
Response to Reviewers

Review #1

1. One of the announced contributions of this article is the Structured Natural

Language (SNL) that has been described in section 3. However, converting

controlled nature language to computable rules is not a novel idea, hence it is

important to see how expressive and how intuitive the language is. The introduction

in section 3 needs to be elaborated and many questions need to be answered. How

expressive this language is? Which forms and expressions in SPARQL it supports?

How much percentage of rules can be represented by it? The current presented

language seems simple and many useful constructs in rules e.g. quantifiers,

cardinality, aggregation operators do not exist. There are many existing research

and development to convert (controlled) natural languages to computable rules and

queries in the building industry as well as in the Semantic Web field. They are all

ignored by this article. For example, RASE from Hjelseth and Jiansong Zhang’s

research in the BIM field. There are also existing controlled natural languages like

SBVR and SQUALL that either have been standardized or already have conversion

patterns to SPARQL. Why not reuse them? Authors should prove the novelty of their

approach.

Response: (interpretation of the expressiveness of the SNL language)

Currently, SNL is able to cover more than 85% of the national building codes (e.g. National

Architectural Design Code for Fire Protection: 101/112) and more than 95% of the domain

codes. There are two basic types of SNL sentences, simple sentences are used to describe

the basic rules, such as all bedrooms have windows, or there is a bedroom its area < 20

and so on; conditional sentences are used to describe complex rules with conditional

judgments. Since the building codes is usually a constraint on the properties and

relationships of the building components, the SNL is mainly designed for both. The

properties of the components can be described by “component its property”. The

relationships of the components is determined by “has”, “distance between” and so on. The

data types supported by SNL are mainly composed of strings and numbers. Since the

Boolean type exists as a grammatical element in the natural language, the Boolean type

is implemented by the keyword “no” or “not”. Other data types (such as date, time, etc.) in

the building code has almost no application, so SNL temporarily did not achieve them.

We have modified and supplemented these interpretations at the 5th paragraph in Section

3.

Response: (interpretation of SNL and the NLP based methods)

The SNL language is a structured natural language. Due to the inaccuracy of the semantics

of natural language, many of the Building codes which are written in natural language need

further interpretation by domain experts. As a result, it is difficult to translate the codes

directly into correct rules by NLP techniques. We still need a good formalization to

represent rules of building codes. Therefore, we propose a semi-automatic method. First

manually understand the building code, then use SNL language to enter the rules, and

build a rule library for further checking.

SNL is a rule description language for building codes. As an intermediate language, it can

transform natural language building codes into a SPARQL statement and applied directly

to the model check. Compared with the RASE method, the SNL does not directly deal with

the natural language specification, but the rules of the SNL statement are written by

understanding the building code. Based on the similarity between the SNL and the natural

language, the SNL statement is readable for the user and easy to understand, the rules

will not contain labels and other information independent of the specification itself; and SNL

can automatically generate SPARQL statement, no need to do re-logical reorganization or

other processing.

This part has been added as the 2rd paragraph in Section 3.

Response: (Comparison of SNL and other controlled Natural language)

From this point of view, SNL function and SQUALL is somewhat similar, the difference is,

SQUALL only package for SPARQL, writing SQUALL statement will still use the concept of

RDF, which means exposing the intermediate data in the model checking process to the

user who writes the rules, it is not only difficult for the user to understand but the exposures

of such data are not needed. The level of SNL is higher, its writing logic and conceptual

description are more similar to the natural language, the user only need to understand the

concept of natural language on it, do not need to understand the knowledge of the semantic

network, and SNL statement can also be correctly mapped to SPARQL, more suitable than

the SQUALL for building model check. In other words, even if we use the SQUALL, we still

need to provide users with SNL language to input the rules.

SBVR is mainly used to describe business rules, but there are many special cases in the

building codes which are not easy for business rules description language to deal with,

such as the reference between different building codes, or the terms may have a variety of

conditions, different circumstances has different requirements, etc. At the beginning of the

design, SNL is for the building code, taking the special aspects of the field of construction

expertise and domain knowledge into account. Therefore, SNL is more suitable than the

SBVR for building model checking.

This part has been added as the 3rd paragraph in Section 3.

2. In section 4, an approach to extract IFC subsets according to rule library is

introduced. However, some steps of the extracting procedure are not clear and need

additional explanations.

2.1. It seems related entities and attributes are derived from the rule library. How are

all the terminologies and concepts used in the rule library structured and how are

they mapped to IFC constructs?

Response: The components and attributes in the rules are similar to those in the natural

language. By analyzing the SNL statements in the rule library, we can get the components

and attributes of the SNL description and apply them to the IFC extraction process.

The concepts in the rule are mapped to the components in the IFC through a configuration

file (.cfg). As to the different mapping from the concepts in the design codes to a concrete

BIM model representation, only the configuration is needed to modify. For example, the

mapping defines the concept “Bedroom” in the rule library is defined in the IFC files with

the entity “IFCSPACE” and its LongName string contains the substring “Bedroom”.

This interpretation has been added as the 2rd paragraph in Section 4.

2.2. In the second paragraph, “For the rules related to geometric computation, we

need to extract the information such as…” how do you judge whether a rule is

related to geometric computation?

Response: By sorting out the existing specifications, we have extracted the commonly

used computational keywords, such as "distance", "vertical net distance" and so on. The

rules with these keywords must be geometrically calculated to check. By matching these

keywords in the process of SNL semantic parsing, we can see which rules need to be

geometrically calculated.

This interpretation has been added at the 3rd paragraph in Section 4.

2.3. “For any r belonging to the RI, we extract the attribute set that belongs to the

set A and referencing r (for example IFCRELDEFINESBYPROPERTIES) to get AI”.

This needs additional explanations. There are many different IFC constructs

associated with IfcRelationships. Propertysets, types, materials, classifications all

have different structures, and they cannot all be simply derived by just extracting

attributes from IfcRelationships.

Response: This is the case. We just take “IFCRELDEFINESBYPROPERTIES” as example.

The relationships with types, materials are also considered, if the design codes have the

constraints on them.

This interpretation has been added at the 5th paragraph in Section 4.

2.4. Are the extracted IFC sub models still valid IFC models?

Response: The answer is no. On the one hand, we will directly extract the IFC elements

into OWL elements, theoretically we do not generate an extracted IFC model. On the other

hand, since the IFC submodule is not our goal, our goal is to extract the information from

it for subsequent checks, and it is not necessary to combine all the extracted IFC elements

for further processing to be a legal IFC model.

3. In section 4, the extracted IFC sub models are then transformed to simplified OWL

models. Again some existing research that systematically simplifies ifcOWL graphs

is ignored by this research such as IfcWoD ontology and SimpleBIM ontology. There

are also questions need to be answered. How many relationships have been shorten?

How different the OWL graphs are before and after the simplification process? How

modular and flexible this simplification process is, can the same program be reused

for other rule cases?

Response: Thank you. The existent research like IfcWoD and SimpleBIM are really related

to the extraction part of our work. They provide several approaches which make great

simplification of the RDF graphs. We appreciated the approaches very much. The ideas

like building direct relations between different concepts are very similar with our methods.

In this part, our method is not novel. However, there is one main difference between our

work and the former simplification work. The goal of our work is regulation checking, thus

the extraction procedure is regulation oriented. For example, if the regulation contains the

geometry related items to be checked, the geometry information should be extracted, and

cannot be simplified by the proposed methods in SimpleBIM. On the other hand, the

properties which are irrelevant to the regulation can be deleted safely.

The related work are referred and the interpretation is added in the 2rd paragraph in Section

4.

The type of shortened relationship is relatively small, but because of the quantity of such

kind of relationship in a model is very big, so the number is still a lot. In the actual process,

the direct generated OWL map is a simplified graph, not firstly generate a non-simplified

map, and then do the simplify work, so in fact we are not doing OWL map optimization

work. The same program can be definitely reused by other rules. It is an automatic

simplification process.

4. In section 5, three examples are presented to show how rules represented in the

SNL language are transformed to SPARQL queries. It seems the transformation

algorithm is very case specific. IFC can represent information in various ways, for

example, the concept “Bedroom” can be represented by many different attributes

and relationships. Authors should explain how to consider such problem. There are

also some minor issues or mistakes in this part.

In the first example, the “Has” relationship between a space and a window is

automatically recognized and converted to “hasBoundaryElement” as explained in

this section, but in the third example, the “Has” relationship between a space and a

window is converted to “isContaining”. Some of the relation terms are confusing e.g.

the “hasSubType” relationship between a building and a building storey.

Response: (Explain to the concept mapping from SNL to SPARQL)

As the answer to the question 2.1, the concept mapping from a BIM model to the extracted

OWL model is based on the configuration file. The concept mapping from SNL to

SPARQL is based on the same configuration file. Therefore, we can implement the SNL to

SPARQL conversion process automatically. SNL statements that conform to the SNL

syntax can be converted to SPARQL statements. For example, the concept "Bedroom" in

the SNL sentence corresponds to the $IFCSPACE$ entity with its LongName containing

the word "Bedroom".

This interpretation has been added at the 3rd paragraph in Section 5.

