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Abstract. The Semantic Web has grown immensely over the last decade, and mobile hardware has advanced to a point where 

mobile apps may consume this Web of Data. This has been exemplified in domains such as mobile context-awareness, m-

Health, m-Tourism and augmented reality. However, recent work shows that the performance of ontology-based reasoning, an 

essential Semantic Web building block, still leaves much to be desired on mobile platforms. Applying OWL2 RL to realize such 

mobile reasoning is a promising solution, since it trades expressivity for scalability, and its rule-based axiomatization easily 

allows applying axiom subsets to improve performance. At any rate, considering the current performance issues, developers 

should be able to benchmark reasoners on mobile platforms, using different process flows, reasoning tasks, and datasets. To 

that end, we developed a mobile benchmark framework called MobiBench. In an effort to optimize mobile ontology-based 

reasoning, we further propose selections of OWL2 RL rule subsets based on logical equivalence, purpose and reference, and 

domain relevance. Using MobiBench, we benchmark multiple OWL2 RL-enabled rule engines and OWL reasoners on a mobile 

platform. Results show drastic performance improvements by applying OWL2 RL rule subsets, allowing for performant rea-

soning for small datasets on mobile systems. 
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1. Introduction 

As illustrated by the Linking Open Data cloud [16], 

the Semantic Web currently includes over 1000 huge 

datasets from diverse domains such as government, 

music, geography, social web and life sciences. Light-

weight structured data is being increasingly embedded 

in websites as well [78], motivated by search engines’ 

need for machine-readable web content. Collectively, 

these advancements are giving rise to a multi-seg-

mented, interlinked and machine-readable Web, ready 

for consumption by software agents. In particular, ad-

vances in mobile hardware and connectivity have en-

abled the mobile consumption of semantic data, e.g., 

to collect context- [57], [64] and location-related data 

[7], [55], achieve augmented reality [47], [63], per-

form recommendations [65], access linked biomedical 

data (m-Health) [45] and enable mobile tourism [30].  

Regardless of the computing platform, an essential 

Semantic Web pillar is reasoning, which infers useful 
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new information based on the semantics of ontology 

constructs, or deterministic, domain-specific if-then 

rules. However, many works have noted that OWL2 

DL reasoning is too complex and resource-intensive to 

achieve scalability on mobile and embedded systems,   

which was confirmed by recent empirical work [28], 

[62]. In light of this issue, the state of the art has pre-

sented a number of semantic reasoners tailored to re-

source-constrained systems [1], [31], [41], [53]. Most 

of these approaches focus on rule-based OWL axio-

matizations, such as custom entailment rulesets [1], 

[31] or an OWL2 RL ruleset (i.e., axiomatizing the 

OWL2 RL semantics) [41], [53]. Indeed, by utilizing 

the OWL2 RL W3C recommendation [13], any rule 

engine can implement a subset of OWL2 reasoning 

that allows for scalability without sacrificing too much 

expressive power. Furthermore, related work shows 

that subsets of rule-based axioms can be easily se-

lected to e.g., adjust reasoning complexity to the ap-



plication scenario [53], or avoid resource-heavy infer-

ences [9], [49]. In addition, OWL2 RL rules can be 

easily included into other rulesets to enhance the rule-

based reasoning task (e.g., service matching) with on-

tology-based reasoning. In doing so, a single rule en-

gine can perform semantically-enhanced reasoning 

without additional components (e.g., separate OWL 

reasoners). Because of these reasons, we argue that 

OWL2 RL is a promising solution for ontology-based 

reasoning on mobile, resource-constrained devices. 

Nonetheless, it seems that mobile hardware will re-

main relatively limited compared to PC or server hard-

ware, leaving mobile reasoning performance heavily 

dependent on dataset scale and application require-

ments [28], [62], at least in the foreseeable future. As 

such, there is a clear need for benchmarking reasoning 

performance in particular mobile application scenarios, 

including reasoning task (e.g., ontology or  rule-based 

reasoning, service matching), process flow (e.g., fre-

quent vs. incremental reasoning) and custom rule- and 

datasets. Based on the results, developers can make in-

formed decisions about deploying semantic reasoning; 

with poor performance e.g., pointing to a distributed 

solution [2], [61]. Currently, systematic mobile bench-

marking is impeded by the range of custom rule- and 

data formats and semantic rule standards (e.g., 

RuleML, SWRL, SPIN); as well as the fragmented 

mobile market, including OS’s such as Android, iOS, 

Windows Phone, BlackBerry OS and Symbian.  

We pursue multiple objectives: (a) optimize seman-

tic reasoning on mobile platforms by selecting OWL2 

RL subsets; (b) develop a mobile reasoning bench-

mark framework (called MobiBench); (c) perform 

multiple mobile reasoning benchmarks; and by exe-

cuting these benchmarks, (d) study the usefulness of 

mobile semantic reasoning.  

With respect to our objectives (a-d), this paper pre-

sents the following 4 contributions:  

1) A selection of OWL2 RL subsets, featuring 3 

selections to be applied in conjunction or in isolation: 

- Equivalent OWL2 RL rule subset: this selection 

leaves out logically equivalent rules; i.e., rules of 

which the results are covered by other rules. Also, by 

introducing extra axioms, possibly combined with 

new, more general rules, multiple existing rules can be 

left out. Some rules may also be considered redundant 

at the instance level, inferring new schema elements 

but not contributing to new instances. 

- Purpose and reference-based subsets: by divid-

ing rule subsets via their purpose and referenced data, 

smaller rulesets can be applied in certain runtime sce-

narios. In particular, OWL2 RL rules perform either 

inference or consistency-checking (purpose), and refer 

to instances and schema or only schema elements (ref-

erence). Related work often separates instance- 

(ABox) from schema-based (TBox) reasoning [5], 

[17], [25], [40], [41]. Further, rules that will not yield 

inferences over the ontology can be left out as well, by 

applying a separate pre-processing step [53]. 

- Removal of inefficient rules: this selection leaves 

out rules with a large performance impact. While this 

will clearly result in missing certain OWL2 RL infer-

ences, their large overhead implies that developers 

should at least be allowed to weigh their utility vs. 

computational cost.  

2) A mobile reasoning benchmark framework 

(MobiBench) to evaluate the performance of reason-

ing on mobile platforms (reasoning times, memory us-

age), in specific scenarios and using standards-based 

rule- and datasets. To that end, the framework includes 

a Semantic Web layer, which supplies a uniform, 

standards-based interface across reasoning engines; a 

Selection Service, to automatically apply the selec-

tions from (1); and a Pre-processing Service, to pre-

process a ruleset and ontology for a particular purpose 

(e.g., to support n-ary rules). Developers run bench-

marks by invoking the API or using the built-in auto-

mation support. Analysis tools convert reasoning 

times and memory dumps into summary CSV files. 

Key features of MobiBench include extensibility 

and its cross-platform nature, allowing benchmarks to 

be applied across multiple platforms. For this purpose, 

we implemented MobiBench in JavaScript (JS), and 

use Apache Cordova [67] for deployment on mobile 

platforms; and the JDK8 Nashorn JavaScript engine 

[73] for PC platforms (currently, this version is used 

mostly for testing). Currently, MobiBench is deployed 

on Android (using Cordova) and PC (using JDK 8).  

3) Mobile benchmarks, measuring the perfor-

mance of two rule engines, namely the Android-based 

AndroJena and the JS-based RDFStore-JS. Multiple 

reasoning tasks are benchmarked, namely materializ-

ing ontology inferences and performing semantically-

enhanced service matching. Further, we benchmark 

each OWL2 RL subset selection to measure its perfor-

mance impact. Three OWL2 DL reasoners (HermiT, 

JFact and Pellet) are also benchmarked. We utilize the 

OWL2 RL Benchmark Corpus and the OWL-S Ser-

vice Retrieval Test Collection [32] for benchmarking. 

4) A study of the usefulness of OWL2 RL for se-

mantic reasoning on mobile platforms. The above 

contributions implement, optimize and apply OWL2 



RL rules in practice, both 1) stand-alone, to material-

ize ontology inferences; and 2) combined with a ser-

vice matching ruleset, to enhance service matching 

with ontology reasoning. Service matching is a useful 

task in mobile settings, as it enables mobile apps to 

locate relevant services in a smart environment [58]. 

Aside from performance, we also look at the impact of 

ontology reasoning on service matching results. Thus, 

our work contributes to studying the feasibility as well 

as utility of OWL2 RL on mobile platforms. 

This paper is built on previous work, which pre-

sented a clinical benchmark [60] and an initial version 

of the Mobile Benchmark Framework [59], which 

only supplied an API and restricted benchmarking to 

rule-based (non-OWL) reasoning. As such, it did not 

attempt optimizations or applications of OWL2 RL. 

The paper is structured as follows. In Section 2, we 

shortly discuss the OWL2 RL profile and its imple-

mentation. Section 3 explains our selection of OWL2 

RL rule subsets. Section 4 presents the architecture 

and main components of MobiBench, and Section 5 

discusses how mobile developers can utilize MobiB-

ench. Section 6 elaborates on the benchmarks we per-

formed using MobiBench. We discuss related work in 

Section 7, and end with conclusions and future work 

in Section 8. 

2. OWL2 RL Realization 

This section shortly discusses the different OWL2 

profiles (Section 2.1) and our practical implementa-

tion of OWL2 RL (Section 2.2).  

2.1. OWL2 Profiles 

The OWL2 Web Ontology Language Profiles doc-

ument [13] introduces multiple OWL2 profiles, in-

cluding OWL2 EL, OWL2 QL and OWL2 RL. By re-

stricting ontology syntax and reducing expressivity, 

these profiles can more efficiently handle specific ap-

plication scenarios. OWL2 EL is designed to deal with 

ontologies containing large amounts of classes and 

properties, whereas OWL2 QL is optimized for que-

rying large amounts of instance data. The OWL2 RL 

profile is aimed at balancing expressivity with reason-

ing scalability, and presents a partial, rule-based axio-

matization of OWL2 RDF-Based Semantics. Using 

OWL2 RL, reasoning systems can be implemented us-

ing standard rule engines. The W3C specification [13] 

presents the OWL2 RL axiomatization as a set of uni-

versally quantified, first-order implications over a ter-

nary predicate T, which stands for a generalization of 

RDF triples. In addition to regular inference rules, the 

ruleset includes rules that are always applicable (i.e., 

without antecedent), and consistency-checking rules 

(i.e., with consequent false). Below, we exemplify 

each type of rules (namespaces omitted for brevity). 

Code 1 shows a “regular” inference rule that types re-

sources based on the subClassOf construct: 

𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2), 𝑇(? 𝑥, 𝑡𝑦𝑝𝑒, ? 𝑐1) → 𝑇(? 𝑥, 𝑡𝑦𝑝𝑒, ? 𝑐2) 

Code 1. Rule classifying resources (#cax-sco). 

The second type of rule lacks an antecedent and is 

thus always applicable. E.g., the rule in Code 2 indi-

cates that each built-in OWL2 RL annotation property 

needs to have the owl:AnnotationProperty type: 

𝑇(𝑎𝑝, 𝑡𝑦𝑝𝑒, 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

Code 2. Rule typing annotation properties (#prp-ap). 

Thirdly, the consistency-checking rule in Code 3 

checks whether an instance of a restriction, indicating 

a maximum cardinality of 0 on a particular property, 

participates in said property. If so, the ontology is 

flagged as inconsistent. 

𝑇(? 𝑥, 𝑚𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦, 0), 𝑇(? 𝑥, 𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝), 
𝑇(? 𝑢, 𝑡𝑦𝑝𝑒, ? 𝑥), 𝑇(? 𝑢, ? 𝑝, ? 𝑦) → 𝑓𝑎𝑙𝑠𝑒 

Code 3. Rule based on maxCardinality restriction to check con-
sistency (#cls-maxc1). 

Below, we elaborate on our practical realization of 

OWL2 RL for arbitrary rule engines. 

2.2. Practical Realization of OWL2 RL  

To implement the OWL2 RL axiomatization for 

general-purpose rule engines, where no particular in-

ternal support can be assumed, three types of rules 

may pose problems: 1) rules that require internal 

datatype support; 2) rules that are always applicable; 

and 3) rules referring to lists of elements. Below, we 

present these issues and our solutions. 

