
Optimizing and Benchmarking OWL2 RL

for Semantic Reasoning on Mobile Platforms

William Van Woensela,* and Syed Sibte Raza Abidia

aFaculty of Computer Science, Dalhousie University, 6050 University Ave, Halifax, NS B3H 1W5, Nova Scotia,

Canada

Abstract. The Semantic Web has grown immensely over the last decade, and mobile hardware has advanced to a point where

mobile apps may consume this Web of Data. This has been exemplified in domains such as mobile context-awareness, m-

Health, m-Tourism and augmented reality. However, recent work shows that the performance of ontology-based reasoning, an

essential Semantic Web building block, still leaves much to be desired on mobile platforms. Applying OWL2 RL to realize such

mobile reasoning is a promising solution, since it trades expressivity for scalability, and its rule-based axiomatization easily

allows applying axiom subsets to improve performance. At any rate, considering the current performance issues, developers

should be able to benchmark reasoners on mobile platforms, using different process flows, reasoning tasks, and datasets. To

that end, we developed a mobile benchmark framework called MobiBench. In an effort to optimize mobile ontology-based

reasoning, we further propose selections of OWL2 RL rule subsets based on logical equivalence, purpose and reference, and

domain relevance. Using MobiBench, we benchmark multiple OWL2 RL-enabled rule engines and OWL reasoners on a mobile

platform. Results show drastic performance improvements by applying OWL2 RL rule subsets, allowing for performant rea-

soning for small datasets on mobile systems.

Keywords: mobile computing; OWL2 RL; rule-based reasoning; OWL reasoning; reasoning optimization

1. Introduction

As illustrated by the Linking Open Data cloud [16],

the Semantic Web currently includes over 1000 huge

datasets from diverse domains such as government,

music, geography, social web and life sciences. Light-

weight structured data is being increasingly embedded

in websites as well [78], motivated by search engines’

need for machine-readable web content. Collectively,

these advancements are giving rise to a multi-seg-

mented, interlinked and machine-readable Web, ready

for consumption by software agents. In particular, ad-

vances in mobile hardware and connectivity have en-

abled the mobile consumption of semantic data, e.g.,

to collect context- [57], [64] and location-related data

[7], [55], achieve augmented reality [47], [63], per-

form recommendations [65], access linked biomedical

data (m-Health) [45] and enable mobile tourism [30].

Regardless of the computing platform, an essential

Semantic Web pillar is reasoning, which infers useful

* Corresponding author. E-mail: william.van.woensel@gmail.com.

new information based on the semantics of ontology

constructs, or deterministic, domain-specific if-then

rules. However, many works have noted that OWL2

DL reasoning is too complex and resource-intensive to

achieve scalability on mobile and embedded systems,

which was confirmed by recent empirical work [28],

[62]. In light of this issue, the state of the art has pre-

sented a number of semantic reasoners tailored to re-

source-constrained systems [1], [31], [41], [53]. Most

of these approaches focus on rule-based OWL axio-

matizations, such as custom entailment rulesets [1],

[31] or an OWL2 RL ruleset (i.e., axiomatizing the

OWL2 RL semantics) [41], [53]. Indeed, by utilizing

the OWL2 RL W3C recommendation [13], any rule

engine can implement a subset of OWL2 reasoning

that allows for scalability without sacrificing too much

expressive power. Furthermore, related work shows

that subsets of rule-based axioms can be easily se-

lected to e.g., adjust reasoning complexity to the ap-

plication scenario [53], or avoid resource-heavy infer-

ences [9], [49]. In addition, OWL2 RL rules can be

easily included into other rulesets to enhance the rule-

based reasoning task (e.g., service matching) with on-

tology-based reasoning. In doing so, a single rule en-

gine can perform semantically-enhanced reasoning

without additional components (e.g., separate OWL

reasoners). Because of these reasons, we argue that

OWL2 RL is a promising solution for ontology-based

reasoning on mobile, resource-constrained devices.

Nonetheless, it seems that mobile hardware will re-

main relatively limited compared to PC or server hard-

ware, leaving mobile reasoning performance heavily

dependent on dataset scale and application require-

ments [28], [62], at least in the foreseeable future. As

such, there is a clear need for benchmarking reasoning

performance in particular mobile application scenarios,

including reasoning task (e.g., ontology or rule-based

reasoning, service matching), process flow (e.g., fre-

quent vs. incremental reasoning) and custom rule- and

datasets. Based on the results, developers can make in-

formed decisions about deploying semantic reasoning;

with poor performance e.g., pointing to a distributed

solution [2], [61]. Currently, systematic mobile bench-

marking is impeded by the range of custom rule- and

data formats and semantic rule standards (e.g.,

RuleML, SWRL, SPIN); as well as the fragmented

mobile market, including OS’s such as Android, iOS,

Windows Phone, BlackBerry OS and Symbian.

We pursue multiple objectives: (a) optimize seman-

tic reasoning on mobile platforms by selecting OWL2

RL subsets; (b) develop a mobile reasoning bench-

mark framework (called MobiBench); (c) perform

multiple mobile reasoning benchmarks; and by exe-

cuting these benchmarks, (d) study the usefulness of

mobile semantic reasoning.

With respect to our objectives (a-d), this paper pre-

sents the following 4 contributions:

1) A selection of OWL2 RL subsets, featuring 3

selections to be applied in conjunction or in isolation:

- Equivalent OWL2 RL rule subset: this selection

leaves out logically equivalent rules; i.e., rules of

which the results are covered by other rules. Also, by

introducing extra axioms, possibly combined with

new, more general rules, multiple existing rules can be

left out. Some rules may also be considered redundant

at the instance level, inferring new schema elements

but not contributing to new instances.

- Purpose and reference-based subsets: by divid-

ing rule subsets via their purpose and referenced data,

smaller rulesets can be applied in certain runtime sce-

narios. In particular, OWL2 RL rules perform either

inference or consistency-checking (purpose), and refer

to instances and schema or only schema elements (ref-

erence). Related work often separates instance-

(ABox) from schema-based (TBox) reasoning [5],

[17], [25], [40], [41]. Further, rules that will not yield

inferences over the ontology can be left out as well, by

applying a separate pre-processing step [53].

- Removal of inefficient rules: this selection leaves

out rules with a large performance impact. While this

will clearly result in missing certain OWL2 RL infer-

ences, their large overhead implies that developers

should at least be allowed to weigh their utility vs.

computational cost.

2) A mobile reasoning benchmark framework

(MobiBench) to evaluate the performance of reason-

ing on mobile platforms (reasoning times, memory us-

age), in specific scenarios and using standards-based

rule- and datasets. To that end, the framework includes

a Semantic Web layer, which supplies a uniform,

standards-based interface across reasoning engines; a

Selection Service, to automatically apply the selec-

tions from (1); and a Pre-processing Service, to pre-

process a ruleset and ontology for a particular purpose

(e.g., to support n-ary rules). Developers run bench-

marks by invoking the API or using the built-in auto-

mation support. Analysis tools convert reasoning

times and memory dumps into summary CSV files.

Key features of MobiBench include extensibility

and its cross-platform nature, allowing benchmarks to

be applied across multiple platforms. For this purpose,

we implemented MobiBench in JavaScript (JS), and

use Apache Cordova [67] for deployment on mobile

platforms; and the JDK8 Nashorn JavaScript engine

[73] for PC platforms (currently, this version is used

mostly for testing). Currently, MobiBench is deployed

on Android (using Cordova) and PC (using JDK 8).

3) Mobile benchmarks, measuring the perfor-

mance of two rule engines, namely the Android-based

AndroJena and the JS-based RDFStore-JS. Multiple

reasoning tasks are benchmarked, namely materializ-

ing ontology inferences and performing semantically-

enhanced service matching. Further, we benchmark

each OWL2 RL subset selection to measure its perfor-

mance impact. Three OWL2 DL reasoners (HermiT,

JFact and Pellet) are also benchmarked. We utilize the

OWL2 RL Benchmark Corpus and the OWL-S Ser-

vice Retrieval Test Collection [32] for benchmarking.

4) A study of the usefulness of OWL2 RL for se-

mantic reasoning on mobile platforms. The above

contributions implement, optimize and apply OWL2

RL rules in practice, both 1) stand-alone, to material-

ize ontology inferences; and 2) combined with a ser-

vice matching ruleset, to enhance service matching

with ontology reasoning. Service matching is a useful

task in mobile settings, as it enables mobile apps to

locate relevant services in a smart environment [58].

Aside from performance, we also look at the impact of

ontology reasoning on service matching results. Thus,

our work contributes to studying the feasibility as well

as utility of OWL2 RL on mobile platforms.

This paper is built on previous work, which pre-

sented a clinical benchmark [60] and an initial version

of the Mobile Benchmark Framework [59], which

only supplied an API and restricted benchmarking to

rule-based (non-OWL) reasoning. As such, it did not

attempt optimizations or applications of OWL2 RL.

The paper is structured as follows. In Section 2, we

shortly discuss the OWL2 RL profile and its imple-

mentation. Section 3 explains our selection of OWL2

RL rule subsets. Section 4 presents the architecture

and main components of MobiBench, and Section 5

discusses how mobile developers can utilize MobiB-

ench. Section 6 elaborates on the benchmarks we per-

formed using MobiBench. We discuss related work in

Section 7, and end with conclusions and future work

in Section 8.

2. OWL2 RL Realization

This section shortly discusses the different OWL2

profiles (Section 2.1) and our practical implementa-

tion of OWL2 RL (Section 2.2).

2.1. OWL2 Profiles

The OWL2 Web Ontology Language Profiles doc-

ument [13] introduces multiple OWL2 profiles, in-

cluding OWL2 EL, OWL2 QL and OWL2 RL. By re-

stricting ontology syntax and reducing expressivity,

these profiles can more efficiently handle specific ap-

plication scenarios. OWL2 EL is designed to deal with

ontologies containing large amounts of classes and

properties, whereas OWL2 QL is optimized for que-

rying large amounts of instance data. The OWL2 RL

profile is aimed at balancing expressivity with reason-

ing scalability, and presents a partial, rule-based axio-

matization of OWL2 RDF-Based Semantics. Using

OWL2 RL, reasoning systems can be implemented us-

ing standard rule engines. The W3C specification [13]

presents the OWL2 RL axiomatization as a set of uni-

versally quantified, first-order implications over a ter-

nary predicate T, which stands for a generalization of

RDF triples. In addition to regular inference rules, the

ruleset includes rules that are always applicable (i.e.,

without antecedent), and consistency-checking rules

(i.e., with consequent false). Below, we exemplify

each type of rules (namespaces omitted for brevity).

Code 1 shows a “regular” inference rule that types re-

sources based on the subClassOf construct:

𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2), 𝑇(? 𝑥, 𝑡𝑦𝑝𝑒, ? 𝑐1) → 𝑇(? 𝑥, 𝑡𝑦𝑝𝑒, ? 𝑐2)

Code 1. Rule classifying resources (#cax-sco).

The second type of rule lacks an antecedent and is

thus always applicable. E.g., the rule in Code 2 indi-

cates that each built-in OWL2 RL annotation property

needs to have the owl:AnnotationProperty type:

𝑇(𝑎𝑝, 𝑡𝑦𝑝𝑒, 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

Code 2. Rule typing annotation properties (#prp-ap).

Thirdly, the consistency-checking rule in Code 3

checks whether an instance of a restriction, indicating

a maximum cardinality of 0 on a particular property,

participates in said property. If so, the ontology is

flagged as inconsistent.

𝑇(? 𝑥, 𝑚𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦, 0), 𝑇(? 𝑥, 𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝),
𝑇(? 𝑢, 𝑡𝑦𝑝𝑒, ? 𝑥), 𝑇(? 𝑢, ? 𝑝, ? 𝑦) → 𝑓𝑎𝑙𝑠𝑒

Code 3. Rule based on maxCardinality restriction to check con-
sistency (#cls-maxc1).

Below, we elaborate on our practical realization of

OWL2 RL for arbitrary rule engines.

2.2. Practical Realization of OWL2 RL

To implement the OWL2 RL axiomatization for

general-purpose rule engines, where no particular in-

ternal support can be assumed, three types of rules

may pose problems: 1) rules that require internal

datatype support; 2) rules that are always applicable;

and 3) rules referring to lists of elements. Below, we

present these issues and our solutions.

2.2.1. Rules requiring datatype support

The datatype inference rule #dt-type2 (Code 4) re-

quires literals with data values from a certain value

space to be typed with the datatype of that value space

(e.g., typing an integer “42” with xsd:int):

𝑇(? 𝑙𝑡, 𝑡𝑦𝑝𝑒, ? 𝑑𝑡)

Code 4. Rule typing each literal with its corresponding datatype

(#dt-type2).

Similarly, a second rule (#dt-not-type) flags an in-

consistency when a literal is typed with the wrong

datatype. Two other datatype rules (#dt-eq and #dt-

diff) indicate equality and inequality of literals based

on their values; which requires differentiating literals

from URIs, to avoid these rules to fire for URI re-

sources as well. These four rules require built-in sup-

port for RDF datatypes and literals, meaning they can-

not be consistently implemented across arbitrary rule

engines. Therefore, we chose to leave these rules out

of our OWL2 RL ruleset. Related work, including

DLEJena [40] and the SPIN [33] and OWLIM [9]

OWL2 RL rulesets also do not include datatype rules.

2.2.2. Always-applicable rules

A number of OWL2 RL rules lack an antecedent,

and are thus always applicable. One subset of these

rules lack variables (e.g., specifying that owl:Thing

has type owl:Class), and may thus be directly repre-

sented as axiomatic triples to accompany the OWL2

RL ruleset. A second subset comprises “quantified”

variables in the consequent; e.g., stating that each an-

notation property has type owl:AnnotationProperty

(Code 2). Likewise, these were implemented by axi-

oms that properly type each annotation property (built-

in for OWL2 [24]) and datatype property (supported

by OWL2 RL [13]).

2.2.3. Rules referencing element lists

This set of rules includes so-called n-ary rules,

which refer to a finite list of elements. A first subset

(L1) of these rules enumerate (i.e., list one by one) re-

strictions on single list elements (#eq-diff2, #eq-diff3,

#prp-adp, #cax-adc, #cls-uni). For instance, rule #eq-

diff2 flags an ontology inconsistency if two equivalent

elements of an owl:AllDifferent construct are found.

