender

be consumed by other actors other than the one
that hosts it. Examples of such streams are those
used as input for RSP queries: other RSP actors
can feed these streams, but the query processor on
the Stream Receiver is the only one that consumes
it.

— Output streams: these are those RDF streams that
are meant to be consumed by other RSP actors,
but fed only by the actor that hosts it. An example
of such stream is the continuous result of an RSP
query engine.

RDF streams can also be available as both input and
output.

3.2.2. Stream Sender

This type of RSP actor characterizes those interac-
tions related to sending RDF metadata , as well as RDF
stream contents to another actor. The sender defines the
following basic operations:

— postStream: send RDF stream metadata to de-
clare it on a Stream Receiver. The sender emits a
CreateStream message through this operation.

— postStreamltem: send and RDF stream element to
an (input) stream on a given Stream Receiver. This
is typically a feed stream message.

— postQuery: register a query on a Stream Receiver
with a CreateQuery message.

8 J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web

Apart from these operations, a sender must also be
able to discover the Stream Receiver endpoints. For
this, it has a discover operation, which for a given
stream IRI, requests the endpoint or endpoints avail-
able for sending (or consuming) stream elements. The
sender also has operations to retrieve the metadata of
a given RDF stream, or all available RDF streams on
areceiver (getStream, and getAllStreams, respec-
tively). These operations are common to a Stream Con-
sumer, described below.

3.2.3. Stream Consumer

A Stream Consumer characterizes RSP actor inter-
actions relative to receiving RDF stream data. It essen-
tially defines two operations:

— getStreamltem: requests to consume an RDF
stream item. Implementations of this operation
can derive in different strategies for retrieving
RDF stream contents. Given the dynamicity of
streams, it is usually unfeasible to collect them
one by one through their identifiers. Alternatively,
these implementations may rather rely on stream
views that may capture, for example, the latest
stream items on a given window of time, or the
ones complying to some filtering criteria.

— pushStreamltems: requests stream items to be
pushed to the consumer. As opposite to the previ-
ous operation, which is essentially poll-based, this
one requests the receiver to act as a sender as soon
as there is an RDF stream element available for
consumption.

As an example consider the Stream Receiver de-
picted in Figure 7. First, it receives a message on its
inbox requesting the metadata of certain stream. The
receiver dispatches back the metadata to the requester,
which then post new elements to this stream. Then a
consumer my also request a specific stream item to the
receiver, through a corresponding message. To make
these interactions possible, the actors need to have first
the addresses of the other actors, and if necessary, dis-
cover their endpoint locations.

4. LDN for RSP actors

In this section, we show how RSP actors can be
fronted by an LDN layer, used as a generic protocol
through which RSP engines could share RDF stream
data among them in the form of notifications. In this
approach we take into account the considerations made

in the previous section, while keeping most of the prin-
ciples behind LDN. We organize the presentation of our
approach, according to its key aspects.

Stream identification. An RDF stream is uniquely
identified by an IRI. This IRI is a Web resource, and
it can be used to obtain information about the stream:
what endpoints are available to retrieve its data, or to
push data to it. An RDF stream is therefore a read-
/write Web resource detached from potentially multiple
endpoints used to interact with its contents.

Endpoint discovery. The endpoint(s) of an RDF
stream are discoverable by performing a GET operation
over the stream IRI, e.g.:

GET http://hevs.ch/streams/streaml

The response should include metadata about the stream,
including the endpoint information. For instance, if
the response was requested with a JSON-LD header, it
could include an inbox URI, as in LDN:

{ "Qcontext": "http://www.w3.org/ns/ldp",
"@id": "http://hevs.ch/streams/streaml",
"inbox": "http://hevs.ch/streams/streaml/inbox" }

Similarly, this type of discovery could be performed
using a HEAD request and a link HTTP header, as in
LDN (See Figure 8).

Stream input and output. The inbox, as described in
LDN, allows both senders and consumers to post and
retrieve notifications through that web resource. In the
case of RSP actors with LDN, we propose to constraint
the inbox and specialize it in two distinct types: an
input inbox and an output inbox. The rationale behind
this choice is that some streams are published on the
Web only with the intention of receiving notifications
(i.e. to be fed) by senders. In this case the receiver is
expected to process these streaming notifications, so
that the stream is not meant to be consumed by other
actors on the Web. Conversely, other streams are only
meant to be consumed, as they are produced by an RSP
engine. This is the case, for instance, of the results of
a continuous query, or the output of a stream reasoner.
As s result, the discovery process is similar, only that
now instead of simply returning an inbox endpoint, the
RDF stream may reference input and output endpoints.
As an example, an input stream would be exposed as:

{ "@context": "http://w3id.org/rsp/ldn-s",
"@id": "http://hevs.ch/streams/streaml",
"input": "http://hevs.ch/streams/streaml/input" }

J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web 9

mailbox

treamMetadata

Stream !
Sender N

NS —— = 14 ~

1
1
1
[l sendstreamitem :
1

o —

behavior

StreamReceiver /
rd

_____ . RetrieveStream . RetrieveStreamltem - = === =~
/ / &
S = ()

1
| Stream
'\ Consumer

1
|
[_mamox]
|
|
|
|
1

T
1
: [l streamitem
|
|

Fig. 7. RSP Stream Receiver, processes incoming messages from the sender that posts RDF stream items, and sends RDF stream items to a

consumer.

GET/HEAD GET/HEAD

RSP Sender |« il e RSP Consumer

Fig. 8. The discovery interactions follow those of LDN: endpoint
information is available at the target, which is an RDF stream.