2.2.1. Rules requiring datatype support 

The datatype inference rule #dt-type2 (Code 4) re-

quires literals with data values from a certain value 

space to be typed with the datatype of that value space 

(e.g., typing an integer “42” with xsd:int): 

𝑇(? 𝑙𝑡, 𝑡𝑦𝑝𝑒, ? 𝑑𝑡) 

Code 4. Rule typing each literal with its corresponding datatype 

(#dt-type2). 

Similarly, a second rule (#dt-not-type) flags an in-

consistency when a literal is typed with the wrong 

datatype. Two other datatype rules (#dt-eq and #dt-

diff) indicate equality and inequality of literals based 



on their values; which requires differentiating literals 

from URIs, to avoid these rules to fire for URI re-

sources as well. These four rules require built-in sup-

port for RDF datatypes and literals, meaning they can-

not be consistently implemented across arbitrary rule 

engines. Therefore, we chose to leave these rules out 

of our OWL2 RL ruleset. Related work, including 

DLEJena [40] and the SPIN [33] and OWLIM [9] 

OWL2 RL rulesets also do not include datatype rules. 

2.2.2. Always-applicable rules  

A number of OWL2 RL rules lack an antecedent, 

and are thus always applicable. One subset of these 

rules lack variables (e.g., specifying that owl:Thing 

has type owl:Class), and may thus be directly repre-

sented as axiomatic triples to accompany the OWL2 

RL ruleset. A second subset comprises “quantified” 

variables in the consequent; e.g., stating that each an-

notation property has type owl:AnnotationProperty 

(Code 2). Likewise, these were implemented by axi-

oms that properly type each annotation property (built-

in for OWL2 [24]) and datatype property (supported 

by OWL2 RL [13]). 

2.2.3. Rules referencing element lists 

This set of rules includes so-called n-ary rules, 

which refer to a finite list of elements. A first subset 

(L1) of these rules enumerate (i.e., list one by one) re-

strictions on single list elements (#eq-diff2, #eq-diff3, 

#prp-adp, #cax-adc, #cls-uni). For instance, rule #eq-

diff2 flags an ontology inconsistency if two equivalent 

elements of an owl:AllDifferent construct are found.  

In contrast, rules from the second subset (L2) in-

clude restrictions referring to all list elements (#prp-

spo2, #prp-key, #cls-int1), and a third ruleset (L3) 

yields inferences for all list elements (#cls-int2, #cls-

oo, #scm-int, #scm-uni). E.g., for (L2), rule #cls-int1 

infers that y is an instance of an intersection in case it 

is typed by each intersection member class; regarding 

(L3), for any union, rule #scm-uni (Code 6) infers that 

each member class is a subclass of that union. 

To support rulesets (L1) and (L3), we added two 

list-membership rules (Code 5) that recursively link 

each element to preceding list cells, eventually linking 

the first cell to all list elements: 

𝑇(? 𝑙, 𝑓𝑖𝑟𝑠𝑡, ? 𝑚) → 𝑇(? 𝑙, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚)  a) 

 𝑇(? 𝑙1, 𝑟𝑒𝑠𝑡, ? 𝑙2), 𝑇(? 𝑙2, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚) →
𝑇(? 𝑙1, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑚)  b) 

Code 5. Two rules for inferring list membership. 

Using these rules, #scm-uni (L3) may be formu-

lated as follows (Code 6):  

 

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑙), 𝑇(? 𝑙, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙) 

→ 𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐) 

Code 6. Rule inferring subclasses based on union membership 
(#scm-uni). 

Since the supporting rules (Code 5) link all list ele-

ments to the first list cell (i.e., ?l) using hasMember 

assertions, the rule yields inferences for all union 

member classes. 

However, extra support is required for (L2). For 

these kinds of n-ary rules, we supply three solutions, 

each with their own advantages and drawbacks: 

(1) Instantiate the rules based on n-ary assertions 

found in the ontology. Per OWL2 RL rule, this ap-

proach generates a separate rule for each related n-ary 

assertion, by constructing a list of the found length and 

instantiating variables with concrete schema refer-

ences. E.g., a property chain axiom 𝑃 with constituent 

properties 𝑃1−3 will yield the following rule (Code 7): 

𝑇(? 𝑢1, 𝑃1, ? 𝑢2), 𝑇(? 𝑢2, 𝑃2, ? 𝑢3), 𝑇(? 𝑢3, 𝑃3, ? 𝑢4)
→ 𝑇(? 𝑢1, 𝑃, ? 𝑢4) 

Code 7. Instantiated rule supporting a specific property chain ax-
iom (#prp-spo2). 

Some related works apply this approach (a.k.a. 

“rule-templates”) for any n-ary rule [42], or even all 

(applicable) OWL2 RL rules [5], [40], [41].  

A drawback of this approach is that it requires pre-

processing the ruleset for each ontology, and when-

ever it changes. Although our selections also include 

a pre-processing option (Section 3.2), this is only 

needed for optimization. Of course, the severity of this 

drawback depends on the frequency of ontology up-

dates. Also, it yields an extra rule for each relevant as-

sertion, potentially inflating the ruleset. On the other 

hand, instantiated rules contain less variables, and may 

also reduce the need for joins, as for #prp-spo2 (see 

also [41]). Further, in case no related assertions are 

found, no rules will be added the ruleset. Future work 

includes studying the application of this approach to 

all rules (Section 8). 

(2) Normalize (or “binarize”) the input ontology to 

only contain binary versions of relevant n-ary asser-

tions. E.g., an n-ary intersection can be converted to a 

set of binary intersections as follows (Code 8): 

𝐼 = 𝐶1 ∩ 𝐶2 ∩ … ∩ 𝐶𝑛 ≡  
𝐼 = 𝐶1 ∩ 𝐼2 ∧ 𝐼2 = 𝐶2 ∩ 𝐼3 ∧  … ∧  𝐼𝑛−1 = 𝐶𝑛−1 ∩ 𝐶𝑛 

Code 8. Binary version of an n-ary intersection.  

With the binary version of #cls-int1 (Code 9): 

𝑇(? 𝑐, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑓, ? 𝑥1), 𝑇(? 𝑥1, 𝑓𝑖𝑟𝑠𝑡, ? 𝑐1), 𝑇(? 𝑥1, 𝑟𝑒𝑠𝑡, ? 𝑥2), 
𝑇(? 𝑥2, 𝑓𝑖𝑟𝑠𝑡, ? 𝑐2), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐1), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐2) 

→ ? 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐) 

Code 9. Binary version of rule #cls-int1. 



This rule may be considered recursive, since it both 

references and infers the same kind of assertion (i.e., 

𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)). Applying this rule on a set of binary 

assertions 𝐼, 𝐼2, … , 𝐼𝑛−1 (see Code 8) yields the follow-

ing for any resource R, with 𝑅𝑡 representing its set of 

all types (Code 10): 

{

{𝐶𝑛−1, 𝐶𝑛} ⊂ 𝑅𝑡  → 𝑅𝑡 =  R𝑡 + 𝐼𝑛−1                              
{𝐶𝑖−1, 𝐼𝑖} ⊂ 𝑅𝑡   → 𝑅𝑡 = 𝑅𝑡 + 𝐼𝑖−1   (𝒏 − 𝟏 ≥ 𝒊 ≥ 𝟏)
{𝐶1, 𝐼2} ⊂ 𝑅𝑡  → 𝑅𝑡 = 𝑅𝑡 + 𝐼                                           

 

Code 10. Inferences when applying binary #cls-int1. 

In doing so, the rule travels up the chain of binary 

intersections, until it finally infers type I for R. 

It is not hard to see how this approach only works 

for recursive rules. Rule #prp-key is not a recursive 

rule, since it infers equivalence between resources but 

does not refer to such relations. So, this approach only 

works for rules #prp-spo2 and #cls-int1 from (L2). 

Another drawback is that, similar to (1), it requires 

pre-processing for each ontology and its updates. In 

particular, each relevant n-ary assertion needs to be re-

placed by 𝑛 − 1 binarized versions. Further, to support 

a complete, single n-ary inference, this solution gener-

ates a total of 𝑛 − 1 inferences. While these are sound 

inferences, they may be considered to “crowd” (i.e., 

expand) the dataset. 

(3) Replace each rule from (L2) by 3 auxiliary rules. 

Bishop et al. [9] suggested this solution for OWLIM, 

based on a W3C note [46]. In this solution, a first aux-

iliary rule starts at the end of any list, and infers an 

intermediary assertion for the last element (cell n). 

Starting from the first inference, a second rule travels 

up the list structure by inferring the same kind of as-

sertions for cells 𝑖 (𝑛 > 𝑖 ≥ 0). In case the first cell is 

related to a relevant n-ary assertion (e.g., intersection, 

property chain or has-key), a third auxiliary rule gen-

erates the original, n-ary inference. See Bishop et al. 

[9] or our online documentation [56] for details. 

A distinct advantage of this approach is that, in con-

trast to (1) and (2), it does not rely on pre-processing. 

However, each complete, single n-ary inference re-

quires a total of n+1 inferences, and these do not fol-

low from OWL2 RL semantics (instead, they ensue 

from custom, auxiliary rules). As such, they can be 

considered to not only “crowd” but also “pollute” the 

dataset with unsound inferences. Bishop et al. [9] in-

ternally flag these inferences so they are skipped in 

query answering. Developers may want to support a 

similar mechanism when adopting this solution. 

Based on all observations from Section 2, we col-

lected an OWL2 RL ruleset implementation written in 

the SPARQL Inferencing Notation (SPIN), based on 

an initial ruleset created by Knublauch [33]. This ini-

tial ruleset relies on built-in Apache Jena functions to 

implement the rules from Section 2.2.3. Such built-in 

support cannot be assumed for arbitrary rule engines, 

which are targeted by our ruleset. Also, it does not 

specify axioms (Section 2.2.2). Our ruleset contains 

69 rules and 13 supporting axioms, and can be found 

in Appendix A. This ruleset includes the two list-

membership rules (Code 5) for n-ary rules from sets 

(L1) and (L3) (Section 2.2.3). To add support for a 

particular solution for (L2), our Web service needs to 

be contacted (Section 4.3) to pre-process the necessary 

rules or ontology, and/or add the rules (e.g., binary 

versions, auxiliary rules) to the ruleset. Note that our 

evaluation does not compare the performance of these 

n-ary rule solutions; this is considered future work. 

In Section 3.4, we discuss options for checking con-

formance with OWL2 RL semantics. 

3. OWL2 RL Optimization 

This section discusses OWL2 RL ruleset selections, 

with the goal of optimizing ontology-based reasoning 

on mobile platforms. We consider three selections: 

leaving out redundant rules (Section 3.1), dividing the 

ruleset based on rule purpose and references (Section 

3.2), and removing inefficient rules (Section 3.3). 

For the purpose of these selections, we introduce 

the terms owl2rl-schema-completeness and owl2rl-in-

stance-completeness, to indicate when a selection re-

spectively derives all schema inferences and instance 

inferences covered by the OWL2 RL axiomatization. 

Although OWL2 RL reasoning infers all ABox infer-

ences over OWL2 RL-compliant ontologies, it does 

not cover all TBox inferences dictated by the OWL 2 

semantics [37], [41], hence our introduction of these 

specialized terms. Further, we discuss conformance 

with the OWL2 RL W3C specification (Section 3.4). 

3.1. Equivalent OWL2 RL subset 

As mentioned by the OWL2 RL specification [13], 

the presented ruleset is not minimal, as certain rules 

are implied by others. The stated goal of this redun-

dancy is to make the semantic consequences of OWL2 

constructs self-contained. Although this is appropriate 

from a conceptual standpoint, this redundancy is not 

useful when aiming to optimize reasoning.  

Aside from rules that are entailed by other rules 

(Section 3.1.1), opportunities also exist to leave out 

specialized rules by introducing extra axioms (Section 



3.1.2) or replacement by generalized rules (Section 

3.1.3). Some inference rules may also be considered 

redundant at the instance level, since they do not con-

tribute to inferring instances (Section 3.1.4).  