In contrast, rules from the second subset (L2) in-

clude restrictions referring to all list elements (#prp-

spo2, #prp-key, #cls-int1), and a third ruleset (L3)

yields inferences for all list elements (#cls-int2, #cls-

oo, #scm-int, #scm-uni). E.g., for (L2), rule #cls-int1

infers that y is an instance of an intersection in case it

is typed by each intersection member class; regarding

(L3), for any union, rule #scm-uni (Code 6) infers that

each member class is a subclass of that union.

To support rulesets (L1) and (L3), we added two

list-membership rules (Code 5) that recursively link

each element to preceding list cells, eventually linking

the first cell to all list elements:

𝑇(? 𝑙, 𝑓𝑖𝑟𝑠𝑡, ? 𝑚) → 𝑇(? 𝑙, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚) a)

 𝑇(? 𝑙1, 𝑟𝑒𝑠𝑡, ? 𝑙2), 𝑇(? 𝑙2, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚) →
𝑇(? 𝑙1, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚) b)

Code 5. Two rules for inferring list membership.

Using these rules, #scm-uni (L3) may be formu-

lated as follows (Code 6):

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑙), 𝑇(? 𝑙, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙)

→ 𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐)

Code 6. Rule inferring subclasses based on union membership
(#scm-uni).

Since the supporting rules (Code 5) link all list ele-

ments to the first list cell (i.e., ?l) using hasMember

assertions, the rule yields inferences for all union

member classes.

However, extra support is required for (L2). For

these kinds of n-ary rules, we supply three solutions,

each with their own advantages and drawbacks:

(1) Instantiate the rules based on n-ary assertions

found in the ontology. Per OWL2 RL rule, this ap-

proach generates a separate rule for each related n-ary

assertion, by constructing a list of the found length and

instantiating variables with concrete schema refer-

ences. E.g., a property chain axiom 𝑃 with constituent

properties 𝑃1−3 will yield the following rule (Code 7):

𝑇(? 𝑢1, 𝑃1, ? 𝑢2), 𝑇(? 𝑢2, 𝑃2, ? 𝑢3), 𝑇(? 𝑢3, 𝑃3, ? 𝑢4)
→ 𝑇(? 𝑢1, 𝑃, ? 𝑢4)

Code 7. Instantiated rule supporting a specific property chain ax-
iom (#prp-spo2).

Some related works apply this approach (a.k.a.

“rule-templates”) for any n-ary rule [42], or even all

(applicable) OWL2 RL rules [5], [40], [41].

A drawback of this approach is that it requires pre-

processing the ruleset for each ontology, and when-

ever it changes. Although our selections also include

a pre-processing option (Section 3.2), this is only

needed for optimization. Of course, the severity of this

drawback depends on the frequency of ontology up-

dates. Also, it yields an extra rule for each relevant as-

sertion, potentially inflating the ruleset. On the other

hand, instantiated rules contain less variables, and may

also reduce the need for joins, as for #prp-spo2 (see

also [41]). Further, in case no related assertions are

found, no rules will be added the ruleset. Future work

includes studying the application of this approach to

all rules (Section 8).

(2) Normalize (or “binarize”) the input ontology to

only contain binary versions of relevant n-ary asser-

tions. E.g., an n-ary intersection can be converted to a

set of binary intersections as follows (Code 8):

𝐼 = 𝐶1 ∩ 𝐶2 ∩ … ∩ 𝐶𝑛 ≡
𝐼 = 𝐶1 ∩ 𝐼2 ∧ 𝐼2 = 𝐶2 ∩ 𝐼3 ∧ … ∧ 𝐼𝑛−1 = 𝐶𝑛−1 ∩ 𝐶𝑛

Code 8. Binary version of an n-ary intersection.

With the binary version of #cls-int1 (Code 9):

𝑇(? 𝑐, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑓, ? 𝑥1), 𝑇(? 𝑥1, 𝑓𝑖𝑟𝑠𝑡, ? 𝑐1), 𝑇(? 𝑥1, 𝑟𝑒𝑠𝑡, ? 𝑥2),
𝑇(? 𝑥2, 𝑓𝑖𝑟𝑠𝑡, ? 𝑐2), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐1), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐2)

→ ? 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)

Code 9. Binary version of rule #cls-int1.

This rule may be considered recursive, since it both

references and infers the same kind of assertion (i.e.,

𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)). Applying this rule on a set of binary

assertions 𝐼, 𝐼2, … , 𝐼𝑛−1 (see Code 8) yields the follow-

ing for any resource R, with 𝑅𝑡 representing its set of

all types (Code 10):

{

{𝐶𝑛−1, 𝐶𝑛} ⊂ 𝑅𝑡 → 𝑅𝑡 = R𝑡 + 𝐼𝑛−1
{𝐶𝑖−1, 𝐼𝑖} ⊂ 𝑅𝑡 → 𝑅𝑡 = 𝑅𝑡 + 𝐼𝑖−1 (𝒏 − 𝟏 ≥ 𝒊 ≥ 𝟏)
{𝐶1, 𝐼2} ⊂ 𝑅𝑡 → 𝑅𝑡 = 𝑅𝑡 + 𝐼

Code 10. Inferences when applying binary #cls-int1.

In doing so, the rule travels up the chain of binary

intersections, until it finally infers type I for R.

It is not hard to see how this approach only works

for recursive rules. Rule #prp-key is not a recursive

rule, since it infers equivalence between resources but

does not refer to such relations. So, this approach only

works for rules #prp-spo2 and #cls-int1 from (L2).

Another drawback is that, similar to (1), it requires

pre-processing for each ontology and its updates. In

particular, each relevant n-ary assertion needs to be re-

placed by 𝑛 − 1 binarized versions. Further, to support

a complete, single n-ary inference, this solution gener-

ates a total of 𝑛 − 1 inferences. While these are sound

inferences, they may be considered to “crowd” (i.e.,

expand) the dataset.

(3) Replace each rule from (L2) by 3 auxiliary rules.

Bishop et al. [9] suggested this solution for OWLIM,

based on a W3C note [46]. In this solution, a first aux-

iliary rule starts at the end of any list, and infers an

intermediary assertion for the last element (cell n).

Starting from the first inference, a second rule travels

up the list structure by inferring the same kind of as-

sertions for cells 𝑖 (𝑛 > 𝑖 ≥ 0). In case the first cell is

related to a relevant n-ary assertion (e.g., intersection,

property chain or has-key), a third auxiliary rule gen-

erates the original, n-ary inference. See Bishop et al.

[9] or our online documentation [56] for details.

A distinct advantage of this approach is that, in con-

trast to (1) and (2), it does not rely on pre-processing.

However, each complete, single n-ary inference re-

quires a total of n+1 inferences, and these do not fol-

low from OWL2 RL semantics (instead, they ensue

from custom, auxiliary rules). As such, they can be

considered to not only “crowd” but also “pollute” the

dataset with unsound inferences. Bishop et al. [9] in-

ternally flag these inferences so they are skipped in

query answering. Developers may want to support a

similar mechanism when adopting this solution.

Based on all observations from Section 2, we col-

lected an OWL2 RL ruleset implementation written in

the SPARQL Inferencing Notation (SPIN), based on

an initial ruleset created by Knublauch [33]. This ini-

tial ruleset relies on built-in Apache Jena functions to

implement the rules from Section 2.2.3. Such built-in

support cannot be assumed for arbitrary rule engines,

which are targeted by our ruleset. Also, it does not

specify axioms (Section 2.2.2). Our ruleset contains

69 rules and 13 supporting axioms, and can be found

in Appendix A. This ruleset includes the two list-

membership rules (Code 5) for n-ary rules from sets

(L1) and (L3) (Section 2.2.3). To add support for a

particular solution for (L2), our Web service needs to

be contacted (Section 4.3) to pre-process the necessary

rules or ontology, and/or add the rules (e.g., binary

versions, auxiliary rules) to the ruleset. Note that our

evaluation does not compare the performance of these

n-ary rule solutions; this is considered future work.

In Section 3.4, we discuss options for checking con-

formance with OWL2 RL semantics.

3. OWL2 RL Optimization

This section discusses OWL2 RL ruleset selections,

with the goal of optimizing ontology-based reasoning

on mobile platforms. We consider three selections:

leaving out redundant rules (Section 3.1), dividing the

ruleset based on rule purpose and references (Section

3.2), and removing inefficient rules (Section 3.3).

For the purpose of these selections, we introduce

the terms owl2rl-schema-completeness and owl2rl-in-

stance-completeness, to indicate when a selection re-

spectively derives all schema inferences and instance

inferences covered by the OWL2 RL axiomatization.

Although OWL2 RL reasoning infers all ABox infer-

ences over OWL2 RL-compliant ontologies, it does

not cover all TBox inferences dictated by the OWL 2

semantics [37], [41], hence our introduction of these

specialized terms. Further, we discuss conformance

with the OWL2 RL W3C specification (Section 3.4).

3.1. Equivalent OWL2 RL subset

As mentioned by the OWL2 RL specification [13],

the presented ruleset is not minimal, as certain rules

are implied by others. The stated goal of this redun-

dancy is to make the semantic consequences of OWL2

constructs self-contained. Although this is appropriate

from a conceptual standpoint, this redundancy is not

useful when aiming to optimize reasoning.

Aside from rules that are entailed by other rules

(Section 3.1.1), opportunities also exist to leave out

specialized rules by introducing extra axioms (Section

3.1.2) or replacement by generalized rules (Section

3.1.3). Some inference rules may also be considered

redundant at the instance level, since they do not con-

tribute to inferring instances (Section 3.1.4).

3.1.1. Entailments between OWL2 RL rules

A first set of rules is entailed by #cax-sco (see Code

1), each time combined with a second inference rule.

For instance, #scm-uni (see Code 6) indicates that each

class in a union is a subclass of that union. Together,

these two rules entail the #cls-uni rule (Code 11). This

rule infers that each instance of a union member is an

instance of the union itself:

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑥), 𝑇(? 𝑥, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙),
𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐𝑙) → 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)

Code 11. Rule that infers membership to OWL unions
(#cls-uni).

Code 12 shows that the rule #cls-uni, for each in-

stantiation of the input variables, is covered by #scm-

uni + #cax-sco:

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑥), 𝑇(? 𝑥, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙) →
𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐) a)

𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐𝑙) →
𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐) b)

Code 12. Entailment of #cls-uni by #scm-uni,#cax-sco.

Applying #scm-uni on two premises from #cls-uni

returns inference (a). Then, #cax-sco is applied on the

remaining premise, together with (a). This yields the

inference in (b), which equals the #cls-uni consequent.

As such, this rule may be left out without losing ex-

pressivity. Similarly, it can be shown that rules #cls-

int2, #cax-eqc1 and #cax-eqc2 are entailed by #cax-

sco, each time combined with a schema-based rule.

A second set of inference rules is entailed by the

#prp-spo1 rule, each time combined with rules indi-

cating equivalence between owl:equiva-

lent[Class|Property] and rdfs:sub[Class|Property]Of.

Similar to #cax-sco, #prp-spo1 (Code 13) infers that

resources related via a sub property are also related via

its super property:

𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦) → 𝑇(? 𝑥, ? 𝑝2, ? 𝑦)

Code 13. Rule that infers new resource relations (#prp-spo1).

E.g., the #scm-eqp1 (Code 14) rule indicates that

two equivalent properties are also sub properties:

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2)
→ 𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑝2, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝1)

Code 14. Rule inferring sub properties (#scm-eqp1).

These two rules collectively entail the rule #prp-

eqp1 (Code 15). This rule infers that, for two equiva-

lent properties, any resources related via the first prop-

erty are also related via the second property:

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦)
→ 𝑇(? 𝑥, ? 𝑝2, ? 𝑦)

Code 15. Rule for property membership (#prp-eqp1).

This entailment is shown by Code 16:

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2) →
𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2) a)

𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦) →
𝑇(? 𝑥, ? 𝑝2, ? 𝑦) b)

Code 16. Entailment of #prp-eqp1 by #scm-eqp1,#prp-spo1.

By applying #scm-eqp1 on the first premise from

#prp-eqp1, the inference from (a) is returned. Apply-

ing #prp-spo1 on this inference and the remaining

premise yields (b), which equals the #prp-eqp1 conse-

quent. Therefore, this rule may be left out. Rule #prp-

eqp2 is similarly equivalent to these two rules as well.

Other rules are covered by single rule. The #eq-

trans rule (Code 17) indicates the transitivity of

owl:sameAs:

𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦), 𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧) → 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧)

Code 17. Rule indicating transitivity of owl:sameAs
(#eq-trans).

This rule is entailed by #eq-rep-o (Code 18), which

indicates that, for any triple, subject resources are re-

lated to any resource equivalent to the object:

𝑇(? 𝑜, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑜2), 𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝, ? 𝑜2)

Code 18. Rule inferring new relations via owl:sameAs
(#eq-rep-o).

By partially materializing the premise of #eq-rep-o,

Code 19 shows how this rule entails #eq-trans:

𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧), 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦)

→ 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧)

Code 19. Entailment of #eq-trans by #eq-rep-o.

When executing the #eq-rep-o rule on suitable data,

the ?p variable is instantiated with owl:sameAs, thus

covering each possible inference of #eq-trans.

Finally, we note that some rules could potentially

be removed, depending on type assertions found in the

dataset. Rules #cls-maxqc4 & #cls-svf2 support re-

strictions that apply to owl:Thing, and thus do not re-

quire objects to be typed with the restriction class

(since each resource is implicitly already an

owl:Thing). Related rules #cls-maxqc3 & #cls-svf2

support restrictions that apply to a particular class, and

thus require related objects to be typed with the re-

striction class. Since owl:Thing is the supertype of

each class (#scm-cls rule), and each instance is typed

by its class’s supertype (#cax-sco rule, Code 1), any

instance will be typed as owl:Thing. Therefore, exe-

cuting the second set of rules on restrictions relating to

owl:Thing could produce the same inferences. How-

ever, #cax-sco requires each instance to be explicitly

typed, which often is not the case in practice. There-

fore, we opted to leave these rules in the ruleset.

We note that our online documentation [56] dis-

cusses all rule equivalences in detail. In total, this se-

lection involved leaving out 7 redundant rules.

3.1.2. Extra supporting axiomatic triples

In other cases, extra axiomatic triples can be intro-

duced to allow for entailment by existing rules. For in-

stance, the rule #eq-sym (Code 20) explicitly encodes

the symmetry of the owl:sameAs property:

𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦) → 𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑥)

Code 20. Rule indicating owl:sameAs symmetry (#eq-sym).