As it is specified in LDN, this type of write-only
input could also be reflected in the response to an
OPTIONS request, through an A11ow header:

Allow: OPTIONS, POST

Notice that to differentiate from the inbox term of the
LDP* vocabulary, we have used a new input term from
a new vocabulary. This vocabulary is yet to be specified
(see [24] for a work-in-progress in this direction), but
we use the base IRI for the rest of the examples in this

paper.

Sending a stream notification An RSP Sender may
POST notifications to an RDF stream input endpoint,
in the same way that is specified in LDN. Essentially,
the POST body should contain the stream element (e.g.
and RDF graph) that will be fed to the stream (as in
Figure 9). As an example consider the JSON-LD repre-
sentation of a humidity observation posted as a times-
tamped graph:

POST /streams/streaml/input HTTP/1.1
Host: hevs.ch
Content-Type: application/ld+json

{"prov:generatedAtTime": "2017-09-22T05:00:00.000Z",
"@id": "ex:Graphl",
"Qgraph": [
{ "@id": "ex:humidityObservation",

4https ://www.w3.org/TR/1dp/

"ex:hasvValue": 34.5}],
"Q@context": {
"prov": "http://www.w3.org/ns/provi#",
"ex": "http://example.org#"} }

The RSP receiver can respond with a 201 Created
or 202 Accepted code, if successful. However, in this
case, as there is no interest in sending a location header
back to the sender, this part of the protocol would differ
from standard LDN.

post | RSP Receiver | ..
RSP Sender H St outout [+— RSP Consumer

Fig. 9. RSP Sender sends a notification to a receiver stream input,
and a consumer retrieves elements form a stream output.

Publicizing stream elements. ~ As it is depicted in Fig 9,
a consumer may GET stream elements from an RDF
stream output endpoint. LDN specifies that performing
a GET over an inbox should return the notification URIs
listed as objects to the LDP 1dp:contains predicate.
Given that an RDF stream output endpoint behaves
similarly to an inbox, this is also the expected behavior.
However, as stream elements fade with time, depending
on the stream fluctuations and the server configuration,
the listed stream contents may progressively change.
This means that if the stream updates are very frequent,
when a consumer retrieves the list of notifications from
the output endpoint, these may be quickly outdated
when it tries to access one of them individually. In
any case, it would be left to the implementations to
configure properly how many and for how long the
notifications should be kept. As an example, consider
the following response JSON-LD containing the list of
timestamped graphs:

https://www.w3.org/TR/ldp/

10 J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web

{ "Qcontext": "http://www.w3.org/ns/1ldp",
"@id": "http://hevs.ch/streams/streaml/output",
"contains": [
"http: //hevs.ch/streams/streaml/output/graphl",
"http: //hevs.ch/streams/streaml/output/graph2"] }

Pulling stream elements. While individual stream ele-
ments can be retrieved as notifications in LDN (i.e. with
a GET to the resource URI obtained as described above),
this method is not too practical. First, it introduces the
need of first fetching the list of available stream items
(notifications), and only then fetching them individu-
ally. This strategy might be not too effective in com-
mon streaming data scenarios, so we propose a more di-
rect approach, consisting in returning entire sequences
of stream elements at once. The size or inclusion con-
straints of these sequences could be specified through
parameters (e.g. the latest 10 minutes of data, or the
latest 10 elements, etc.). As an example, consider the
following time-annotated graphs about sensor observa-
tions, returned as JSON-LD for a given stream:

{"Qcontext": {
"prov": "http://www.w3.0rg/ns/prov#",
"ex": "http://example.org#"},
"Qgraph": [
{ "prov:generatedAtTime": "2017-09-22T05:00:00.000zZ",
"@id": "ex:Graphl",
"Qgraph": [
{ "@id": "ex:humidityObservation",
"ex:hasValue": 34.5 }] bo
"prov:generatedAtTime": "2017-09-22T06:00:00.000z",
"@id": "ex:Graph2",
"Qgraph": [
{ "@id": "ex:humidityObservation",
"ex:hasValue": 44.5 }] } 1}

Pushing stream elements. While the previous data ac-
cess method provides control to the consumer as when
it will request the data from a stream, it is not always
convenient, specially for applications that require im-
mediate access to data that is produced on a stream.
As an alternative, we propose using push based mecha-
nisms to retrieve the data. One example is by using the
Server-Sent Events’ protocol, which is based on HTTP.
Using this W3C Recommendation, it is possible to con-
tinuously push data, in this case RDF stream elements,
from the server to the client, in a one-directional way
(as opposed to bidirectional in WebSocket. Each data
item is prefixed by the data: annotation. The usage
of other push protocols could also be added, which in
this case would mean to add an additional endpoint

5https ://www.w3.org/TR/eventsource/

to the RDF Stream. In this regard, our proposal also
diverges from LDN in that the latter can only advertise
one inbox, while we propose having multiple endpoints
for an RDF stream.

Register a query. One final aspect concerns query pro-
cessing. Although this feature would be restricted to
query-based RSPs, we consider important to include
it, as these are one of the most prominent types of
processors for RDF streams. An actor may POST a
query to an RSP endpoint, considering that in the query,
there must be a reference to a valid registered RDF
stream. Also, the RSP endpoint should return the URI
of the resulting output stream, so that its results can
be retrieved, by either pulling or pushing. As an ex-
ample, consider the CQELS query over the stream
http://hevs.ch/streams/streaml. Notice that
this type of queries could include references to more
than one input stream.