3.1.1. Entailments between OWL2 RL rules 

A first set of rules is entailed by #cax-sco (see Code 

1), each time combined with a second inference rule. 

For instance, #scm-uni (see Code 6) indicates that each 

class in a union is a subclass of that union. Together, 

these two rules entail the #cls-uni rule (Code 11). This 

rule infers that each instance of a union member is an 

instance of the union itself: 

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑥), 𝑇(? 𝑥, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙), 
𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐𝑙) → 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐) 

Code 11. Rule that infers membership to OWL unions  
(#cls-uni). 

Code 12 shows that the rule #cls-uni, for each in-

stantiation of the input variables, is covered by #scm-

uni + #cax-sco: 

𝑇(? 𝑐, 𝑢𝑛𝑖𝑜𝑛𝑂𝑓, ? 𝑥), 𝑇(? 𝑥, ℎ𝑎𝑠𝑀𝑒𝑚𝑏𝑒𝑟, ? 𝑐𝑙) →
𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐)  a) 

𝑇(? 𝑐𝑙, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐), 𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐𝑙) →
𝑇(? 𝑦, 𝑡𝑦𝑝𝑒, ? 𝑐)  b) 

Code 12. Entailment of #cls-uni by #scm-uni,#cax-sco. 

Applying #scm-uni on two premises from #cls-uni 

returns inference (a). Then, #cax-sco is applied on the 

remaining premise, together with (a). This yields the 

inference in (b), which equals the #cls-uni consequent. 

As such, this rule may be left out without losing ex-

pressivity. Similarly, it can be shown that rules #cls-

int2, #cax-eqc1 and #cax-eqc2 are entailed by #cax-

sco, each time combined with a schema-based rule.  

A second set of inference rules is entailed by the 

#prp-spo1 rule, each time combined with rules indi-

cating equivalence between owl:equiva-

lent[Class|Property] and rdfs:sub[Class|Property]Of. 

Similar to #cax-sco, #prp-spo1 (Code 13) infers that 

resources related via a sub property are also related via 

its super property:  

𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦) → 𝑇(? 𝑥, ? 𝑝2, ? 𝑦) 

Code 13. Rule that infers new resource relations (#prp-spo1). 

E.g., the #scm-eqp1 (Code 14) rule indicates that 

two equivalent properties are also sub properties: 

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2) 
→ 𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑝2, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝1) 

Code 14. Rule inferring sub properties (#scm-eqp1). 

These two rules collectively entail the rule #prp-

eqp1 (Code 15). This rule infers that, for two equiva-

lent properties, any resources related via the first prop-

erty are also related via the second property: 

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦)
→ 𝑇(? 𝑥, ? 𝑝2, ? 𝑦) 

Code 15. Rule for property membership (#prp-eqp1). 

This entailment is shown by Code 16: 

𝑇(? 𝑝1, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, ? 𝑝2) →
𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2)  a) 

𝑇(? 𝑝1, 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, ? 𝑝2), 𝑇(? 𝑥, ? 𝑝1, ? 𝑦) →
𝑇(? 𝑥, ? 𝑝2, ? 𝑦)  b) 

Code 16. Entailment of #prp-eqp1 by #scm-eqp1,#prp-spo1. 

By applying #scm-eqp1 on the first premise from 

#prp-eqp1, the inference from (a) is returned. Apply-

ing #prp-spo1 on this inference and the remaining 

premise yields (b), which equals the #prp-eqp1 conse-

quent. Therefore, this rule may be left out. Rule #prp-

eqp2 is similarly equivalent to these two rules as well.  

Other rules are covered by single rule. The #eq-

trans rule (Code 17) indicates the transitivity of 

owl:sameAs: 

𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦), 𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧) → 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧) 

Code 17. Rule indicating transitivity of owl:sameAs  
(#eq-trans). 

This rule is entailed by #eq-rep-o (Code 18), which 

indicates that, for any triple, subject resources are re-

lated to any resource equivalent to the object: 

𝑇(? 𝑜, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑜2), 𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝, ? 𝑜2) 

Code 18. Rule inferring new relations via owl:sameAs  
(#eq-rep-o). 

By partially materializing the premise of #eq-rep-o, 

Code 19 shows how this rule entails #eq-trans: 

𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧), 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦) 

→ 𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑧) 

Code 19. Entailment of #eq-trans by #eq-rep-o. 

When executing the #eq-rep-o rule on suitable data, 

the ?p variable is instantiated with owl:sameAs, thus 

covering each possible inference of #eq-trans. 

Finally, we note that some rules could potentially 

be removed, depending on type assertions found in the 

dataset. Rules #cls-maxqc4 & #cls-svf2 support re-

strictions that apply to owl:Thing, and thus do not re-

quire objects to be typed with the restriction class 

(since each resource is implicitly already an 

owl:Thing). Related rules #cls-maxqc3 & #cls-svf2 

support restrictions that apply to a particular class, and 

thus require related objects to be typed with the re-

striction class. Since owl:Thing is the supertype of 

each class (#scm-cls rule), and each instance is typed 

by its class’s supertype (#cax-sco rule, Code 1), any 

instance will be typed as owl:Thing. Therefore, exe-

cuting the second set of rules on restrictions relating to 

owl:Thing could produce the same inferences. How-

ever, #cax-sco requires each instance to be explicitly 



typed, which often is not the case in practice. There-

fore, we opted to leave these rules in the ruleset. 

We note that our online documentation [56] dis-

cusses all rule equivalences in detail. In total, this se-

lection involved leaving out 7 redundant rules. 

3.1.2. Extra supporting axiomatic triples  

In other cases, extra axiomatic triples can be intro-

duced to allow for entailment by existing rules. For in-

stance, the rule #eq-sym (Code 20) explicitly encodes 

the symmetry of the owl:sameAs property: 

𝑇(? 𝑥, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑦) → 𝑇(? 𝑦, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑥) 

Code 20. Rule indicating owl:sameAs symmetry (#eq-sym). 

By adding an axiom stating that owl:sameAs has 

type owl:SymmetricProperty, Code 21 shows that any 

inferences generated by the #eq-sym rule are covered 

by the #prp-symp rule: 

𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦), 𝑇(? 𝑥, ? 𝑝, ? 𝑦) 
→ 𝑇(? 𝑦, ? 𝑝, ? 𝑥) 

 𝑇(𝑠𝑎𝑚𝑒𝐴𝑠, 𝑡𝑦𝑝𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

Code 21. Rule implementing property symmetry (#prp-symp) and 

supporting axiom. 

Similarly, #prp-inv2 is entailed by #prp-symp with 

an extra axiom, together with the #prp-inv1 rule. 

Rules #scm-spo and #scm-sco, implementing the 

transitivity of rdfs:subPropertyOf and rdfs:subClas-

sOf, respectively, are entailed by #prp-trp with sup-

porting axioms (Code 22): 

𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦), 𝑇(? 𝑥, ? 𝑝, ? 𝑦), 
𝑇(? 𝑦, ? 𝑝, ? 𝑧) → 𝑇(? 𝑥, ? 𝑝, ? 𝑧) 

 𝑇(𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

   𝑇(𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, 𝑡𝑦𝑝𝑒, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 
Code 22. Rule implementing transitivity (#prp-trp) and supporting 

axioms. 

In doing so, 4 rules can be left out, at the expense 

of adding 4 new supporting axioms. 

3.1.3. New generalized OWL2 RL rules 

Opportunities also exist to generalize multiple rules 

into a single rule, combined with supporting axioms. 

We observe that rules #eq-rep-p (Code 23) and #prp-

spo1 (see Code 13) are structurally very similar:  

𝑇(? 𝑝, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑝2), 𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝2, ? 𝑜) 
Code 23. Rule inferring new relations via owl:sameAs  

(#eq-rep-p). 

Therefore, both rules can be generalized into a sin-

gle rule, with accompanying axioms (Code 24): 

𝑇(? 𝑝1, ? 𝑝, ? 𝑝2), 𝑇(? 𝑝, 𝑡𝑦𝑝𝑒, 𝑆𝑢𝑏𝐿𝑖𝑛𝑘), 
𝑇(? 𝑠, ? 𝑝1, ? 𝑜) → 𝑇(? 𝑠, ? 𝑝2, ? 𝑜) 

            𝑠𝑎𝑚𝑒𝐴𝑠  𝑡𝑦𝑝𝑒  𝑆𝑢𝑏𝐿𝑖𝑛𝑘 . 
           𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑓  𝑡𝑦𝑝𝑒  𝑆𝑢𝑏𝐿𝑖𝑛𝑘 .  

Code 24. Rule covering #eq-rep-p and #prp-spo1 (#prp-sl) and 
supporting axioms. 

In fact, several rules are structurally very similar, 

and may be pairwise generalized into a single rule with 

supporting axioms: rules #scm-hv and #scm-svf2; 

#scm-avf1 and #scm-svf1; #eq-diff2 and #eq-diff3; 

#prp-npa1 and #prp-npa2; and #cls-com and #cax-dw 

(see [56] for details). In doing so, we left out 12 spe-

cialized rules, at the expense of adding 6 new general 

rules and 12 supporting axioms. After applying these 

selections, 52 rules remain and 16 axioms are added.  

We note that these selections represent a best-effort 

in creating a minimal OWL2 RL-conformant rule sub-

set, and do not necessarily optimize the ruleset for all 

types of systems. Although the total number of rules 

is reduced, specific rules are also being removed or re-

placed by more general rules; which could negatively 

impact performance. Our evaluation (Section 6) com-

pares the effects of each subset selection.  

3.1.4. Equivalence with instance-based rules 

So-called “stand-alone” schema inferences, which 

extend the ontology but do not impact the set of in-

stances, may also be considered redundant (at least, at 

the instance level).  E.g., #scm-dom1 (Code 25) infers 

that properties also have as domain the super types of 

their domains: 

𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐1), 𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2) 

→ 𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐2) 

Code 25. Rule inferring super class domains (#scm-dom1). 

Although this information may be a useful addition 

to the ontology, the new schema element will not re-

sult in new instance inferences. Code 26 shows that its 

resulting instance inferences are already covered by 

rules #prp-dom (a) and #cax-sco (b): 

 𝑇(? 𝑠, ? 𝑝, ? 𝑜), 𝑇(? 𝑝, 𝑑𝑜𝑚𝑎𝑖𝑛, ? 𝑐1) → 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐1) a)

 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐1), 𝑇(? 𝑐1, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, ? 𝑐2) 

→ 𝑇(? 𝑠, 𝑡𝑦𝑝𝑒, ? 𝑐2)        b) 

Code 26. Two rules yielding same instance inferences as #scm-

dom1. 

Thus, any variable ?s will already be typed with su-

per classes of the property’s domain, regardless of the 

inferences generated by #scm-dom1. Similarly, rules 

#scm-rng1, #scm-dom2 and #scm-rng2 will not yield 

any new instances. By leaving out these 4 rules, this 

selection retains owl2rl-instance-completeness but 

clearly breaks owl2rl-schema-completeness. 

3.2. Purpose- and reference-based subsets 

Seeing how many (e.g., context-aware [41]) scenar-

ios only involve adding or updating ABox (instance) 



statements at runtime, an option is to restrict TBox rea-

soning to design / startup time and whenever the on-

tology changes; and apply ABox reasoning when new 

instances are added. Reflecting this, most OWL2 RL 

reasoners focus on separating TBox from ABox rea-

soning [5], [17], [25], [40], [41]. Further, when data is 

generated by the system, it has a smaller likelihood of 

being inconsistent, thus reducing (or even removing) 

the need for continuous consistency checking. 

Consequently, we divided our OWL2 RL ruleset 

into 2 major subsets; 1) inference ruleset, comprising 

inference rules (53 rules), and 2) consistency-checking 

ruleset, containing rules for checking consistency (18 

rules1). The inference ruleset is further subdivided into 

1.1) instance ruleset, consisting of rules inferring only 

instance assertions, while referring to both instance 

and schema elements (32 rules); and 1.2) schema 

ruleset, comprising rules only referencing schema el-

ements (23 rules1). Since the consistency-checking 

ruleset only contains rules referring to both instance 

and schema elements, it cannot be further subdivided. 

In this approach, inference-schema is applied on the 

ontology, initially and whenever the ontology changes, 

to materialize all schema inferences. When new in-

stances are added, only inference-instance is applied 

on the instance assertions and materialized ontology. 