Response: (Explain to the relation conversions from SNL to SPARQL)

This is a feature of SNL to be a language to describe design codes. The “has” relationship

at the design codes description level, can be converted automatically into different concrete

model implementations like the ones in IFC files. We apply the domain knowledge of

building to fulfill the automatic transformation. The different types of conversions for "has"

are determined by the subject and object type of it. The "has" relationship between the

building and the storey is converted to "hasSubType". The other type of "has" relationship

can be "isContaining", "hasBoundaryElement", or “isConnectedTo”, etc. For example, The

“Has” relationship with the subject “BedRoom” and the object “Window” will be converted

into “hasBoundaryElement”. The “Has” relationship with the subject “BedRoom” but the

object “Furniture” will be converted into “isContaining”. The definition of these relationships

has two considerations, one is the consistency with the representation in IFC; the other is

an appropriate subdivision to make the check more accurate.

This interpretation has been added at the 3rd paragraph in Section 5.

5. In section 5, optimisation strategies have been introduced and significant

performance improvements have been showed. However, the introduction of the

query optimisation methods is too strategic and it is hard for other researchers to

reproduce the results. Many questions need to be answered:

5.1 What is the query environment for RDF data (e.g. some triple store)? Are OWL

reasoners used or just treat data as plain RDF?

Response: RDF data is stored in OWL formatted text and is loaded into memory when it is

queried. OWL reasoning machine has not been used.

5.2. “In our method, we cluster the triples by the querying entities, and make the

entities with more branches in front of the query.” This needs to be much more

elaborated to describe clear algorithms or to give examples.

5.3 In Table 2, model size and all the used query examples should be provided (in

appendix for example).

5.4 At least one concrete query example should be presented to show how to

optimize the query. It is recommended to use one of the query examples in Table 2.

Response(5.2,5.3,5.4): Yes. The former description of the optimization part is too simple.

We have add the detailed the interpretation about the triple clustering, the optimization

algorithms and also a concrete query example to show the optimization procedure and the

result. The section is reorganized and separated as Section 6. The model size in the Table

2 is provided at the paragraph before Table 2.

6. Format and some minor issues:

6.1 In all the SPARQL query listings, it is recommended that classes start with upper

case and properties start with lower case.

Response: Thank you. The SPARQL are generated automatically by our program. As a

result, we didn’t adjust the representation manually in the manuscript. We will consider to

adjust the program to make the generated SPARQL much easier to read.

6.2 Size of models should be clearly provided. The size of all the RDF data should

be provided in triples. For example, in section 5, “The added size of the 8 models

are 713,372KB”, is it in Revit format, or in IFC, or in RDF? Please provide IFC model

size and transformed RDF model size. Similar thing like The size of the original BIM

model(Z15-F011MEP) is 93,596KB” in section 6.1.

Response: Revit and IFC are equivalent to the original BIM model, RDF is the size of the

model after we converted. The model size is the Revit model size, and we have annotated

it in the manuscript.

6.3 There are some English issues throughout the paper, often with singular and

plural forms. Another check would help.

Response: Thank you for your corrections, we have fixed these problems.

Review #2

In this paper the authors propose a framework for regulatory compliance checking

using a structured natural language format. Overall I found the paper very

interesting to read - but I have some concerns that should be addressed prior to

publication:

- To me the introduction lacked a clear research goal - what does your approach

seek to improve upon from other approaches? To me this needs to be in the context

of the work already done - not just stating your approach + its performance.

- I was unclear about how the drafting of the SNL is actually performed. The

reviewers point to the increased flexibility of this approach - but I am unsure if this

is for those drafting the regulations? Who do the authors envisage drafting the

regulations? Regulation authors? Has any consultation been performed to see if

this is acceptable to them?

Response: The research motivation and also some comparisons with the related work

especially on SNL are added in the manuscript at Section 3. The SNL is defined to be used

by BIM model inspection experts. It can be used to formalize national regulations, but also

to the regulations inside an organization, enterprise, or a project. The SNL has been used

by the experienced BIM designers, BIM model inspectors, and they show the acceptance

of the SNL language after a simple procedure of learning, especially for their natural

language like style.

- Do the authors have any reference to back up their assertion that a BIM is too big

to be used in totality - modern tuple stores for IFCOwl etc. are efficient - so would

like to see results to back up this claim.

Response: Some BIM model size are hundreds of megabytes, while the query has a lot of

conditions to filter, leading to a rule to query may cost several minutes, not to mention the

entire rule library; that’s why we have adopted a lot of optimization methods to improve

query efficiency.

- One point that I do not think is explained well enough in the paper is how the SNL

is mapped to the SparlQL i.e. how do you know Bedroom = IfcSpace (with

name=Bedroom)? This must be an automated process to make checking feasible at

scale so how is it done?

Response: Yes. The procedure was not clearly interpreted at the former manuscript.

The concept mapping from SNL to SPARQL is based on the same configuration file. As to

the different mapping from the concepts in the design codes to a concrete BIM model

representation, only the configuration is needed to modify. For example, the mapping

defines the concept “Bedroom” in the rule library is defined in the IFC files with the entity

“IFCSPACE” and its LongName string contains the substring “Bedroom”.

This interpretation has been added at the 3rd paragraph in Section 5.

- How is the optimization of SPARQL queries done? Automatically – semi

automatically? The paper lacked detail on this element.

- I also found myself wanting to see more experimental data. I.e. how much does

your optimization reduce queries by? See the speed before optimization and the

speed after optimization to me is essential to determine if this approach has any

merit.

Response: The optimization of SPARQL queries is automatically. Our optimization method

do not reduce the query. For the work of reorganizing the query, it is only by reorganizing

the query into a more reasonable way to reduce useless matching and backtracking, thus

reducing the query complexity. The former description of the optimization part is too simple.

We have add the detailed the interpretation about the optimization algorithms and also a

concrete query example to show the optimization procedure and the result. The section is

reorganized and separated as Section 6.

Review #3

(1) Originality

Probably, this approach could just as well be done with a regular schema less graph

database, which are considered to have user-friendly query languages. So, that

probably even defeats the need for an SNL language. Why use semantic web

technologies in the suggested approach: what did you gain?

Response: The work of this article is based on OWL and SPARQL. Even with the graph

database, SNL language is also necessary, because the contents of the building codes are

often complex, writing query sentences directly is difficult and may cause errors. SNL is

more convenient and clearer. And also, even with the graph database, we also need to

generate a graph database query statement, as in this work to generate SPARQL query

statement. So from these two perspectives, using Semantic Web technology is not a worse

case than the graph database. At the same time, we are also exploring the use of OWL

reasoning technology to complete the information of the model. This function is not

available in the graph database, so we chose the semantic web technology.

(2) Significance of the results

I personally do not believe in the possibility of creating such a language (formal and

user-friendly are like fire and water), nor in the real need for such a language. End

users in the industry, especially AEC, need GUIs, not a query language. User-

friendliness depends on the interface, which is not formal anyway. So, a mapping

needs to be made from interface to computer language.

Response: For the user, the GUI is really more convenient. We have also tried some GUI

work, but unfortunately, GUI is not able to fully meet the needs, especially for complex

building specifications. At the natural language level to describe the building codes has

been very complicated, if the use of the GUI to describe the rules of the building code, the

situation will become more complex. So we designed the SNL language, so that as close

as possible in the natural language expression at the same time, with a certain structural

and normative. Admittedly, the normative and ease of use of language is difficult to have

both, so in the design of SNL we have some consideration, such as the negative form must

use "not" to describe, resulting in “not has” expression of this way, which is not in line with

the expression of natural language description, but we think that this situation will not give

users more distress, it is understandable, so we retain this writing.

At the same time, we also provide users tools to write SNL, which can be regarded as a

user-oriented interface. The tool provides a number of SNL commonly used syntax and

keywords, when writing rules, users only need to enter very little content to write a correct

SNL statement. We believe that the use of SNL in comparison with the GUI, can make the

rule entry work more clearly.

(3) Quality of writing

The structure of the paper is great. The style of writing is good. Spelling is okay. The

references are poorly formatted. Please use a consistent format, as requested by

the journal, to structure references.

Response: This part has been corrected. Thank you for your correcting.

Detailed comments:

1. Common query languages and rule languages can be understood by human

beings and machines. So why develop yet another language?

Response: For non-computer design domain users, the cost of learning the SPARQL

language and learning the SNL is certainly not an order of magnitude. SNL language in the

grammar and semantic level are more close to the natural language, such as "bedroom",

"has" and other components, attributes and relationships has no difference from the natural

language description. The user only need to pay attention to the language structure. And

the SPARQL language on these components, attributes and relationships have been

completely out of the natural language environment, for the ordinary users, "bedroom" and

"?x rdf:type ifc2x3:ifcspace . ?x rdf:LongName ‘bedroom’" which is easier to understand? I

think the answer is obvious.

2. You suggest to build rule libraries in the SNL language. That seems quite 'off'.

Would it not be a better choice to build libraries of the more formal SPARQL queries?

The SNL representation is just an interface to the end user; it can probably be

generated from the stored SPARQL queries? In addition, nobody is capable of

parsing SNL rules; SPARQL queries can easily be exchanged and run in different

systems. Perhaps you can take a look at the recent article in

http://www.sciencedirect.com/science/article/pii/S1474034617301945? There are

reasons to choose for a query language and not a rule language, but "able to handle

large size models" is not one of them.