SELECT ?s ?p 70

WHERE {
STREAM <http://hevs.ch/streams/streaml> [RANGE 2s]
{?s ?p 70}

}

5. Implementation

We have implemented the RSP actors model and
the LDN interfaces as a library available for JVM lan-
guages such as Java or Scala. The code is open-source,
and it is available in Github®. The core of the RSP ac-
tors implementation is written in Scala, using the Akka
Actors library’. Akka provides the essential program-
ming abstractions to create actors, providing message
dispatching, remoting, actor hierarchies, and other fea-
tures.

For instance, the generic RSP trait from which all
RSP receiver actors inherit, ActorStreamReceiver,
extends from the Akka Actor trait, that defines a
receive method where all messages from the mailbox
are processed. As shown in the snippet below, it follows
exactly the logic presented before in Alg. 1, checking
on the type of message that is received, and acting upon.

trait ActorStreamReceiver extends Actor with StreamReceiver{
def receive = {
case req:RetrieveAllStreams=>
val s = sender

6https ://github.com/jpcik/ldn-streams
Thttp://akka.io

https://www.w3.org/TR/eventsource/
https://github.com/jpcik/ldn-streams
http://akka.io

J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web 11

s ! (getAllStreams(req.range))

case req:CreateStream=>

RSP actors defines traits (analogous to interfaces in
Java and other languages) for its main types of objects.
For instance, the St reamReceiver trait implements
the receiver actor described in Section 3.2.1. These
traits are independent of the communication layer, e.g.
it has no dependencies with LDN. Two specialized

def query (name:String,queryStr:String, insert:Map[String, Any
1=>Unit) :Unit

def consumeGraph (uri:Uri, g:Graph) :Unit

def push(queryId:String, insert:Map[String,Any]=>Unit) :
ResultHandler

def terminatePush(queryId:String, handler:ResultHandler) :Unit

Extended receivers for particular engines can easily
implement these methods as shown below. First, any
initialization code can be specified after declaring the

traits, ActorStreamReceiver, and LdnSt reamRecevier inherited class or trait. In the example below, a CQELS

provide specific interfaces for both Akka-Actor com-
munication, and LDN, respectively. The trait hierarchy
is depicted in Figure 10.

Actor StreamReceiver LdnNode
trait trait trait

A akka

1 —* 1T

ActorStream LdnStream

Receiver Receiver
trait trait

5

CgelsActor

“RSP actors

CgelsLdn
Receiver Receiver
class class

Fig. 10. RSP Actor traits. Implementing modules, such as CQELS,
extend from ActorStremaReceiver, to implement an Actor-based
interface, and from LdnStreamReceiver to support LDN.

Additional modules can be plugged to RSP actors,
for instance for concrete implementations for partic-
ular RSP engines. In Figure 10 we illustrate this for
a CQELS Actor and LDN classes, but we have also
implemented classes for C-SPARQL and TrOWL.

In order to allow the integration with these ex-
isting engines, it suffices that they provide a JVM-
compatible API. This is the case with the previously
mentioned engines, as they have a Java API. RSP ac-
tor traits make use of abstract methods that need to
be implemented for any specific extension. For exam-
ple, the St reamReceiver trait defines abstract meth-
ods that allow: feeding an RDF stream with graph
(consumeGraph), register a query (query), push data
results (push), and terminate push and clean resources
(terminatePush), as shown in the code snippet be-
low.

trait StreamReceiver extends LdnEntity{

trait inherits from StreamReceiver, and initializes
the CQELS engine.

trait CgelsReceiver extends StreamReceiver{
val cgelsCtx=new ExecContext ("./tmp/cq id",true)
val cgels=new CQELSEngine (cqelsCtx)

Then, it is straightforward to implement the remain-
ing methods. For instance, in CQELS, the send method,
taking as input a triple, needs to be invoked to feed the
engine, as shown below.

override def consumeGraph (uri:Uri,g:Graph)={
g.triples.foreach { t => cgelsCtx.engine send (uri.
toString, t) }

Similarly, to register a query in CQELS, the registerSelect

method needs to be invoked, and afterwards the results
are handled through a listener.

override def query(name:String,queryStr:String,
insert:Map[String, Any]=>Unit)={

val slct=cgelsCtx.registerSelect (queryStr)
slct.register(new ContinuousListener({
def update (map:Mapping)={
val newMap=map.vars.asScala.map{v=>
v.getVarName->cgels.decode (map.get (v))
} .toMap
insert (newMap)
}
1))
}

For other engines, a similar process can be followed.
For instance in C-SPARQL, to feed the stream, one
should instantiate an RdfQuadruple class that repre-
sents a timestamped triple.

override def consumeGraph (uri:Uri,g:Graph)={
g.triples.foreach { t =>
csparqgl.getStreamByIri (uri.toString) .put (
new RdfQuadruple (t.subject, t.predicate, t.object, System
.currentTimeMillis))

12 J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web

An RSP actor application can use a simple API
provided by the library. To instantiate an RSP ac-
tor, an Akka system object can be started, and then
the specific type of actor can be instantiated (e.g.
CgelsActorReceiver for CQELS):

val sys=ActorSystem("testSys")

implicit val serverIri="http://hevs.ch/streams"

implicit val ct:ContentType.NonBinary="‘application/ld+json®

val cgels=sys.actorOf (Props (new CgelsActorReceiver (serverIri
,1)), "cgels")

Notice that all actors instantiated in this way (e.g. the
cgels variable in the previous example) are of type
ActorRef, i.e. a reference to the actor itself.

