
Semantic Web 0 (0) 1 1
IOS Press

XMLSchema2ShEx: Converting XML
validation to RDF validation
Herminio Garcia-Gonzalez a,∗ Jose Emilio Labra Gayo a,∗∗

a Department of Computer Science, University of Oviedo, C/ Federico García Lorca S/N 33007

Abstract. RDF validation is a new field where researchers among the Semantic Web are putting their effort. However, migration
to new formats and standards comes at a price. In order to facilitate and alleviate this transformation, this paper proposes a set of
mappings that can be used to convert between XML Schema and ShEx—one of the new RDF validation languages—. Moreover,
this paper presents a prototype that supports a small subset of the mappings proposed in it and a example of a XML Schema
converted to ShEx with this prototype. This work and the development of other formats mappings could drive to a new era of
semantic-aware and interoperable data.

Keywords: ShEx, XML Schema, RDF, XML, RDF validation, Shape Expressions, Semantic Web, data conversion, format
mapping, semantic-aware data

1. Introduction

Validation is one of the key areas when normalisa-
tion and confidence are desired. Moreover, normali-
sation is desired as a way of making a dataset more
trustworthy and even more useful to possible users be-
cause of its predictable schema. Validation can excel
data cleansing, querying and standardisation. There-
fore, validation is a key field of data management.

XML Schema was born as a language to make vali-
dation of XML possible and more convenient than us-
ing DTDs [3]. With XML Schema, developers can de-
fine the structure, constraints and documentation of a
XML vocabulary. Alongside the appearance of DTDs,
XML Schema and other alternatives (such as Relax
NG [6] and Schematron [9]), new possibilities come
to scene such as conversion to OWL [8] in order to
convert this information into Semantic Web compati-
ble version.

As XML has its own schema language—or lan-
guages—it was some that RDF lacked. Some alterna-
tives were OWL and RDF Schema; however, they do
not cover completely what XML Schema does with

*Email: herminiogg@gmail.com
**Email: labra@uniovi.es

XML [16]. For this purpose, Shape Expressions was
proposed to fulfil this requirement.

As many documents and data are persisted in XML
and need of migration or interoperability is nowadays
more pressing, many authors have proposed conver-
sions from XML to RDF [11] [7] [1] [4]. These conver-
sions enable users to migrate their data to newer and
more modern technologies. However, a key and lack-
ing process when converting XML to RDF is the vali-
dation process. How to be sure that the conversion has
been done effectively and that both versions—in dif-
ferent languages—are defining the same nature. How
to migrate all the effort put in validation mark-up and
preserve this functionality in the new platform. These
questions are some of which we desire to answer in the
present work.

Therefore, an alternative on how to make the con-
version from XML Schema to ShEx is described in this
paper. Detailing how each element in XML Schema
can be translated into ShEx. Moreover, a prototype that
can convert a subset of what is defined in the following
sections is also presented.

The rest of the paper is structured as follows: section
2 describes how to convert each element from XML
Schema to ShEx notation, section 3 describes a possi-
ble set of mappings between XML Schema and RDF,

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 /

section 4 presents a prototype used to validate a subset
of previously presented mappings and how this conver-
sion works against existing RDF validators and section
5 draws some conclusions and future lines of work and
improvement.

2. Background

Conversions between two formats is an active field
where researchers put their effort. In XML community,
many conversions to RDF, and backwards, have been
proposed using different techniques: in [11] authors
describe their experience on developing this transfor-
mation for business to business industry, in [7] an on-
tology based transformation is described, in [1] they
use this approach to solve the lift problem, in [4] au-
thors describe a transformation supported on SPARQL
and in [2] a transformation from RDF to other kind of
formats, including XML, is proposed using XSLT.

However, data validation is a key question as it has
been previously stated in this paper. Therefore, trans-
formation between schemas is another important and
active field: in [14] a dictionary of transformations is
defined based on similarities between XML and JSON
schemas, in [10] authors patented a mechanism to con-
vert XML Schema components to Java components, in
[15] an algorithm which convert from XML schemas
to ER diagrams is proposed and in [13] authors pro-
pose conversion from XML Schema to xtext to bring
more functionalities to XML Schema based DSLs.

Another approach is to take a domain model as the
main representation and then make the needed trans-
formations between the model and other formats (e.g.,
XML Schema, ShEx, JSON Schema and so on) as it
has been made on FHIR specification1.

Based in the Semantic Web various approaches
could be taken: transforming XML Schema to ontolo-
gies: in [8] authors define a set of mapping to trans-
form XML Schema to OWL and transforming XML
Schema to RDF Schema [11].

However, neither OWL nor RDF Schema capture
all the constraints that are supported by XML Schema
and that RDF needs as it is stated by [16]. There-
fore, various languages were proposed to perform this
operation. On one hand Shapes Constraint Language
(SHACL)2 that is proposed by the W3C Data Shapes
Working Group and Shape Expressions (ShEx) [17]

1https://www.hl7.org/fhir/
2https://www.w3.org/TR/shacl/

proposed by the W3C Shape Expressions Community
Group. In this paper, ShEx is used to describe the trans-
formations due to its support for recursion whereas
in SHACL recursion depends on the implementation
being used. However, transformations to SHACL are
feasible and interesting for future work because it has
been proposed as a W3C recommendation and it can
be simulated by target declarations.