Below, we show that this process still produces a com-

plete materialization.  

Definition 1. We define 𝑆 as the set of all schema 

assertions (i.e., TBox) and 𝐼 the set of all instance as-

sertions (i.e., ABox) with 𝑆 ∩ 𝐼 = ∅, and 𝐴 = 𝑆 ∪ 𝐼 

the set of all assertions. We further define schema 

ruleset 𝛼 and instance ruleset 𝛽 as follows, with 𝐼𝑅 =
𝛼 ∪ 𝛽 the set of all inference rules: 

 

𝛼 = { 𝑟 ∈ 𝐼𝑅 | ∀𝑐 ∈ 𝑏𝑜𝑑𝑦(𝑟),   

∀𝑎 ∈ 𝐴 ∶ 𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑐) → 𝑎 ∈ 𝑆 } 

𝛽 = { 𝑟 ∈ 𝐼𝑅 | ∀𝑖 ∈ 𝑖𝑛𝑓𝑒𝑟(𝑟, 𝐴): 𝑖 ∈ 𝐼 }            (1) 

 

Where 𝑏𝑜𝑑𝑦(𝑟) returns all clauses in the body of 

rule 𝑟, 𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑐) returns true if assertion 𝑎 matches 

a body clause 𝑐, and 𝑖𝑛𝑓𝑒𝑟(𝑟, 𝐴) returns all inferences 

yielded by rule 𝑟 on the set of assertions 𝐴. In other 

words, ruleset 𝛼 includes rules for which each body 

clause is only matched by assertions from 𝑆 , and 

ruleset 𝛽 includes rules that only infer assertions from 

𝐼. These conditions can be easily confirmed for our 

OWL2 RL rulesets [56].  𝑘∗(𝑋) denotes the deductive 

                                                           
1 These rule subsets both include the two membership rules 

(Section 2.2.3), making them cumulatively larger. 

closure of ruleset 𝑘 on assertions 𝑋 (i.e., returning 𝑋 

extended with any resulting inferences). 

Theorem 1. The deductive closure of 𝐼𝑅 on the un-

ion of any ontology 𝑂 (𝑂 ⊆ 𝑆) and dataset 𝐷 (𝐷 ⊆ 𝐼) 

is equivalent to the deductive closure of 𝛽 on the un-

ion of materialized ontology 𝛼∗(𝑂)  (i.e., including 

schema inferences) together with set of instances D: 

 

(𝛼 ∪ 𝛽)∗(𝑂 ∪ 𝐷) ≡ 𝛽∗(𝛼∗(𝑂) ∪ 𝐷)            (2) 

 

It is easy to see why this equivalence holds. Com-

pared to the left operand, the set of assertions on which 

ruleset 𝛼 is applied no longer includes inferences from 

ruleset 𝛽 (since its deductive closure is now calculated 

separately), nor assertions from D. This does not affect 

the deductive closure of 𝛼, since 𝛼 only matches as-

sertions from 𝑆 with 𝑆 ∩ 𝐼 = ∅, and 𝛽 only infers 𝑖 ∈
𝐼 (see Definition 1), whereas 𝐷 ⊆ 𝐼. ∎  

As indicated by our evaluation (Section 6), execut-

ing only the inference-instance ruleset has the poten-

tial to significantly improve performance. At the same 

time, the utility of separating these subsets depends on 

the frequency of ontology updates, since each update 

requires re-materializing the ontology. Although on-

tology changes are typically infrequent compared to 

instance data, this depends on the concrete scenario. 

Also, we note that related work often uses a separate 

OWL reasoner for materializing schema inferences [5], 

[17], [40]. Although this is a viable approach, we ar-

gue that this is not optimal for mobile platforms, as it 

requires deploying two resource-heavy components 

(i.e., an OWL reasoner and rule engine). 

In the same vein, the consistency-checking ruleset 

needs to be applied on a dataset with all applicable in-

ferences materialized, by a priori applying the infer-

ence ruleset. It can be similarly shown that applying 

only consistency-checking on such a dataset will not 

result in losing any consistency errors.   

Finally, rules and axioms that are not referenced by 

the ontology may be left out as well, yielding a do-

main-based rule subset. For this purpose, we imple-

mented a domain-based ruleset selection algorithm, 

which we elaborate in Section 4.2. Similar to before, 

its applicability depends on the frequency (and signif-

icance) of ontology updates; since this requires re-cal-

culating the ruleset.  



3.3. Removal of inefficient rules  

Rule #eq-ref (Code 27) which infers that each re-

source is equivalent to itself, greatly bloats the dataset: 

𝑇(? 𝑠, ? 𝑝, ? 𝑜) → 𝑇(? 𝑠, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑠),  
𝑇(? 𝑝, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑝), 𝑇(? 𝑜, 𝑠𝑎𝑚𝑒𝐴𝑠, ? 𝑜) 

Code 27. Rule inferring that each unique resource is equivalent to 

itself (#eq-ref). 

For each unique resource, this rule creates a new 

statement indicating the resource’s equivalence to it-

self. Consequently, 3 new triples are generated for 

each triple with unique resources, resulting in a worst-

case 4x increase in dataset size (!). One could argue 

that there is limited practical use in materializing these 

statements; and it is unlikely that their absence will af-

fect other inferences (there is one specific case where 

this may happen; see [30]). If needed, the rule engine 

could also be adapted to support them virtually. As a 

result, developers should at least be allowed to weigh 

the utility of this rule versus its computational cost. 

We note that some production-strength OWL reason-

ers, such as SwiftOWLIM, have configuration options 

available to disable such rules as well [27]. 

After applying all selections cumulatively (aside 

from purpose- and reference-based subsets), this 

leaves a ruleset of 51 rules; 18 rules less than the orig-

inal ruleset. Our evaluation (Section 6) studies the per-

formance of separately and cumulatively applying 

these selections. 

3.4. Conformance testing 

To check the conformance of our original OWL2 

RL ruleset and its subset selections (Sections 3.1 – 3.3), 

standard OWL2 RL conformance tests should be ap-

plied. However, many test cases listed on the W3C 

OWL2 Web Ontology Language Conformance page 

for the OWL2 RL profile [52] are not actually covered 

by OWL2 RL (as confirmed by one of its major con-

tributors on the W3C mailing list [77]). Therefore, we 

used the OWL2 RL conformance test suite presented 

by Schneider et al. [48]. We note that some of these 

tests had to be left out, either due to the limitations of 

the original OWL2 RL ruleset (Section 2.2; e.g., lack 

of datatype support), or due to difficulties testing con-

formance. We detail these cases in our online docu-

mentation [56]. 

The original OWL2 RL ruleset (Section 2.2), as 

well as its equivalent, conformant subsets (Sections 

3.1.1 – 3.1.3), pass this conformance test suite. Re-

garding purpose- and reference-based subsets (Section 

3.2), the final result of sequentially applying the infer-

ence-schema rules, inference-instance rules and con-

sistency-checking rules also passes the conformance 

tests. As expected, the selections presented in Section 

3.1.4 (Equivalence with instance-based rules) and 

Section 3.3 (Removal of inefficient rules) break con-

formance with the test suite; but we note that the for-

mer only loses owl2rl-schema-completeness.  

Finally, we note that conformance of the domain-

based ruleset selection (Section 3.2) cannot be 

checked using this test suite, since this subset only in-

cludes rules specific to the domain ontology (while the 

test suite checks all OWL2 RL rules). Instead, con-

formance of this rule subset was tested by collecting 

the inferences of the full ruleset (when applied on our 

evaluation ontologies; Section 6), and comparing them 

to the output of the domain-based rule subset. 

4. Mobile Benchmark Framework 

Fig. 1 shows the architecture overview of the Mo-

biBench framework. For portability across platforms, 

this framework was implemented in JavaScript (JS), 

and deployed using Apache Cordova [67] (as well as 

JDK8 Nashorn [73]), which allows native, platform-

specific parts to be plugged in. From a developer point 

of view, this also allows MobiBench to easily bench-

mark JavaScript reasoners, usable in mobile websites 

or cross-platform, JavaScript-based mobile apps (e.g., 

using Apache Cordova,  Appcelerator Titanium [69]) 

with a write-once, deploy-everywhere philosophy, i.e., 

without requiring porting or transcompiling. 

The core of the framework, the Benchmark En-

gine, runs benchmarks to study and compare reason-

ing performance on mobile platforms. The API sup-

plies third parties with direct access to the MobiBench 

functionality, whereas the Automation Support is 

built on top of the API, and allows automating large 

numbers of benchmarks. This solution comprises two 

components: 1) an external Automation Client, which 

generates a (large) set of benchmark configurations 

based on an automation configuration, and sends them 

over HTTP to 2) the Automation Web Service, de-

ployed on the mobile device, which invokes the API 

for each configuration and sends back the results. 

Since this avoids re-deploying the (rather large) Mo-

biBench system each time on the mobile device (i.e., 

with new hard-coded configuration options), this setup 

greatly facilitates automated benchmarking. Further, it 

allows benchmarks to be run even when the developer 

has no physical access to the device. The Analysis 



Tools aggregate benchmark results, including reason-

ing times and memory dumps, into CSV files.   

A RESTful Web Service, deployed on a server (e.g., 

the developer’s PC), comprises the Semantic Web 

layer, which supplies a uniform, standards-based in-

terface across reasoning engines, by applying custom 

converters to translate standards-based rules and data; 

the Selection Service, which selects specific subsets 

of the OWL2 RL rule- and axiom set (Section 3.2), 

including domain-specific selection based on an input 

ontology; and the Pre-processing Service, to pre-pro-

cess a ruleset and ontology, possibly based on the par-

ticular ontology (e.g., to support certain n-ary rules; 

Section 2.2.3). The Web service also includes some 

utility services to persist benchmark output (Persis-

tence Support); by logging messages persistently 

(Logging) and storing arbitrary files (e.g., perfor-

mance results, reasoning output; File Storage) on the 

server (e.g., the developer’s PC). 

To run a single benchmark, the API passes a con-

figuration object to the Benchmark Engine, which 

(among others) specifies the reasoning engine, reason-

ing task, process flow and resources (i.e., rule- and da-

tasets) to be benchmarked. A Local Proxy component 

acts as an intermediary between the mobile system and 

the external Web service.  

The Benchmark Engine can perform different rea-

soning tasks (Section 4.4.2), using different process 

flows (Section 4.4.3), to better align benchmarks with 

existing, real-world applications. To implement the 

uniform engine interface, each mobile engine requires 

a plugin, translating the method invocations to the un-

derlying system. Plugins for native mobile engines in-

clude both a JavaScript and native part; where bi-di-

rectional communication occurs with the native code 

over the Cordova bridge. 

Although MobiBench is a cross-platform frame-

work, we currently rely on Android as the mobile de-

ployment platform, since most reasoners are either de-

veloped for Android or written in Java (which facili-

tates porting to Android). However, using Apache 

Cordova, the framework could be easily deployed on 

 
Fig. 1. MobiBench Framework Architecture. 

 

 

 



other mobile platforms as well. The MobiBench 

framework can be found online [56]. 

In the subsections below, we elaborate on the Mo-

biBench main components, namely the Semantic Web 

layer (Section 4.1), Selection Service (Section 4.2), 

Pre-processing Service (Section 4.3) and Benchmark 

Engine (Section 4.4); and indicate extension points for 

each component. Section 5 shows how developers can 

utilize the benchmark framework. 

4.1. Uniform Semantic Web Layer 

A range of semantic rule standards are currently be-

ing used, including the Semantic Web Rule Language 

(SWRL) [26], Web Rule Language (WRL) [3], Rule 

Markup/Modeling Language (RuleML) [12], and the 

SPARQL Inferencing Notation (SPIN) [35]. Some 

reasoning engines also introduce their own custom 

rule formats (e.g., Apache Jena, RDFQuery) or rely on 

non-Semantic Web syntaxes (e.g., Datalog: IRIS, 

PocketKRHyper). When benchmarking multiple sys-

tems, this multitude of formats prevents direct re-use 

of a single rule- and dataset. To cope with this, Mo-

biBench supplies a uniform, standards-based resource 

interface, which supports SPIN and RDF as input rules 

and data, and dynamically translates the input to for-

mats supported by the engines. This way, developers 

can re-use a single SPIN ruleset and RDF dataset 

across different engines. 