5.1. Clients

The API also includes tools to create clients in a
simple manner. For instance, the code below posts a
query to the previously defined CQELS actor:

client.postStream(cgels, "s1")
val query="""

SELECT ?s ?p ?0 WHERE {

STREAM <http://hevs.ch/streams/s1> [RANGE 2s]
{?s ?p 20}

jrn
val client = createClient
client.postQuery (cgels, "ql", query, ct)

As a second example, the next code snippet posts a
new item in JSON-LD to the stream identified by the
IRI: http://hevs.ch/streams/s1.

val ev="""{ "@context": "http://schema.org/",
"@type": "Event",
"value": "Some Event"} """

client.postStreamItem(cgels, "http://hevs.ch/streams/sl", ev)

5.2. LDN Implementation

Extending the actor based implementation of RSP
actors, we have developed an HTTP communication
layer for the library, based on LDN, as explained in de-
tail in Section 4. This implementation extends an LDN
code-base that complies with most of the specification
for a Sender, Receiver and Consumer, as indicated in
the LDN implementation reports®.

The implementation uses the Akka HTTP library®,
which provides a routing API, streaming support, mar-

8 https://linkedresearch.org/ldn/tests/summary
9https ://doc.akka.io/docs/akka-http/current/scala/
http/

shalling, etc. For the stream receiver implementation,
the main entry point is the routing declaration, which
determines how incoming requests paths map to dif-
ferent actions on the RSP actors side. As an example,
consider the snippet below, where the routing paths are
defined using the Akka API:

val receiverRoute =

path("streams") {
pathGetAllStreams ~
pathPostInputStream

} ~

path("streams" / Remaining){ name=>
pathGetStream(name)

} ~

path("streams" / "query") {
pathPostQuery

}

For instance, any path starting with "streams/"
and an identifier, will map to the pathGetStream
method, that processes the incoming request and re-
trieves the corresponding stream metadata, according
to the specified media type ranges, and other HTTP
headers. Notice that for reusing the LDN trait for a spe-
cific RSP engine (e.g. CQELS, C-SPARQL, TrOWL, or
others), developers do not need to deal with the routing
details, which are provided by the library.

6. Experimentation

In this section we present a set of experimentation
results of the implementation of RSP actors. The goal
of these experiments is to show how the actor model
implemented in the library can be used with existing
engines. The project already provides implementations
for CQELS, C-SPARQL, and TrOWL, but it can be
used for any other processor. In the following experi-
ments, the main indicator evaluated is the throughput,
measured in terms of efficiency, i.e. the rate between
the actual number of RDF stream elements processed
per unit of time, and the maximum ideal number of
processed elements. The choice of this metric is based
first on the need to assess the behavior of the platform
to different conditions of the input streams (e.g. number
of streams/senders, velocity of the streams, number of
parallel processors). The usage of a rate indicator is
due to the fact that an absolute throughput is obviously
variable depending on the input stream characteristics.
Therefore the efficiency rate provides a normalized pa-
rameter. Queries and data have been adapted from SR-
Bench [34], using an upgraded version of the datasets,

https://linkedresearch.org/ldn/tests/summary
https://doc.akka.io/docs/akka-http/current/scala/http/
https://doc.akka.io/docs/akka-http/current/scala/http/

J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web 13

using the new version of the SSN Ontology'?, and a
synthetic generation stream feeder. The data consists
of environmental sensor observations. All experiments
were run on Ubuntu 16.04 LTS, Intel Core i7-7700U
(3.60GHz, 8MB cache, Quad Core).

In the first set of experiments, we measured the
throughput efficiency, for different input stream rates
(1,10,10, and 1000 graphs/s), and for different number
of concurrent senders, and a single receiver (Figure 11).

Chartarea ™ =10 sender eeeees 100 senders === 1000 senders =====10000 senders

Throughput efficiency rate
/
’

Input stream: graphs/s

Fig. 11. Throughput efficiency vs. input stream rates, for different
sets of concurrent senders, and one receiver.

As it can be seen, the efficiency decreases consider-
ably as the input stream increases. A drastic increase
produces a significant drop in efficiency, either if it is
by increasing the number of senders or the input rate.
This is basically due to the limitations of CQELS as the
underlying engine.

The next experiment is set in exactly the same condi-
tions, excepting that it uses 5 concurrent stream receiver
actors instead of only 1 (Figure 12). As it can be seen,
using more receiver actors already provides a higher
throughput efficiency for a larger number of cases.

The next experiment provides more information on
how a set of CQELS engines running as RSP actors can
handle a total of 10K concurrent senders, each spitting
1 graph per second. The experiment is set for 1,5, 10,
20, 50, and 100 concurrent CQELS actor receivers. As
it can be seen in Figure 13, with 5, 10 and 20 concur-
rent senders there is a considerable improvement of the
throughput efficiency. However, increasing even more
receivers produces a sustained decrease, as the CPU is
not able to scale on its own to that number of engines.
A distributed deployment would be required to scale in
that case.

10https ://www.w3.org/TR/vocab-ssn/

10000 senders

1 10 100 1000
Input stream: graphs/s

Fig. 12. Throughput efficiency vs. input stream rates, for different
sets of concurrent senders, and five receivers.

0.8
0.6

0.4

0 ””H““““““N :
Number of RSP receivers

mil ®5 %10 #®20 #®W50

o
N

Throughput efficiency rate

100

Fig. 13. Throughput efficiency vs. number of RSP receivers, for 10K
concurrent senders.