By adding an axiom stating that owl:sameAs has

type owl:SymmetricProperty, Code 21 shows that any

inferences generated by the #eq-sym rule are covered

by the #prp-symp rule:

𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦), 𝑇(? 𝑥, ? 𝑝, ? 𝑦)
→ 𝑇(? 𝑦, ? 𝑝, ? 𝑥)

 𝑇(𝑠𝑎𝑚𝑒𝐴𝑠, 𝑡𝑦𝑝𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

Code 21. Rule implementing property symmetry (#prp-symp) and

supporting axiom.

Similarly, #prp-inv2 is entailed by #prp-symp with

an extra axiom, together with the #prp-inv1 rule.

Rules #scm-spo and #scm-sco, implementing the

transitivity of rdfs:subPropertyOf and rdfs:subClas-

sOf, respectively, are entailed by #prp-trp with sup-

porting axioms (Code 22):

𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦), 𝑇(? 𝑥, ? 𝑝, ? 𝑦),
𝑇(? 𝑦, ? 𝑝, ? 𝑧) → 𝑇(? 𝑥, ? 𝑝, ? 𝑧)

 𝑇(𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

 𝑇(𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
Code 22. Rule implementing transitivity (#prp-trp) and supporting

axioms.

In doing so, 4 rules can be left out, at the expense

of adding 4 new supporting axioms.

3.1.3. New generalized OWL2 RL rules

Opportunities also exist to generalize multiple rules

into a single rule, combined with supporting axioms.

We observe that rules #eq-rep-p (Code 23) and #prp-

spo1 (see Code 13) are structurally very similar:

𝑇(? 𝑝, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑝2), 𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝2, ? 𝑜)
Code 23. Rule inferring new relations via owl:sameAs

(#eq-rep-p).

Therefore, both rules can be generalized into a sin-

gle rule, with accompanying axioms (Code 24):

𝑇(? 𝑝1, ? 𝑝, ? 𝑝2), 𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑆𝑢𝑏𝐿𝑖𝑛𝑘),
𝑇(? 𝑠, ? 𝑝1, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝2, ? 𝑜)

 𝑠𝑎𝑚𝑒𝐴𝑠 𝑡𝑦𝑝𝑒 𝑆𝑢𝑏𝐿𝑖𝑛𝑘 .
 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓 𝑡𝑦𝑝𝑒 𝑆𝑢𝑏𝐿𝑖𝑛𝑘 .

Code 24. Rule covering #eq-rep-p and #prp-spo1 (#prp-sl) and
supporting axioms.

In fact, several rules are structurally very similar,

and may be pairwise generalized into a single rule with

supporting axioms: rules #scm-hv and #scm-svf2;

#scm-avf1 and #scm-svf1; #eq-diff2 and #eq-diff3;

#prp-npa1 and #prp-npa2; and #cls-com and #cax-dw

(see [56] for details). In doing so, we left out 12 spe-

cialized rules, at the expense of adding 6 new general

rules and 12 supporting axioms. After applying these

selections, 52 rules remain and 16 axioms are added.

We note that these selections represent a best-effort

in creating a minimal OWL2 RL-conformant rule sub-

set, and do not necessarily optimize the ruleset for all

types of systems. Although the total number of rules

is reduced, specific rules are also being removed or re-

placed by more general rules; which could negatively

impact performance. Our evaluation (Section 6) com-

pares the effects of each subset selection.

3.1.4. Equivalence with instance-based rules

So-called “stand-alone” schema inferences, which

extend the ontology but do not impact the set of in-

stances, may also be considered redundant (at least, at

the instance level). E.g., #scm-dom1 (Code 25) infers

that properties also have as domain the super types of

their domains:

𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐1), 𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2)

→ 𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐2)

Code 25. Rule inferring super class domains (#scm-dom1).

Although this information may be a useful addition

to the ontology, the new schema element will not re-

sult in new instance inferences. Code 26 shows that its

resulting instance inferences are already covered by

rules #prp-dom (a) and #cax-sco (b):

 𝑇(? 𝑠, ? 𝑝, ? 𝑜), 𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐1) → 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐1) a)

 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐1), 𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2)

→ 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐2) b)

Code 26. Two rules yielding same instance inferences as #scm-

dom1.

Thus, any variable ?s will already be typed with su-

per classes of the property’s domain, regardless of the

inferences generated by #scm-dom1. Similarly, rules

#scm-rng1, #scm-dom2 and #scm-rng2 will not yield

any new instances. By leaving out these 4 rules, this

selection retains owl2rl-instance-completeness but

clearly breaks owl2rl-schema-completeness.

3.2. Purpose- and reference-based subsets

Seeing how many (e.g., context-aware [41]) scenar-

ios only involve adding or updating ABox (instance)

statements at runtime, an option is to restrict TBox rea-

soning to design / startup time and whenever the on-

tology changes; and apply ABox reasoning when new

instances are added. Reflecting this, most OWL2 RL

reasoners focus on separating TBox from ABox rea-

soning [5], [17], [25], [40], [41]. Further, when data is

generated by the system, it has a smaller likelihood of

being inconsistent, thus reducing (or even removing)

the need for continuous consistency checking.

Consequently, we divided our OWL2 RL ruleset

into 2 major subsets; 1) inference ruleset, comprising

inference rules (53 rules), and 2) consistency-checking

ruleset, containing rules for checking consistency (18

rules1). The inference ruleset is further subdivided into

1.1) instance ruleset, consisting of rules inferring only

instance assertions, while referring to both instance

and schema elements (32 rules); and 1.2) schema

ruleset, comprising rules only referencing schema el-

ements (23 rules1). Since the consistency-checking

ruleset only contains rules referring to both instance

and schema elements, it cannot be further subdivided.

In this approach, inference-schema is applied on the

ontology, initially and whenever the ontology changes,

to materialize all schema inferences. When new in-

stances are added, only inference-instance is applied

on the instance assertions and materialized ontology.

Below, we show that this process still produces a com-

plete materialization.

Definition 1. We define 𝑆 as the set of all schema

assertions (i.e., TBox) and 𝐼 the set of all instance as-

sertions (i.e., ABox) with 𝑆 ∩ 𝐼 = ∅, and 𝐴 = 𝑆 ∪ 𝐼

the set of all assertions. We further define schema

ruleset 𝛼 and instance ruleset 𝛽 as follows, with 𝐼𝑅 =
𝛼 ∪ 𝛽 the set of all inference rules:

𝛼 = { 𝑟 ∈ 𝐼𝑅 | ∀𝑐 ∈ 𝑏𝑜𝑑𝑦(𝑟),

∀𝑎 ∈ 𝐴 ∶ 𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑐) → 𝑎 ∈ 𝑆 }

𝛽 = { 𝑟 ∈ 𝐼𝑅 | ∀𝑖 ∈ 𝑖𝑛𝑓𝑒𝑟(𝑟, 𝐴): 𝑖 ∈ 𝐼 } (1)

Where 𝑏𝑜𝑑𝑦(𝑟) returns all clauses in the body of

rule 𝑟, 𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑐) returns true if assertion 𝑎 matches

a body clause 𝑐, and 𝑖𝑛𝑓𝑒𝑟(𝑟, 𝐴) returns all inferences

yielded by rule 𝑟 on the set of assertions 𝐴. In other

words, ruleset 𝛼 includes rules for which each body

clause is only matched by assertions from 𝑆 , and

ruleset 𝛽 includes rules that only infer assertions from

𝐼. These conditions can be easily confirmed for our

OWL2 RL rulesets [56]. 𝑘∗(𝑋) denotes the deductive

1 These rule subsets both include the two membership rules

(Section 2.2.3), making them cumulatively larger.

closure of ruleset 𝑘 on assertions 𝑋 (i.e., returning 𝑋

extended with any resulting inferences).

Theorem 1. The deductive closure of 𝐼𝑅 on the un-

ion of any ontology 𝑂 (𝑂 ⊆ 𝑆) and dataset 𝐷 (𝐷 ⊆ 𝐼)

is equivalent to the deductive closure of 𝛽 on the un-

ion of materialized ontology 𝛼∗(𝑂) (i.e., including

schema inferences) together with set of instances D:

(𝛼 ∪ 𝛽)∗(𝑂 ∪ 𝐷) ≡ 𝛽∗(𝛼∗(𝑂) ∪ 𝐷) (2)

It is easy to see why this equivalence holds. Com-

pared to the left operand, the set of assertions on which

ruleset 𝛼 is applied no longer includes inferences from

ruleset 𝛽 (since its deductive closure is now calculated

separately), nor assertions from D. This does not affect

the deductive closure of 𝛼, since 𝛼 only matches as-

sertions from 𝑆 with 𝑆 ∩ 𝐼 = ∅, and 𝛽 only infers 𝑖 ∈
𝐼 (see Definition 1), whereas 𝐷 ⊆ 𝐼. ∎

As indicated by our evaluation (Section 6), execut-

ing only the inference-instance ruleset has the poten-

tial to significantly improve performance. At the same

time, the utility of separating these subsets depends on

the frequency of ontology updates, since each update

requires re-materializing the ontology. Although on-

tology changes are typically infrequent compared to

instance data, this depends on the concrete scenario.

Also, we note that related work often uses a separate

OWL reasoner for materializing schema inferences [5],

[17], [40]. Although this is a viable approach, we ar-

gue that this is not optimal for mobile platforms, as it

requires deploying two resource-heavy components

(i.e., an OWL reasoner and rule engine).

In the same vein, the consistency-checking ruleset

needs to be applied on a dataset with all applicable in-

ferences materialized, by a priori applying the infer-

ence ruleset. It can be similarly shown that applying

only consistency-checking on such a dataset will not

result in losing any consistency errors.

Finally, rules and axioms that are not referenced by

the ontology may be left out as well, yielding a do-

main-based rule subset. For this purpose, we imple-

mented a domain-based ruleset selection algorithm,

which we elaborate in Section 4.2. Similar to before,

its applicability depends on the frequency (and signif-

icance) of ontology updates; since this requires re-cal-

culating the ruleset.

3.3. Removal of inefficient rules

Rule #eq-ref (Code 27) which infers that each re-

source is equivalent to itself, greatly bloats the dataset:

𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑠),
𝑇(? 𝑝, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑝), 𝑇(? 𝑜, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑜)

Code 27. Rule inferring that each unique resource is equivalent to

itself (#eq-ref).

For each unique resource, this rule creates a new

statement indicating the resource’s equivalence to it-

self. Consequently, 3 new triples are generated for

each triple with unique resources, resulting in a worst-

case 4x increase in dataset size (!). One could argue

that there is limited practical use in materializing these

statements; and it is unlikely that their absence will af-

fect other inferences (there is one specific case where

this may happen; see [30]). If needed, the rule engine

could also be adapted to support them virtually. As a

result, developers should at least be allowed to weigh

the utility of this rule versus its computational cost.

We note that some production-strength OWL reason-

ers, such as SwiftOWLIM, have configuration options

available to disable such rules as well [27].

After applying all selections cumulatively (aside

from purpose- and reference-based subsets), this

leaves a ruleset of 51 rules; 18 rules less than the orig-

inal ruleset. Our evaluation (Section 6) studies the per-

formance of separately and cumulatively applying

these selections.

3.4. Conformance testing

To check the conformance of our original OWL2

RL ruleset and its subset selections (Sections 3.1 – 3.3),

standard OWL2 RL conformance tests should be ap-

plied. However, many test cases listed on the W3C

OWL2 Web Ontology Language Conformance page

for the OWL2 RL profile [52] are not actually covered

by OWL2 RL (as confirmed by one of its major con-

tributors on the W3C mailing list [77]). Therefore, we

used the OWL2 RL conformance test suite presented

by Schneider et al. [48]. We note that some of these

tests had to be left out, either due to the limitations of

the original OWL2 RL ruleset (Section 2.2; e.g., lack

of datatype support), or due to difficulties testing con-

formance. We detail these cases in our online docu-

mentation [56].

The original OWL2 RL ruleset (Section 2.2), as

well as its equivalent, conformant subsets (Sections

3.1.1 – 3.1.3), pass this conformance test suite. Re-

garding purpose- and reference-based subsets (Section

3.2), the final result of sequentially applying the infer-

ence-schema rules, inference-instance rules and con-

sistency-checking rules also passes the conformance

tests. As expected, the selections presented in Section

3.1.4 (Equivalence with instance-based rules) and

Section 3.3 (Removal of inefficient rules) break con-

formance with the test suite; but we note that the for-

mer only loses owl2rl-schema-completeness.

Finally, we note that conformance of the domain-

based ruleset selection (Section 3.2) cannot be

checked using this test suite, since this subset only in-

cludes rules specific to the domain ontology (while the

test suite checks all OWL2 RL rules). Instead, con-

formance of this rule subset was tested by collecting

the inferences of the full ruleset (when applied on our

evaluation ontologies; Section 6), and comparing them

to the output of the domain-based rule subset.

4. Mobile Benchmark Framework

Fig. 1 shows the architecture overview of the Mo-

biBench framework. For portability across platforms,

this framework was implemented in JavaScript (JS),

and deployed using Apache Cordova [67] (as well as

JDK8 Nashorn [73]), which allows native, platform-

specific parts to be plugged in. From a developer point

of view, this also allows MobiBench to easily bench-

mark JavaScript reasoners, usable in mobile websites

or cross-platform, JavaScript-based mobile apps (e.g.,

using Apache Cordova, Appcelerator Titanium [69])

with a write-once, deploy-everywhere philosophy, i.e.,

without requiring porting or transcompiling.

The core of the framework, the Benchmark En-

gine, runs benchmarks to study and compare reason-

ing performance on mobile platforms. The API sup-

plies third parties with direct access to the MobiBench

functionality, whereas the Automation Support is

built on top of the API, and allows automating large

numbers of benchmarks. This solution comprises two

components: 1) an external Automation Client, which

generates a (large) set of benchmark configurations

based on an automation configuration, and sends them

over HTTP to 2) the Automation Web Service, de-

ployed on the mobile device, which invokes the API

for each configuration and sends back the results.

Since this avoids re-deploying the (rather large) Mo-

biBench system each time on the mobile device (i.e.,

with new hard-coded configuration options), this setup

greatly facilitates automated benchmarking. Further, it

allows benchmarks to be run even when the developer

has no physical access to the device. The Analysis

Tools aggregate benchmark results, including reason-

ing times and memory dumps, into CSV files.