Response: As you mentioned, SNL can be seen as a user-oriented "interface". In the whole

work, the "rule library" concept actually has two meanings, one is the ‘.snl’ file which only

retains the SNL statement, and the other is the ‘.spl’ file which retains both the SNL

statement and SPARQL statement. The former can be directly in the SNL editing tools for

editing, browsing and preservation, while the latter is actually hidden from the user, used

in the follow-up checking process. The conversion from the former to the latter is

automatically achieved by the tool. This process is also hidden from the user, so the user

can only see the SNL layer. This is why we often refer to SNL when we refer to the concept

"rule library". In addition, if the rule library is stored directly as SPARQL, then it cannot be

edited and ensure the correctness as easy as the SNL style , which means the ease of use

will be greatly reduced.

The recent article you provide about the performance benchmark is really interesting.

Thank you. It provides a performance benchmark over semantic rule checking approaches

in construction industry, which gives detailed experimental data and suggestions for the

selection of ontology reasoners. In this paper, however, instead of focusing on the capacity

of ontology tools, we propose a light-weighted method which rule checks big BIM models

based domain knowledge on building codes and the feature of BIM models. The literature

is referred and we give an interpretation at the 2rd paragraph in Section 1.

3. You distinguish 'declarative' and 'conditional' sentences in the SNL language. The

declarative sentence is basically defined as a rule with a universal qualifier ('every'

/ forAll). What about sentences with existential qualifiers ('there is' / forSome)? Or,

well, a bunch of other formal structures available in a formal rule language...

Furthermore, the conditional sentences that you mention are typically considered

to be part of a declarative language. So, this terminology and classification is odd.

"The SNL supports two kinds of data types: string and digital". I don't know what

you mean with 'digital', but I guess that you refer to numbers (integers, floats, and

doubles)? What about Booleans, dates, and other data types commonly used

everywhere?

NOT is also a logical operator. It might make sense to place this in the list with AND

and OR.

Response: “Every” and “There-is” sentences are all simple sentences, because they don’t

have conditions. Digital means number, we’ve corrected it in the paper, thank you very

much. Since the Boolean type exists as a grammatical element in the natural language,

the Boolean type is implemented by the keyword “no” or “not”. Other data types (such as

date, time, etc.) in the building code has almost no application, so SNL temporarily did not

achieve them. NOT in the SNL is similar to the Boolean value, so it is not listed in the logical

conjunctions. The logical conjunctions here are more closely related to the concepts in

natural language, and are essentially used to connect sentences. NOT is mainly used as

a clause rather than a conjunction.

We have modified and supplemented these interpretations at the 5th paragraph in Section

3.

4. How will a machine automatically know how to translate this into a SPARQL rule?

Response: SNL to SPARQL conversion is done automatically by the program. To fulfill the

transformation from an SNL to a SPARQL, there are two key mappings, the concept

mapping and the relation mapping. First, the concept mapping from SNL to SPARQL is

based on a configuration file. For example, the concept of "Bedroom" in the SNL, will be

transformed to a SPARQL query as to the entity instances of "IFCSPACE" with their

LongName "Bedroom". Second, the relation in an SNL sentence “has” is a more high-level

relation description, to make the rule formalization more user-friendly. We map the relation

“has” to one of the several relations in the BIM model like

"isContaining","hasBoundaryElement", "isConnectedTo","hasSubType",etc. based on

different objects and subjects of the "Has" relation. For example, The "Has" relationship

with the subject "BedRoom" and the object "Window" will be converted into

"hasBoundaryElement". The "Has" relationship with the subject "BedRoom" but the object

"Furniture" will be converted into "isContaining". The common sense of the building domain

are applied to fulfill the automatic transformation.Numbers don’t have units now, because

the OWL model also does not contain units, we can agreed the unit to the same.

This interpretation has been added at the 3rd paragraph in Section 5.

5. If the user is not supported in picking from a list of available terms, the SNL rule

can contain anything, making it non-formal, and very expensive to reformat into

checkable SPARQL queries (see above).

Response: The SNL rule library can exist independently. The association and the concept

mapping between the rule library represented by SNL and the BIM model to be checked is

implemented by the configuration. Even if not converted to SPARQL, the SNL sentences

are also readable, which makes the validation of the correctness or the rule library easier.

It makes sense. The solutions which encode the rules by picking terms from the BIM

models like SMC cannot do that.

6. I am missing a reference here to the work around NLP and building regulations,

as documented in

http://www.sciencedirect.com/science/article/pii/S0926580516301819.

Response: Thank you. NLP is a great technology, it can help to further automate the whole

procedure. Using NLP in our work is what we have been studied and explored. We have

achieved some pre-identification and pretreatment of building codes with NLP technology,

but this is not part of the main process of our building model check method. However, due

to the inaccuracy of the semantics of natural language, many of the Building codes which

are written in natural language need further interpretation by domain experts. As a result,

it is difficult to translate the codes directly into correct rules by NLP techniques. We still

need a good formalization to represent rules of building codes. The SNL does not directly

deal with the natural language specification, but the rules of the SNL statement are written

by understanding the building code. Based on the similarity between the SNL and the

natural language, the SNL statement is readable for the user and easy to understand.

This part has been added as the 2rd paragraph in Section 3.

7. This is also the entire idea behind the SimpleBIM procedure as documented in

https://biblio.ugent.be/publication/8041826 (please read this).

Response: Thank you. The existent research SimpleBIM is really related to the extraction

part of our work. It provides several approaches which makes great simplification of the

RDF graphs. We appreciated the approaches very much. The ideas like building direct

relations between different concepts are very similar with our methods. In this part, our

method is not novel. However, there is one main difference between our work and the

former simplification research. The goal of our work is regulation checking, thus the

extraction procedure is regulation oriented. For example, if the regulation contains the

geometry related items to be checked, the geometry information should be extracted, and

cannot be simplified by the proposed methods in SimpleBIM. On the other hand, the

properties which are irrelevant to the regulation can be deleted safely.

The related work are referred and the interpretation is added in the 2rd paragraph in

Section 4.

8. Most, if not all, automated code compliance initiatives using semantic web

technologies that rely on SPARQL, take strong advantage of the CONSTRUCT

feature to encode the IF-THEN rules. The IF-THEN structure clearly maps well with

those CONSTRUCT queries. Similarly, have you considered the use of SPIN?

Response: You are right. In the current check process, the use of SELECT statement can

fully meet our needs. In the next step, we will consider using CONSTRUCT and SPIN to

handle some complex scenes.

9. This seems to indicate that this step requires both a domain specialist and a

programmer. How else can one 'adopt domain knowledge'?

Response: Domain experts only need to learn SNL language to write rules, and do not

need to learn programming.

10. It is seamless and automatic as soon as a programmer has implemented the

conversion, but he will likely need to do this again and again (so, not that seamless

and automatic after all). Please provide more evidence here.

Response: A common program can achieve automatically converting. SNL structure is

designed by us, so we also designed a program, parsing the SNL statements, designing

and implementing how each part be transferred to SPARQL, and then generate SPARQL

query sentences.

11. The tool at http://sts.thss.tsinghua.edu.cn:8079/bimchecker/ was not available

when I tested it. I hope that this web page contains datasets and not just a running

program. It would be valuable to see the actual data (e.g. the IFC2X3 ontology used).

Response: We are so sorry for the broken link. We’ve fixed it.

12. Textual remarks

Response: Thank you very much for your careful work, we have fixed all these mistakes.

Semantic Web 0 (2017) 1–0 1
IOS Press

Semantic web based rule checking of
real-world size BIM models: a pragmatic
method
Hehua Zhang a,∗,∗∗, Wenqi Zhao a, Jianqiao Gu a, Han Liu a, and Ming Gu a

a School of Software, KLISS, TNLIST, Tsinghua University,Beijing, 100084,China
E-mail: zhanghehua@tsinghua.edu.cn

Abstract. Rule checking is important to assure the integrity, correctness and usability of Building Information Models (BIMs)
in Architecture, Engineering and Construction (AEC) projects. Semantic web based rule checking of BIM models are widely
accepted and studied recent years. This technology has noteworthy advantages on interoperability, extensibility and logical
basics. However, there are still some gaps to make it practical. One challenge is the efficiency problem on processing large-
size BIM models. The other is how to effectively input checking rules which can be understood by both human beings and
machines. In this paper, we propose a pragmatic method to check real-world size BIM models. In our framework, BIM models are
transformed into a well-defined OWL model. Rules are formalized by a structured natural language (SNL) designed intentionally
to describe building regulations. The checking engine is based on SPARQL queries on OWL models. We propose a rule-based
model extraction method and optimization strategies on SPARQL statements, which can effectively improve the time efficiency
and deal with large-size applications. A prototype has been implemented and applied to BIM models of a real-world building
project. We found out non-trivial problems in a totally automatic way, which helped to improve the quality of BIM models and
verified the usability of our method.

Keywords: rule checking, BIM, Semantic Web, OWL, SPARQL

1. Introduction

The concept of Building information model (BIMs)
has had a tremendous impact on the Architecture, En-
gineering and Construction (AEC) industries. Its dig-
ital and uniform representation of both geometry and
all the information related to a building, made it widely
accepted and applied in various AEC projects. It is
well known that many regulations should be checked
and obeyed during the whole life cycle of a build-
ing, to make a safe and usable construction product.
As the wide use of BIM models, it is important to

*Corresponding author. E-mail: zhanghehua@tsinghua.edu.cn.
**This research is sponsored in part by NSFC Program (No.