The next experiment shows how RSP stream re-
ceivers (CQELS engine) respond to different number
of senders (1, 10, 100, 1000, 1000). It shows results for
input streams of 1, 10, 100, 1000 graphs/s (Figure 14).
The graph shows the progressive efficiency decrease as
the input stream (combined with the number of senders)
increases. For instance, for 10K senders, and 1K graph-
s/s, the input load is of 10M graphs/s, which is too
much for a single receiver instance.

In the next experiment, we evaluate a similar sce-
nario, but this time adding CQELS RSP instances (1, 2,
5, 8, and 10 concurrent engines). The results are shown
for different numbers of RSP concurrent senders (2K,
4K, 8K, 10K, and 16K). For very high input loads, the
system is still capable of at least 0.5 efficiency. It is
clear that at this point a cluster deployment would be
required.

The final experiment was performed only for RSP
actors ingesting but not processing data. It shows results
for different number of RSP actors ingesting streams (1,
5, 10, 20, 50, and 100 concurrent actors), and for 100,
1000, and 10000 senders. As it can be seen, for 1K and

https://www.w3.org/TR/vocab-ssn/

14 J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web

i1 graph/s 10 graph/s 7 100 graph/s # 1000 graph/s

Il

0
100 1000 10000
N. of RSP senders

o o o
kS @ o

Throughput efficiency rate

)
o

Fig. 14. Throughput efficiency vs. number of RSP senders, for differ-
ent input stream rates.

Wi 1 RSP engine M2 RSP engines %5 RSP engines

1l

2000 4000 8000 10000
Number of RSP senders

8 RSP engines % 10 RSP engines

N

o
)

o
o

o
>

=)
[N)

E———
BE——

Throughput efficiency rate

Fig. 15. Throughput efficiency vs. number of RSP senders, for differ-
ent numbers of RSP receiver engines.

10K adding additional resources in general increases
the overall efficiency (Figure 16).

— =100 senders ++++* 1000 senders ===-10000 senders
1 S e reeeeeessssnnnnnnes
N~ e ——"""‘_:__—-
L e e T T
B os -
> P
g o
Q ’
'S 0.6 ,
&= ’
["
5‘ ’
g_ 0.4 ’,’
4
£02 o
= g
----- -
0 ===
1 5 10 20 50 100

Number of RSP reveiver engines

Fig. 16. Throughput efficiency vs. number of RSP receivers without
processing, for different sets of concurrent senders.

7. Related Work

Several RSP engines have been developed in the
last decade, focusing on the processing aspects of
RDF streams, including incremental reasoning, contin-
uous querying, complex event processing, among oth-
ers [11, 12, 14, 32, 35, 36]. However, most of these
RDF stream processors disregard to a certain degree
the Web dimension, as they provide programming APIs
and interfaces that are not immediately accessible from
consumers on the Web.

Some initial attempts to provide generic service in-
terfaces for streaming data were explored in [31, 37].
They both relied on HTTP REST-ful services, and in
the second case targeting mainly sensor data systems.
Although these early works were presented mainly as
exploratory proposals, with limited or no implementa-
tion, they already pointed out the need for simple and
programming-friendly WEDb interfaces for RDF streams.
A more recent development following this research line
is the RSP Service Interface!!, which further develops
the ideas presented in [31], providing a generic imple-
mentable programming API for continuous query en-
gines. Limitations of this approach include the lack of
a standard protocol or at least recommendation, in or-
der to guarantee interoperability. Furthermore, it is too
closely oriented to only query processing, while the
RSP spectrum includes other types of interactions, as
we have seen in RSP actors.

Another related approach targeting connectivity in
networks of RSP engines is the SLD Revolution frame-
work [38]. It optimizes a distributed workflow of RSP
engines, using lazy-transformation techniques so that
non-optimized RDF formats are used only when neces-
sary.

A particularly relevant topic in this context is the
availability and publication of RDF streams on the
‘Web. While for stored RDF data, there have been count-
less papers and implementations for publishing Linked
Data, and other forms of RDF datasets, for streaming
RDF data this has surprisingly not been the case. Ex-
isting works that touched this issue only tangentially
include [39, 40], which describe techniques for pro-
ducing RDF dataset based on unstructured streams as
input. Following the trend of Linked Data publishing,
other works developed frameworks and tools for the
publication of streams following the Linked Data prin-
ciples [41, 42]. However, these frameworks were not

11http ://streamreasoning.org/resources/

rsp-services

http://streamreasoning.org/resources/rsp-services
http://streamreasoning.org/resources/rsp-services

J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web 15

concerned with the issues related to the interchange
of RDF streams on the web, or the establishment of
standard protocols, as they rather focused on adherence
to the Linked Data recommendations, which are essen-
tially useful for stored data. As a consequence, there
are currently very little number of streams available on
the web as RDF.

This is exactly the problem addressed by efforts
like TripleWave [22], which integrates tools for the
transformation of non-RDF data streams, as well as
time-annotates static RDF, into RDF streams. Triple-
Wave allows the publication of these RDF streams
so that they can be directly consumed or connected
with applications that process them. As a continuoation
to TripleWave, WeSP'? is a recent proposal for pro-
ducing and consuming RDF streams on the Web. The
roadmap proposed by WeSP can be a starting point for
a community-driven and pragmatic definition of RDF
stream metadata vocabularies, interoperable interfaces,
reuse of standard protocols, etc. In fact, the RSP actors
proposed in this paper is a step into this direction, with
specific technological and design choices for the com-
munication among RSP engines. We consider that the
simplicity and generality of LDN are valuable features
that match the requirements for Web-wide RSP interac-
tions.