Since the only available SPIN API is developed for 

the Java Development Kit (JDK) [34], the required 

conversion functions are deployed on an external Web 

service. To convert incoming SPIN rules, the SPIN 

API is utilized to generate an Abstract Syntax Tree 

(AST), which is then visited by a Rule Converter to 

convert the rule. To convert incoming RDF data, a 

Data Converter can utilize Apache Jena [4] to query 

and manipulate the data. The Local Proxy supplies lo-

cal functions for remote resource conversion. 

Below, we shortly discuss SPIN and our rationale 

for its choice as the input rule format (Section 4.4.1). 

Afterwards, we discuss our current converters, and 

how new converters can be developed and plugged 

into the Web service (Section 4.1.2). 

4.1.1. SPIN 

SPIN is a SPARQL-based rule- and constraint lan-

guage, which provides a natural, object-oriented way 

of dealing with constraints and rules associated with 

RDF(S)/OWL classes. In the object-oriented design 

paradigm, classes define the structure of objects (i.e., 

attributes) together with their behavior, which in-

cludes creating/changing objects (rules) and ensuring 

a consistent object state (constraints). Similarly, SPIN 

allows directly associating locally-scoped rules and 

constraints to their related RDF(S)/OWL classes, us-

ing properties such as spin:rule and spin:constraint.  

To serialize rules and constraints, SPIN relies on 

SPARQL [21], a W3C standard with sufficient expres-

sivity to represent both queries and general-purpose 

rules and constraints. SPARQL is supported by most 

Semantic Web systems, and is well known by Seman-

tic Web developers. As such, this rule format is more 

likely to be easily comprehensible to developers. Fur-

ther, relying on SPIN also simplifies support for our 

current rule engines (see below). 

4.1.2. Rule and Data Conversion 

Regarding rule-based reasoners, our choice for 

SPIN greatly reduces conversion effort for systems 

with built-in SPARQL support. RDFStore-JS sup-

ports INSERT queries from SPARQL 1.1/Update [21], 

which are easy to obtain from SPIN rules in their 

SPARQL query syntax. Both AndroJena and 

RDFQuery support a triple-pattern like syntax, which 

likewise makes conversion from SPIN straightforward. 

Other rule engines lack built-in Semantic Web support, 

and require more significant conversion effort. Two 

systems, namely PocketKrHyper and IRIS, accept 

Datalog rules and facts in a Prolog-style input syntax. 

For these cases, we utilize the same first-order repre-

sentation as in the W3C OWL2 RL specification [13], 

namely T(?s,?p,?o) (since predicates may also be var-

iables, a representation such as predicate(subject, ob-

ject) is not an option in non-HiLog). 

Currently, our converters support SPIN functions 

that represent primitive comparators (greater, equal, 

etc.) and logical connectors in FILTER clauses. Ad-

vanced SPARQL query constructs, such as (not-)ex-

ists, optional, minus and union, are not yet supported, 

since converting them to all rule engine formats is 

challenging. Also, we have not required these con-

structs until now (i.e., not for the OWL2 RL ruleset, 

nor the clinical ruleset used in [59]). None of the OWL 

reasoners (Section 4.4.1) required (data) conversion, 

since they can consume serialization of OWL in RDF 

out of the box.  

Extensibility To plug in a new resource format, de-

velopers create a new converter class implementing 

the uniform converter interface. The class is then 

added to a configuration file (spin2s.txt / rdf2s.txt), 

used by the Web service to dynamically load converter 

class definitions at startup. Each converter identifies 



its own format via a unique ID, allowing to match in-

coming conversion requests to the correct converter. 

4.2. Selection Service 

Due to its rule-based axiomatization, the OWL2 RL 

profile greatly facilitates applying subsets of axioms. 

In Section 3, we discuss multiple selection criteria, 

such as logical equivalence with other rules, and sub-

sets based on purpose and reference. The Selection 

Service automatically performs these kinds of selec-

tions on the OWL2 RL rule- and axiom set, given one 

or more selection criteria. As before, since the only 

available API for SPIN (i.e., the input rule format) is 

developed for Java [34], this component is deployed 

on the Web service. 

The Default Selection function selects an OWL2 

RL subset, given a list of selection criteria indicating 

rules and axioms to leave out, replace or add. The Do-

main-based Selection function selects a minimal 

OWL2 RL rule subset, leaving out rules that are not 

relevant to a given ontology (i.e., not yielding any in-

ferences). In doing so, we may greatly reduce the 

ruleset without losing expressivity.  

We note that determining this domain-based ruleset 

manually is cumbersome and error-prone. One cannot 

just check whether referenced constructs are present; 

e.g., the ontology may contain owl:subClassOf con-

structs, but the premise of #scm-eqc2 requires two 

classes to be subclasses of each other, which is less 

likely. Furthermore, some rules may be indirectly trig-

gered by other rules, which means that only checking 

inferences per rule is insufficient as well. Tai et al. [53] 

describe a “selective rule loading” algorithm to deter-

mine this ruleset. As a type of “naïve” forward-chain-

ing algorithm, it executes each rule sequentially on the 

initial dataset, adding resulting inferences. In case a 

rule yields results, it is added to the “selective ruleset” 

𝑅𝑜
−. This process continues until no more inferences 

are generated. We implemented this algorithm in the 

Domain-based Selection function.  

Clearly, this process should be executed each time 

the ontology schema is updated, but also when certain 

instances, constituting new data patterns, are added 

(e.g., reciprocal owl:subClassOf relations would make 

the #scm-eqc2 rule relevant). Therefore, its suitability 

depends on the frequency and significance of such up-

dates; i.e., whether the ontology structure is relatively 

“stable” or “volatile”. By deploying this service di-

rectly on the mobile device, and even integrating it 

with the reasoner, these drawbacks could be mitigated 

(see future work).  

Extensibility Supporting a new selection criterium 

depends on its requirements. In case an a priori analy-

sis of the ontology is required, developers need to cre-

ate a new subclass of the DomainBasedSelection class. 

Else, the developer simply adds a new subfolder under 

the owl2rl/ folder in MobiBench, which keeps a list of 

rules and axioms to be removed, replaced or added. 

4.3. Pre-processing Service 

To support certain n-ary OWL2 RL rules, some so-

lutions require pre-processing the ruleset and target 

ontology. The Pre-processing Service supports 3 solu-

tions for n-ary rules from (L2) (see Section 2.2.3): (1) 

instantiate the rules, based on schema assertions 

found in the ontology; (2) normalize (or “binarize”) 

the input ontology, to only contain binary versions of 

the n-ary assertions, and apply binary versions of the 

rules; and (3) replace each rule by 3 auxiliary rules.  

When applying solutions (1) and (2), pre-pro-

cessing needs to occur initially and each time the on-

tology is updated. Solution (3) has its own drawbacks; 

for each “complete” inference for an n-ary assertion 

(size n), it infers n+1 intermediary inferences that do 

not follow from OWL2 RL semantics (see Section 

2.2.3). The suitability of these solutions clearly de-

pends on the scenario. As with the Selection Service, 

deploying this service directly on the mobile device 

would alleviate some of these drawbacks (see future 

work). Currently, it is deployed on the Web service, 

since only a Java SPIN API is available. 

Extensibility To support a new pre-processing 

mechanism, the developer creates a new subclass of 

the PreProcessor class. In case the mechanism re-

quires ontology analysis (cfr. solutions (1), (2)), On-

tologyBasedPreProcessor should be subclassed, 

which features utility methods for that purpose. 

4.4. Benchmark Engine 

The Benchmark Engine performs benchmarks of 

reasoning engines, following a particular reasoning 

setup. In doing so, it allows studying and comparing 

reasoning performance on mobile platforms. A rea-

soning setup includes a reasoning task and process 

flow. By supporting different setups, and allowing 

new ones to be plugged in, benchmarks can be better 

aligned to real-world scenarios.  

In Section 4.4.1, we elaborate on the currently sup-

ported reasoning engines. Next, we discuss the availa-

ble reasoning tasks (Section 4.4.2) and process flows 



(Section 4.4.3), as well as the supported measurement 

criteria (Section 4.4.4). 

4.4.1. Reasoning Engines 

Below, we categorize the supported engines accord-

ing to their reasoning support. The engines not indi-

cated as Android systems, excluding the JavaScript 

(JS) engines, were manually ported to Android. In this 

categorization, we consider rule-systems as any sys-

tem that can calculate the deductive closure of a 

ruleset, i.e., execute a ruleset and output resulting in-

ferences (not necessarily limited to this feature). 

Rule-based systems 

AndroJena [66] is an Android-ported version of 

Apache Jena [4]. It supplies a rule-based reasoner, 

which supports both forward and backward chaining, 

respectively based on the RETE algorithm [18] and 

SLG resolution [14].  

RDFQuery [75] is a JavaScript RDF store that per-

forms queries using a RETE network, and implements 

a naïve reasoning algorithm.  

RDFStore-JS [76] is a JavaScript RDF store, sup-

porting SPARQL 1.0 and parts of SPARQL 1.1. We 

extended this system with naïve reasoning, accepting 

rules as SPARQL 1.1 INSERT queries.  

IRIS (Integrated Rule Inference System) [10] is a 

Java Datalog engine meant for Semantic Web applica-

tions. The system relies on bottom-up evaluation com-

bined with Magic Sets [8]. 

PocketKrHyper [50] is a J2ME first-order theorem 

prover based on a hyper tableaux calculus, and is 

meant to support mobile semantic apps. It supplies a 

DL interface that accepts DL expressions and trans-

forms them into first-order logic. 

OWL reasoners 

AndroJena supplies an OWL reasoner, which im-

plements OWL Lite (incompletely) and supports full, 

mini and micro modes that indicate custom expressiv-

ities; and an RDFS reasoner, similarly with full, de-

fault and simple modes. For details, we refer to the 

Jena documentation [68]. 

The ELK reasoner [29] supports the OWL2 EL pro-

file, and performs (incremental) ontology classifica-

tion. Further, Kazakov et al. [28] has demonstrated 

that it can take advantage of multi-core CPUs of mod-

ern mobile devices. 

HermiT [19] is an OWL2 DL reasoner based on a 

novel hypertableaux calculus, and is highly optimized 

for performing ontology classification.  

JFact [71] is a Java port of the FaCT++ reasoner, 

which implements a tableau algorithm and supports 

OWL2 DL expressivity.  

Pellet [51] is a DL reasoner with sound and com-

plete support for OWL2 DL, featuring a tableaux rea-

soner. It also supports incremental classification. 

Our evaluation (Section 6) focuses on 2 rule-based 

systems, namely a native Android system (AndroJena) 

and a JS system (RDFStore-JS). As mentioned, from 

a development perspective, JS engines are especially 

interesting since they can be directly used by cross-

platform, JS-based mobile apps (e.g., using Apache 

Cordova [67]). Further, we benchmarked 3 OWL2 DL 

reasoners, namely HermiT, JFact and Pellet. We note 

that an exhaustive comparison of all systems warrants 

its own paper, and is considered out of scope. 

Extensibility To support a new JS reasoner, the de-

veloper writes a JS plugin object, which implements a 

uniform reasoner interface and specifies the accepted 

rule- and data format, the process subflow (if any) dic-

tated by the engine (Section 4.4.3), and its available 

settings; e.g., reasoning scope (OWL, RDFS). To rule 

out communication, console output, etc. influencing 

measurements, each plugin is responsible for captur-

ing fine-grained result times using our Experi-

mentTimer API. Any required JavaScript libraries, as 

indicated by the plugin, are automatically loaded. De-

velopers register their plugins in an engine.json file. 

For native engines, the developer similarly imple-

ments a native plugin class, and supplies a skeleton JS 

plugin. The system wraps this skeleton plugin with a 

proxy object, which delegates invocations to the na-

tive plugin over the Cordova bridge (see Fig. 1). In 

practice, native (Android) reasoners often have large 

amounts of dependencies, some of which may be con-

flicting (e.g., different versions of the same library). 