61202010, No. 61527812), National Science and Technology Major
Project (No. 2016ZX01038101), and the National Key Technology
R&D Program (No. 2015BAG14B01-02).

check the rule compliance of BIM models to assure
their integrity, correctness and usability. Since manual
checking is time-consuming and error-prone, many re-
searchers have made great efforts on automatic rule
checking of BIM models. Typical tools for code check-
ing are Solibri Model Checker (SMC) [1] in Finland,
EDM [2] in Norway, ePlanCheck [3]in Singapore and
SMARTcodes [4] by ICC (International Code Coun-
cil) [5], etc.

BIM technologies are further and deeply applied
through information fusion with GIS, Infra, etc. to im-
plement smart city applications. In these scenarios,
generic and transboundary model representations are
more welcome than the building specific representa-
tion like the standardization through Industry Foun-
dation Classes (IFC) [6]. Semantic web technologies
have great advantages on interoperability, extensibility
and logical basics. Consequently, the usage of seman-

1570-0844/17/$35.00 c© 2017 – IOS Press and the authors. All rights reserved

2 Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method

tic web technologies in the domain of AEC are pop-
ular and widely studied. Especially, rule checking of
BIM models with semantic web technologies gained
great attention [7,8,9,10], since they provide originally
formal representation of concepts, relations and rules.
Representing design codes with rule description lan-
guages like SWRL [11], N3Logic [12], and then tak-
ing ontology reasoners like Jess [13] for checking are
popular solutions. The literature [14] provides a per-
formance benchmark over semantic rule checking ap-
proaches in construction industry, which gives detailed
experimental data and suggestions for the selection of
ontology reasoners. In this paper, instead of focusing
on the capacity of ontology tools, we propose a light-
weighted method which rule checks big BIM models
based domain knowledge on building codes and the
feature of BIM models.

With the persistent research achievements on this re-
search topic, however, there are still big gaps to make it
practical to solve real-world problems. One challenge
is the efficiency problem on processing large-size BIM
models. With the continuous application of BIM tech-
nology, information becomes increasingly abundant
and the size is also growing. In addition, the informa-
tion in BIM models is not independent. They have var-
ious relationships and are intertwined together to form
a complex network. Further, a BIM model is usually
built as a linked model composed by several BIM mod-
els in different disciplines. Therefore, applying seman-
tics web technologies on rule checking real-world BIM
models face the difficulties of both time and space cost.

The other challenge is how to effectively input
checking rules which can be understood by both hu-
man beings and machines. Solihin etc. [15] classified
the rules into 4 classes, according to their checking
difficulties. How to formalize the rules appropriately
is still a question. Logic-based representations are for-
mal and expressive, which are good to machines, while
hard to use by human beings. On the other hand, the
existing regulations are represented by natural lan-
guage, which face semantic ambiguity problems and
cannot be processed directly by machines. Further-
more, the variety of regulations requests a flexible
and extensible representation of rules. Hard-coded or
template-based rule representations seldom meet these
requests.

In this paper, we propose a pragmatic method for
automatic rule checking of BIM models. In our frame-
work, BIM models are transformed into a well-defined
OWL [16] model. Rules are described by a structured
natural language (SNL) designed intentionally to for-

malize building regulations. The checking engine is
based on SPARQL [17] queries on OWL models, en-
riched by checking-oriented designs to make it faster.
We propose a rule-based model extraction method
and several optimization strategies on SPARQL state-
ments, which can effectively improve the time effi-
ciency and deal with large-size applications. A proto-
type has been implemented and applied to BIM mod-
els of the real-world building: Z15 Tower project in
China. It found out non-trivial problems in a totally au-
tomatic way, which helped to improve the quality of
BIM models and verified the usability of our method.

The paper is organized as follows. We introduce the
method framework in Section 2. The proposed SNL
language is presented in Section 3.The semantic ex-
traction of BIM models are introduced in Section 4.
The checking engine and the optimization strategies
are presented in Section 5. Section 7 introduces case
studies in real-life applications. Finally, we conclude
and put our work in perspective in Section 8.

2. Proposed Method

The proposed rule checking method of BIM models
based on semantic web technologies is shown in Fig. 1.
First, we propose a new SNL language for rule formal-
ization. The building codes are formalized with SNL,
so that we get well-defined rule libraries for different
checking goals. Second, we propose a semantic model
extraction and transformation method, which extracts
an appropriate subset of the original BIM models. The
subset contains only the necessary information for the
targeted rule library. It is then transformed into an
OWL model. Finally, all the SNL rules are transformed
into SPARQL queries on the OWL model, according
to the agreed structure organization. After applying
SPARQL optimization strategies, and calling Apache
Jena [18] for a single SPARQL query, the checking en-
gine gets the final checking result by summarization
and analysis. The rule checking results can be pass, fail
or unknown.

The feature of our research framework is to han-
dle real-world size BIM models. Therefore, we take
SPARQL queries as the basis of checking engine. We
apply light-weighted use of SPARQL queries, while
keeping the interpretations, organization, and the con-
trol of checking flow by our own checking engine. We
can thus design and apply effective and featured opti-
mizations in our framework.

Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method 3

Rule
formalization

Semantic model
extraction and
transformation

SPARQL query
based checking

Building
codes

SNL rule
library

BIM models
(*.ifc, *.rvt)

OWL
model

Checking
results:

• Pass
• Fail
• unknown

Fig. 1. The architecture of the BIM rule checking method

3. The SNL language

With semantic web technologies, checking rules can
be formalized by logic based language like SWRL.
However, it is not easy to understand for human be-
ings. Consequently, it cannot be an effective input so-
lution for domain experts. On the other hand, some
tools chose hard-coded or template-based rule input
method. These methods are less flexible and less ex-
tensible, since the rules to be checked cannot be cus-
tomized easily. In this paper, we propose a structured
natural language (SNL) as the rule inputting solution,
which is designed intentionally for building codes de-
scription.

Converting (controlled) natural languages directly
into computable rules with Natural language process-
ing (NLP) techniques are attractive, and there are ex-
isting researches on it [19,20]. However, due to the in-
accuracy of the semantics of natural language, many
of the Building codes which are written in natural lan-
guage need further interpretation by domain experts,
to make its semantics clear and operatable. As a result,
it is difficult to translate the codes directly into correct
rules by NLP techniques. We still need a good formal-
ization to represent rules of building codes. Therefore,
we propose a semi-automatic method. First manually
understand the building code, then use SNL language
to enter the rules, and build a rule library for further
checking. Compared with the existing method such as
RASE [19], the SNL does not directly deal with the
natural language specification, but the rules of the SNL
statement are written by understanding the building
code. Based on the similarity between the SNL and the
natural language, the SNL statement is readable for the
user and easy to understand, the rules will not contain
labels and other information independent of the spec-
ification itself; and SNL has no need to do re-logical
reorganization or other processing.

There are also other existing controlled natural lan-
guages like SQUALL [21] and SBVR [22]. The differ-
ence of SNL and SQUALL is that, writing SQUALL

statement will use the concept of RDF, which means
exposing the intermediate data in the model checking
process to the user who writes the rules, it is not only
difficult for the user to understand but the exposures
of such data are not needed. The SNL language is de-
fined in the higher semantic abstraction level. Its writ-
ing logic and conceptual description are more simi-
lar to the natural language, the user only need to un-
derstand the concept of natural language on it, and
do not need to understand the knowledge of the Se-
mantic Web. Compared with business rule methods
such as SBVR [22], SNL is able to deal with special
cases in the building codes which are not easy for busi-
ness rules description language, such as the reference
among different building codes, or variety of condi-
tions in an item, etc.

Compared with the powerful template languages,
as an example provided by SMC, the SNL language
has the advantage of concise, easy to reuse, and com-
positional features. Furthermore, since the SMC tem-
plate language relies on choosing from the BIM mod-
els for the concept and relation description, it cannot
be used independently as a formal description of build-
ing codes. At the beginning of the design, SNL is for
the building code, taking the special aspects of the field
of construction expertise and domain knowledge into
account. In contrast, the SNL language is suitable for
this work. It can then be easily validated by the domain
experts whether the rule libraries reflect the requests in
natural language or not. That is also a crucial problem
to make the code checking results trusted.

The SNL language is organized by sentences. There
are two basic types of SNL sentences: the simple sen-
tences and the conditional sentences. The simple sen-
tences are identified by the keyword Every or "There-
is-a" to express basic rules with no conditions. The
conditional sentences are identified by the keywords If
and Then to denote which requests should be obeyed
when the given conditions are satisfied. Since the
building codes is usually a constraint on the prop-
erties and relationships of the building components,
the SNL is mainly designed for both. The SNL lan-
guage describes the relationship constraint R of two
components a and b with the form a R b. The rela-
tionship R of the components is determined by "has",
"border-has", "distance between" and so on. The SNL
describes the data property constraints P of the com-
ponent a with the form a its P op Expr. The data types
supported by SNL are mainly composed of strings and
numbers. Since the Boolean type exists as a gram-
matical element in the natural language, the Boolean

4 Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method

type is implemented in the SNL by the keyword no
or not. Other data types (such as date, time, etc.) are
not used in the building code we have already con-
cerned, so SNL did not contain them. It can be eas-
ily extended in the future if needed. The symbol op
denotes the string comparison operators like contains,
notcontains, equals, notequals, or numerical compari-
son operators like =,≥,≤,<,>. Simple sentence phases
are composed together by the logical operator like and,
or. Currently, SNL is able to cover more than 85% of
the national building codes (e.g. code for fire protec-
tion design of buildings in China (GB 50016-2014):
101/112) and more than 95% of the domain codes.