It is also worth mentioning the efforts of the W3C
RDF Stream Processing Community Group (RSP-CG),
which intended to provide support for the development
of a common data model for representing RDF streams,
as well as defining guidelines for common principles for
RSP query processing, data exchange, and reasoning.
The documents produced so far include a set of require-
ments, design principles'?, and an abstract model'*.
RSP actors takes into consideration these results, and in
fact adopts many of its recommendations and principles,
as it can be seen throughout this paper.

Web technologies are increasingly including proto-
cols, frameworks and tools for stream processing, given
the increasing importance for IoT and social network
data support. It will be important to follow existing
trends, which are sometimes competing or overlap-
ping, so that the RSP community is aligned to them.

Examples of these technologies include WebSocket!?,
MQTT16, Server-Sent Events'”, etc.

8. Discussion and Potential Impact

The RSP actors model and implementation described
in this work address an important issue in the area of
RSP, linked to the need for appropriate tools that allow
RSP engines to interact on the Web. RSP actors have the
potential to solve many of the challenges of integrating
RDF stream processing engines on the Web, given the
following characteristics of its design:

— IRIs: RDF streams, their endpoints, stream ele-
ments, etc. are all Web resources identified with
IRIs. This is a key principle for discovery, identifi-
cation, reuse, etc.

— Messaging: Asynchronous message-passing com-
munication is the primary way of exchanging both
RDF stream data and metadata, targeting scalabil-
ity and responsiveness.

— Decentralization: The design of RSP actors allows
all participating instances to act as either produc-
ers or consumers of RDF streams, allowing the cre-
ation of decentralized networks of RSP engines.

— Delivery: Pull and push-based mechanisms are
available depending on the application needs.

— Implementation-agnosticism: The generic model
allows for concrete implementations to be plugged-
in, allowing the addition of extensions for particu-
lar needs.

— LDN: The usage of LDN as communication proto-
col allows interoperability with other implementa-
tions, by adhering to the specification.

Nevertheless, the RSP actors approach still needs to
face several challenges to gain adoption in the near fu-
ture. We mention some of these challenges and current
limitations.

— LDN itself is a new specification, and still has to
show wider adoption, even outside of the RDF
streams context.

— Implementation for other engines, reasoners and
systems would provide further evidence of the
applicability of this approach.

12http://w3id.org/wesp/webfdatafstreams
13https://w3id.org/rsp/requirements
14https://w3id.org/rsp/abstractfsyntax

15https://www.w3.org/TR/websockets/
16http://mqtt.org/
17https://www.w3.org/TR/eventsource/

http://w3id.org/wesp/web-data-streams
https://w3id.org/rsp/requirements
https://w3id.org/rsp/abstract-syntax
https://www.w3.org/TR/websockets/
http://mqtt.org/
https://www.w3.org/TR/eventsource/

16 J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web

— The implementation of other types of communi-
cation mechanisms (e.g. through MQTT) would
widen the range of potential use cases for which
RSP actors would be of interest.

— The development of further functionalities tar-
geting more specific interactions and features
for stream reasoners (e.g. support for entailment
regime parameters, materialization options, etc.)
would provide a more comprehensive set of avail-
able functionalities.

— The integration with existing RDF stream publish-
ing frameworks (e.g. TripleWave) and simulators,
would facilitate the adoption and learning curve
for RSP in general.

Finally, concerning the agreement on a certain pro-
tocol or model for RSP communication, we advocate
for a bottom-up approach, reusing as much as possible
existing standards. This is one of the reasons why we
choose LDN as a protocol. All implementers can check
the specification and claim compliance if they adhere
to it. However, at some point we expect that the com-
munity will bring the topic to a wider discussion, and
the RSP actors approach can serve as a possible starting
point.

9. Conclusions

RDF provides a Web-native model that facilitates
the integration and interpretation of data. This is a key
motivations for using RDF to represent and process
streams of data, going beyond traditional Linked Data
production and consumption. However, while for stored
datasets there exist well-established standards and rec-
ommendations for producing, publishing and consum-
ing RDF, for data streams the situation is different. The
fact is that there is still no agreed nor well-supported
specification or model for exchanging RDF streams on
the Web. Although recent efforts provide partial solu-
tions to the problem — e.g. TripleWave for publication,
or SLD Revolution for orchestration— there is a need
for a standardized Web mechanism for communicating
data among RSP engines in general.

RSP actors, as described in this paper, provides a
generic model for integrating different RDF stream pro-
ducers or consumers. The model is based on the ac-
tor paradigm, and uses synchronous message passing
and a decentralized communication patterns. On top of
this, it incorporates Linked Data Notifications as a na-
tive HTTP protocol for ensuring interoperability among

RSP actors. The decentralized nature of LDN, along
with its simplicity and extensibility, are positive argu-
ments for advocating its use, as it was already proposed
in a previous work [27].

Nevertheless, it is important to consider that even in
a generic case as LDN, there are certain assumptions
about the data, in this case notifications, which are fun-
damentally different in the case of dealing with RDF
streams. We believe that the proposed extensions, could
be used to formalize an LDN profile. Furthermore, a
community agreement would need to be made con-
cerning vocabularies for the description of RDF stream
metadata.