A RESTful Web Service, deployed on a server (e.g.,

the developer’s PC), comprises the Semantic Web

layer, which supplies a uniform, standards-based in-

terface across reasoning engines, by applying custom

converters to translate standards-based rules and data;

the Selection Service, which selects specific subsets

of the OWL2 RL rule- and axiom set (Section 3.2),

including domain-specific selection based on an input

ontology; and the Pre-processing Service, to pre-pro-

cess a ruleset and ontology, possibly based on the par-

ticular ontology (e.g., to support certain n-ary rules;

Section 2.2.3). The Web service also includes some

utility services to persist benchmark output (Persis-

tence Support); by logging messages persistently

(Logging) and storing arbitrary files (e.g., perfor-

mance results, reasoning output; File Storage) on the

server (e.g., the developer’s PC).

To run a single benchmark, the API passes a con-

figuration object to the Benchmark Engine, which

(among others) specifies the reasoning engine, reason-

ing task, process flow and resources (i.e., rule- and da-

tasets) to be benchmarked. A Local Proxy component

acts as an intermediary between the mobile system and

the external Web service.

The Benchmark Engine can perform different rea-

soning tasks (Section 4.4.2), using different process

flows (Section 4.4.3), to better align benchmarks with

existing, real-world applications. To implement the

uniform engine interface, each mobile engine requires

a plugin, translating the method invocations to the un-

derlying system. Plugins for native mobile engines in-

clude both a JavaScript and native part; where bi-di-

rectional communication occurs with the native code

over the Cordova bridge.

Although MobiBench is a cross-platform frame-

work, we currently rely on Android as the mobile de-

ployment platform, since most reasoners are either de-

veloped for Android or written in Java (which facili-

tates porting to Android). However, using Apache

Cordova, the framework could be easily deployed on

Fig. 1. MobiBench Framework Architecture.

other mobile platforms as well. The MobiBench

framework can be found online [56].

In the subsections below, we elaborate on the Mo-

biBench main components, namely the Semantic Web

layer (Section 4.1), Selection Service (Section 4.2),

Pre-processing Service (Section 4.3) and Benchmark

Engine (Section 4.4); and indicate extension points for

each component. Section 5 shows how developers can

utilize the benchmark framework.

4.1. Uniform Semantic Web Layer

A range of semantic rule standards are currently be-

ing used, including the Semantic Web Rule Language

(SWRL) [26], Web Rule Language (WRL) [3], Rule

Markup/Modeling Language (RuleML) [12], and the

SPARQL Inferencing Notation (SPIN) [35]. Some

reasoning engines also introduce their own custom

rule formats (e.g., Apache Jena, RDFQuery) or rely on

non-Semantic Web syntaxes (e.g., Datalog: IRIS,

PocketKRHyper). When benchmarking multiple sys-

tems, this multitude of formats prevents direct re-use

of a single rule- and dataset. To cope with this, Mo-

biBench supplies a uniform, standards-based resource

interface, which supports SPIN and RDF as input rules

and data, and dynamically translates the input to for-

mats supported by the engines. This way, developers

can re-use a single SPIN ruleset and RDF dataset

across different engines.

Since the only available SPIN API is developed for

the Java Development Kit (JDK) [34], the required

conversion functions are deployed on an external Web

service. To convert incoming SPIN rules, the SPIN

API is utilized to generate an Abstract Syntax Tree

(AST), which is then visited by a Rule Converter to

convert the rule. To convert incoming RDF data, a

Data Converter can utilize Apache Jena [4] to query

and manipulate the data. The Local Proxy supplies lo-

cal functions for remote resource conversion.

Below, we shortly discuss SPIN and our rationale

for its choice as the input rule format (Section 4.4.1).

Afterwards, we discuss our current converters, and

how new converters can be developed and plugged

into the Web service (Section 4.1.2).

4.1.1. SPIN

SPIN is a SPARQL-based rule- and constraint lan-

guage, which provides a natural, object-oriented way

of dealing with constraints and rules associated with

RDF(S)/OWL classes. In the object-oriented design

paradigm, classes define the structure of objects (i.e.,

attributes) together with their behavior, which in-

cludes creating/changing objects (rules) and ensuring

a consistent object state (constraints). Similarly, SPIN

allows directly associating locally-scoped rules and

constraints to their related RDF(S)/OWL classes, us-

ing properties such as spin:rule and spin:constraint.

To serialize rules and constraints, SPIN relies on

SPARQL [21], a W3C standard with sufficient expres-

sivity to represent both queries and general-purpose

rules and constraints. SPARQL is supported by most

Semantic Web systems, and is well known by Seman-

tic Web developers. As such, this rule format is more

likely to be easily comprehensible to developers. Fur-

ther, relying on SPIN also simplifies support for our

current rule engines (see below).

4.1.2. Rule and Data Conversion

Regarding rule-based reasoners, our choice for

SPIN greatly reduces conversion effort for systems

with built-in SPARQL support. RDFStore-JS sup-

ports INSERT queries from SPARQL 1.1/Update [21],

which are easy to obtain from SPIN rules in their

SPARQL query syntax. Both AndroJena and

RDFQuery support a triple-pattern like syntax, which

likewise makes conversion from SPIN straightforward.

Other rule engines lack built-in Semantic Web support,

and require more significant conversion effort. Two

systems, namely PocketKrHyper and IRIS, accept

Datalog rules and facts in a Prolog-style input syntax.

For these cases, we utilize the same first-order repre-

sentation as in the W3C OWL2 RL specification [13],

namely T(?s,?p,?o) (since predicates may also be var-

iables, a representation such as predicate(subject, ob-

ject) is not an option in non-HiLog).

Currently, our converters support SPIN functions

that represent primitive comparators (greater, equal,

etc.) and logical connectors in FILTER clauses. Ad-

vanced SPARQL query constructs, such as (not-)ex-

ists, optional, minus and union, are not yet supported,

since converting them to all rule engine formats is

challenging. Also, we have not required these con-

structs until now (i.e., not for the OWL2 RL ruleset,

nor the clinical ruleset used in [59]). None of the OWL

reasoners (Section 4.4.1) required (data) conversion,

since they can consume serialization of OWL in RDF

out of the box.

Extensibility To plug in a new resource format, de-

velopers create a new converter class implementing

the uniform converter interface. The class is then

added to a configuration file (spin2s.txt / rdf2s.txt),

used by the Web service to dynamically load converter

class definitions at startup. Each converter identifies

its own format via a unique ID, allowing to match in-

coming conversion requests to the correct converter.

4.2. Selection Service

Due to its rule-based axiomatization, the OWL2 RL

profile greatly facilitates applying subsets of axioms.

In Section 3, we discuss multiple selection criteria,

such as logical equivalence with other rules, and sub-

sets based on purpose and reference. The Selection

Service automatically performs these kinds of selec-

tions on the OWL2 RL rule- and axiom set, given one

or more selection criteria. As before, since the only

available API for SPIN (i.e., the input rule format) is

developed for Java [34], this component is deployed

on the Web service.

The Default Selection function selects an OWL2

RL subset, given a list of selection criteria indicating

rules and axioms to leave out, replace or add. The Do-

main-based Selection function selects a minimal

OWL2 RL rule subset, leaving out rules that are not

relevant to a given ontology (i.e., not yielding any in-

ferences). In doing so, we may greatly reduce the

ruleset without losing expressivity.

We note that determining this domain-based ruleset

manually is cumbersome and error-prone. One cannot

just check whether referenced constructs are present;

e.g., the ontology may contain owl:subClassOf con-

structs, but the premise of #scm-eqc2 requires two

classes to be subclasses of each other, which is less

likely. Furthermore, some rules may be indirectly trig-

gered by other rules, which means that only checking

inferences per rule is insufficient as well. Tai et al. [53]

describe a “selective rule loading” algorithm to deter-

mine this ruleset. As a type of “naïve” forward-chain-

ing algorithm, it executes each rule sequentially on the

initial dataset, adding resulting inferences. In case a

rule yields results, it is added to the “selective ruleset”

𝑅𝑜
−. This process continues until no more inferences

are generated. We implemented this algorithm in the

Domain-based Selection function.

Clearly, this process should be executed each time

the ontology schema is updated, but also when certain

instances, constituting new data patterns, are added

(e.g., reciprocal owl:subClassOf relations would make

the #scm-eqc2 rule relevant). Therefore, its suitability

depends on the frequency and significance of such up-

dates; i.e., whether the ontology structure is relatively

“stable” or “volatile”. By deploying this service di-

rectly on the mobile device, and even integrating it

with the reasoner, these drawbacks could be mitigated

(see future work).

Extensibility Supporting a new selection criterium

depends on its requirements. In case an a priori analy-

sis of the ontology is required, developers need to cre-

ate a new subclass of the DomainBasedSelection class.

Else, the developer simply adds a new subfolder under

the owl2rl/ folder in MobiBench, which keeps a list of

rules and axioms to be removed, replaced or added.

4.3. Pre-processing Service

To support certain n-ary OWL2 RL rules, some so-

lutions require pre-processing the ruleset and target

ontology. The Pre-processing Service supports 3 solu-

tions for n-ary rules from (L2) (see Section 2.2.3): (1)

instantiate the rules, based on schema assertions

found in the ontology; (2) normalize (or “binarize”)

the input ontology, to only contain binary versions of

the n-ary assertions, and apply binary versions of the

rules; and (3) replace each rule by 3 auxiliary rules.

When applying solutions (1) and (2), pre-pro-

cessing needs to occur initially and each time the on-

tology is updated. Solution (3) has its own drawbacks;

for each “complete” inference for an n-ary assertion

(size n), it infers n+1 intermediary inferences that do

not follow from OWL2 RL semantics (see Section

2.2.3). The suitability of these solutions clearly de-

pends on the scenario. As with the Selection Service,

deploying this service directly on the mobile device

would alleviate some of these drawbacks (see future

work). Currently, it is deployed on the Web service,

since only a Java SPIN API is available.

Extensibility To support a new pre-processing

mechanism, the developer creates a new subclass of

the PreProcessor class. In case the mechanism re-

quires ontology analysis (cfr. solutions (1), (2)), On-

tologyBasedPreProcessor should be subclassed,

which features utility methods for that purpose.

4.4. Benchmark Engine

The Benchmark Engine performs benchmarks of

reasoning engines, following a particular reasoning

setup. In doing so, it allows studying and comparing

reasoning performance on mobile platforms. A rea-

soning setup includes a reasoning task and process

flow. By supporting different setups, and allowing

new ones to be plugged in, benchmarks can be better

aligned to real-world scenarios.

In Section 4.4.1, we elaborate on the currently sup-

ported reasoning engines. Next, we discuss the availa-

ble reasoning tasks (Section 4.4.2) and process flows

(Section 4.4.3), as well as the supported measurement

criteria (Section 4.4.4).

4.4.1. Reasoning Engines

Below, we categorize the supported engines accord-

ing to their reasoning support. The engines not indi-

cated as Android systems, excluding the JavaScript

(JS) engines, were manually ported to Android. In this

categorization, we consider rule-systems as any sys-

tem that can calculate the deductive closure of a

ruleset, i.e., execute a ruleset and output resulting in-

ferences (not necessarily limited to this feature).

Rule-based systems

AndroJena [66] is an Android-ported version of

Apache Jena [4]. It supplies a rule-based reasoner,

which supports both forward and backward chaining,

respectively based on the RETE algorithm [18] and

SLG resolution [14].

RDFQuery [75] is a JavaScript RDF store that per-

forms queries using a RETE network, and implements

a naïve reasoning algorithm.

RDFStore-JS [76] is a JavaScript RDF store, sup-

porting SPARQL 1.0 and parts of SPARQL 1.1. We

extended this system with naïve reasoning, accepting

rules as SPARQL 1.1 INSERT queries.

IRIS (Integrated Rule Inference System) [10] is a

Java Datalog engine meant for Semantic Web applica-

tions. The system relies on bottom-up evaluation com-

bined with Magic Sets [8].

PocketKrHyper [50] is a J2ME first-order theorem

prover based on a hyper tableaux calculus, and is

meant to support mobile semantic apps. It supplies a

DL interface that accepts DL expressions and trans-

forms them into first-order logic.

OWL reasoners

AndroJena supplies an OWL reasoner, which im-

plements OWL Lite (incompletely) and supports full,

mini and micro modes that indicate custom expressiv-

ities; and an RDFS reasoner, similarly with full, de-

fault and simple modes. For details, we refer to the

Jena documentation [68].

The ELK reasoner [29] supports the OWL2 EL pro-

file, and performs (incremental) ontology classifica-

tion. Further, Kazakov et al. [28] has demonstrated

that it can take advantage of multi-core CPUs of mod-

ern mobile devices.

HermiT [19] is an OWL2 DL reasoner based on a

novel hypertableaux calculus, and is highly optimized

for performing ontology classification.

JFact [71] is a Java port of the FaCT++ reasoner,

which implements a tableau algorithm and supports

OWL2 DL expressivity.

Pellet [51] is a DL reasoner with sound and com-

plete support for OWL2 DL, featuring a tableaux rea-

soner. It also supports incremental classification.

Our evaluation (Section 6) focuses on 2 rule-based

systems, namely a native Android system (AndroJena)

and a JS system (RDFStore-JS). As mentioned, from

a development perspective, JS engines are especially

interesting since they can be directly used by cross-

platform, JS-based mobile apps (e.g., using Apache

Cordova [67]). Further, we benchmarked 3 OWL2 DL

reasoners, namely HermiT, JFact and Pellet. We note

that an exhaustive comparison of all systems warrants

its own paper, and is considered out of scope.

Extensibility To support a new JS reasoner, the de-

veloper writes a JS plugin object, which implements a

uniform reasoner interface and specifies the accepted

rule- and data format, the process subflow (if any) dic-

tated by the engine (Section 4.4.3), and its available

settings; e.g., reasoning scope (OWL, RDFS). To rule

out communication, console output, etc. influencing

measurements, each plugin is responsible for captur-

ing fine-grained result times using our Experi-

mentTimer API. Any required JavaScript libraries, as

indicated by the plugin, are automatically loaded. De-

velopers register their plugins in an engine.json file.