We present some realistic rules we have used in the
applications to gain an intuitive understanding of the
SNL language and the rule formalization by it.

1 Every Bedroom Has Window.
2 Every LivingRoom its area ≥ 10

The first SNL sentence denotes a request (No. 7.2.1) in
the design code for residential buildings in China (GB
50096-2011) that every bedroom should have win-
dows. It is implemented in SNL by the "Has" rela-
tion request between the entity Bedroom and the entity
Window. The second one denotes another request (No.
5.2.2) in the same code that the area of every living-
room should be bigger or equal to 10 m2. It is formal-
ized by requesting the value range of the data prop-
erty "area" of the component "LivingRoom". As can be
seen from the two examples, the SNL language is close
to the natural language and thus easily understood by
human beings. Furthermore, the SNL language still
keeps the accurate and strict semantics, so computers
can process them too. More complicated and general
examples involve the compositions of simple sentence
phases, which are shown as follows.

1 If Building Has Space and Space its elevation >
0 and Space not Has Window and Space its area
> 50
Then Space Has ExhaustOutlet.

This SNL sentence denotes a request (No. 8.5.4) in the
code for fire protection design of buildings in China
(GB 50016-2014). It requests that for all the spaces
above ground, if they have no windows and their area
is bigger or equal to 50 m2, they should contain exhaust
facilities. The given condition is described in the If
branch and the request is described in the Then branch.
The logical operator and is applied to connect the sim-
ple phases together. This example indicates that the
SNL language is powerful to express various compli-

cated sentences with the composition of sentence frag-
ments.

4. Semantic extraction of BIM models

Real-world BIM models are often large in size,
which makes the practicality of automatic rule check-
ing a challenge. A building product usually requires
a variety of compliance checks. Generally, different
specifications relate only to part of the BIM model to
be inspected, like the components, their data proper-
ties, and the relationships between components. Work-
ing on the complete BIM model will result in ineffi-
cient procedure. Therefore, we propose a rule library
based semantic extraction method for BIM models. It
can automatically extract the entities, attributes and re-
lations according to the content of the specification to
be inspected.

There are existent research like IfcWoD [23] and
SimpleBIM [24] which are closely related to our
sub model extraction work. They provide several ap-
proaches which make great simplification of the RDF
graphs. We appreciated the approaches very much.
The ideas like building direct relations between dif-
ferent concepts are very similar with our methods. In
this part, our method is not novel. However, there is
one main difference between our work and the former
simplification work. The goal of our work is regula-
tion checking, thus the extraction procedure is regula-
tion oriented. For example, if the regulation contains
the geometry related items, the geometry information
should be extracted, and cannot be simplified by the
proposed methods in SimpleBIM. On the other hand,
the properties which are irrelevant to the regulation can
be deleted safely.

The extraction method for an IFC formed BIM
model is illustrated in Fig. 2. It contains three core
steps. First of all, according to the specification, the
directly involved entities and their attributes are ex-
tracted as the entity set E1 and the attribute set A. By
analyzing the SNL statements in the rule library, we
can get the components and attributes of the SNL de-
scription and apply them to the IFC extraction process.
The concepts in the rule are mapped into the compo-
nents in the IFC through a configuration file (.cfg). For
example, the mapping defines that the concept "Bed-
room" in the rule library is mapped into the IFC file
with the entity "IFCSPACE" and its LongName string
contains the substring "Bedroom". As to the different
mapping from the concepts in the design codes to a

Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method 5

concrete BIM model representation, only the configu-
ration is needed to modify.

For the rules related to geometric computation
(which we can get from the SNL parsing process), we
need to extract the information such as bounding box,
MEP Points and so on, and obtain the geometry en-
tity set E2. By sorting out the existing specifications,
we have extracted the commonly used computational
keywords, such as "distance", "vertical net distance"
and so on. The rules with these keywords must be geo-
metrically calculated to check. By matching these key-
words in the process of SNL semantic parsing, we can
see which rules need to be geometrically calculated.

The semantic enhancement is to provide more de-
tailed entity semantics than the one in the original
IFC file. For example, the IFC file exported by Re-
vit 2015 may represent both pipes and cable carriers
as IFCFLOWS EGMENT , while we can enrich the
semantics by analyzing the related information, and
change the entities into IFCPIPES EGMENT and
IFCCABLECARRIERS EGMENT , respectively. The
enriched entity set is denoted by the set E3. Therefore,
we get the extracted entity set E from the three sources.

Extracted IFC model M=EI∪ RI ∪ AI

Entity set
related
E=E1∪E2∪E3

Entity set
（E1）

SNL rule library

IFC files

Enriched
Entity set
（E3）

Attribute
set (A)

Entity set
（EI）

Relation
set（RI）

Attribute
set（AI）

.owl file

Extracting
Entities

Semantic
Enriching

Extracting
IFC

Entities

Extracting
IFC

Relations

Extracting
IFC

attributes

Extracting
Attributes

OWL model
Generation

Geometry
set（E2）

Fig. 2. The semantic extraction and OWL transformation of BIM
models

Second, we extract the entity set in the IFC file
according to the set E to get the set EI. For any e
belonging to EI, we extract the IFC relational el-
ement referencing e to get RI. For any r belong-
ing to the RI, we extract the attribute set that be-
longs to the set A and referencing r (for exam-
ple IFCRELDEFINES BYPROPERT IES) to get AI.
Other relationships with types, materials are also con-
sidered, if the design codes have the constraints on
them. As a result, we get the final IFC sub-model M
which is oriented to the rule checking requirements.
The comparison on the size of BIM models before
and after the extraction is indicated in Table 1. The

number of entities and attributes are calculated and
compared. Three BIM models on three code libraries
are examined. The first model is the MEP model for
the 11th floor of the Z15 Tower project (Z15-F011-
MEP). The second model is the architecture model for
the 2nd unit of a residence project. The last model
is the 7th floor underground multi-model (Z15-B007)
of the Z15 Tower project, composed by 2 architec-
tural models and 6 MEP models linked together. Three
code libraries are the Z15 Tower project code, the code
for fire protection design of buildings (GB 50016-
2014) and the design code for residential buildings
(GB 50096-2011). The number of entities of the ex-
tracted semantic model without considering any rule
library and the ones orienting the three libraries are
denoted as E (total), E(Z15 code), E (FP code), E (R
code), respectively. The number of attributes without
considering any rule library and with the three libraries
are denoted as A (total), A (Z15 code), A (FP code)
and A (R code), respectively. From the result, we can
see that the rule library based model extraction method
can reduce the size of the model, especially when only
a small part of the model is related. For example, the
residence code checking oriented model extraction of
Z15-F011-MEP gets a very small one (with only 440
entities and 20,317 attributes).

Table 1
Size comparisons of the extracted models

Statistical items Z15-F011-MEP 2building-ARC Z15-B007

E(total) 7,674 15,513 76,210

A(total) 533,854 934,731 5,516,006

E(Z15 code) 5,531 12,538 42,729

A(Z15 code) 402,364 764,453 3,399,650

E(FP code) 4,322 15,309 39,416

A(FP code) 299,630 929,603 2,997,098

E(R code) 440 15,461 8,893

A(R code) 20,317 933,403 593,375

Finally, the extracted sub-model M is transformed
into the OWL model by applying Jena APIs. Consid-
ering the checking efficiency, we reorganize the struc-
ture of the OWL model, rather than keeping it another
representation of IFC files like the work in the litera-
tures [25]. Especially, to make the rule checking more
efficient, we largely shorten the query path by building
the relations between two entities and the attribute ac-
cess directly. For example, to represent the connection
between a duct fitting and a duct segment in Fig. 3,
Fig. 4 indicates the representation comparison from the

6 Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method

original IFC model and our generated OWL model.
From a duct fitting to the duct it connects to in the
original IFC, it requires three layers of search, while in
the generated OWL file only one layer of direct search
is enough. Furthermore, through semantic enrichment,
we can recognize the component as duct fitting, instead
of the abstract semantics like flow fitting, which can be
a pipe fitting, or a cable carrier fitting, or a duct fitting,
etc.

Fig. 3. A fragment model containing a duct segment and its con-
nected duct fitting

IfcFlowFitting IfcDistributionPort

#540

1670883

#822824

IfcDistributionPort

IfcRelConnectPortToElement IfcRelConnectPorts

#822826 #822829

#822811

IfcFlowSegment

IfcRelConnectPortToElement

1670857

#185

#822816

IfcDuctFitting IfcDuctSegment

1670883 1670857

isConnectedTo

In the Original IFC Model

In the Generated OWL

Fig. 4. The representation comparison between the IFC model and
our generated OWL model

5. The Checking engine

A building code in a natural language can be de-
scribed by a series of SNL sentences. We first trans-
form an SNL sentence into one or several SPARQL
queries on the extracted OWL model. After that, the
checking engine is executed and the result is analyzed.
The SNL language is designed to facilitate the de-
scription of rules by domain experts, and to facilitate
the description of implementation-independent rules.