To our knowledge, due to its recent appearance, no
XML Schema to ShEx conversion has been proposed.
In this paper, a transformation from XML Schema to
ShEx is proposed and how each element could be han-
dled on its individual translation.

3. Mappings between XML Schema and ShEx

XML Schema defines a set of elements and datatypes
for doing the validation that need to be converted to
ShEx. Along this section, different XML Schema ele-
ments and what a possible conversion to ShEx could
be are described. Starting from the example and then
expanding with advanced XML Schema and ShEx fea-
tures. All examples are using the default prefix : for
URIs. It is intended to be replaced by different prefixes
depending on the required namespace.

3.1. Element

Elements should be treated as a triple terminal, i.e.,
we should convert it as a terminal expression of a shape
one.

< x s : e l e m e n t name=" b i r t h d a y " t y p e =" x s : d a t e " / >

: b i r t h d a y x s : d a t e ;

Name attribute is used as the end of the URI in
the predicate and the type is transcribed directly, as
ShEx use the XSD types. If ref attribute is present, type
should be defined somewhere to link the correspond-
ing type or shape. When an element type is a com-
plex type, the type should be referenced to a new shape
where the complex type was converted (see 3.3 section
to expand information on how to convert a complex
type to a shape).

< x s : e l e m e n t name=" p u r c h a s e O r d e r "
t y p e =" PurchaseOrde rType " / >

/ 3

< xs :complexType name=" PurchaseOrde rType ">
. . .

< / xs :complexType >

: p u r c h a s e O r d e r @< PurchaseOrde rType > ;

< x s : e l e m e n t name=" i t em " minOccurs=" 0 "
maxOccurs=" unbounded ">
< xs :complexType >

. . .
< / xs :complexType >

< / x s : e l e m e n t >

: i t e m @< i t em > ∗ ;

As presented in the previous examples when an ele-
ment has its complex type nested the shape name will
be the name of the element.

3.2. Attribute

Attributes should be treated as elements in ShEx.
ShEx makes no difference between an attribute and an
element because this is only part of the XML seman-
tics. Therefore, transformation of an attribute could be
done using its name and type as performed with an el-
ement (see 3.1 section).

3.3. ComplexType

Complex types are translated directly to ShEx’s
shapes. The name of the complex type will be the name
of the shape to which elements can refer to. Complex
types can be compound of different statements. There-
fore, detailed transformation of each possibility is pre-
sented below.

< xs :complexType name=" PurchaseOrde rType ">
. . .

< / xs :complexType >

< PurchaseOrde rType > {
. . .

}

3.3.1. Sequence
While sequences in XML Schema define sequential

order of elements, in ShEx this is more complicated
due to the RDF graph schema. Therefore, there are
two main forms of converting a sequence: considering
a sequence as an unordered set of elements—useful
as many users use sequence like all clause [5]—or an
ordered set of elements preserving the semantics of
XML.

The following example shows two different conver-
sions covering each of the possibilities that were men-
tioned before.

< xs :complexType name=" a d d r e s s ">
< x s : s e q u e n c e >

< x s : e l e m e n t name=" name "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" s t r e e t "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" c i t y "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" s t a t e "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" z i p "
t y p e =" x s : d e c i m a l " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< a d d r e s s > {
:name x s : s t r i n g ;
: s t r e e t x s : s t r i n g ;
: c i t y x s : s t r i n g ;
: s t a t e x s : s t r i n g ;
: z i p x s : d e c i m a l ;

}

< a d d r e s s > {
r d f : f i r s t @<name> ;
r d f : r e s t @< i 1 > ;

}

< i 1 > {
r d f : f i r s t @< s t r e e t > ;
r d f : r e s t @< i 2 > ;

}

< i 2 > {
r d f : f i r s t @< c i t y > ;
r d f : r e s t @< i 3 > ;

}

< i 3 > {
r d f : f i r s t @< s t a t e > ;
r d f : r e s t @< i 4 > ;

}

4 /

< i 4 > {
r d f : f i r s t @< z i p > ;
r d f : r e s t [r d f : n i l] ;

}

<name> {
:name x s : s t r i n g ;

}

< s t r e e t > {
: s t r e e t x s : s t r i n g ;

}

< c i t y > {
: c i t y x s : s t r i n g ;

}

< s t a t e > {
: s t a t e x s : s t r i n g ;

}

< z i p > {
: z i p x s : d e c i m a l ;

}

3.3.2. Choice
Choices in XML Schema are the OR logic operator

to select between a value or another one. This operator
is supported in ShEx using the brackets ’(’ and ’)’ and
the ’|’ operator. The object and predicate of the RDF
statement must be one of the enclosed ones. Therefore,
translation is performed as showed in the following
snippet:

< x s : c h o i c e >
< x s : e l e m e n t name=" name "

t y p e =" x s : s t r i n g " / >
< x s : s e q u e n c e >

< x s : e l e m e n t name=" givenName "
t y p e =" x s : s t r i n g "

maxOccurs=" unbounded " / >
< x s : e l e m e n t name=" familyName "

t y p e =" x s : s t r i n g " / >
< / x s : s e q u e n c e >

< / x s : c h o i c e >

(:name x s : s t r i n g
| :givenName x s : s t r i n g + ;

: fami lyName x s : s t r i n g
) ;

3.3.3. All
While sequences were an ordered set of elements,

all is instead a set of unordered elements. Indeed, all

is a better representation of ShEx elements of a shape.
Therefore, transformation is done following the same
procedure used for the unordered option sequence (see
3.3.1 section for more details).