Also, it is important to consider the use of RSP actors
for other use cases, targeting not only querying, but any
type of processing over RDF streams, which can even
include traditional SPARQL engines, reasoners, or even
machine learning processors. The current trends in Big
Data processing, show that even stored data (i.e. data
that was not inherently represented as a stream) is now
more and more processed in a streaming fashion, typi-
cally for efficiency and scalability reasons. This trend
extends to the RDF processing world in general, and
the same principles described in this work and, in RSP
in general, could have an enormous impact even outside
of the Semantic Web/RDF scientific communities.

References

[1] B.-R. Chen, S. Patel, T. Buckley, R. Rednic, D.J. McClure,
L. Shih, D. Tarsy, M. Welsh and P. Bonato, A web-based system
for home monitoring of patients with Parkinson’s disease using
wearable sensors, IEEE Transactions on Biomedical Engineer-
ing 58(3) (2011), 831-836.

[2] D. Alahakoon and X. Yu, Smart electricity meter data intelli-
gence for future energy systems: A survey, IEEE Transactions
on Industrial Informatics 12(1) (2016), 425-436.

[3] K. Teymourian, M. Rohde and A. Paschke, Knowledge-based

processing of complex stock market events, in: Proceedings

of the 15th International Conference on Extending Database

Technology, ACM, 2012, pp. 594-597.

E. Della Valle, S. Ceri, F. Van Harmelen and D. Fensel, It’s a

streaming world! Reasoning upon rapidly changing information,

IEEE Intelligent Syst. (2009), 83-89.

[5] R. Cyganiak, D. Wood and M. Lanthaler, RDF 1.1 concepts and
abstract syntax, W3¢ Recommendation 25(02) (2014).

[6] B. Motik, P.F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue,
P. Haase, R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler et
al.,, OWL 2 web ontology language: Structural specification and
functional-style syntax, W3C recommendation 27(65) (2009),
159.

[7] S. Harris and A. Seaborne, SPARQL 1.1 Query Language,
W3C Recommendation, W3C, 2013. https://www.w3.0rg/
TR/sparglll-query/.

4

=

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

J.-P. Calbimonte. / Decentralized Messaging for RDF Stream Processing on the Web 17

[8] D. Dell’ Aglio, E. Della Valle, J.-P. Calbimonte and O. Corcho,
RSP-QL semantics: a unifying query model to explain hetero-
geneity of RDF stream processing systems, International Jour-
nal on Semantic Web and Information Systems (IJSWIS) 10(4)
(2014), 17-44.

H. Beck, M. Dao-Tran, T. Eiter and M. Fink, LARS: A logic-

based framework for analyzing reasoning over streams, in: Pro-

ceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence, AAAI Press, 2015, pp. 1431-1438.

[10] D. Dell’ Aglio, M. Dao-Tran, J.-P. Calbimonte, D.L. Phuoc and
E. Della Valle, A Query Model to Capture Event Pattern Match-
ing in RDF Stream Processing Query Languages, in: EKAW,
2016, pp. 145-162.

[11] D. Le-Phuoc, M. Dao-Tran, J.X. Parreira and M. Hauswirth, A
native and adaptive approach for unified processing of linked
streams and linked data, in: ISWC, 2011, pp. 370-388.

[12] D. Anicic, P. Fodor, S. Rudolph and N. Stojanovic, EP-
SPARQL: a unified language for event processing and stream
reasoning, in: WWW, 2011, pp. 635-644.

[13] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle and M. Gross-
niklaus, C-SPARQL.: a Continuous Query Language for RDF
Data Streams, Int. J. Semantic Computing 4(1) (2010), 3-25.

[14] J.-P. Calbimonte, H. Jeung, O. Corcho and K. Aberer, Enabling
query technologies for the semantic sensor web, Int. J. Semantic
Web Inf. Syst. 8 (2012), 43-63.

[15] J. Kietz, T. Scharrenbach, L. Fischer, A. Bernstein and
K. Nguyen, TEF-SPARQL: The DDIS query-language for time
annotated event and fact Triple-Streams, Technical Report, Tech.
Rep., Technical Report, University of Zurich, Department of
Informatics, 2013.

[16] S. Gao, T. Scharrenbach and A. Bernstein, The clock data-aware
eviction approach: Towards processing linked data streams
with limited resources, in: European Semantic Web Conference,
Springer, 2014, pp. 6-20.

[17] J. Urbani, A. Margara, C. Jacobs, F. Van Harmelen and H. Bal,
Dynamite: Parallel materialization of dynamic rdf data, in: In-
ternational Semantic Web Conference, Springer, 2013, pp. 657—
672.

[18] J.-P. Calbimonte, J. Mora and O. Corcho, Query rewriting in
RDF stream processing, in: International Semantic Web Confer-
ence, Springer, 2016, pp. 486-502.

[19] F. Lécué and J.Z. Pan, Predicting Knowledge in an Ontology
Stream., in: IJCAI, 2013, pp. 2662-2669.

[20] J.-P. Calbimonte, RDF stream processing: let’s react, in: Or-
dRing, 2014, pp. 1-10.

[21] C. Bizer, T. Heath and T. Berners-Lee, Linked data-the story so
far, Semantic services, interoperability and web applications:
emerging concepts (2009), 205-227.

[22] A. Mauri, J.-P. Calbimonte, D. Dell’Aglio, M. Balduini,
M. Brambilla, E.D. Valle and K. Aberer, TripleWave: Spreading
RDF Streams on the Web, in: ISWC, 2016, pp. 140-149.