Therefore, the transformation from SNL to SPARQL
is an important step to make the rules binding with
the BIM semantic model represented in OWL. We
can implement the SNL to SPARQL conversion pro-
cess automatically. SNL statements that conform to
the SNL syntax can be converted to SPARQL state-
ments. In general, we propose a reverse query method.
To check whether the rule is obeyed, we try to make
the SPARQL query to find all the components that vi-
olate the rule. If the result set R returned by the query
is empty, the checking result is "pass". Otherwise, the
rule is violated and we get the related problematic
component set C. The SPARQL queries are generated
by an SNL syntax-directed style and the transforma-
tion is a structural procedure.

We introduce the key points in the transformation by
the generated SPARQL queries for the SNL example
sentences presented in Section 3 as follows.

SNL: Every Bedroom Has Window.
SPARQL: SELECT ?X WHERE

?X rdf:type ifc2x3:ifcspace.
?X ifc2x3:LongName ?NOUNVAR0 .
FILTER (regex(?NOUNVAR0, ’Bedroom’)) .
FILTER (NOT EXISTS
?Y0 rdf:type ifc2x3:ifcwindow .
?X ifc2x3:hasBoundaryElement ?Y0)

To fulfill the transformation from an SNL to a
SPARQL, there are two key mappings, the concept
mapping and the relation mapping. First, as we have
introduced in Section 4, the concept mapping from a
BIM model to the extracted OWL model is based on
the configuration file. The concept mapping from SNL
to SPARQL is based on the same configuration file.
For example, the concept of "Bedroom" in the SNL,
will be transformed to a SPARQL query as to the entity
instances of "IFCSPACE" with their LongName "Bed-
room". Second, the relation in an SNL sentence has is
a more high-level relation description, to make the rule
formalization more user-friendly. We map the relation
has to one of the several relations in the BIM model
like "isContaining","hasBoundaryElement", "isCon-
nectedTo","hasSubType",etc. based on different ob-
jects and subjects of the "Has" relation. This is a fea-
ture of SNL to be a language to describe design codes.
The "has" relationship at the design codes descrip-
tion level, can be converted automatically into differ-
ent concrete model implementations like the ones in
IFC files. We apply the domain knowledge of building
to fulfill the automatic transformation. The "has" re-
lationship between the building and the storey is con-

Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method 7

verted to "hasSubType". The other type of "has" re-
lationship can be "isContaining", "hasBoundaryEle-
ment", or "isConnectedTo", etc. For example, The
"Has" relationship with the subject "BedRoom" and
the object "Window" will be converted into "has-
BoundaryElement". The "Has" relationship with the
subject "BedRoom" but the object "Furniture" will be
converted into "isContaining". The definition of these
relationships has two considerations, one is the con-
sistency with the representation in IFC; the other is an
appropriate subdivision to make the check more accu-
rate.

As a result, the generated SPARQL searches the
OWL model and tries to find the spaces which are bed-
rooms, but without any window on the boundary of it.

SNL: Every LivingRoom its area >= 10
SPARQL: SELECT ?X WHERE

?X rdf:type ifc2x3:ifcspace.
?X ifc2x3:LongName ?NOUNVAR0 .
FILTER (regex(?NOUNVAR0, ’LivingRoom’))
.
?X ifc2x3:hasPropertySet ?ps0 .
?ps0 ifc2x3:hasProperty ?p0 .
?p0 ifc2x3:PropName ’area’.
?p0 ifc2x3:PropValue ?v0 .
FILTER(!(?v0 >= 10))

The SPARQL searches the OWL model and tries to
find the spaces which are living rooms, but the value
of their "area" attributes are not bigger or equal to 10.
The more complicated SNL and their transformation
to SPARQL are presented as follows.

SNL: If Building Has Space and Space its elevation >
0 and Space not Has Window and Space its area
> 50
Then Space Has ExhaustOutlet.

SPARQL: SELECT ?X WHERE
?X rdf:type ifc2x3:ifcspace.
?X0 rdf:type ifc2x3:ifcbuilding .
FILTER (EXISTS
?X0 ifc2x3:hasSubType ?BS1 .
?BS1 rdf:type ifc2x3:ifcbuildingstorey .
?BS1 ifc2x3:hasSubType ?X) .
?X ifc2x3:hasPropertySet ?ps1 .
?ps1 ifc2x3:hasProperty ?p1 .
?p1 ifc2x3:PropName ’elevation’.
?p1 ifc2x3:PropValue ?v1 .
FILTER(?v1 > 0) .
FILTER (NOT EXISTS
?Y2 rdf:type ifc2x3:ifcwindow .

?X ifc2x3:isContaining ?Y2) .
?X ifc2x3:hasPropertySet ?ps3 .
?ps3 ifc2x3:hasProperty ?p3 .
?p3 ifc2x3:PropName ’area’.
?p3 ifc2x3:PropValue ?v3 .
FILTER(?v3 > 50) .
FILTER (NOT EXISTS
?Y4 rdf:type ifc2x3:ifcairterminal .
?Y4 ifc2x3:Name ?NOUNVAR0 .
FILTER (regex(?NOUNVAR0, ’Exhaust out-
let’)) .
?X ifc2x3:isContaining ?Y4)

From the examples, we can also verify that the SNL
is more concise and easier to use as a rule inputting
interface. Through the seamless and automatic trans-
formation, we obtain both the advantages on the rule
inputting and automatic rule checking.

6. The optimization strategies

The generated SPARQL queries work well in terms
of functionality. However, some SPARQL queries cost
much searching time in our practice. Jena cannot do
more even with some optimization strategies, since it is
a universal tool. However, BIM models have their own
features on the entities, attributes and their relations.
To process real-world size BIM models, we made BIM
domain specific optimization strategies, which brought
great improvements on the searching efficiency. The
first strategy is the order rearrangement. A SPARQL
sentence is generally executed according to the se-
quence of the triples. That is to say, the order of the
triples affects the execution time to a great extent. In
our method, we cluster the triples by the querying en-
tities, and place the entities with more branches first
in the query. This strategy can make the query quickly
converge, avoiding the unnecessary Cartesian product
of big sets.

The core of the reorganization of SPARQL queries
is the reorganization of the internal structure of the
queries, through which, the queries space can be
quickly converged when the queries is executed, so as
to avoid unnecessary matching and recursive waste of
queries time. The specific steps are divided into "forest
construction and sequencing" and "triples reorganiza-
tion".

The first step in the "forest construction and se-
quencing" stage is determining the tree roots in the for-
est. All entities concerned in the BIM model will be

8 Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method

selected as roots. After selecting the roots, we traverse
all triples in turn. In this step, the subjects, predicates
and objects in the triples will be transformed into the
parent nodes, edges and child nodes of the tree, respec-
tively. The upper side of Fig. 5 shows an example of
converting triples into a tree. From line 1, we turn en-
tity ?X0 into a root, and we add an edge represent the
rd f : type side and the edge connects to a sub-node
i f c2x3 : i f cbuilding. As the same as to the triple in
line 2, we add a child node of ?ps0 to the root. As to
the third line, we add another edge and child node to
the ?ps0 node, and so on. Eventually the tree is formed
shown in Fig.5.After adding all the triples to the forest,
we sort the trees in the forest by the branch number of
the roots. This arrangement will put more constraints
on the front of the entity.

1 ?X0 rdf:type ifc2x3:ifcbuilding .
2 ?X0 ifc2x3:hasPropertySet ?ps0 .
3 ?ps0 ifc2x3:hasProperty ?p0 .
4 ?p0 ifc2x3:PropName ’BUILDINGNAME’.
5 ?p0 ifc2x3:PropValue ?v0 .

ifc2x3:ifcbuilding

?X0

?ps0

?p0

‘BuildingName’ ?v0

ifc2x3:hasPropertySetrdf:type

ifc2x3:hasProperty

ifc2x3:PropertyName ifc2x3:PropertyValue

Fig. 5. The tree example of the triples

After "forest construction and sorting", we execute
the " triples reorganization " procedure. The purpose of
is to convert the triples in the forest into valid SPARQL
queries again without changing the semantics of the
original queries. This work is implemented by travers-
ing the trees in the forest from head to tail, and make
the Depth First Searching (DFS) of each tree. The
triples are reorganized while traversing. Algorithm 1
describes this process. The input of the algorithm is
the forest generated by the previous introduction. The
output are the triplesOF strings which generated by
traversing the forest. The first line of the algorithm as-
signs an empty string to triplesOF for initialization.
Lines 2 to 5 are a loop, and the trees in the forest are
traversed in the order of arrangement, with the DFS of

each tree in the forest. Line 3 takes the currently tra-
versed tree and line 4 get its root node. The 5th line of
the algorithm is to add the result of the triple which is
generated by the DFS of each tree to triplesOF. The
tree traversal algorithm is introduced by algorithm 2.
Finally, on line 6, the result of all triples reorganiza-
tions is returned.