< x s : a l l >
< x s : e l e m e n t name=" name "

t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" s t r e e t "

t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" c i t y "

t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" s t a t e "

t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" z i p "

t y p e =" x s : d e c i m a l " / >
< / x s : a l l >

:name x s : s t r i n g ;
: s t r e e t x s : s t r i n g ;
: c i t y x s : s t r i n g ;
: s t a t e x s : s t r i n g ;
: z i p x s : d e c i m a l ;

3.4. SimpleType

Simple types in XML Schema are based in XSD
Types (see 3.7 section) and allow some enhancements
like: restrictions, lists and unions. Translation into
ShEx will use the same XSD types, as ShEx supports
them. Depending on the content, translation is per-
formed following a different criteria. For translation of
restrictions see 3.6 section.

3.4.1. List
Lists inside simple types define a way of creating

collections of a base XSD Type in XML Schema.
These lists are supported in RDF using RDF Collec-
tions3. Hence, translation into ShEx is made by using
RDF Collections vocabulary.

< x s : s i m p l e T y p e name=" I n t e g e r L i s t ">
< x s : l i s t i temType=" x s : i n t e g e r " / >

< / x s : s i m p l e T y p e >

< I n t e g e r L i s t > {
r d f : f i r s t x s : i n t e g e r ;
r d f : r e s t @< I n t e g e r L i s t > ;

}

3https://www.w3.org/TR/rdf11-mt/rdf-collections

/ 5

3.4.2. Union
Unions are the way that XML Schema offers to

make new types that are the conjunction of two simple
types. With this kind of conjunction, a new type which
allows any value admitted by each one of the members
of the union is created. Therefore, for the translation
into ShEx a new type that is the combination of the
shapes involved into the union is defined.

< x s : a t t r i b u t e name=" f o n t s i z e ">
< x s : s i m p l e T y p e >

< x s : u n i o n memberTypes=" fon tbynumber
f o n t b y s t r i n g n a m e " / >

< / x s : s i m p l e T y p e >
< / x s : a t t r i b u t e >

< x s : s i m p l e T y p e name=" fon tbynumber ">
< x s : r e s t r i c t i o n

base =" x s : p o s i t i v e I n t e g e r ">
< x s : m a x I n c l u s i v e v a l u e =" 72 " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e name=" f o n t b y s t r i n g n a m e ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e =" s m a l l " / >
< x s : e n u m e r a t i o n v a l u e =" medium " / >
< x s : e n u m e r a t i o n v a l u e =" l a r g e " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

(: f o n t s i z e x s : p o s i t i v e I n t e g e r MaxExclus ive 72
|
: f o n t s i z e [" Smal l " " Medium " " Large "]) ;

3.5. ComplexContent and SimpleContent

Complex contents and simple contents, in XML
Schema, are a way to define a new type from a base
type using restrictions and extensions. Complex con-
tents for complex types and simple contents for sim-
ple types. Hence, for the translation into ShEx, the re-
spective restriction or extension should be taken into
account to define the new type.

3.5.1. Restriction
Restrictions are used in XML Schema to restrict

possible values in a base type. Using a new type can
be defined using restrictions applied to the base one.
Depending on how the type and the restrictions are de-
fined strategies vary.

– Simple content: If simple content is present XSD
Facets/Restrictions must be used (see 3.6 section

for more information). When a simple type is re-
stricted transformation is done using the known
base type (see 3.7) and putting some format re-
strictions depending on the base type. Transla-
tion into ShEx will be performed using the base
type—ShEx uses the same XSD Types that are
defined for XML Schema, therefore translation is
done directly—and translating the XSD Facets as
they are defined in every specific case, see 3.6.

– Complex content: If complex content is present,
base complex type is restricted using group, all,
choice, sequence, attribute groups or attribute.
Complex content restriction will restrict allow-
able values and element type restrictions. This a
case of inheritance by restriction. For translation
into ShEx the restriction elements must be taken
and transformed directly into a new shape that de-
fines the child shape. 4.

3.5.2. Extension
With extensions in XML Schema it is possible to

define a new type as an extension of other one previ-
ously defined. This is a case of extending inheritance,
where the child inherits its parent elements plus its
own defined elements. Depending on the content, i.e.,
complex content or simple content, different transla-
tion strategies are used.