For native engines, the developer similarly imple-

ments a native plugin class, and supplies a skeleton JS

plugin. The system wraps this skeleton plugin with a

proxy object, which delegates invocations to the na-

tive plugin over the Cordova bridge (see Fig. 1). In

practice, native (Android) reasoners often have large

amounts of dependencies, some of which may be con-

flicting (e.g., different versions of the same library).

To circumvent this issue, we package each engine and

its dependencies as jar-packaged .dex files, which are

automatically loaded at runtime. For more details, we

refer to our online documentation [56].

4.4.2. Reasoning Tasks

Currently, we support three reasoning tasks. Below,

we shortly summarize each task. Fig. 2 illustrates the

dependencies between these tasks.

1) Rule-based materializing inference: this in-

volves computing the deductive closure of a ruleset for

a dataset, and adding all inferences to the dataset.

2) OWL2 materializing inference: given an ontol-

ogy, this involves materializing all inferences based

on an OWL2 expressivity (e.g., OWL2 Full, OWL2

DL, OWL Lite, or some other reduced expressivity).

This task can also be performed by rule engines, using

the rules axiomatizing the OWL2 RL semantics. Fig.

2 shows two types of OWL inference: “built-in” in-

ference of any kind (e.g., OWL2 DL, QL, Lite, etc.),

which only requires an input ontology; and OWL2 RL

reasoning, which uses a rule engine and accepts both

an OWL2 RL ruleset and ontology as input.

Regarding our choice for materializing inferences

vs. reasoning per query (e.g., via resolution methods

such as SLG [14]), we note that each have their ad-

vantages and drawbacks on mobile platforms. Prior to

data access, the former involves an expensive pre-pro-

cessing step that may significantly increase the dataset

scale, which is problematic on mobile platforms, but

then leaves query answering purely depending on

speed of data access. In contrast, the latter incurs a rea-

soning overhead for each query that depends on da-

taset scale and complexity. Another materialization

drawback is that inferences need to be (re-)computed

whenever new data becomes available. For instance,

Motik et al. [41] combine materialization with a novel

incremental reasoning algorithm, to efficiently update

previously drawn conclusions. To allow benchmark-

ing such incremental methods, our framework sup-

ports an “incremental reasoning” process flow (Sec-

tion 4.4.3). For the purposes of this paper, we chose to

focus on a materialization approach, although support-

ing resolution-based reasoning is considered future

work. We note that many Semantic Web rule-based

reasoners, including DLEJena [40], SAOR [25],

OwlOntDb [17] and RuQAR [5], also follow a mate-

rialization approach.

Fig. 2. Reasoning types.

3) Service matching: checks whether a user goal,

which describes the services the user is looking for,

matches a service description. In its rule-based imple-

mentation, a pre- or post-condition / effect from one

description (e.g., goal) acts as a rule; and a condition

from the other (e.g., service) serves as a dataset, which

is done by “freezing” variables, i.e., replacing them by

constants. A match is found when rule execution infers

the consequent. This rule-based task can be enhanced

with ontology reasoning, by including an OWL2 RL

ruleset with the match rule(s). Our reason for focusing

on service matching stems from our mobile setting;

e.g., it enables mobile apps to locate useful services in

a smart environment, with all necessary computation

taking place on the mobile platform (see e.g., [58]).

Extensibility Reasoning tasks are implemented as

JS classes, with a hierarchy as shown in Fig. 2. A new

reasoning task class needs to implement the inference

function, which realizes the task by either directly in-

voking the uniform reasoner interface (see Section

4.4.1), delegating to another task class (e.g., Rule-

based inference) or to a subflow (see Section 4.4.3 –

Extensibility). The Reasoning task super class pro-

vides functions such as checking conformance, col-

lecting result times, and logging inferences. A new

task file and constructor should be listed in tasks.json.

4.4.3. Process Flows

To better align benchmarks with real-world use

cases, MobiBench supports several process flows,

which dictate the times at which operations (e.g., load

data, execute rules / perform reasoning) are performed.

From previous work [59], [60], and in line with our

choice for materializing inferences, we identified two

useful process flows:

Frequent Reasoning: in this flow, the system stores

all incoming facts directly in a data store (which pos-

sibly also includes an initial dataset). To generate new

inferences, reasoning is periodically applied to the en-

tire datastore. Concretely, this entails loading a rea-

soning engine with the entire datastore each time a cer-

tain timespan has elapsed, applying reasoning, and

storing new inferences into the datastore.

Incremental Reasoning: here, the system applies

reasoning for each new fact (currently, MobiBench

only supports monotonic reasoning, and thus does not

deal with deletions). In this case, the reasoning engine

is first loaded into memory (possibly with an initial

dataset). Then, reasoning is (re-)applied for each in-

coming fact, whereby the new fact and possible infer-

ences are added to the dataset. Some OWL reasoners

directly support incremental reasoning, such as ELK

and Pellet. As mentioned, Motik et al. [41] imple-

mented an algorithm to optimize this kind of reasoning,

initially presented by Gupta et al. [23].

Further, we note that each reasoner dictates a sub-

flow, which imposes a further ordering on reasoning

operations. In case of OWL inference (implemented

via e.g., tableau reasoning), data is typically first

loaded into the engine, and then an inference task is

performed (LoadDataPerformInference). Similarly,

RDFQuery, RDFStore-JS and AndroJena first load

data and then execute rules. For the IRIS and Pocket-

KrHyper engines, rules are first loaded (e.g., to build

the Datalog KB), after which the dataset is loaded and

reasoning is performed (LoadRulesDataExecute). For

more details, we refer to previous work [59].

Extensibility Process flows are implemented as JS

classes. Each main process flow is listed in flows.json,

and will call a reason task at certain times (e.g., fre-

quent vs. incremental) and with particular parameters

(e.g., entire dataset vs. new fact). A subflow is specific

to a particular reasoning task (see Section 4.4.2 – Ex-

tensibility). A Reason task may thus utilize a subflow

class behind-the-scenes, in case multiple subflows are

possible. When called, a subflow class executes the

uniform reasoning functions (e.g., load-data, execute)

in the appropriate order.

4.4.4. Measurement Criteria

The Benchmark Engine allows studying and com-

paring the metrics listed below.

Performance:

Loading times: time needed to load data and rules,

ontologies, etc. into the engine.

Reasoning times: time needed to infer new facts or

check for entailment.

Memory consumption: total memory consumed by

the engine after reasoning. Currently, it is not feasible

to measure this criterium for non-native engines; we

revisit this issue in Section 6.3.

Conformance:

The Benchmark Engine allows to automatically

compare inferences to the expected output for con-

formance checking (Section 3.4). As such, MobiB-

ench allows investigating the completeness and

soundness of inference as well (cfr. [22]).

Other related works focus on measuring the fine-

grained performance of specific components, such as

large joins, Datalog recursion and default negation

[38]. In contrast, the goal of MobiBench is to find the

most suitable reasoner on a mobile platform, given a

particular application scenario (e.g., reasoning setup,

dataset). Our performance metrics support this objec-

tive. Finally, we note that the performance of the Se-

mantic Web layer (Section 4.1), domain-based selec-

tion (Section 4.2) and pre-processing (Section 4.3) are

not measured. The Semantic Web layer will not be in-

cluded in actual reasoning deployments, and only aims

to facilitate benchmarking. Because of the current

drawbacks of domain-specific selection and pre-pro-

cessing (e.g., difficulty with volatile ontologies), and

the current inability to deploy these services directly

on the mobile platform, we do not measure their per-

formance. Improving and optimizing these services,

by e.g., directly integrating them with the reasoner, is

considered future work.

5. Using MobiBench for Benchmarking

While the previous section indicated how MobiB-

ench can be extended by third-party developers, this

section describes how developers can utilize MobiB-

ench for benchmarking. Developers may run bench-

marks programmatically (Section 5.1) or use the auto-

mation support (Section 5.2). To aggregate benchmark

results into summary CSV files, developers can utilize

the analysis tools (Section 5.3). For more detailed in-

structions, we refer to our online documentation [56].

5.1. Programmatic Access

To execute benchmarks programmatically, devel-

opers call the MobiBench’s execBenchmark function

with a configuration object, specifying options for rea-

soning and resources. Below, we show an example

(Code 28):

config: {
 engine: 'androjena', nrRuns: 10, warmupRun: true,
 dumpHeap: true,
 reasoning: {
 task: ‘ontology_inference',
 mechanism: {
 ontology_inference: {
 type: 'owl2rl', dependency: 'rule_inference'
 },
 rule_inference: {
 mainFlow: 'frequent',
 subFlow: 'load_data_exec_rules'
 } } },
 resources: {
 ontology: {
 path: 'res/owl/data/0.nt',
 type:'data', format:'RDF', syntax:'N-TRIPLE'
 },
 owl2rl : {
 axioms: {
 path: 'res/owl/owl2rl/full/axioms.nt',
 type:'data', format:'RDF', syntax:'N-TRIPLE'
 },
 rules: {
 path: 'res/owl/owl2rl/full/rules.spin',
 type: 'rules', format: 'SPIN' },
 preprocess: 'inst-rules',

 selections: ['inf-inst', 'entailed']
 },
 confPath: 'res/owl/conf/ontology_inference/0.nt'
 outputInf: 'res/output/ontology_inference/...'
 id: '...' }

Code 28. Example benchmark configuration object.

This object specifies the unique engine id, the num-

ber of experiment runs, possibly including a “warmup”

run (not included in the collected metrics), and

whether memory usage should be measured (dump-

Heap). The reasoning part indicates the high-level

reasoning task (i.e., ontology_inference) and concrete

mechanism (i.e., owl2rl), as well as details on depend-

ency tasks (i.e., rule_inference), including its main

and sub process flow.

The resources section lists the resources to be used

in the benchmark; in this case, an ontology and OWL2

RL axioms and rules. Further, the section specifies

that the inst-rules pre-processing method (i.e., instan-

tiate rules; Section 2.2.3, (1)) should be applied, as

well as selections inf-inst (i.e., inference-instance sub-

set) and entailed (i.e., leaving out logically redundant

rules) (Section 3). Both involve calling the respective

services on the Web service. The section may also in-

dicate the path for storing inferences (outputInf); as

well as the expected reasoning output (confPath), to

allow for automatic conformance checking.

5.2. Automation Support

Due to the potential combinatorial explosion of

configuration options, including engines and their pos-

sible settings, resources and OWL2RL subsets, manu-

ally writing configurations quickly becomes impracti-

cal. For that purpose, we implemented an Automation

Support component.

This solution includes an Automation Client, de-

ployed on a server or PC, which generates a set of

benchmarks based on an automation configuration;

and communicates over HTTP with the Automation

Web Service on the mobile device, which locally in-

vokes the MobiBench API and returns the benchmark

results. In the Automation Client code, developers

specify ranges of configuration options, whereby each

possible combination will be used to run a benchmark.

Code 29 shows (abbreviated) example code for run-

ning a set of OWL2 RL benchmarks:

1. OWL2RLRunConfig config = new OWL2RLRunConfig();
2. config.setTask("owl_inference", "owl2rl");
3. config.select({ "entailed" },

 { "inf-inst", "entailed", "domain-based" });
5. config.addDataset("ore", 0, 188); ...

Code 29. Example automation configuration.

In this case, one subset leaves out entailed, logically

redundant rules (entailed), and the second applies the

inf-inst (i.e., inference-instance subset), entailed and

domain-based (i.e., selecting a domain-based subset)

selections. Both rulesets are applied on all benchmark

ontologies, creating a total of 378 benchmarks.

5.3. Analysis Tools

To deal with large amounts of benchmark results,

the MobiBench Analysis Tools assemble benchmark

results into a CSV file. This file lists the performance

results and memory usages per configuration; includ-

ing process flow and reasoning task, rule subsets, en-

gine-specific options, and datasets.

Further, the Analysis Tools include a utility function

to compare performance times of two reasoning con-

figurations (e.g., different OWL2 RL subsets), and

output both the individual (i.e., per benchmark ontol-

ogy) and total (i.e., aggregated) differences in perfor-

mance. The Analysis Tools are available both as

source code and a command line utility. See our online

documentation [56] for more info.

6. Mobile Reasoning Benchmark Results

This section presents benchmark results for materi-

alizing ontology inferences and executing semanti-

cally enhanced, rule-based service matching on mo-

bile platforms, obtained using MobiBench.

6.1. Reasoning Tasks

Our benchmarks cover the tasks listed below. We

note that, although rule-based reasoning is not bench-

marked separately, it is used to implement OWL2 RL

reasoning and (rule-based) service matching.

6.1.1. OWL2 Materializing Inference

Regarding the OWL2 reasoning task, which in-

volves materializing ontology inferences (Section

4.4.2), benchmarking goals include 1) measuring the

performance impact of different OWL2 RL subset se-

lections (Section 3); 2) benchmarking two rule-based

systems (AndroJena, RDFStore-JS) with best-per-

forming OWL2 RL rulesets, as well as three OWL2

DL reasoners (HermiT, Pellet, JFact). To find the best-

performing OWL2 RL ruleset, we consider the follow-

ing orthogonal cases: “stable” vs. “volatile” ontologies

(i.e., whether they are subject to frequent and signifi-

cant changes; Section 4.2); and OWL2 RL-conform-

ant vs. non-conformant rulesets.

Currently, we chose to only apply the Frequent

Reasoning process flow; since most systems either

support incremental reasoning only partially (e.g., Pel-

let: only incremental classification), or not at all. This

means they will have virtually identical performance

for incremental reasoning steps.

6.1.2. Semantically-Enhanced Service Matching

Our goal includes studying the utility and feasibility

of leveraging OWL2 RL for semantic reasoning on

mobile platforms. Aside from the stand-alone materi-

alization of ontology inferences (Section 6.1.1), an-

other use case involves semantically enhancing rule-

based tasks. In particular, rule-based service matching

involves executing a pre- or post-condition (e.g., from

a goal) as a rule on another condition (e.g., from a ser-

vice), and vice-versa. By extending the service match-

ing rules with an OWL2 RL ruleset, we can enhance

this task with ontology-based reasoning while using

only a single component (Section 4.4.2). Below, we

give an example of semantically-enhanced matching.

One of the user goals features a pre-condition that,

given a person (type Person), book (type Book) and

credit card account (type CreditCardAccount), a ser-

vice should return a price (type Price). A candidate

service mentions a pre-condition that, given the same

input, a tax-free price (type TaxFreePrice) is returned.