Input : f orest is the orderes forest
OutPut: triplesOF is the triples except the filter

parts which is recognized from the forest

triplesOF ← EMPTY_STRING
for i < size(f orest) do

tree← getTree(f orest, i)
rootNode← getRoot(tree)
triplesOF ←
triplesOF + TRANVERSE(rootNode)

end
return triplesOF

Algorithm 1: COMPSETRIPLES

Algorithm 2 is a recursive algorithm for DFS of
trees. The input is a node of the tree, and the algorithm
will start traversing from this node. The output triples
are a series of triple strings that are combined in the en-
tire traversal process starting from the input node. The
first line of the algorithm assigns all child nodes of the
input node to the childList. The second line initializes
triples with an empty string. Lines 3 to 6 are a loop
that traverses all child nodes of the input node. Line
4 takes the currently traversed child node assigned to
childNode. Line 5 began the work of the reorganiza-
tion of the triples with turning node name into the triple
subject, turning the edge to its childNode to a pred-
icate, and turning childNode name into an object. In
line 5, S PACE indicates a space, and DOT means ".".
The line completed a reorganization of a triple. Line 6
starts with the currently traversed childNode, applies
the Tranverse algorithm again, and adds the traversal
result to the triples. After the loop, we get the triple
strings of the nodes which are traversed in the DFS of
the input node.It is also the triple strings of the tree.

After the triples except the filter parts are obtained
by the above algorithm, we can get the SPARQL
queries by simply splicing the rest of the queries.

The second strategy is the refactoring of the repre-
sentation. One query can be represented in different
forms, with the same functionality, but with different
time costs. Taking this into account, we replace some
structures by the same functional part, but with better

Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method 9

Input : node is a node in the tree
Output: triples is the triples which generated by

DFS og the node

childList← getChildList(node)
triples← EMPTY_STRING
for i < size(childList) do

childNode← get(childList, i)
triples←
triples + getNodeName(node) + SPACE +
getEdgeName(childNode) + SPACE +
getNodeName(childNode) + DOT
triples← triples + TRANVERSE(childNode)

end
return triples

Algorithm 2: TRANVERSE

efficiency. For example, the form "FILTER (EXISTS
?Y20 ifc2x3:isContaining ?X)" can be optimized as
"?Y20 ifc2x3:isContaining ?X", if it does not occur
in another FILTER environment. It can first avoid this
part to be executed since the FILTER parts are exe-
cuted last in Jena. The other advantage is that it be-
comes a triple so the first optimization strategy can
be applied. Finally, we did some pre-queries for some
complicated SPARQL statements, and only when the
searching result set of the pre-queries is not empty, the
real SPARQL query is executed. This strategy saves a
lot of query time especially for the multi-level embed-
ded Filter parts, where the first two strategies do not
work.

The BIM model of the seventh floor underground
(Z15_B007) in the Z15 Tower project is taken to exam-
ine the optimization results. It is a linked multi-model
which is composed by 8 single Revit models with 2 ar-
chitecture models, and 6 MEP models. The added size
of the 8 models are 713, 372KB (with the Revit for-
mat). We apply our SNL rule library for fire protec-
tion (GB50016-2014) on this BIM model, and the ex-
ecution time for some bottleneck SPARQL queries be-
fore and after applying the three strategies are demon-
strated in Table 2. The bar in the table represents that
the query result cannot be given after 10 minutes. From
the table, the optimization strategies improve the per-
formance of key queries to a great extent, and do im-
prove the performance of query based BIM rule check-
ing.

The following shows an example of a complete re-
organization of the SPARQL queries. The natural lan-
guage of of the item 6.9.6 from the design code for res-

Table 2
Time comparisons of the SPARQL optimizations

Items time without opt (ms) time with opt (ms)

5.4.10-1 - 271

5.4.11-6 - 60

5.4.13-6 - 58

5.5.21-30 - 17

5.5.21-28 67838 29

5.5.21-29 24367 48

6.2.2-1 47826 76

6.2.2-5 58387 43

7.3.1-4 11688 20

7.3.1-5 11638 19

idential buildings (GB 50096-2011) and the SNL rule
is shown as follows. The generated SPARQL before
optimization is shown in Fig. 7. The forest generated
during the optimization procedure is shown in Fig. 6.
The optimized SPARQL sentence is shown in Fig. 8.

We apply both the generated query and the opti-
mized query to the "cell unit building" project (the
model size is 38.73MB, Json format). The query time
with the optimized SPARQL query is about 18ms. On
the other hand, the query before optimization applied
to the same model takes up to 13580ms. This forest-
based reorganization strategy applied to the SPARQL
at that time reached an astonishing 99.87% efficiency
optimization.

Design Code for Residential Building 6.9.6: The En-
trance of the underground floor and elevator
which directly connect residential unit should
be set up B fire doors. And it is forbidden to
use staircases or elevators for the underground
garage for natural ventilation.

SNL: If Elevator Has Door and Elevator its elevation
< 0 Then Door its Fire-proof equals "B"

7. Applications

Based on the proposed method, we developed a pro-
totype tool BimChecker, which can process both IFC
models and Revit models. The core of the BimChecker
tool is implemented in Java 8. We provide a Web-
based version and a Revit Plugin, for different kinds of
applications. The Web-based version is implemented
based on Apache Tomcat 9. It supports uploading the
IFC model (.ifc) and the rule library which has been
generated to SPARQL (.xml files). With the selection

10 Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method

SELECT ?X WHERE {
?X rdf:type ifc2x3:ifcdoor.
?X0 rdf:type ifc2x3:ifcspace.
?X0 ifc2x3:LongName ?NOUNVAR0 .
FILTER (regex(?NOUNVAR0, ’Elevator’)
) .
FILTER (EXISTS {
?X0 ifc2x3:hasBoundaryElement ?X }

) .
?X0 ifc2x3:hasPropertySet ?ps1 .
?ps1 ifc2x3:hasProperty ?p1.
?p1 ifc2x3:PropName ’elevation’.
?p1 ifc2x3:PropValue ?v1.
FILTER(?v1 > 0.0) .
?X ifc2x3:hasPropertySet ?ps2 .

?ps2 ifc2x3:hasProperty ?p2 .
?p2 ifc2x3:PropName ’Fire-proof’.
?p2 ifc2x3:PropValue ?v2 .
FILTER(!(xsd:string(?v2) =’B’))

Fig. 6. The query generated directly from SNL to SPARQL

Fig. 7. The forest generated during the SPARQL optimization pro-
cedure

of rules in a rule library, it executes the BimChecker
core checking engine, and presents the checking result
in a webpage [26]. The Revit plugin version of Bim-
Checker can support better interactivity. The interface
and the model information acquisition part are imple-
mented in C#, based on Revit APIs, and the checking
core is called to implement the checking functionali-
ties. The checking result interface of BimChecker is
shown by example in Fig. 9.

The Z15 Tower, located in Beijing CBD core area
Z15 plots, is the tallest landmark building in Beijing.
The total building height is 528 meters, with 108 floors
above ground, and 7 floors underground. The project

SELECT ?X WHERE {
?X0 rdf:type ifc2x3:ifcspace.
?X0 ifc2x3:LongName ?NOUNVAR0 .
?X0 ifc2x3:hasPropertySet ?ps1 .
?ps1 ifc2x3:hasProperty ?p1.
?p1 ifc2x3:PropName ’elevation’.
?p1 ifc2x3:PropValue ?v1.
?X rdf:type ifc2x3:ifcdoor.
?X ifc2x3:hasPropertySet ?ps2 .
?ps2 ifc2x3:hasProperty ?p2 .
?p2 ifc2x3:PropName ’Fire-proof’.
?p2 ifc2x3:PropValue ?v2 .
FILTER (regex(?NOUNVAR0, ’Elevator’)
) .
FILTER (EXISTS {
?X0 ifc2x3:hasBoundaryElement ?X }

) .
FILTER(?v1 > 0.0) .
FILTER(!(xsd:string(?v2)=’B’))}

Fig. 8. The generated SPARQL query after optimization

Export report

Checking 36 items automatically.
Pass rate: 86% (31 items / 36 items); Fail rate : 14% (5 items / 36 items).
The total number of problematic components: 352.

Checking summary

Item No. Item description Result Type Reason Errors

Fail

Fail

Fail

Fail

Value
error

Value
error

Value
error

Value
error

Flanges, valves, and other duct(pipe) fittings
installed in insulated duct (pipe) systems shall
be insulated with the same insulation material
and the insulation thickness with the connected
duct (pipe).

If PipeFitting isConnectedTo Pipe
and Pipe its insulatedType
notequals "" Then PipeFitting its
insulatedThickness = Pipe its
insulatedThickness.

If DuctFitting isConnectedTo Duct
and Duct its insulatedType
notequals "" Then DuctFitting its
insulatedType = Duct its
insulatedType.

If DuctFitting isConnectedTo Duct
and Duct its insulatedType
notequals "" Then DuctFitting its
insulatedThickness = Duct its
insulatedThickness.

Duct
fittings:
171

Duct
fittings:
171

Pipe
fittings:
101

The material and connection requests of
gravity drainage pipes and ventilation pipes.

If Pipe its Name contains " gravity "
Then Pipe its material contains
"cast iron " and Pipe its connection
contains “Plug".

Pipe:
69

Pipe:
5

Z15-3.3.1

1.1.4

1.1.1 Fail
Value
error

The material and connection requests of
Living water supply pipes.

If Pipe its Name contains living
water" Then Pipe its material
contains "stainless steel " and Pipe
its connection contains "Socket-
type".