– Simple content: If simple content is present ex-
tension of base simple type is performed by
adding more attributes or attribute groups. There-
fore, the translation into ShEx is made concate-
nating both the type and its extension to create the
new shape.

– Complex content: If complex content is present
extension of base complex type is performed by
adding more attributes and elements to new base
one. Therefore, translation is done combining the
base complex type and its extension to create a
new shape.

Restrictions and extensions in ShEx are not sup-
ported directly (i.e., ShEx has no support for exten-
sions, restriction or inheritance in any way) with the
same semantics as XML Schema. Therefore, we use
the normal syntax provided by ShEx and create the two
resulting shapes from the respective restriction or ex-
tension.

4In future versions of ShEx a way of inheritance will be sup-
ported. See: https://github.com/shexSpec/shex/issues/50

6 /

< x s : s i m p l e T y p e name=" m o u n t a i n B i k e S i z e ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e =" s m a l l " / >
< x s : e n u m e r a t i o n v a l u e =" medium " / >
< x s : e n u m e r a t i o n v a l u e =" l a r g e " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< xs :complexType name=" Fami lyMoun ta inBikes ">
< x s : s i m p l e C o n t e n t >

< x s : e x t e n s i o n
base =" m o u n t a i n B i k e S i z e ">
< x s : a t t r i b u t e

name=" familyMember ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n
v a l u e =" c h i l d " / >

< x s : e n u m e r a t i o n
v a l u e =" male " / >

< x s : e n u m e r a t i o n
v a l u e =" fe ma l e " / >

< / x s : r e s t r i c t i o n >
< / x s : a t t r i b u t e >
< / x s : e x t e n s i o n >

< / x s : s i m p l e C o n t e n t >
< / xs :complexType >

Fami lyMoun ta inBikes {
: m o u n t a i n B i k e S i z e [Smal l Medium Large] ;
: fami lyMember [c h i l d male f e m a l e] ;

}

3.6. XSD Types Restrictions/Facets

3.6.1. Enumeration
Enumeration restrictions use a base type to restrict

the possible values. Normally, it is a set of possible val-
ues. In ShEx this is defined using the ’[’ and ’]’ oper-
ators. Inside the square brackets are the values that are
allowed.

< x s : s i m p l e T y p e name=" m o u n t a i n b i k e s i z e ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e =" s m a l l " / >
< x s : e n u m e r a t i o n v a l u e =" medium " / >
< x s : e n u m e r a t i o n v a l u e =" l a r g e " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< xs :complexType
name=" F a m i l y M o u n t a i n B i k e S i z e s ">
< x s : s i m p l e C o n t e n t >

< x s : e x t e n s i o n
base =" m o u n t a i n b i k e s i z e ">
< x s : a t t r i b u t e name=" familyMember "

t y p e =" x s : s t r i n g " / >
< / x s : e x t e n s i o n >

< / x s : s i m p l e C o n t e n t >
< / xs :complexType >

< xs :complexType
name=" C h i l d M o u n t a i n B i k e S i z e s ">
< x s : s i m p l e C o n t e n t >

< x s : r e s t r i c t i o n
base =" F a m i l y M o u n t a i n B i k e S i z e s " >
< x s : e n u m e r a t i o n v a l u e =" s m a l l " / >
< x s : e n u m e r a t i o n v a l u e =" medium " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e C o n t e n t >

< / xs :complexType >

F a m i l y M o u n t a i n B i k e S i z e s {
: m o u n t a i n B i k e S i z e [Smal l Medium Large] ;
: fami lyMember x s : s t r i n g ;

}

C h i l d M o u n t a i n B i k e S i z e s {
: m o u n t a i n B i k e S i z e [Smal l Medium] ;
: fami lyMember x s : s t r i n g ;

}

3.6.2. Fraction digits
Fraction digits are used in XML Schema when a

decimal type is defined (e.g., xs:decimal) and the num-
ber of decimal digits that are desired in the representa-
tion. ShEx does support this feature as XML Schema.
Hence, FRACTIONDIGITS keyword is used followed
by the integer number of fraction digits that should be
allowed.

< x s : e l e m e n t name=" i t emVa lue ">
< x s : s i m p l e T y p e >

< x s : r e s t r i c t i o n base =" x s : d e c i m a l ">
< x s : f r a c t i o n D i g i t s v a l u e =" 2 " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< / x s : e l e m e n t >

: i t e m V a l u e x s : d e c i m a l FRACTIONDIGITS 2 ;

3.6.3. Length
Length is used to restrict the number of characters

allowed in a text type. In ShEx this is supported with
the LENGTH keyword, followed by the integer num-
ber that defines the desired length.

< x s : e l e m e n t name=" group ">

/ 7

< x s : s i m p l e T y p e >
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : l e n g t h v a l u e =" 1 " / >
< / x s : r e s t r i c t i o n >

< / x s : s i m p l e T y p e >
< / x s : e l e m e n t >

: g r o u p x s : s t r i n g LENGTH 1 ;

3.6.4. Max Length and Min Length
Max length and min length are used to restrict the

number of characters allowed in a text type. But in-
stead of restricting to a fixed number of characters,
with these features restriction to a length interval is
permitted. In ShEx definition of min and max length is
made by using the MINLENGTH and MAXLENGTH
keywords.