To circumvent this issue, we package each engine and 

its dependencies as jar-packaged .dex files, which are 

automatically loaded at runtime. For more details, we 

refer to our online documentation [56]. 

4.4.2. Reasoning Tasks 

Currently, we support three reasoning tasks. Below, 

we shortly summarize each task. Fig. 2 illustrates the 

dependencies between these tasks.  

1) Rule-based materializing inference: this in-

volves computing the deductive closure of a ruleset for 

a dataset, and adding all inferences to the dataset. 

2) OWL2 materializing inference: given an ontol-

ogy, this involves materializing all inferences based 

on an OWL2 expressivity (e.g., OWL2 Full, OWL2 

DL, OWL Lite, or some other reduced expressivity). 



This task can also be performed by rule engines, using 

the rules axiomatizing the OWL2 RL semantics.  Fig. 

2 shows two types of OWL inference: “built-in” in-

ference of any kind (e.g., OWL2 DL, QL, Lite, etc.), 

which only requires an input ontology; and OWL2 RL 

reasoning, which uses a rule engine and accepts both 

an OWL2 RL ruleset and ontology as input.  

Regarding our choice for materializing inferences 

vs. reasoning per query (e.g., via resolution methods 

such as SLG [14]), we note that each have their ad-

vantages and drawbacks on mobile platforms. Prior to 

data access, the former involves an expensive pre-pro-

cessing step that may significantly increase the dataset 

scale, which is problematic on mobile platforms, but 

then leaves query answering purely depending on 

speed of data access. In contrast, the latter incurs a rea-

soning overhead for each query that depends on da-

taset scale and complexity. Another materialization 

drawback is that inferences need to be (re-)computed 

whenever new data becomes available. For instance, 

Motik et al. [41] combine materialization with a novel 

incremental reasoning algorithm, to efficiently update 

previously drawn conclusions. To allow benchmark-

ing such incremental methods, our framework sup-

ports an “incremental reasoning” process flow (Sec-

tion 4.4.3). For the purposes of this paper, we chose to 

focus on a materialization approach, although support-

ing resolution-based reasoning is considered future 

work. We note that many Semantic Web rule-based 

reasoners, including DLEJena [40], SAOR [25], 

OwlOntDb [17] and RuQAR [5], also follow a mate-

rialization approach. 

 

 

 

Fig. 2. Reasoning types. 

 

 

3) Service matching: checks whether a user goal, 

which describes the services the user is looking for, 

matches a service description. In its rule-based imple-

mentation, a pre- or post-condition / effect from one 

description (e.g., goal) acts as a rule; and a condition 

from the other (e.g., service) serves as a dataset, which 

is done by “freezing” variables, i.e., replacing them by 

constants. A match is found when rule execution infers 

the consequent. This rule-based task can be enhanced 

with ontology reasoning, by including an OWL2 RL 

ruleset with the match rule(s). Our reason for focusing 

on service matching stems from our mobile setting; 

e.g., it enables mobile apps to locate useful services in 

a smart environment, with all necessary computation 

taking place on the mobile platform (see e.g., [58]). 

Extensibility Reasoning tasks are implemented as 

JS classes, with a hierarchy as shown in Fig. 2. A new 

reasoning task class needs to implement the inference 

function, which realizes the task by either directly in-

voking the uniform reasoner interface (see Section 

4.4.1), delegating to another task class (e.g., Rule-

based inference) or to a subflow (see Section 4.4.3 – 

Extensibility). The Reasoning task super class pro-

vides functions such as checking conformance, col-

lecting result times, and logging inferences. A new 

task file and constructor should be listed in tasks.json.  

4.4.3. Process Flows 

To better align benchmarks with real-world use 

cases, MobiBench supports several process flows, 

which dictate the times at which operations (e.g., load 

data, execute rules / perform reasoning) are performed. 

From previous work [59], [60], and in line with our 

choice for materializing inferences, we identified two 

useful process flows:  

Frequent Reasoning: in this flow, the system stores 

all incoming facts directly in a data store (which pos-

sibly also includes an initial dataset). To generate new 

inferences, reasoning is periodically applied to the en-

tire datastore. Concretely, this entails loading a rea-

soning engine with the entire datastore each time a cer-

tain timespan has elapsed, applying reasoning, and 

storing new inferences into the datastore. 

Incremental Reasoning: here, the system applies 

reasoning for each new fact (currently, MobiBench 

only supports monotonic reasoning, and thus does not 

deal with deletions). In this case, the reasoning engine 

is first loaded into memory (possibly with an initial 

dataset). Then, reasoning is (re-)applied for each in-

coming fact, whereby the new fact and possible infer-

ences are added to the dataset. Some OWL reasoners 

directly support incremental reasoning, such as ELK 

and Pellet. As mentioned, Motik et al. [41] imple-

mented an algorithm to optimize this kind of reasoning, 

initially presented by Gupta et al. [23]. 



Further, we note that each reasoner dictates a sub-

flow, which imposes a further ordering on reasoning 

operations. In case of OWL inference (implemented 

via e.g., tableau reasoning), data is typically first 

loaded into the engine, and then an inference task is 

performed (LoadDataPerformInference). Similarly, 

RDFQuery, RDFStore-JS and AndroJena first load 

data and then execute rules. For the IRIS and Pocket-

KrHyper engines, rules are first loaded (e.g., to build 

the Datalog KB), after which the dataset is loaded and 

reasoning is performed (LoadRulesDataExecute). For 

more details, we refer to previous work [59]. 

Extensibility Process flows are implemented as JS 

classes. Each main process flow is listed in flows.json, 

and will call a reason task at certain times (e.g., fre-

quent vs. incremental) and with particular parameters 

(e.g., entire dataset vs. new fact). A subflow is specific 

to a particular reasoning task (see Section 4.4.2 – Ex-

tensibility). A Reason task may thus utilize a subflow 

class behind-the-scenes, in case multiple subflows are 

possible. When called, a subflow class executes the 

uniform reasoning functions (e.g., load-data, execute) 

in the appropriate order.  

4.4.4. Measurement Criteria 

The Benchmark Engine allows studying and com-

paring the metrics listed below.  

Performance: 

Loading times: time needed to load data and rules, 

ontologies, etc. into the engine.  

Reasoning times: time needed to infer new facts or 

check for entailment.  

Memory consumption: total memory consumed by 

the engine after reasoning. Currently, it is not feasible 

to measure this criterium for non-native engines; we 

revisit this issue in Section 6.3.  

Conformance:  

The Benchmark Engine allows to automatically 

compare inferences to the expected output for con-

formance checking (Section 3.4). As such, MobiB-

ench allows investigating the completeness and 

soundness of inference as well (cfr. [22]).  

Other related works focus on measuring the fine-

grained performance of specific components, such as 

large joins, Datalog recursion and default negation 

[38]. In contrast, the goal of MobiBench is to find the 

most suitable reasoner on a mobile platform, given a 

particular application scenario (e.g., reasoning setup, 

dataset). Our performance metrics support this objec-

tive. Finally, we note that the performance of the Se-

mantic Web layer (Section 4.1), domain-based selec-

tion (Section 4.2) and pre-processing (Section 4.3) are 

not measured. The Semantic Web layer will not be in-

cluded in actual reasoning deployments, and only aims 

to facilitate benchmarking. Because of the current 

drawbacks of domain-specific selection and pre-pro-

cessing (e.g., difficulty with volatile ontologies), and 

the current inability to deploy these services directly 

on the mobile platform, we do not measure their per-

formance. Improving and optimizing these services, 

by e.g., directly integrating them with the reasoner, is 

considered future work. 

5. Using MobiBench for Benchmarking 

While the previous section indicated how MobiB-

ench can be extended by third-party developers, this 

section describes how developers can utilize MobiB-

ench for benchmarking. Developers may run bench-

marks programmatically (Section 5.1) or use the auto-

mation support (Section 5.2). To aggregate benchmark 

results into summary CSV files, developers can utilize 

the analysis tools (Section 5.3). For more detailed in-

structions, we refer to our online documentation [56]. 

5.1. Programmatic Access 

To execute benchmarks programmatically, devel-

opers call the MobiBench’s execBenchmark function 

with a configuration object, specifying options for rea-

soning and resources. Below, we show an example 

(Code 28): 

config: { 
  engine: 'androjena', nrRuns: 10, warmupRun: true, 
 dumpHeap: true, 
  reasoning: { 
    task: ‘ontology_inference', 
    mechanism: { 
      ontology_inference: { 
        type: 'owl2rl', dependency: 'rule_inference' 
      }, 
      rule_inference: { 
        mainFlow: 'frequent', 
        subFlow: 'load_data_exec_rules'  
      } } }, 
  resources: { 
    ontology: { 
      path: 'res/owl/data/0.nt', 
      type:'data', format:'RDF', syntax:'N-TRIPLE'  
    }, 
    owl2rl : { 
      axioms: { 
        path: 'res/owl/owl2rl/full/axioms.nt', 
        type:'data', format:'RDF', syntax:'N-TRIPLE'  
      }, 
      rules: { 
        path: 'res/owl/owl2rl/full/rules.spin', 
        type: 'rules', format: 'SPIN' }, 
 preprocess: 'inst-rules', 



 selections: [ 'inf-inst', 'entailed' ] 
 }, 
 confPath: 'res/owl/conf/ontology_inference/0.nt' 
 outputInf: 'res/output/ontology_inference/...' 
  id: '...' } 

Code 28. Example benchmark configuration object. 

This object specifies the unique engine id, the num-

ber of experiment runs, possibly including a “warmup” 

run (not included in the collected metrics), and 

whether memory usage should be measured (dump-

Heap). The reasoning part indicates the high-level 

reasoning task (i.e., ontology_inference) and concrete 

mechanism (i.e., owl2rl), as well as details on depend-

ency tasks (i.e., rule_inference), including its main 

and sub process flow.  

The resources section lists the resources to be used 

in the benchmark; in this case, an ontology and OWL2 

RL axioms and rules. Further, the section specifies 

that the inst-rules pre-processing method (i.e., instan-

tiate rules; Section 2.2.3, (1)) should be applied, as 

well as selections inf-inst (i.e., inference-instance sub-

set) and entailed (i.e., leaving out logically redundant 

rules) (Section 3). Both involve calling the respective 

services on the Web service. The section may also in-

dicate the path for storing inferences (outputInf); as 

well as the expected reasoning output (confPath), to 

allow for automatic conformance checking. 

5.2.  Automation Support 

Due to the potential combinatorial explosion of 

configuration options, including engines and their pos-

sible settings, resources and OWL2RL subsets, manu-

ally writing configurations quickly becomes impracti-

cal. For that purpose, we implemented an Automation 

Support component. 

This solution includes an Automation Client, de-

ployed on a server or PC, which generates a set of 

benchmarks based on an automation configuration; 

and communicates over HTTP with the Automation 

Web Service on the mobile device, which locally in-

vokes the MobiBench API and returns the benchmark 

results. In the Automation Client code, developers 

specify ranges of configuration options, whereby each 

possible combination will be used to run a benchmark. 

Code 29 shows (abbreviated) example code for run-

ning a set of OWL2 RL benchmarks: 

1.  OWL2RLRunConfig config = new OWL2RLRunConfig(); 
2.  config.setTask("owl_inference", "owl2rl"); 
3.  config.select({ "entailed" },  

  { "inf-inst", "entailed", "domain-based" }); 
5.  config.addDataset("ore", 0, 188); ... 

Code 29. Example automation configuration. 

In this case, one subset leaves out entailed, logically 

redundant rules (entailed), and the second applies the 

inf-inst (i.e., inference-instance subset), entailed and 

domain-based (i.e., selecting a domain-based subset) 

selections. Both rulesets are applied on all benchmark 

ontologies, creating a total of 378 benchmarks. 

5.3. Analysis Tools 

To deal with large amounts of benchmark results, 

the MobiBench Analysis Tools assemble benchmark 

results into a CSV file. This file lists the performance 

results and memory usages per configuration; includ-

ing process flow and reasoning task, rule subsets, en-

gine-specific options, and datasets.  