Semantically-enhanced service matching correctly in-

fers that the service output also has type Price, since

TaxFreePrice is a subclass of Price; thus producing a

match. In conceptual terms, the user goal requests a

Price, which also includes TaxFreePrice’s. In the in-

verse direction, service output TaxFreePrice does not

comprise goal output Price, and thus does not match.

This benchmark aims to measure and compare the

computational cost of the original task with its seman-

tically enhanced version. For this purpose, we reuse

the best-performing rule engine and OWL2 RL sub-

sets, as determined by Section 6.1.1.

6.2. Benchmark Resources

To benchmark our reasoning tasks, we rely on the

validated resources listed below (available for down-

load at our online documentation [56]).

6.2.1. OWL2 Materializing Inference

This section lists resources for OWL2 inference, in-

cluding ontologies (Section 6.2.1.1) and rulesets for

OWL2 RL reasoning (Section 6.2.1.2).

6.2.1.1 OWL2 Ontologies

OWL 2 RL Benchmark Corpus [39]:

Matentzoglu et al. extracted this corpus from general-

purpose repositories including the Oxford Ontology

repository [74], the Manchester OWL Corpus

(MOWLCorp) [72], and BioPortal [54], a comprehen-

sive repository of biomedical ontologies. The corpus

contains ontologies from clinical and biomedical

fields (ProPreo, ACGT, SNOMED), linguistic and

cognitive engineering (DOLCE) and food & wine do-

mains (Wine), thus covering a range of use cases for

general-purpose, ontology-based reasoning.

To suit the constrained resources of mobile plat-

forms, we extracted ontologies with 500 statements or

less from this corpus, resulting in 189 benchmark on-

tologies (total size: ca. 9Mb). By focusing on OWL2

RL ontologies, all ontology constructs are supported

by all evaluated reasoners, i.e., OWL2 RL and DL.

In Section 6.5.1.1, the benchmark ontologies are or-

dered 0–188, with an ontology’s cardinal number in-

dicating its relative OWL2 RL reasoning performance.

6.2.1.2 OWL2 RL Rulesets

To study the effects of OWL2 RL subset selections

on performance (Section 3), we created multiple

benchmark rulesets using our Selection Service (Sec-

tion 4.2). We summarize each selection below, and list

their label used in the benchmark results. Note that,

when discussing the benchmark results, the “+” sym-

bol indicates applying one or more selections on the

OWL2 RL ruleset.

Selections from (1) still guarantee OWL2 RL con-

formance, as summarized in Section 3.4. Moreover,

the inst-ent selection from (2) still guarantees owl2rl-

instance-completeness (Section 3.1.4).

(1) Conformant selections

- entailed: leave out logically redundant rules

(Section 3.1.1);

- extra-axioms: add extra supporting axioms, which

allows leaving out specific rules (Section 3.1.2);

- gener-rules: add generalized rules, each replacing

two or more specialized rules (Section 3.1.3);

- inf-inst: retain inference rules referring to both in-

stance and schema elements (Section 3.2);

- inf-schema: retain inference rules referring only to

schema elements (Section 3.2);

- consist: retain only consistency-checking rules

(Section 3.2);

- domain-based: leave out rules not referenced by

the ontology (Section 3.2).

(2) Non-conformant selections

- inst-ent: leave out schema-based rules not yielding

extra instance inferences (Section 3.1.4);

- ineff: leave out inefficient rules (Section 3.3).

To support n-ary rules from (L2) (Section 2.2.3) we

chose to only apply solution (1), i.e., instantiating the

ruleset. This was done for all benchmarks, i.e., all

benchmark results were obtained with a ruleset that

can deal with all n-ary rules. Since the benchmark on-

tology corpus (Section 6.2.1.1) only contains 18 inter-

sections in total (with no property-chain or has-key as-

sertions), we chose a solution that, due to its particular

process, leaves out these rules in case no related n-ary

assertions are found. Due to the low number of rele-

vant assertions in this corpus, comparing the perfor-

mance impact of different solutions would not make

much sense (this is considered future work). We also

note that ontologies with intersections were extended

with relevant instance assertions, so inferences would

be made based on the (instantiated) #cls-int1 rule.

6.2.2. Semantically-Enhanced Service Matching

OWL-S Service Retrieval Test Collection [32]:

this collection contains 42 goals and 1083 services for

OWL-S. For the purposes of our benchmark, we ex-

tracted pre- and post-conditions / effects (originally in

SWRL) in the form of SPIN rules and RDF data, in-

cluding the types of input and output variables. Since

not all descriptions contained such conditions, this re-

sulted in a final set of 17 goals and 152 services.

Further, we generated an extended version of this

dataset that includes all related ontology elements,

making each condition self-contained to facilitate se-

mantic service matching. This was done by manually

analyzing the conditions and referenced ontologies,

and only including elements affecting OWL2 RL in-

ferences. Seeing how only avg. ca. 5 ontology terms

are referenced per condition, it would have been ex-

cessive to include referenced ontologies in their en-

tirety (with avg. ca. 2100 statements, ranging between

ca. 30 to ca. 40k statements).

6.3. Benchmark Measurements

Benchmarks capture the metrics discussed in Sec-

tion 4.4.4, including loading and reasoning times and

memory consumption. Regarding memory, Android

Java heap dumps are used to accurately obtain

memory usage of native Android engines. However,

regarding JavaScript engines, heap dumps can only

capture the entire memory size of the native WebView

(used by Apache Cordova to run JavaScript on native

platforms), not individual components inside it. Alt-

hough Chrome DevTools [70] is more fine-grained, it

only records heap allocations inside the mobile

Chrome browser. Therefore, memory measurements

were only possible for native Android reasoners.

6.4. Benchmark Hardware

To perform the benchmarks, we used an LG Nexus

5 (model LG-D820), with a 2.26 GHz Quad-Core Pro-

cessor and 2Gb RAM. This device runs Android 6,

which grants Android apps 192Mb of heap space. Dur-

ing the experiments, the device was connected to a

power supply.

6.5. Benchmarking Results and Discussion

This section presents and discusses the benchmark

results for OWL materializing inference (Section

6.5.1) and service matching (Section 6.5.2).

6.5.1. OWL Materializing Inference

First, we show the results for individually bench-

marking OWL2 RL ruleset selections (Section 6.5.1.1).

Based on this analysis, Section 6.5.1.2 presents the

best performing OWL2 RL rule subsets, given differ-

ent requirements and scenarios, and sets them side by

side with benchmark results of OWL2 DL reasoners

(HermiT, JFact and Pellet). Unless indicated other-

wise, result times include ontology loading, reasoning,

and inference collection.

6.5.1.1 OWL2 RL Ruleset Selections

Figures 3-5 show the performance of OWL2 RL

ruleset selections for AndroJena. Fig. 3 shows that

leaving out logically redundant rules (+entailed, i.e.,

applying the entailed selection) has a slight positive

impact on performance (avg. ca. -180ms), whereas

also replacing specific rules by extra axioms and gen-

eral rules (+ entailed, extra-axioms, gener-rules) per-

forms slightly worse (avg. ca. +180ms). This was a

possibility, since this selection introduces more gen-

eral, i.e., less constrained, rules (e.g., less able to lev-

erage internal data indices). Applying a domain-spe-

cific rule subset (+entailed, domain-based) supplies a

much larger performance increase (avg. ca. -0,78s).

The inf-inst selection improves performance even

more (avg. ca. -1s). The ineff selection loses complete-

ness but shows the highest gain (avg. ca. -1,3s).

Although the inf-inst selection shows promise, it re-

quires materializing schema inferences using the inf-

schema subset, initially and in case of ontology up-

dates. Also, when consistency needs to be checked, the

consist ruleset needs to be separately executed. Next,

we discuss the performance of inf-schema and consist,

as well as the effect of ruleset selections on inf-inst.

Fig. 3. AndroJena: OWL2 RL selections (full)2.

Fig. 4. AndroJena: OWL2 RL selections (inf-schema).

Fig. 4 shows the performance of materializing in-

ferences in the ontology (inf-schema). As was the case

before, ruleset selections may be applied on this subset.

Similar to the full case, replacing specific rules with

extra axioms and general rules (+extra-axioms, gener-

2 Some figures chop off peaks to avoid skewing the graph.

The full average results can be found at [56].

rules) reduces performance (avg. ca. +250ms, com-

pared to inf-schema). For inf-schema, a non-conform-

ant selection is leaving out rules inferring schema in-

ferences that do not yield extra instances (inst-ent,

Section 3.1.4), which slightly improves performance

(avg. ca. -80ms). Since entailed and ineff do not in-

clude schema-only rules, they cannot be applied here.

Applying domain-based, alone and when combined

with inst-ent (+inst-ent, domain-based), similarly im-

proves performance slightly (avg. ca. -50ms and -

100ms, respectively). However, when applying do-

main-based on the inf-schema subset, the domain-

based selection needs to reconstruct the inf-schema

ruleset for each ontology update; and the ruleset is

then utilized only once3, i.e., to materialize schema in-

ferences in the updated ontology. Its suitability here

thus depends on the performance of the domain-based

selection, which is not measured in these benchmarks

as it is deployed on a Web service. (Future work in-

volves studying mobile deployment, see Section 8.)

After materializing the ontology with schema infer-

ences, instance-related rules (inf-inst) are applied

whenever new instances are added. When consistency

needs to be checked, the consist ruleset selection is ap-

plied on a materialized set of schema and instance as-

sertions (avg. ca. 420ms). We note that the only appli-

cable selection here, i.e., gener-rules, results in very

similar performance (avg. ca. 430ms).

Fig. 5. AndroJena: OWL2 RL selections (inf-inst).

3 Except for scenarios where e.g., the ontology needs to be

re-materialized at each startup.

Fig. 5 shows that, similar to the full case, leaving

out redundant rules (+entailed) results in small im-

provements (avg. ca. -145ms, compared to inf-inst).

Additionally replacing specific rules by extra axioms

and general rules (+ entailed, extra-axioms, gener-

rules) similarly leads to performance loss (avg. ca.

+0,5s), while selecting a domain-based subset (+en-

tailed, domain-based) results in gains (avg. ca. -0,5s).

Regarding non-conformant cases, a first option is to

execute the rule subset on the ontology materialized

by inst-ent, which is smaller since it lacks certain

schema elements (i.e., not yielding extra instances).

This scenario (+ entailed, inst-ent) improves perfor-

mance by avg. ca. -340ms. Additionally removing in-

efficient rules (+ entailed, inst-ent, ineff) increases

performance by avg. ca. -1,3s. Combining all selec-

tions yields reductions of avg. ca. -1,5s.

Fig. 6. RDFStore-JS: OWL2 RL selections (full).

Figures 6-8 show OWL2 RL subset performances

for RDFStore-JS. Fig. 6 shows that, similar to Andro-

Jena, entailed yields only slightly better performance

(avg. ca. -100ms), whereas entailed, extra-axioms and

gener-rules collectively result in worse performance

(avg. ca. +0,85s). At the same time, compared to An-

droJena, also applying domain-based yields much

higher performance gains (avg. ca. -5,8s), while inf-

inst (avg. ca. -1,3s) and ineff (avg. ca. -1,9s) have a

smaller comparative impact.

Fig. 7. RDFStore-JS: OWL2 RL selections (inf-schema).

Fig. 7 shows the performance of materializing in-

ferences in the domain ontology (inf-schema). As for

AndroJena, replacing specific rules (+extra-axioms,

gener-rules) reduces performance (avg. ca. +380ms,

compared to inf-schema), while leaving out “instance-

redundant” rules (inst-ent) improves performance to a

larger extent (avg. ca. -270ms). As before, we note that

entailed and ineff are not applicable here. Utilizing do-

main-based, individually and combined with inst-ent

(+inst-ent, domain-based) results in the largest im-

provements in performance (avg. ca. -0,46s and -0,5s,

respectively), although, as mentioned, the suitability

of domain-based could be questioned here.

Fig. 8. RDFStore-JS: OWL2 RL selections (inf-inst).

Fig. 8 shows the results of the inf-inst rule subsets,

applied on an ontology materialized with schema in-

ferences. In contrast to AndroJena and the full case for

RDFStore-JS, collectively applying entailed, extra-

axioms and gener-rules improves performance (avg.

ca. -0,8s), and exceeds the performance gained by only

+entailed (avg. ca. -180ms). Similar to full (Figure 6),

the domain-based selection (+entailed, domain-

based) performs much better (avg. ca. -4,5s). Consid-

ering non-conformant selections, applying the rule

subset on the ontology materialized via inst-ent (+en-

tailed, inst-ent) increases performance by avg. ca. -

430ms (compared to inf-inst). Also applying the ineff

selection (+entailed, inst-ent, ineff) significantly im-

proves performance (avg. ca. -3,8s). Combining all se-

lections reduces reasoning times by avg. ca. -5,5s.

Finally, the consist ruleset yields a performance of

avg. ca. 2,1s, with +gener-rules (only applicable se-

lection) performing slightly better (avg. ca. -160ms).

Summary

Overall, the entailed selection has a relatively small

performance impact, with reductions from -1,2%

(rdfstore-js: full) to -8% (androjena: inf-inst). Utilizing

extra-axioms and gener-rules typically results in

(slightly) worse performance; which is not wholly un-

expected, seeing how it replaces specific rules with

more general ones (e.g., with more joins and less abil-

ity to leverage internal data indices). In some cases

however, these selections perform better: i.e., when

executing inf-inst (-21%) on RDFStore-JS.

In case of a stable ontology, additional OWL2 RL-

conformant optimization options exist. Executing the

inf-inst ruleset on a materialized ontology results in

performance increases from -17% (rdfstore-js) to -

36% (androjena) compared to the full ruleset. Here,

applying the best-performing, conformant selection

(i.e., inf-inst+entailed+domain-based) yields huge

optimizations, up to -72% (rdfstore-js) compared to

the original, non-selection case.

In case the conformance requirement is dropped,

even larger optimizations are possible. Employing the

inst-ent selection yields slight improvements in per-

formance for inf-schema; 8% (androjena) and 15%

(rdfstore). Re-using the smaller materialized ontology

optimizes the inf-inst selection as well, up to -12% (an-

drojena). Putting it all together, selection +inf-inst, en-

tailed, inst-ent, domain-based, ineff yields dramatic

improvements, as far as -90% (androjena) compared

to the full case.