< x s : e l e m e n t name=" comments ">
< x s : s i m p l e T y p e >

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : m i n L e n g t h v a l u e =" 1 " / >
< xs :maxLength v a l u e =" 1000 " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< / x s : e l e m e n t >

:comment x s : s t r i n g MINLENGTH 1 MAXLENGTH 1000 ;

3.6.5. Max exclusive, min exclusive, min inclusive
and max inclusive

These features allow to restrict number types to an
interval of desired values. Exclusive restrict the use of
the given value and inclusive does not restrict the use
of given value. This is the same theory as in open and
closed intervals. In ShEx these features are supported
directly.

< x s : e l e m e n t name=" c o r e s ">
< x s : s i m p l e T y p e >

< x s : r e s t r i c t i o n base =" x s : i n t e g e r ">
< x s : m i n E x c l u s i v e v a l u e =" 0 " / >
< x s : m a x E x c l u s i v e v a l u e =" 9 " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< / x s : e l e m e n t >
< x s : e l e m e n t name=" c o r e s O p e n I n t e r v a l ">

< x s : s i m p l e T y p e >
< x s : r e s t r i c t i o n base =" x s : i n t e g e r ">

< x s : m i n I n c l u s i v e v a l u e =" 1 " / >
< x s : m a x I n c l u s i v e v a l u e =" 8 " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< / x s : e l e m e n t >

: c o r e s x s : i n t e g e r
MINEXCLUSIVE 0 MAXEXCLUSIVE 9 ;

: c o r e s O p e n I n t e r v a l x s : i n t e g e r
MININCLUSIVE 1 MAXINCLUSIVE 8 ;

3.6.6. Total digits
This feature allows to restrict the total number of

digits permitted in a numeric type. In ShEx this is al-
lowed using TOTALDIGITS keyword.

< x s : e l e m e n t name=" age ">
< x s : s i m p l e T y p e >

< x s : r e s t r i c t i o n base =" x s : i n t e g e r ">
< x s : t o t a l D i g i t s v a l u e =" 3 " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< / x s : e l e m e n t >

: a g e x s : i n t e g e r TOTALDIGITS 3 ;

3.6.7. Whitespace
Whitespaces allow to specify how white spaces on

strings are handled. In XML Schema, there are three
options:

– Preserve: This option will not remove any white
space character from the given string.

– Replace: This option will replace all white space
characters (line feeds, tabs, spaces and carriage
returns) with spaces.

– Collapse: This option will remove all white
spaces characters

∗ Line feeds, tabs, spaces and carriage returns are
replaced with spaces.

∗ Leading and trailing spaces are removed.
∗ Multiple spaces are reduced to a single space.

In ShEx white spaces options are not supported. In or-
der to simulate the same behaviour it is possible to use
semantic actions.

3.6.8. Unique
Unique is used in XML Schema to define what el-

ement of a type is unique, i.e., they cannot have same
values among them. This is very useful for cases like
IDs where a unique ID is the way to identify an ele-

8 /

ment. Nowadays, ShEx does not support Unique func-
tion but it is expected to be supported in future ver-
sions. As a temporal solution, semantic actions could
be used to implement this kind of constraint.

3.6.9. Cardinality
Cardinality in ShEx is defined with the following

symbols: ’*’ for 0 or more repetitions, ’+’ for 1 or more
repetitions, ’?’ for 0 or 1 repetitions (optional element)
or ’m, n’ for m to n repetitions where m is minOc-
curs and n maxOccurs. Therefore, transformation of
minOccurs and maxOccurs in the previous defined car-
dinality marks is done as showed in the following ex-
ample.

< x s : e l e m e n t name=" name " t y p e =" x s : s t r i n g "
minOccurs=" 0 " maxOccurs=" unbounded ">

< x s : e l e m e n t name=" name " t y p e =" x s : s t r i n g "
minOccurs=" 1 " maxOccurs=" unbounded ">

< x s : e l e m e n t name=" name " t y p e =" x s : s t r i n g "
minOccurs=" 0 " maxOccurs=" 1 ">

< x s : e l e m e n t name=" name " t y p e =" x s : s t r i n g "
minOccurs=" 4 " maxOccurs=" 10 ">

:name x s : s t r i n g ∗ ;
:name x s : s t r i n g + ;
:name x s : s t r i n g ? ;
:name x s : s t r i n g {4 , 10} ;

3.7. XSDTypes

XSD types are used directly on ShEx. Therefore,
translation is done directly using the same types that
are defined in the XML Schema document.

3.7.1. XS:NMTOKEN
NMTokens on XML Schema are used to define pos-

sible values that a type could take. In ShEx this is sup-
ported using the symbols ’[’ and ’]’. Enclosed values
are the possible values that the RDF object could take.