Further, the Analysis Tools include a utility function 

to compare performance times of two reasoning con-

figurations (e.g., different OWL2 RL subsets), and 

output both the individual (i.e., per benchmark ontol-

ogy) and total (i.e., aggregated) differences in perfor-

mance. The Analysis Tools are available both as 

source code and a command line utility. See our online 

documentation [56] for more info. 

6. Mobile Reasoning Benchmark Results 

This section presents benchmark results for materi-

alizing ontology inferences and executing semanti-

cally enhanced, rule-based service matching on mo-

bile platforms, obtained using MobiBench.  

6.1. Reasoning Tasks 

Our benchmarks cover the tasks listed below. We 

note that, although rule-based reasoning is not bench-

marked separately, it is used to implement OWL2 RL 

reasoning and (rule-based) service matching. 

6.1.1. OWL2 Materializing Inference 

Regarding the OWL2 reasoning task, which in-

volves materializing ontology inferences (Section 

4.4.2), benchmarking goals include 1) measuring the 

performance impact of different OWL2 RL subset se-

lections (Section 3); 2) benchmarking two rule-based 

systems (AndroJena, RDFStore-JS) with best-per-

forming OWL2 RL rulesets, as well as three OWL2 

DL reasoners (HermiT, Pellet, JFact). To find the best-

performing OWL2 RL ruleset, we consider the follow-

ing orthogonal cases: “stable” vs. “volatile” ontologies 



(i.e., whether they are subject to frequent and signifi-

cant changes; Section 4.2); and OWL2 RL-conform-

ant vs. non-conformant rulesets.  

Currently, we chose to only apply the Frequent 

Reasoning process flow; since most systems either 

support incremental reasoning only partially (e.g., Pel-

let: only incremental classification), or not at all. This 

means they will have virtually identical performance 

for incremental reasoning steps. 

6.1.2. Semantically-Enhanced Service Matching 

Our goal includes studying the utility and feasibility 

of leveraging OWL2 RL for semantic reasoning on 

mobile platforms. Aside from the stand-alone materi-

alization of ontology inferences (Section 6.1.1), an-

other use case involves semantically enhancing rule-

based tasks. In particular, rule-based service matching 

involves executing a pre- or post-condition (e.g., from 

a goal) as a rule on another condition (e.g., from a ser-

vice), and vice-versa. By extending the service match-

ing rules with an OWL2 RL ruleset, we can enhance 

this task with ontology-based reasoning while using 

only a single component (Section 4.4.2). Below, we 

give an example of semantically-enhanced matching. 

One of the user goals features a pre-condition that, 

given a person (type Person), book (type Book) and 

credit card account (type CreditCardAccount), a ser-

vice should return a price (type Price). A candidate 

service mentions a pre-condition that, given the same 

input, a tax-free price (type TaxFreePrice) is returned. 

Semantically-enhanced service matching correctly in-

fers that the service output also has type Price, since 

TaxFreePrice is a subclass of Price; thus producing a 

match. In conceptual terms, the user goal requests a 

Price, which also includes TaxFreePrice’s. In the in-

verse direction, service output TaxFreePrice does not 

comprise goal output Price, and thus does not match. 

This benchmark aims to measure and compare the 

computational cost of the original task with its seman-

tically enhanced version. For this purpose, we reuse 

the best-performing rule engine and OWL2 RL sub-

sets, as determined by Section 6.1.1.  

6.2. Benchmark Resources 

To benchmark our reasoning tasks, we rely on the 

validated resources listed below (available for down-

load at our online documentation [56]). 

 

6.2.1. OWL2 Materializing Inference 

This section lists resources for OWL2 inference, in-

cluding ontologies (Section 6.2.1.1) and rulesets for 

OWL2 RL reasoning (Section 6.2.1.2). 

6.2.1.1 OWL2 Ontologies 

OWL 2 RL Benchmark Corpus [39]: 

Matentzoglu et al. extracted this corpus from general-

purpose repositories including the Oxford Ontology 

repository [74], the Manchester OWL Corpus 

(MOWLCorp) [72], and BioPortal [54], a comprehen-

sive repository of biomedical ontologies. The corpus 

contains ontologies from clinical and biomedical 

fields (ProPreo, ACGT, SNOMED), linguistic and 

cognitive engineering (DOLCE) and food & wine do-

mains (Wine), thus covering a range of use cases for 

general-purpose, ontology-based reasoning.  

To suit the constrained resources of mobile plat-

forms, we extracted ontologies with 500 statements or 

less from this corpus, resulting in 189 benchmark on-

tologies (total size: ca. 9Mb). By focusing on OWL2 

RL ontologies, all ontology constructs are supported 

by all evaluated reasoners, i.e., OWL2 RL and DL. 

In Section 6.5.1.1, the benchmark ontologies are or-

dered 0–188, with an ontology’s cardinal number in-

dicating its relative OWL2 RL reasoning performance. 

6.2.1.2 OWL2 RL Rulesets 

To study the effects of OWL2 RL subset selections 

on performance (Section 3), we created multiple 

benchmark rulesets using our Selection Service (Sec-

tion 4.2). We summarize each selection below, and list 

their label used in the benchmark results. Note that, 

when discussing the benchmark results, the “+” sym-

bol indicates applying one or more selections on the 

OWL2 RL ruleset. 

Selections from (1) still guarantee OWL2 RL con-

formance, as summarized in Section 3.4. Moreover, 

the inst-ent selection from (2) still guarantees owl2rl-

instance-completeness (Section 3.1.4).  

(1) Conformant selections 

- entailed: leave out logically redundant rules  

(Section 3.1.1); 

- extra-axioms: add extra supporting axioms, which 

allows leaving out specific rules (Section 3.1.2); 

- gener-rules: add generalized rules, each replacing 

two or more specialized rules (Section 3.1.3); 

- inf-inst: retain inference rules referring to both in-

stance and schema elements (Section 3.2); 

- inf-schema: retain inference rules referring only to 

schema elements (Section 3.2); 

- consist: retain only consistency-checking rules 

(Section 3.2); 



- domain-based: leave out rules not referenced by 

the ontology (Section 3.2). 

(2) Non-conformant selections  

- inst-ent: leave out schema-based rules not yielding 

extra instance inferences (Section 3.1.4); 

- ineff: leave out inefficient rules (Section 3.3). 

To support n-ary rules from (L2) (Section 2.2.3) we 

chose to only apply solution (1), i.e., instantiating the 

ruleset. This was done for all benchmarks, i.e., all 

benchmark results were obtained with a ruleset that 

can deal with all n-ary rules. Since the benchmark on-

tology corpus (Section 6.2.1.1) only contains 18 inter-

sections in total (with no property-chain or has-key as-

sertions), we chose a solution that, due to its particular 

process, leaves out these rules in case no related n-ary 

assertions are found. Due to the low number of rele-

vant assertions in this corpus, comparing the perfor-

mance impact of different solutions would not make 

much sense (this is considered future work). We also 

note that ontologies with intersections were extended 

with relevant instance assertions, so inferences would 

be made based on the (instantiated) #cls-int1 rule.  

6.2.2. Semantically-Enhanced Service Matching 

OWL-S Service Retrieval Test Collection [32]: 

this collection contains 42 goals and 1083 services for 

OWL-S. For the purposes of our benchmark, we ex-

tracted pre- and post-conditions / effects (originally in 

SWRL) in the form of SPIN rules and RDF data, in-

cluding the types of input and output variables. Since 

not all descriptions contained such conditions, this re-

sulted in a final set of 17 goals and 152 services.  

Further, we generated an extended version of this 

dataset that includes all related ontology elements, 

making each condition self-contained to facilitate se-

mantic service matching. This was done by manually 

analyzing the conditions and referenced ontologies, 

and only including elements affecting OWL2 RL in-

ferences. Seeing how only avg. ca. 5 ontology terms 

are referenced per condition, it would have been ex-

cessive to include referenced ontologies in their en-

tirety (with avg. ca. 2100 statements, ranging between 

ca. 30 to ca. 40k statements). 

6.3. Benchmark Measurements 

Benchmarks capture the metrics discussed in Sec-

tion 4.4.4, including loading and reasoning times and 

memory consumption. Regarding memory, Android 

Java heap dumps are used to accurately obtain 

memory usage of native Android engines. However, 

regarding JavaScript engines, heap dumps can only 

capture the entire memory size of the native WebView 

(used by Apache Cordova to run JavaScript on native 

platforms), not individual components inside it. Alt-

hough Chrome DevTools [70] is more fine-grained, it 

only records heap allocations inside the mobile 

Chrome browser. Therefore, memory measurements 

were only possible for native Android reasoners. 

6.4. Benchmark Hardware 

To perform the benchmarks, we used an LG Nexus 

5 (model LG-D820), with a 2.26 GHz Quad-Core Pro-

cessor and 2Gb RAM. This device runs Android 6, 

which grants Android apps 192Mb of heap space. Dur-

ing the experiments, the device was connected to a 

power supply. 

6.5. Benchmarking Results and Discussion 

This section presents and discusses the benchmark 

results for OWL materializing inference (Section 

6.5.1) and service matching (Section 6.5.2).  

6.5.1. OWL Materializing Inference 

First, we show the results for individually bench-

marking OWL2 RL ruleset selections (Section 6.5.1.1). 

Based on this analysis, Section 6.5.1.2 presents the 

best performing OWL2 RL rule subsets, given differ-

ent requirements and scenarios, and sets them side by 

side with benchmark results of OWL2 DL reasoners 

(HermiT, JFact and Pellet). Unless indicated other-

wise, result times include ontology loading, reasoning, 

and inference collection. 

6.5.1.1 OWL2 RL Ruleset Selections 

Figures 3-5 show the performance of OWL2 RL 

ruleset selections for AndroJena. Fig. 3 shows that 

leaving out logically redundant rules (+entailed, i.e., 

applying the entailed selection) has a slight positive 

impact on performance (avg. ca. -180ms), whereas 

also replacing specific rules by extra axioms and gen-

eral rules (+ entailed, extra-axioms, gener-rules) per-

forms slightly worse (avg. ca. +180ms). This was a 

possibility, since this selection introduces more gen-

eral, i.e., less constrained, rules (e.g., less able to lev-

erage internal data indices). Applying a domain-spe-

cific rule subset (+entailed, domain-based) supplies a 

much larger performance increase (avg. ca. -0,78s). 

The inf-inst selection improves performance even 

more (avg. ca. -1s). The ineff selection loses complete-

ness but shows the highest gain (avg. ca. -1,3s).  

Although the inf-inst selection shows promise, it re-

quires materializing schema inferences using the inf-



schema subset, initially and in case of ontology up-

dates. Also, when consistency needs to be checked, the 

consist ruleset needs to be separately executed. Next, 

we discuss the performance of inf-schema and consist, 

as well as the effect of ruleset selections on inf-inst. 

 

 

Fig. 3. AndroJena: OWL2 RL selections (full)2. 

 

 

 

Fig. 4. AndroJena: OWL2 RL selections (inf-schema). 

 

 

Fig. 4 shows the performance of materializing in-

ferences in the ontology (inf-schema). As was the case 

before, ruleset selections may be applied on this subset. 

Similar to the full case, replacing specific rules with 

extra axioms and general rules (+extra-axioms, gener-

                                                           
2 Some figures chop off peaks to avoid skewing the graph. 

The full average results can be found at [56]. 

rules) reduces performance (avg. ca. +250ms, com-

pared to inf-schema). For inf-schema, a non-conform-

ant selection is leaving out rules inferring schema in-

ferences that do not yield extra instances (inst-ent, 

Section 3.1.4), which slightly improves performance 

(avg. ca. -80ms). Since entailed and ineff do not in-

clude schema-only rules, they cannot be applied here. 

Applying domain-based, alone and when combined 

with inst-ent (+inst-ent, domain-based), similarly im-

proves performance slightly (avg. ca. -50ms and -

100ms, respectively). However, when applying do-

main-based on the inf-schema subset, the domain-

based selection needs to reconstruct the inf-schema 

ruleset for each ontology update; and the ruleset is 

then utilized only once3, i.e., to materialize schema in-

ferences in the updated ontology. Its suitability here 

thus depends on the performance of the domain-based 

selection, which is not measured in these benchmarks 

as it is deployed on a Web service. (Future work in-

volves studying mobile deployment, see Section 8.) 