6.5.1.2 Best Overall Performance

Table 1 shows the best-effort performances of the

rule engines: for the full, original OWL2 RL ruleset

(original, for reference); when applying best-perform-

ing conformant (conformant) and non-conformant

(non-conformant) rule subsets; and for cases where the

domain ontology frequently (and significantly)

changes (volatile ontology), ruling out certain selec-

tions, and cases where such changes are not likely to

occur (stable ontology). In the latter case, times for a

priori materializing the ontology (inf-schema), infer-

ring new instances (inf-inst), and consistency checking

times (consist) are shown as well. Based on bench-

mark results from the previous section, we chose the

best-performing ruleset selections for each case (see

table). Both total times and constituent loading and

reasoning times are indicated. Further, the table sets

these results side by side with the overall performance

of HermiT, Pellet and JFact, well-known OWL2 DL

reasoners. These reasoners perform reasoning with

higher complexity (OWL2 DL), which yields extra

schema (TBox) inferences not covered by the OWL2

RL rule axiomatization [37], [41]. We confirmed that

the OWL2 RL and OWL2 DL reasoners infer the same

ABox inferences. Clearly, any comparison should take

this schema incompleteness issue into account.

In line with expectations, the table shows that An-

droJena, as a native Android system and featuring a

non-naïve, RETE-based forward chainer, greatly out-

performs RDFStore-JS, which we manually outfitted

with naïve reasoning (Section 4.4.1). As shown before,

the ruleset selection suiting volatile ontologies and

guaranteeing conformance (entailed) performs only

slightly better. However, if the ontology is considered

stable, the conformant inf-inst selection supplies huge

relative gains (avg. ca. 1,6s (55%) – 5,8s (72%)) com-

pared to the original case, respectively for AndroJena

and RDFStore-JS (percentage indicates the proportion

of time gained w.r.t. the original). At the same time,

inf-schema yields a comparatively lower, but certainly

not negligible, overhead, which is incurred for each

ontology update. As mentioned, since applying the do-

main-based selection on inf-schema would not be ad-

vantageous in most scenarios, it is not applied here. In

contrast, the best-performing conformant inf-inst

ruleset requires the domain-based ruleset selection,

which needs to be re-calculated for each ontology up-

date and thus adds an extra overhead (not included

here). As a result, this configuration is suitable for

“stable” scenarios, where ontology updates are infre-

quent. Similarly, the cost of consist is not negligible;

the frequency of applying the ruleset depends on the

application scenario.

When dropping conformance, we find performance

improvements even for volatile ontologies (avg. ca.

1,3s (45%) – 1,9s (24%)). For non-conformant reason-

ing in stable ontologies, the performance gain of inf-

inst is tremendous (avg. ca. 2,5s (90%) – 6,9s (85%)).

Regarding OWL2 DL reasoners, Pellet and JFact have

comparable mobile performance (around avg. ca. 7s)

with HermiT being a clear outlier (avg. ca. 21s).

Table 2 shows memory usage for each engine (aside

from the JavaScript-based RDFStore-JS; see Section

6.3). JFact uses the least amount of memory, i.e., only

585Kb, making it a suitable choice overall (see Table

1) for mobile platforms. Nevertheless, all memory us-

ages appear acceptable (at least on Android), seeing

how each Android app receives a 192Mb max. heap.

Table 2: Memory usage (Kb)

AndroJena HermiT Pellet JFact

6242 13543 12832 585

In conclusion, depending on the application sce-

nario and requirements for full conformance, OWL2

RL reasoning can be greatly optimized on mobile plat-

forms, making it a viable option for ontology-based

reasoning. We note that, even for JavaScript systems

outfitted with naïve reasoning, large performance im-

provements are possible. In case an application has

need for extra OWL2 DL expressivity, JFact or Pellet

may be used, albeit at significantly lower performance.

6.5.2. Semantically-Enhanced Service Matching

Table 3 presents the performance of rule-based se-

mantic service matching by the best-performing rule

engine (i.e., AndroJena), showing the average total

time of a service match, which includes matching the

pre- and post-condition of a user goal to a service, and

vice-versa.

Table 1. Best overall performances (avg) (ms)

OWL2 RL* OWL2 DL**

AndroJena

original 2819 (88 | 2731)

Hermit 21111

 volatile ontology stable ontology

conformant

full inf-schema inf-inst consist

2639 (90 | 2549)

 + entailed
1001 (69 | 932)

1245 (187 | 1058)

+ entailed,

domain-based

418

(195 | 223)

non-conformant

full inf-schema inf-inst

Pellet 6978
1547 (93 | 1455)

+ entailed, ineff

919 (65 | 854)

inst-ent

272 (165 | 106)

+ entailed, domain-

based, ineff, inst-ent

RDFStore-JS

original 8120 (618 | 7502)

 volatile ontology stable ontology

JFact 7034

conformant

full inf-schema inf-inst consist

8022 (620 | 7402)

+ entailed
1831 (536 | 1296)

2304 (566 | 1738)

+ entailed,

domain-based

1947

(1282 | 665)

non-conformant

full inf-schema inf-inst

6168 (583 | 5586)

+ entailed, ineff

1561 (511 | 1050)

+ inst-ent

1255 (1080 | 176)

+ entailed, domain-

based, ineff, inst-ent

* : [total-time] ([load-time] | [reason-time] ; applied selections are shown, if any.

**: total-time

Table 3: service match performance using AndroJena (avg) (ms)

original

OWL2 RL

full conf non-conf

total
(ms)*

26
(11 | 15)

1062
(50 | 1012)

954
(48 | 906)

441
(47 | 394)

domain-based

754
(49 | 705)

280
(48 | 232)

matches**

precond

g>s: 22, s>g: 23 g>s: 32, s>g: 53

effect

g>s: 3, s>g: 5 g>s: 4, s>g: 14

*: [total-time] ([load-time] | [reason-time]
**: number of matches per direction (e.g., g>s = goal > service)

The table shows the original, non-enhanced case

(original), and when enhanced with ontology reason-

ing (OWL2 RL). In particular, when applying the full

ruleset (full); a conformant (conf; i.e., +entailed) and

non-conformant subset (non-conf; i.e., +entailed, inst-

ent, ineff); and the domain-based selection.

A total of 50 extra matches are found by semanti-

cally enhancing this task, mostly by leveraging sub-

class hierarchies (for an example, see Section 6.1.2).

A full list of extra matches can be found online [56].

While the performance of original is reasonable, the

average reasoning time for full is almost two orders of

magnitude larger. Applying a conformant, non do-

main-specific rule subset yields only a slight (ca. 10%)

improvement. The non-conformant ruleset performs

much better, improving performance by ca. 59%. As

expected, the domain-specific selection yields larger

performance increases, respectively ca. 29% and 74%.

However, to calculate the domain-specific ruleset, this

selection requires access to all (or at least, representa-

tive) user goals / services and their related schema,

which may not be possible in practice.

From these results, we can conclude that semanti-

cally-enhanced service matching, with its potential to

increase the amount of valid matches, has a distinct

utility. Depending on application constraints, the total

performance overhead per service match (including

matching pre- and post-conditions, and in both direc-

tions) ranges from ca. 0,95s to 0,28s.

7. Related Work

In the state of the art on rule-based OWL reasoning,

most works focus on separating TBox from ABox rea-

soning [5], [17], [25], [40], [41]. In most cases, a sep-

arate OWL reasoner is utilized to compute and mate-

rialize schema inferences [5], [17], [40]. However, this

is inadvisable on mobile platforms, since it necessi-

tates deploying two (resource-heavy) reasoner sys-

tems, i.e., an OWL reasoner and rule engine. After this

separate schema reasoning step, some works [5], [40],

[41] proceed with a rule-template approach; where

OWL2 RL rules are instantiated based on the materi-

alized input ontology. In particular, multiple instanti-

ated rules are created for each rule, whereby schema

variables are replaced by concrete schema references.

We support a similar solution to support certain n-ary

rules, and applied it in our benchmarks. Implementing

and benchmarking this as an optimization for all rules

is considered future work.

Tai et al. [53] propose a selective rule loading algo-

rithm, which automatically composes an OWL2 RL

ruleset depending on the input ontology. In our bench-

marks, we found that this domain-based rule selection

can significantly improve performance. Another body

of work studies the extraction of a (smallest) module

from a larger ontology, which still captures the mean-

ing of a particular set of terms (e.g., yielding the same

relevant entailments or query results) [15], [36], [43].

This kind of approach could be useful to support se-

mantically-enhanced, rule-based service matching, by

automatically extracting relevant ontology parts for

service descriptions (see Section 6.2.2).

Yus et al. [62] analyzed whether currently available

DL reasoners are deployable on Android devices.

However, their evaluation is limited to classification,

and does not consider OWL2 RL-based reasoners.

They found that performance greatly depends on the

engine and ontology size, with times ranging from 4s–

1609s. Interestingly, they found a performance in-

crease of ca. 30% between mobile devices only 1 year

apart, which is a promising evolution. Nonetheless,

Yus et al. [62] and Kazakov et al. [28] found orders of

magnitude difference between PC and Android rea-

soning times. As future work, Kazakov et al. aim to

study the reason behind this poor performance on

smartphones. Yus et al. point to Android memory re-

strictions (and e.g., resulting garbage collections) be-

ing the main barrier to efficient performance, although

further study needs to validate this claim.

Patton et al. [44] report that, due to the single-

threaded nature of most reasoners, a near linear rela-

tion exists between consumed energy and computing

time for OWL inferences on mobile systems. As such,

energy usage estimates, based on reasoning times,

could already be realistic. Regardless, future work in-

volves recording detailed battery measurements.

8. Conclusion and Future Work

This paper presented the following contributions:

- A selection of OWL2 RL subsets, with the goal

of optimizing reasoning performance on mobile sys-

tems. Orthogonally, these methods include OWL2

RL-conformant vs. non-conformant selections; and

selections suiting “stable” (i.e., not subject to frequent

and significant changes) vs. “volatile” ontologies. Our

benchmarks showed that, depending on ontology vol-

atility and need for conformity, these selections may

greatly improve performance.

- The MobiBench cross-platform, extensible mo-

bile benchmark framework, for evaluating mobile

reasoning performance. Given a reasoning setup, in-

cluding process flow, reasoning task, ruleset (if any)

and ontology, developers can use MobiBench to

benchmark reasoners on mobile platforms, and thus

find the best system for the job. The large differences

in performance between engines and scenarios, as ob-

served in our benchmarks, clearly point towards the

need for such a framework. To facilitate the devel-

oper’s job, the framework includes a Semantic Web

layer, selection and pre-processing services, as well as

automation and analysis tools. Further, we indicated

the extensibility for each component, allowing devel-

opers to easily plug in new variants.

- Mobile benchmarks, which measure reasoning

performance when materializing ontology inferences;

focusing on the impact of different OWL2 RL ruleset

selections, as well as the computational cost of best-

performing OWL2 RL rulesets for particular scenarios

and systems. We put these performance results side-

by-side with the performance of 3 OWL2 DL reason-

ers. Depending on the concrete scenario, we found that

OWL2 RL reasoning can be greatly optimized. Fur-

ther, we showed the distinct utility of the semantic en-

hancement of service matching, with performance

overhead depending on application constraints.

- A study of the usefulness of OWL2 RL in mo-

bile semantic reasoning. By outfitting rule-based

tasks, such as service matching, with an OWL2 RL

ruleset, ontological knowledge can be leveraged to im-

prove results. Service matching is a useful task in mo-

bile settings, as it enables mobile apps to, e.g., identify

services in smart environments [58]. As such, our

work contributes to studying both the feasibility and

utility of OWL2 RL on mobile systems.

Despite the presented work, as well as advance-

ments reported in the state of the art, scalable mobile

performance remains elusive. A huge gap still looms

between PC and mobile reasoning times. Therefore,

future work includes integrating additional optimiza-

tion methods into MobiBench, such as utilizing rule

templates for all rules. Optimizing and porting do-

main-specific rule selection, in light of its positive im-

pact on performance, is also an avenue of future work.

Similarly, we aim to deploy pre-processing solutions

for n-ary rules directly on the mobile device, and com-

pare their performance on an ontology corpus featur-

ing large amounts of relevant n-ary assertions. Re-

garding service matching, we aim to represent user

goals and services as complex class descriptions,

which allows benchmarking service matching via

OWL2 DL entailment. Measuring energy consump-

tion, an important aspect for mobile systems, is also

part of future work.

Our major focus in this paper was on materializing

ontology inferences. Reasoning per query (via e.g.,

SLG) may also have its merits on mobile platforms,

since it does not require a priori materialization. Stud-

ying its performance on mobile systems is considered

a major avenue of future work. Finally, identifying ad-

ditional OWL2 RL rule subsets for particular reason-

ing tasks (such as instance checking and realization) is

also viewed as future work.

Acknowledgments

This research project is funded by a research grant

from Bayer Healthcare.

References

[1] S. Ali and S. Kiefer, “microOR --- A Micro OWL DL Reasoner

for Ambient Intelligent Devices,” in Proceedings of the 4th

International Conference on Advances in Grid and Pervasive
Computing, 2009, pp. 305–316.

[2] N. Ambroise, S. Boussonnie, and A. Eckmann, “A Smartphone

Application for Chronic Disease Self-Management,” in
Proceedings of the 1st Conference on Mobile and Information

Technologies in Medicine, 2013.

[3] J. Angele et al., “Web Rule Language (W3C Member
Submission 2005),” 2005. [Online]. Available:

http://www.w3.org/Submission/WRL/.

[4] Apache, “Apache Jena.” [Online]. Available:
https://jena.apache.org/. [Accessed: 17-Mar-2017].

[5] J. Bak, M. Nowak, and C. Jedrzejek, “RuQAR: Reasoning

Framework for OWL 2 RL Ontologies,” in The Semantic Web:
ESWC 2014 Satellite Events, Anissaras, Crete, Greece, May

25-29, 2014, Revised Selected Papers, 2014, vol. 8798, pp.
195–198.

[6] C. Becker, “RDF Store Benchmarks with DBpedia comparing

Virtuoso, SDB and Sesame,” 2008. [Online]. Available:
http://wifo5-03.informatik.uni-mannheim.de/benchmarks-

200801/.

[7] C. Becker and C. Bizer, “DBpedia Mobile: A Location-Enabled

Linked Data Browser.,” in LDOW, 2008, vol. 369.