< x s : s i m p l e T y p e name=" P u b l i c a t i o n T y p e ">
< x s : r e s t r i c t i o n base ="xsd:NMTOKEN">

< x s : e n u m e r a t i o n v a l u e =" Book " / >
< x s : e n u m e r a t i o n v a l u e =" Magazine " / >
< x s : e n u m e r a t i o n v a l u e =" J o u r n a l " / >
< x s : e n u m e r a t i o n v a l u e =" On l in e " / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< x s : e l e m e n t name=" pubType "
r e f =" P u b l i c a t i o n T y p e " / >

< x s : a t t r i b u t e name=" c o u n t r y "
t y p e ="xs:NMTOKEN" f i x e d ="US" / >

Table 1
Supported and pending of implementation features in
XMLSchema2ShEx prototype. * Not supported in ShEx 2.0.

Supported features

Complex type, Simple type,
Sequence (unordered version),

Attributes, Restriction,
Element, Max exclusive,

Min exclusive, Max inclusive,
Min inclusive, Enumeration,

Pattern, Cardinality

Pending implementation

Sequence (ordered version), Choice,
All, List, Union, Extension,

Fraction Digits, Length,
Max Length, Min Length,

Total digits, Whitespace*, Unique*

:pubType [Book Magazine J o u r n a l O n l i ne] ;
: c o u n t r y [US] ;

3.7.2. Pattern
Patterns are used in XML Schema to define how a

string value should be or what type of format is al-
lowed. Patterns in ShEx use the same expressions ex-
cept that backslash is required to be doubled, i.e., dou-
ble backslash to be correctly escaped.

< x s : s i m p l e T y p e name="SKU">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : p a t t e r n v a l u e =" \ d{3}−[A−Z]{2} " / >
< / x s : r e s t r i c t i o n >

< / x s : s i m p l e T y p e >
< x s : a t t r i b u t e name=" partNum " t y p e ="SKU"

use =" r e q u i r e d " / >

:par tNum x s : s t r i n g PATTERN \ \ d{3}−[A−Z]{2} ;

4. XMLSchema2ShEx prototype

Although proposed mappings between XML Schema
and Shape Expressions in the previous section, for the
sake of hypothesis demonstration a prototype has been
developed that uses a subset of the presented mappings
and converts from a given XML Schema input to a
ShEx equivalent output. This prototype is developed in
Scala and it is available online5.

The tool is built on top of Scala parser combinators
[12] which grammar could be seen in Supplementary

5https://github.com/herminiogg/XMLSchema2ShEx

/ 9

Material. Once the XML Schema input is analysed and
verified it is converted to ShEx ouput based on the dif-
ferent outputs and linked elements declared in the file.
These conversions are made recursively and printed to
the ouput in ShEx Compact Format (ShExC) which is
the output format supported by this tool.

The example presented below is used to prove that
the prototype could work and do the transformation
as expected. This example includes complex types, at-
tributes, elements, simple types and patterns among
others. Therefore, complex types are converted to
shapes, elements and attributes to triple terminals, re-
strictions and cardinality attributes to triple cardinality
and so on. Although it is a small example, it has the
structure of typical XML Schemas used nowadays and
the prototype can convert it properly as it is stated in
the example conversion below.

< xs : schema
x m l n s : x s =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"
t a r g e t N a m e s p a c e =" h t t p : / / t e m p u r i . o rg / po . xsd "
xmlns=" h t t p : / / t e m p u r i . o rg / po . xsd "
e l e m e n t F o r m D e f a u l t =" q u a l i f i e d ">

< x s : e l e m e n t name=" p u r c h a s e O r d e r "
t y p e =" PurchaseOrde rType " / >

< x s : e l e m e n t name=" comment "
t y p e =" x s : s t r i n g " / >

< xs :complexType name=" PurchaseOrde rType ">
< x s : s e q u e n c e >

< x s : e l e m e n t name=" sh ipTo "
t y p e =" USAddress " / >

< x s : e l e m e n t name=" b i l l T o "
t y p e =" USAddress " / >

< x s : e l e m e n t r e f =" comment "
minOccurs=" 0 " / >

< x s : e l e m e n t name=" i t e m s "
t y p e =" I t e m s " / >

< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" o r d e r D a t e "

t y p e =" x s : d a t e " / >
< / xs :complexType >

< xs :complexType name=" USAddress ">
< x s : s e q u e n c e >

< x s : e l e m e n t name=" name "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" s t r e e t "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" c i t y "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" s t a t e "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" z i p "
t y p e =" x s : d e c i m a l " / >

< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" c o u n t r y "

t y p e ="xs:NMTOKEN"
f i x e d ="US" / >

< / xs :complexType >

< xs :complexType name=" I t e m s ">
< x s : s e q u e n c e >
< x s : e l e m e n t name=" i t em "

minOccurs=" 0 "
maxOccurs=" unbounded ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t
name=" productName "
t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t
name=" q u a n t i t y ">