Fig. 9. The checking result shown by the BimChecker tool

started on July 29, 2013, and planned to complete in
October 2018. As a typical super-high-rise building,
the Z15 project faces many challenges in both design
and construction phase. The project has strict require-
ments on application of BIM technologies and the cor-
rectness of BIM models. We collaborated with the Z15
project group and applied our BimChecker tool to the
electromechanical deep design and multi-model syn-
thesis stages. Several non-trivial problems are found,
which are hard to find manually or time-consuming.

Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method 11

The applications on Z15 Tower project verified the us-
ability of our method.

Specifically, we built 5 rule libraries to handle dif-
ferent kinds of checking requirements. The first one
aims to check the information correctness of drainage
component relative to the Z15 project requirements.
The second one aims to check the supports and hang-
ers related national standards compliance. The third
one checks whether the installation space and main-
tenance space are enough reserved. The fourth one is
for component naming specification conformance. The
last one is to check the reasonability for modular cut
of pipes.

We illustrate some of the checking results. The first
rule library contains 36 items which cover the prop-
erty information correctness checking of all kinds of
pipes, pipe fittings,etc., with specific conditions. The
36 natural language described items are formalized as
116 rules with our SNL language. The tool then gener-
ates 116 compliance SPARQL queries. The MEP BIM
model for the 11th floor in Z15 project as shown in
Fig. 10 was examined. We found that 5 items failed
on compliance checking,with 352 problematic compo-
nents. The checking result interface is shown in Fig. 9.

Fig. 10. The MEP BIM model of the 11th floor in the Z15 Tower
project

To illustrate, one item (No. Z15-3.3.1) among the
5 failed ones requests flanges, valves, and other duct
(pipe) fittings installed in insulated duct (piping) sys-
tems shall be insulated with the same insulation type
and the insulation thickness with the connected duct
(pipe). It is formalized in our tool by 4 SNL rules.
One rule respective to pipe fittings and their insulation
thicknesses are shown as follows.

SNL: If PipeFitting isConnectedTo Pipe and Pipe its
insulatedType notequals ""

Then PipeFitting its insulatedThickness = Pipe
its insulatedThickness.

The tool found that 101 pipe fittings are non-
compliant with this rule. The problematic components
are well demonstrated and located by our BimChecker
tool, so that the modeler can quickly find them and
fix them. For example, as shown in Fig. 11, one prob-
lematic component found by our tool is identified as
"Z15_CCIEI_Z01_HVAC_Reducing tee fittings HVAC
_Chilled water backwater 1554291". Its insulation
layer type is "flexible foam rubber" and its insulation
layer thickness is 35.0mm. It is connected to a pipe
identified as "Z15_CCIEI_Z01_HVAC_Chilled water
backwater 1554289", with the insulation layer type
"flexible foam rubber", and the insulation thickness of
30.0mm. The insulation thickness is not the same value
as the rule requested.

Fig. 11. An instance of the problematic tees

The size of the original BIM model (Z15-F011-
MEP) is 93,596KB (with the Revit format).The num-
ber of entities of the extracted OWL model is 5, 531,
while the number of the attributes is 402, 364, as
shown in Table 1. The whole execution time is 21.98
seconds,including the procedure of model extraction
(11.73s), model transformation (5.58s), the SPARQL
queries (2.97s), and the checking result generation
(1.7s). The average execution of a SPARQL query is
25.6 ms. It validates that our semantic web based rule
checking method can be effectively used to checking
BIM models in practice.

8. Conclusion

Rule checking is important to assure the integrity,
correctness and usability of Building Information
Models (BIMs) in Architecture, Engineering and Con-
struction (AEC) projects. Semantic web technologies
based rule checking of BIM models are widely ac-

12 Hehua Zhang et al. / Semantic web based rule checking of real-world size BIM models: a pragmatic method

cepted and studied in recent years. However, the diffi-
culties on processing large-size real-world BIM mod-
els and on effective inputting checking rules are not to-
tally solved. In this paper, we propose a novel method
to automatic rule checking of BIM models. First, we
propose the SNL language for effective rule input by
domain experts (rather than programmers). The SNL
rules are easily read and understood by human beings,
thus made the rule library validation possible. Sec-
ond, a semantic model extraction and transformation
method is proposed. The rule library oriented method
helped to reduce the size of the model and improve
the efficiency of checking. Finally, the OWL model
checking based on SPARQL query is proposed, which
can support rule compliance checking. By optimizing
the checking flow, checking results of real-world BIM
models can be given effectively and fast. We devel-
oped a prototype tool BimChecker and applied it to the
Z15 Tower project. Many significant problems were
found, which helped to improve the accuracy of the
model. The applications also validates the usability of
our methods.

In the future, we plan to build more rule libraries,
and apply the suggested approach to other practical
buildings like LianTang Port in Shenzhen, China. We
also plan to design more domain specific optimization
strategies to further reduce the checking time, espe-
cially the time of model extraction and transformation.

References

[1] SMC:the Solibri model checker, http://www.solibri.com.
[2] EDM model checker,

http://www.epmtech.jotne.com/index.php?id=512200.
[3] novaCITYNETS. implementing IFC-automatic code

checking(e-plancheck), http://www.nova-hub.com/e-
government/.

[4] D. Conover. Development and implementation of automated
code compliance checking in the U.S. International Code
Council, 2007.

[5] ICC: International code council, https://www.iccsafe.org/.
[6] BuildingSMART international, summary of IFC re-

leases, available online: http://www.buildingsmart-
tech.org/ifc/ifc4/final/html/index.htm.

[7] Y.-s. Jeong J.-K. Lee C. M. Eastman, J.-m. Lee. Automatic
rule-based checking of building designs. Automation in Con-
struction, 18 (8):1011–1033, 2009.

[8] R. Verstraeten-J. De Roo-R. DeMeyer R. Van de Walle J.
Van Campenhout P. Pauwels, D. Van Deursen. A semantic rule
checking environment for building performance checking. Au-
tomation in Construction, 20 (5):506–518, 2011.

[9] S. Zhang P. Pauwels. Semantic rule-checking for regula-
tion compliance checking: An overview of strategies and ap-
proaches. In Proceedings of the 32rd International CIB W78
Conference, pages 619–628, 2015.

[10] H.Li T.Kasim T.H.Beach, Y.Rezgui. A rule-based semantic ap-
proach for automated regulatory compliance in the construc-
tion sector. Expert Systems with Applications, 42 (12):5219–
5231, 2015.

[11] H. Boley et al I. Horrocks, P. F. Patel-Schneider. SWRL: A
semantic web rule language combining owl and ruleml. W3C
Member Submission, May 2004.

[12] Lalana Kagal Yosi Scharf Tim Berners-Lee, Dan Connolly.
N3logic: A logical framework for the world wide web. Theory
& Practice of Logic Programming, 8 (3):249–269, 2007.

[13] Jess: the rule engine for the java platform,
http://www.jessrules.com/jess/index.shtml.

[14] Pieter Pauwels, Tarcisio Mendes de Farias, Chi Zhang, Ana
Roxin, Jakob Beetz, Jos De Roo, and Christophe Nicolle.
A performance benchmark over semantic rule checking ap-
proaches in construction industry. Advanced Engineering In-
formatics, 33:68 – 88, 2017.

[15] C.Eastman W.Solihin. Classification of rules for automated
bim rule checking development. Automation in Construction,
53:69–82, 2015.

[16] Frank Van Harmelen Deborah L McGuinness. Owl web ontol-
ogy language overview. W3C recommendation, 10 (10), 2004.

[17] SPARQL 1.1 query language. w3c recommendation 21 march
2013, http://www.w3.org/tr/sparql11-query/.

[18] Apache Jena: A free and open source java framework
for building semantic web and linked data applications.
http://jena.apache.org/.

[19] Nisbet N Hjelseth E. Capturing normative constraints by use
of the semantic mark-up RASE methodology. In Proceedings
of CIB W78-W102 Conference, pages 1–10, 2011.

[20] Nora M. El-Gohary Jiansong Zhang. Integrating semantic NLP
and logic reasoning into a unified system for fully-automated
code checking. Automation in Construction, 73:45–57, 2017.

[21] Ferrĺę S. SQUALL. a controlled natural language as expressive
as SPARQL 1.1. In Proceedings of International Conference
on Application of Natural Language to Information Systems,
pages 114–125, 2013.

[22] Bordbar B Bajwa I S, Lee M G. SBVR business rules gen-
eration from natural language specification. In AAAI spring
symposium: AI for business agility, pages 2–8.

[23] Nicolle C. Mendes de Farias T., Roxin A. IfcWoD, semanti-
cally adapting IFC model relations into OWL properties. In
Proceedings of the 32nd CIB W78 Conference on Information
Technology in Construction, pages 175–185, 2015.

[24] Ana Roxin Pieter Pauwels UGent. IfcWoD, semantically
adapting IFC model relations into OWL properties. In 11th Eu-
ropean Conference on Product and Process Modelling, pages
11–18, 2016.

[25] W. Terkaj P. Pauwels. Express to owl for construction industry:
Towards a recommendable and usable ifcowl ontology. Au-
tomation in Construction, 63:100–133, 2016.

[26] BimChecker. available at:
http://sts.thss.tsinghua.edu.cn:8079/bimchecker/.