[8] C. Beeri and R. Ramakrishnan, “On the Power of Magic,” in
Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, 1987, pp. 269–

284.
[9] B. Bishop and S. Bojanov, “Implementing OWL 2 RL and

OWL 2 QL Rule-Sets for OWLIM.,” in OWLED, 2011, vol.

796.
[10] B. Bishop and F. Fischer, “IRIS - Integrated Rule Inference

System,” in Proceedings of the 1st Workshop on Advancing

Reasoning on the Web: Scalability and Commonsense, 2008.
[11] C. Bizer and A. Schultz, “The berlin sparql benchmark,” Int. J.

Semant. Web Inf. Syst. Issue Scalability Perform. Semant. Web

Syst., 2009.
[12] H. Boley, S. Tabet, and G. Wagner, “Design Rationale of

RuleML: A Markup Language for Semantic Web Rules,” in

Proc. Semantic Web Working Symposium, 2001, pp. 381–402.
[13] D. Calvanese et al., “OWL2 Web Ontology Language Profiles

(Second Edition),” 2012. [Online]. Available:

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL.
[14] W. Chen and D. S. Warren, “Towards Effective Evaluation of

General Logic Programs,” in The 12th ACM Symposium on

Principles of Database Systems (PODS), 1993.
[15] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler,

“Modular Reuse of Ontologies: Theory and Practice,” J. Artif.
Intell. Res., vol. 31, pp. 273–318, 2008.

[16]R. Cyganiak and A. Jentzsch, “Linking Open Data cloud,” 2014.

[Online]. Available: http://lod-cloud.net/versions/2014-08-
30/lod-cloud.svg.

[17] R. U. Faruqui and W. MacCaull, “OwlOntDB: A Scalable

Reasoning System for OWL 2 RL Ontologies with Large
ABoxes,” Found. Heal. Inf. Eng. Syst., vol. 7789, pp. 105–123,

2013.

[18] C. L. Forgy, “Rete: A Fast Algorithm for the Many
Patterns/Many Objects Match Problem,” Artif. Intell., vol. 19,

no. 1, pp. 17–37, 1982.

[19] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang,
“HermiT: An OWL 2 Reasoner,” J. Autom. Reason., vol. 53,

no. 3, pp. 245–269, 2014.

[20] J. Gray, The Benchmark Handbook for Database and
Transaction Systems (2nd Ed.). Morgan Kaufmann, 1993.

[21] W. S. W. Group, “SPARQL 1.1 Overview (W3C

Recommendation 21 March 2013),” 2013. [Online]. Available:
http://www.w3.org/TR/sparql11-overview/.

[22] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL

knowledge base systems,” Web Semant. Sci. Serv. Agents
World Wide Web, vol. 3, no. 2, pp. 158–182, 2005.

[23] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining

Views Incrementally,” in Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data,

1993, pp. 157–166.

[24] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S.
Rudolph, “OWL 2 Web Ontology Language Primer (Second

Edition),” 2012. [Online]. Available:

http://www.w3.org/TR/owl2-primer/. [Accessed: 14-Apr-
2015].

[25] A. Hogan and S. Decker, “On the Ostensibly Silent `W’ in

OWL 2 RL,” in Proceedings of the 3rd International
Conference on Web Reasoning and Rule Systems, 2009, pp.

118–134.

[26] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B.
Grosof, and M. Dean, “SWRL: A Semantic Web Rule

Language Combining OWL and RuleML (W3C Member

Submission 21 May 2004),” 2004. [Online]. Available:
http://www.w3.org/Submission/SWRL/.

[27] M. Karamfilova and B. Bishop, “SwiftOWLIM Reasoner,”

2011. [Online]. Available:

https://confluence.ontotext.com/display/OWLIMv35/SwiftO
WLIM+Reasoner#SwiftOWLIMReasoner-

PerformanceOptimizationsinRDFSandOWLSupport.

[28] Y. Kazakov and P. Klinov, “Experimenting with ELK Reasoner
on Android,” in Proceedings of the 2nd International Workshop

on OWL Reasoner Evaluation, Ulm, Germany, July 22, 2013,

2013, pp. 68–74.
[29] Y. Kazakov, M. Krötzsch, and F. Simančík, “The Incredible

ELK: From Polynomial Procedures to Efficient Reasoning with

EL Ontologies,” J. Autom. Reason., vol. 53, no. 1, pp. 1–61,
2014.

[30] C. Keller, R. Pöhland, S. Brunk, and T. Schlegel, “An Adaptive

Semantic Mobile Application for Individual Touristic
Exploration,” in HCI (3), 2014, pp. 434–443.

[31] T. Kim, I. Park, S. J. Hyun, and D. Lee, “MiRE4OWL: Mobile

Rule Engine for OWL,” in Proceedings of the 2010 IEEE 34th
Annual Computer Software and Applications Conference

Workshops, 2010, pp. 317–322.

[32] M. Klusch, M. Alam Khalid, P. Kapahnke, B. Fries, and M.
Vasileski, “OWL-S Service Retrieval Test Collection (Version

4.0),” 2005. [Online]. Available:

http://projects.semwebcentral.org/projects/owls-tc/.
[33] H. Knublauch, “OWL 2 RL in SPARQL using SPIN.” [Online].

Available: http://composing-the-semantic-
web.blogspot.ca/2009/01/owl-2-rl-in-sparql-using-spin.html.

[34] H. Knublauch, “The TopBraid SPIN API,” 2014. [Online].

Available: http://topbraid.org/spin/api/.
[35] H. Knublauch, J. A. Hendler, and K. Idehen, “SPIN - Overview

and Motivation (W3C Member Submission 22/02/2011),” 2011.

[Online]. Available: http://www.w3.org/Submission/spin-
overview/.

[36] B. Konev, C. Lutz, D. Walther, and F. Wolter, “Model-theoretic

inseparability and modularity of description logic ontologies,”
Artif. Intell., vol. 203, pp. 66–103, 2013.

[37] M. Krötzsch, “The Not-So-Easy Task of Computing Class

Subsumptions in OWL RL,” Springer, Berlin, Heidelberg, 2012,
pp. 279–294.

[38] S. Liang, P. Fodor, H. Wan, and M. Kifer, “OpenRuleBench:

An Analysis of the Performance of Rule Engines,” in
Proceedings of the 18th International Conference on World

Wide Web, 2009, pp. 601–610.

[39] N. Matentzoglu, S. Bail, and B. Parsia, “A Snapshot of the
OWL Web,” in The Semantic Web – ISWC 2013 – 12th

International Semantic Web Conference, Sydney, NSW,

Australia, October 21-25, 2013, Proceedings, Part I, 2013, pp.
331–346.

[40] G. Meditskos and N. Bassiliades, “DLEJena: A Practical

Forward-chaining OWL 2 RL Reasoner Combining Jena and
Pellet,” Web Semant., vol. 8, no. 1, pp. 89–94, Mar. 2010.

[41] B. Motik, I. Horrocks, and S. M. Kim, “Delta-reasoner: A

Semantic Web Reasoner for an Intelligent Mobile Platform,” in
Proceedings of the 21st International Conference Companion

on World Wide Web, 2012, pp. 63–72.

[42] M. O’Connor and A. Das, “A Pair of OWL 2 RL Reasoners,”
in OWL: Experiences and Directions Workshop 2012, 2012.

[43] J. Pathak, T. M. Johnson, and C. G. Chute, “Survey of modular

ontology techniques and their applications in the biomedical
domain.,” Integr. Comput. Aided. Eng., vol. 16, no. 3, pp. 225–

242, Aug. 2009.

[44] E. W. Patton and D. L. McGuinness, “A Power Consumption
Benchmark for Reasoners on Mobile Devices,” in 13th

International Semantic Web Conference, Riva del Garda, Italy,

October 19-23, 2014., 2014, vol. 8796, pp. 409–424.
[45] E. Puertas, M. L. Prieto, and M. De Buenaga, “Mobile

Application for Accessing Biomedical Information Using

Linked Open Data,” in Proceedings of the 1st Conference on

Mobile and Information Technologies in Medicine, 2013.
[46] D. Reynolds, “OWL 2 RL in RIF (Second Edition),” 2013.

[Online]. Available: http://www.w3.org/TR/rif-owl-rl/.

[47] V. Reynolds, M. Hausenblas, A. Polleres, M. Hauswirth, and V.
Hegde, “Exploiting linked open data for mobile augmented

reality,” in W3C Workshop: Augmented Reality on the Web,

2010.
[48] M. Schneider and K. Mainzer, “A Conformance Test Suite for

the OWL 2 RL RDF Rules Language and the OWL 2 RDF-

Based Semantics,” in 6th International Workshop on OWL:
Experiences and Directions, 2009.

[49] C. Seitz and R. Schönfelder, “Rule-Based OWL Reasoning for

Specific Embedded Devices,” in 10th International Semantic
Web Conference, Bonn, Germany, Proceedings, Part II, 2011,

vol. 7032, pp. 237–252.

[50] A. Sinner and T. Kleemann, “KRHyper - In Your Pocket,” in
Automated Deduction - CADE-20, 20th International

Conference on Automated Deduction, Tallinn, Estonia, July 22-

27, 2005, Proceedings, 2005, vol. 3632, pp. 452–457.
[51] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz,

“Pellet: A Practical OWL-DL Reasoner,” Web Semant., vol. 5,

no. 2, pp. 51–53, Jun. 2007.
[52] M. Smith, I. Horrocks, M. Krotzsch, and B. Glimm, “OWL 2

Web Ontology Language Conformance (Second Edition),”
W3C Recommendation, 2012. [Online]. Available:

http://www.w3.org/TR/owl2-test/.

[53] W. Tai, J. Keeney, and D. O’Sullivan, “Resource-constrained
reasoning using a reasoner composition approach,” Semant.

Web, vol. 6, no. 1, pp. 35–59, 2015.

[54] The National Center for Biomedical Ontology, “BioPortal,”
2016. [Online]. Available: http://bioportal.bioontology.org/.

[Accessed: 17-Mar-2017].

[55] M. Wilson, A. Russell, D. A. Smith, A. Owens, and M. C.
Schraefel, “mSpace Mobile: A Mobile Application for the

Semantic Web,” in User Semantic Web Workshop, ISWC2005,

2005.
[56] W. Van Woensel, “MobiBench Online Documentation,” 2016.

[Online]. Available:

https://niche.cs.dal.ca/materials/mobi_bench/.
[57] W. Van Woensel, S. Casteleyn, E. Paret, and O. De Troyer,

“Mobile Querying of Online Semantic Web Data for Context-

Aware Applications,” IEEE Internet Comput. Spec. Issue
(Semantics Locat. Serv., vol. 15, no. 6, pp. 32–39, 2011.

[58] W. Van Woensel, M. Gil, S. Casteleyn, E. Serral, and V.

Pelechano, “Adapting the Obtrusiveness of Service Interactions
in Dynamically Discovered Environments,” in Proceedings of

the 9th International Conference on Mobile and Ubiquitous

Systems, 2012, pp. 250–262.
[59] W. Van Woensel, N. Al Haider, A. Ahmad, and S. S. R. Abidi,

“A Cross-Platform Benchmark Framework for Mobile

Semantic Web Reasoning Engines,” in 13th International
Semantic Web Conference, Riva del Garda, Italy. Proceedings,

Part I, 2014, pp. 389–408.

[60] W. Van Woensel, N. Al Haider, P. C. Roy, A. M. Ahmad, and
S. S. Abidi, “A Comparison of Mobile Rule Engines for

Reasoning on Semantic Web Based Health Data,” in 2014

IEEE/WIC/ACM International Conference on Web Intelligence
(WI 2014), 2014, pp. 126–133.

[61] W. Van Woensel, P. C. Roy, S. Abidi, and S. S. Abidi, “A

Mobile & Intelligent Patient Diary for Chronic Disease Self-
Management,” in 15th World Congress on Health and

Biomedical Informatics, 2015.

[62] R. Yus, C. Bobed, G. Esteban, F. Bobillo, and E. Mena,
“Android goes Semantic: DL Reasoners on Smartphones,” in

Proceedings of the 2nd International Workshop on OWL

Reasoner Evaluation, Ulm, Germany, 2013, pp. 46–52.

[63] S. Zander, C. Chiu, and G. Sageder, “A computational model
for the integration of linked data in mobile augmented reality

applications,” in Proceedings of the 8th International

Conference on Semantic Systems, 2012, pp. 133–140.
[64] S. Zander and B. Schandl, “A framework for context-driven

RDF data replication on mobile devices,” in Proceedings of the

6th International Conference on Semantic Systems, 2010, p.
22:1--22:5.

[65] C. Ziegler, “Semantic web recommender systems,” in In

Proceedings of the Joint ICDE/EDBT Ph.D. Workshop 2004
(Heraklion, 2004, pp. 78–89.

[66] “AndroJena.” [Online]. Available:

https://github.com/lencinhaus/androjena. [Accessed: 01-May-
2017].

[67] “Apache Cordova.” [Online]. Available:

https://cordova.apache.org/.
[68] “Apache Jena Inference Support.” [Online]. Available:

https://jena.apache.org/documentation/inference/.

[69] “Appcelerator Titanium.” [Online]. Available:
http://www.appcelerator.com/mobile-app-development-

products/.

[70] “Chrome DevTools.” [Online]. Available:
https://developer.chrome.com/devtools.

[71] “JFact.” [Online]. Available: http://jfact.sourceforge.net/.
[72] “Manchester OWL Repository.” [Online]. Available:

http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/.

[Accessed: 16-Jun-2016].
[73] “Nashorn JavaScript Engine.” [Online]. Available:

http://www.oracle.com/technetwork/articles/java/jf14-

nashorn-2126515.html.
[74] “Oxford Ontology repository.” [Online]. Available:

http://www.cs.ox.ac.uk/isg/ontologies/. [Accessed: 16-Jun-

2016].
[75] “RDFQuery.” [Online]. Available:

https://code.google.com/p/rdfquery/wiki/RdfPlugin.

[76] “RDFStore-JS.” [Online]. Available:
http://github.com/antoniogarrote/rdfstore-js.

[77] “W3C Forum Post on OWL2 RL test cases.” [Online].

Available: http://lists.w3.org/Archives/Public/public-owl-
dev/2010AprJun/0074.html.

[78] “Web Data Commons.” [Online]. Available:

http://webdatacommons.org/structureddata/.