< x s : s i m p l e T y p e >
< x s : r e s t r i c t i o n

base =" x s : p o s i t i v e I n t e g e r ">
< x s : m a x E x c l u s i v e

v a l u e =" 100 " / >
< / x s : r e s t r i c t i o n >

< / x s : s i m p l e T y p e >
< / x s : e l e m e n t >
< x s : e l e m e n t name=" USPrice "

t y p e =" x s : d e c i m a l " / >
< x s : e l e m e n t r e f =" comment "

minOccurs=" 0 " / >
< x s : e l e m e n t name=" s h i p D a t e "

t y p e =" x s : d a t e " minOccurs=" 0 " / >
< / x s : s e q u e n c e >

< x s : a t t r i b u t e name=" partNum " t y p e ="SKU"
use =" r e q u i r e d " / >

< / xs :complexType >
< / x s : e l e m e n t >
< / x s : s e q u e n c e >
< / xs :complexType >

< x s : s i m p l e T y p e name="SKU">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : p a t t e r n v a l u e =" \ d{3}−[A−Z]{2} " / >
< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< / xs : s chema >

PREFIX : < h t t p : / /www. example . com / >
PREFIX x s d : < h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema#>

< I t e m s > {
: i t e m @< i t em > ∗ ;

}
< i t em > {

:produc tName x s d : s t r i n g ;
: q u a n t i t y x s d : p o s i t i v e I n t e g e r {1 , 99} ;
: U S P r i c e x s d : d e c i m a l ;
:comment x s d : s t r i n g ? ;

10 /

: s h i p D a t e x s d : d a t e ? ;
:par tNum x s d : s t r i n g

PATTERN " \ \ d{3}−[A−Z]{2} " ;
}
< PurchaseOrde rType > {

: s h i p T o @<USAddress> ;
: b i l l T o @<USAddress> ;
:comment x s d : s t r i n g ? ;
: i t e m s @< I t e m s > ;
: o r d e r D a t e x s d : d a t e ;

}
<USAddress> {

:name x s d : s t r i n g ;
: s t r e e t x s d : s t r i n g ;
: c i t y x s d : s t r i n g ;
: s t a t e x s d : s t r i n g ;
: z i p x s d : i n t e g e r ;
: c o u n t r y ["US"] ;

}

4.1. Validation example

<? xml v e r s i o n =" 1 . 0 " ?>
< p u r c h a s e O r d e r

xmlns=" h t t p : / / t e m p u r i . o rg / po . xsd "
o r d e r D a t e ="1999−10−20">
< sh ipTo c o u n t r y ="US">

<name> A l i c e Smith < / name>
< s t r e e t >123 Maple S t r e e t < / s t r e e t >
< c i t y > M i l l V a l l e y < / c i t y >
< s t a t e >CA< / s t a t e >
< z i p >90952< / z i p >

< / sh ipTo >
< b i l l T o c o u n t r y ="US">

<name> Rob e r t Smith < / name>
< s t r e e t >8 Oak Avenue< / s t r e e t >
< c i t y >Old Town< / c i t y >
< s t a t e >PA< / s t a t e >
< z i p >95819< / z i p >

< / b i l l T o >
<comment>

Hurry , my lawn i s go ing wi ld !
< / comment>
< i t e m s >

< i t em partNum="872−AA">
<productName>

Lawnmower
< / productName>
< q u a n t i t y >1< / q u a n t i t y >
<USPrice > 148 .95 < / USPrice >
<comment>

Confirm t h i s i s e l e c t r i c
< / comment>

< / i t em >
< i t em partNum="926−AA">

<productName>
Baby Moni to r

< / productName>

< q u a n t i t y >1< / q u a n t i t y >
<USPrice > 39 .98 < / USPrice >
< s h i p D a t e >1999−05−21< / s h i p D a t e >

< / i t em >
< / i t e m s >

< / p u r c h a s e O r d e r >

: o r d e r 1 : s h i p T o [
:name " A l i c e Smith " ;
: s t r e e t " 123 Maple S t r e e t " ;
: c i t y " Mall V a l l e y " ;
: s t a t e "CA" ;
: z i p 90952 ;
: c o u n t r y "US"

] ;
: b i l l T o [

:name " Ro be r t Smith " ;
: s t r e e t " 8 Oak Avenue " ;
: c i t y " Old Town" ;
: s t a t e "PA" ;
: z i p 95819 ;
: c o u n t r y "US"

] ;
:comment " Hurry , my lawn i s go ing wi ld ! " ;

: i t e m s [
: i t e m [

:produc tName " Lawnmower " ;
: q u a n t i t y 1 ;
: U S P r i c e 148 .95 ;
:comment " Confirm t h i s i s e l e c t r i c " ;
:par tNum "872−AA"

] ;
: i t e m [

:produc tName " Baby Moni to r " ;
: q u a n t i t y 1 ;
: U S P r i c e 39 .98 ;
: s h i p D a t e "1999−05−21" ^^ x s d : d a t e ;
:par tNum "926−AA"

] ;
] ;
: o r d e r D a t e "1999−10−20" ^^ x s d : d a t e .

Once conversion from XML Schema input to ShEx
output is done, it must be verified that the same vali-
dation that was performed on XML data using XML
schema, but now on RDF data using ShEx, is work-
ing properly. Therefore, translation of a valid XML to
RDF is executed which is presented in the above snip-
pet. The conversion presented in the snippet is a possi-
ble conversion that uses bnodes to represent the nested
types for the example simplicity.