[23] D. Dell’Aglio, D. Le Phuoc, A. Le-Tuan, M.I. Ali and J.-P. Cal-
bimonte, On a Web of Data Streams, in: Proc. ISWC Workshop
on Decentralizing the Semantic Web DeSemWeb 2017, 2017.

[24] Y.A. Sedira, R. Tommasini and E. Della Valle, Towards VoIS: a
Vocabulary of Interlinked Streams, in: Proc. ISWC Workshop
on Decentralizing the Semantic Web DeSemWeb 2017, 2017.

[25] C. Hewitt, P. Bishop and R. Steiger, A universal modular AC-
TOR formalism for artificial intelligence, in: Proceedings of
the 3rd international joint conference on Artificial intelligence,
Morgan Kaufmann Publishers Inc., 1973, pp. 235-245.

[9

—

[26] S. Capadisli, A. Guy, C. Lange, S. Auer, A. Sambra and
T. Berners-Lee, Linked Data Notifications: a resource-centric
communication protocol, in: ESWC, 2017, pp. 537-553.

[27] J.-P. Calbimonte, Linked Data Notifications for RDF Streams,
in: Proc. of the Web Stream Processing (WSP) Workshop at
ISWC, 2017.

[28] Y. Ren and J.Z. Pan, Optimising ontology stream reasoning with
truth maintenance system, in: CIKM, ACM, 2011, pp. 831-836.

[29] A. Arasu, S. Babu and J. Widom, The CQL continuous
query language: semantic foundations and query execution,
The VLDB Journal 15(2) (2006), 121-142, ISSN 1066-8888.
doi:10.1007/s00778-004-0147-z.

[30] G. Cugola and A. Margara, Processing flows of information:
From data stream to complex event processing, ACM Computing
Surveys 44(3) (2011), 15-11562.

[31] D.F. Barbieri and E. Della Valle, A Proposal for Publish-
ing Data Streams as Linked Data - A Position Paper, in:
LDOW, 2010. http://ceur-ws.org/Vol-628/1dow2010_
paperll.pdf.

[32] X.Ren, O. Curé, L. Ke, J. Lhez, B. Belabbess, T. Randriamalala,
Y. Zheng and G. Kepeklian, Strider: an adaptive, inference-
enabled distributed RDF stream processing engine, Proceedings
of the VLDB Endowment 10(12) (2017), 1905-1908.

[33] M. Stonebraker, U. Cetintemel and S.B. Zdonik, The 8 require-
ments of real-time stream processing, SIGMOD Record 34(4)
(2005), 42-47.

[34] Y. Zhang, PM. Duc, O. Corcho and J.-P. Calbimonte, SRBench:
a streaming RDF/SPARQL benchmark, in: The Semantic Web—
ISWC 2012, Springer, 2012, pp. 641-657.

[35] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle and M. Gross-
niklaus, C-sparql: a continuous query language for rdf data
streams, Intl. J. Semantic Computing 4(01) (2010), 3-25.

[36] S. Komazec, D. Cerri and D. Fensel, Sparkwave: continuous
schema-enhanced pattern matching over RDF data streams, in:
Proc. 4th ACM International Conference on Distributed Event-
Based Systems DEBS, ACM, 2012, pp. 58-68.

[37] J.F. Sequeda and O. Corcho, Linked stream data: A position
paper, in: SSN, CEUR-WS. org, 2009, pp. 148-157.

[38] M. Balduini, E.D. Valle and R. Tommasini, SLD Revolution:
A Cheaper, Faster yet more Accurate Streaming Linked Data
Framework, in: RSP, 2017, pp. 1-15. http://ceur-ws.org/
Vol-1870/paper-01.pdf.

[39] D. Gerber, S. Hellmann, L. Bithmann, T. Soru, R. Usbeck
and A.-C.N. Ngomo, Real-time RDF extraction from unstruc-
tured data streams, in: International Semantic Web Conference,
Springer, 2013, pp. 135-150.

[40] T.-D. Trinh, P. Wetz, B.-L. Do, A. Anjomshoaa, E. Kiesling and
A.M. Tjoa, A web-based platform for dynamic integration of
heterogeneous data, in: Proceedings of the 16th International
Conference on Information Integration and Web-based Applica-
tions & Services, ACM, 2014, pp. 253-261.

[41] M. Balduini, E. Della Valle, D. Dell’ Aglio, M. Tsytsarau, T. Pal-
panas and C. Confalonieri, Social Listening of City Scale Events
Using the Streaming Linked Data Framework, in: International
Semantic Web Conference (2), Lecture Notes in Computer Sci-
ence, Vol. 8219, Springer, 2013, pp. 1-16.

[42] D. Le-Phuoc, H.Q. Nguyen-Mau, J.X. Parreira and
M. Hauswirth, A middleware framework for scalable man-
agement of linked streams, J. Web Semantics 16 (2012),
42-51.

http://ceur-ws.org/Vol-628/ldow2010_paper11.pdf
http://ceur-ws.org/Vol-628/ldow2010_paper11.pdf
http://ceur-ws.org/Vol-1870/paper-01.pdf
http://ceur-ws.org/Vol-1870/paper-01.pdf

	Introduction
	Preliminaries
	RDF Stream Processing
	The Actor Model
	Linked Data Notifications

	RSP Actors: Decentralized Communication
	Messages and Notifications in RSP Actors
	Stream Receivers, Senders and Consumers
	Stream Receiver
	Stream Sender
	Stream Consumer

	LDN for RSP actors
	Implementation
	Clients
	LDN Implementation

	Experimentation
	Related Work
	Discussion and Potential Impact
	Conclusions
	References