For RDF validation using ShEx there are various im-
plementations in different programming languages that
are being developed by other researchers in the com-
munity. One of these implementations is made in Scala

/ 11

by one of the authors of this paper and it is available
online6.

Using the examples given above the validation can
be performed with the mentioned tool which allows the
RDF input and the ShEx input in various formats and
then the option to validate the RDF against the ShEx
or SHACL schema. As seen in Figure 1, validation is
performed by trying to match the shapes with the ex-
isting graphs, whenever the tool matches a pattern it
shows the coincidence in green and a short explanation
of why this graph has matched.

5. Conclusions and Future work

In this work, a possible set of mappings between
XML Schema and ShEx has been presented. With this
set of mappings, automation of XML Schema conver-
sions to ShEx is a new possibility which is demon-
strated by the prototype that has been developed and
presented in this paper.

One future line that should be tackled is the loss of
semantics. With this kind of transformations some of
the elements could not be converted back to their XML
Schema origin. Nevertheless, it is a difficult problem
due to the difference between ShEx and XML Schema
semantics and it would involve some sort of modifica-
tions and additions in ShEx semantics (like the inheri-
tance case).

With the present work, validation of existing trans-
formations between XML and RDF is now possible
and convenient. This kind of validations makes data
more reliable and trustworthy and it also facilitates mi-
grations from old data formats to new data formats.

However, a big path should be travelled. Conver-
sions from other formats (such as JSON Schema,
DDL, CSV Schema, etc.) should also be treated and
encouraged to permit a migration to a new set of
semantic-aware and interoperable data.

References

[1] Steve Battle. Gloze: XML to RDF and back again.
[2] Diego Berrueta, Jose E Labra, and Ivan Herman. Xslt+ sparql:

Scripting the semantic web with sparql embedded into xslt
stylesheets. In 4th Workshop on Scripting for the Semantic
Web, Tenerife, 2008.

6http://shaclex.herokuapp.com/validate?schemaEmbedded=false

[3] Geert Jan Bex, Frank Neven, and Jan den Bussche. DTDs ver-
sus XML schema: a practical study. In Proceedings of the 7th
international workshop on the web and databases: colocated
with ACM SIGMOD/PODS 2004, pages 79–84. ACM, 2004.

[4] Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno
Lopes, and Axel Polleres. Mapping between RDF and XML
with XSPARQL. Journal on Data Semantics, 1(3):147–185,
2012.

[5] Iovka Boneva, Radu Ciucanu, and Slawomir Staworko. Simple
schemas for unordered xml. In 16th International Workshop
on the Web and Databases (WebDB), 2013.

[6] James Clark and Makoto Murata. Relax NG specification.
2001.

[7] D V Deursen, C Poppe, G Martens, E Mannens, and R V
d. Walle. XML to RDF Conversion: A Generic Approach.
In Automated solutions for Cross Media Content and Multi-
channel Distribution, 2008. AXMEDIS ’08. International Con-
ference on, pages 138–144, nov 2008.

[8] Matthias Ferdinand, Christian Zirpins, and David Trastour.
Lifting XML Schema to OWL, pages 354–358. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[9] Rick Jelliffe. The Schematron: An XML structure validation
language using patterns in trees. 2001.

[10] S.P. Kaipa, A. Rahurkar, P.C. Bollineni, and A. Arora. Map-
ping xml schema components to qualified java components,
March 20 2007. US Patent 7,194,485.

[11] I Miletic, M Vujasinovic, N Ivezic, and Z Marjanovic. En-
abling Semantic Mediation for Business Applications: XML-
RDF, RDF-XML and XSD-RDFS transformations. In Ri-
cardo J Gonçalves, Jörg P Müller, Kai Mertins, and Martin
Zelm, editors, Enterprise Interoperability II: New Challenges
and Approaches, pages 483–494. Springer London, London,
2007.

[12] Adriaan Moors, Frank Piessens, and Martin Odersky. Parser
combinators in Scala. 2008.

[13] Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer,
Javier Troya, and Manuel Wimmer. Xmltext: from xml schema
to xtext. In SLE, 2015.

[14] Falco Nogatz and Thom Frühwirth. From xml schema to json
schema-comparison and translation with constraint handling
rules. 2013.

[15] Giuseppe Della Penna, Antinisca Di Marco, Benedetto Intrig-
ila, Igor Melatti, and Alfonso Pierantonio. Interoperability
mapping from xml schemas to er diagrams. Data Knowl. Eng.,
59:166–188, 2006.

[16] Eric Prud’hommeaux and Jose Emilio Labra Gayo. RDF ven-
tures to boldly meet your most pedestrian needs. Bulletin
of the Association for Information Science and Technology,
41(4):18–22, 2015.

[17] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold
Solbrig. Shape expressions: an RDF validation and transforma-
tion language. In Proceedings of the 10th International Con-
ference on Semantic Systems, pages 32–40. ACM, 2014.

12 /

Fig. 1. Validation result using ShaclEx validator