After materializing the ontology with schema infer-

ences, instance-related rules (inf-inst) are applied 

whenever new instances are added. When consistency 

needs to be checked, the consist ruleset selection is ap-

plied on a materialized set of schema and instance as-

sertions (avg. ca. 420ms). We note that the only appli-

cable selection here, i.e., gener-rules, results in very 

similar performance (avg. ca. 430ms).  

 

 

 

Fig. 5. AndroJena: OWL2 RL selections (inf-inst). 

 

 

3 Except for scenarios where e.g., the ontology needs to be 

re-materialized at each startup. 



Fig. 5 shows that, similar to the full case, leaving 

out redundant rules (+entailed) results in small im-

provements (avg. ca. -145ms, compared to inf-inst). 

Additionally replacing specific rules by extra axioms 

and general rules (+ entailed, extra-axioms, gener-

rules) similarly leads to performance loss (avg. ca. 

+0,5s), while selecting a domain-based subset (+en-

tailed, domain-based) results in gains (avg. ca. -0,5s). 

Regarding non-conformant cases, a first option is to 

execute the rule subset on the ontology materialized 

by inst-ent, which is smaller since it lacks certain 

schema elements (i.e., not yielding extra instances). 

This scenario (+ entailed, inst-ent) improves perfor-

mance by avg. ca. -340ms. Additionally removing in-

efficient rules (+ entailed, inst-ent, ineff) increases 

performance by avg. ca. -1,3s. Combining all selec-

tions yields reductions of avg. ca. -1,5s. 

 

 

 

Fig. 6. RDFStore-JS: OWL2 RL selections (full). 

 

 

Figures 6-8 show OWL2 RL subset performances 

for RDFStore-JS. Fig. 6 shows that, similar to Andro-

Jena, entailed yields only slightly better performance 

(avg. ca. -100ms), whereas entailed, extra-axioms and 

gener-rules collectively result in worse performance 

(avg. ca. +0,85s). At the same time, compared to An-

droJena, also applying domain-based yields much 

higher performance gains (avg. ca. -5,8s), while inf-

inst (avg. ca. -1,3s) and ineff (avg. ca. -1,9s) have a 

smaller comparative impact. 

 

Fig. 7. RDFStore-JS: OWL2 RL selections (inf-schema). 

 

 

Fig. 7 shows the performance of materializing in-

ferences in the domain ontology (inf-schema). As for 

AndroJena, replacing specific rules (+extra-axioms, 

gener-rules) reduces performance (avg. ca. +380ms, 

compared to inf-schema), while leaving out “instance-

redundant” rules (inst-ent) improves performance to a 

larger extent (avg. ca. -270ms). As before, we note that 

entailed and ineff are not applicable here. Utilizing do-

main-based, individually and combined with inst-ent 

(+inst-ent, domain-based) results in the largest im-

provements in performance (avg. ca. -0,46s and -0,5s, 

respectively), although, as mentioned, the suitability 

of domain-based could be questioned here. 

 

 

 

Fig. 8. RDFStore-JS: OWL2 RL selections (inf-inst). 

 

 



Fig. 8 shows the results of the inf-inst rule subsets, 

applied on an ontology materialized with schema in-

ferences. In contrast to AndroJena and the full case for 

RDFStore-JS, collectively applying entailed, extra-

axioms and gener-rules improves performance (avg. 

ca. -0,8s), and exceeds the performance gained by only 

+entailed (avg. ca. -180ms). Similar to full (Figure 6), 

the domain-based selection (+entailed, domain-

based) performs much better (avg. ca. -4,5s). Consid-

ering non-conformant selections, applying the rule 

subset on the ontology materialized via inst-ent (+en-

tailed, inst-ent) increases performance by avg. ca. -

430ms (compared to inf-inst). Also applying the ineff 

selection (+entailed, inst-ent, ineff) significantly im-

proves performance (avg. ca. -3,8s). Combining all se-

lections reduces reasoning times by avg. ca. -5,5s. 

Finally, the consist ruleset yields a performance of 

avg. ca. 2,1s, with +gener-rules (only applicable se-

lection) performing slightly better (avg. ca. -160ms). 

Summary 

Overall, the entailed selection has a relatively small 

performance impact, with reductions from -1,2% 

(rdfstore-js: full) to -8% (androjena: inf-inst). Utilizing 

extra-axioms and gener-rules typically results in 

(slightly) worse performance; which is not wholly un-

expected, seeing how it replaces specific rules with 

more general ones (e.g., with more joins and less abil-

ity to leverage internal data indices). In some cases 

however, these selections perform better: i.e., when 

executing inf-inst (-21%) on RDFStore-JS.  

In case of a stable ontology, additional OWL2 RL-

conformant optimization options exist. Executing the 

inf-inst ruleset on a materialized ontology results in 

performance increases from -17% (rdfstore-js) to -

36% (androjena) compared to the full ruleset. Here, 

applying the best-performing, conformant selection 

(i.e., inf-inst+entailed+domain-based) yields huge 

optimizations, up to -72% (rdfstore-js) compared to 

the original, non-selection case. 

In case the conformance requirement is dropped, 

even larger optimizations are possible. Employing the 

inst-ent selection yields slight improvements in per-

formance for inf-schema; 8% (androjena) and 15% 

(rdfstore). Re-using the smaller materialized ontology 

optimizes the inf-inst selection as well, up to -12% (an-

drojena). Putting it all together, selection +inf-inst, en-

tailed, inst-ent, domain-based, ineff yields dramatic 

improvements, as far as -90% (androjena) compared 

to the full case. 

6.5.1.2 Best Overall Performance 

Table 1 shows the best-effort performances of the 

rule engines: for the full, original OWL2 RL ruleset 

(original, for reference); when applying best-perform-

ing conformant (conformant) and non-conformant 

(non-conformant) rule subsets; and for cases where the 

domain ontology frequently (and significantly) 

changes (volatile ontology), ruling out certain selec-

tions, and cases where such changes are not likely to 

occur (stable ontology). In the latter case, times for a 

priori materializing the ontology (inf-schema), infer-

ring new instances (inf-inst), and consistency checking 

times (consist) are shown as well. Based on bench-

mark results from the previous section, we chose the 

best-performing ruleset selections for each case (see 

table). Both total times and constituent loading and 

reasoning times are indicated. Further, the table sets 

these results side by side with the overall performance 

of HermiT, Pellet and JFact, well-known OWL2 DL 

reasoners. These reasoners perform reasoning with 

higher complexity (OWL2 DL), which yields extra 

schema (TBox) inferences not covered by the OWL2 

RL rule axiomatization [37], [41]. We confirmed that 

the OWL2 RL and OWL2 DL reasoners infer the same 

ABox inferences. Clearly, any comparison should take 

this schema incompleteness issue into account. 

In line with expectations, the table shows that An-

droJena, as a native Android system and featuring a 

non-naïve, RETE-based forward chainer, greatly out-

performs RDFStore-JS, which we manually outfitted 

with naïve reasoning (Section 4.4.1). As shown before, 

the ruleset selection suiting volatile ontologies and 

guaranteeing conformance (entailed) performs only 

slightly better. However, if the ontology is considered 

stable, the conformant inf-inst selection supplies huge 

relative gains (avg. ca. 1,6s (55%) – 5,8s (72%)) com-

pared to the original case, respectively for AndroJena 

and RDFStore-JS (percentage indicates the proportion 

of time gained w.r.t. the original). At the same time, 

inf-schema yields a comparatively lower, but certainly 

not negligible, overhead, which is incurred for each 

ontology update. As mentioned, since applying the do-

main-based selection on inf-schema would not be ad-

vantageous in most scenarios, it is not applied here. In 

contrast, the best-performing conformant inf-inst 

ruleset requires the domain-based ruleset selection, 

which needs to be re-calculated for each ontology up-

date and thus adds an extra overhead (not included 

here). As a result, this configuration is suitable for 

“stable” scenarios, where ontology updates are infre-

quent. Similarly, the cost of consist is not negligible; 

the frequency of applying the ruleset depends on the 

application scenario.  



When dropping conformance, we find performance 

improvements even for volatile ontologies (avg. ca. 

1,3s (45%) – 1,9s (24%)). For non-conformant reason-

ing in stable ontologies, the performance gain of inf-

inst is tremendous (avg. ca. 2,5s (90%) – 6,9s  (85%)). 

Regarding OWL2 DL reasoners, Pellet and JFact have 

comparable mobile performance (around avg. ca. 7s) 

with HermiT being a clear outlier (avg. ca. 21s).  

Table 2 shows memory usage for each engine (aside 

from the JavaScript-based RDFStore-JS; see Section 

6.3). JFact uses the least amount of memory, i.e., only 

585Kb, making it a suitable choice overall (see Table 

1) for mobile platforms. Nevertheless, all memory us-

ages appear acceptable (at least on Android), seeing 

how each Android app receives a 192Mb max. heap. 

 

 
Table 2: Memory usage (Kb) 

AndroJena HermiT Pellet JFact 

6242 13543 12832 585 

 

 

In conclusion, depending on the application sce-

nario and requirements for full conformance, OWL2 

RL reasoning can be greatly optimized on mobile plat-

forms, making it a viable option for ontology-based 

reasoning. We note that, even for JavaScript systems 

outfitted with naïve reasoning, large performance im-

provements are possible. In case an application has 

need for extra OWL2 DL expressivity, JFact or Pellet 

may be used, albeit at significantly lower performance.  

6.5.2. Semantically-Enhanced Service Matching 

Table 3 presents the performance of rule-based se-

mantic service matching by the best-performing rule 

engine (i.e., AndroJena), showing the average total 

time of a service match, which includes matching the 

pre- and post-condition of a user goal to a service, and 

vice-versa.  

 

 

 

 

 

 

 

 

 

Table 1. Best overall performances (avg) (ms) 

OWL2 RL* OWL2 DL** 

AndroJena 

original 2819 (88 | 2731)  

Hermit 21111 

 volatile ontology stable ontology 

conformant 

full inf-schema inf-inst consist 

2639 (90 | 2549) 

 + entailed 
1001 (69 | 932) 

1245 (187 | 1058) 

+ entailed,  

domain-based 

418  

(195 | 223) 

non-conformant 

full inf-schema inf-inst 

Pellet 6978 
1547 (93 | 1455) 

+ entailed, ineff 

919 (65 | 854) 

inst-ent 

272 (165 | 106) 

+ entailed, domain-

based, ineff, inst-ent 

RDFStore-JS 

original 8120 (618 | 7502)  

 volatile ontology stable ontology 

JFact 7034 

conformant 

full inf-schema inf-inst consist 

8022 (620 | 7402) 

+ entailed 
1831 (536 | 1296) 

2304 (566 | 1738) 

+ entailed,  

domain-based 

1947  

(1282 | 665) 

non-conformant 

full inf-schema inf-inst 

6168 (583 | 5586) 

+ entailed, ineff 

1561 (511 | 1050) 

+ inst-ent 

1255 (1080 | 176) 

+ entailed, domain-

based, ineff, inst-ent 

* : [total-time] ([load-time] | [reason-time] ; applied selections are shown, if any. 

**: total-time  
 

 



Table 3: service match performance using AndroJena (avg) (ms) 

 
original 

OWL2 RL 

full conf non-conf 

total  
(ms)* 

26  
(11 | 15) 

1062 
(50 | 1012) 

954 
(48 | 906) 

441 
(47 | 394) 

domain-based 

754 
(49 | 705) 

280 
(48 | 232) 

#  
matches** 

precond 

g>s: 22, s>g: 23 g>s: 32, s>g: 53 

effect 

g>s: 3, s>g: 5 g>s: 4, s>g: 14 

*: [total-time] ([load-time] | [reason-time] 
**: number of matches per direction (e.g., g>s = goal > service) 

 

 

The table shows the original, non-enhanced case 

(original), and when enhanced with ontology reason-

ing (OWL2 RL). In particular, when applying the full 

ruleset (full); a conformant (conf; i.e., +entailed) and 

non-conformant subset (non-conf; i.e., +entailed, inst-

ent, ineff); and the domain-based selection.  

A total of 50 extra matches are found by semanti-

cally enhancing this task, mostly by leveraging sub-

class hierarchies (for an example, see Section 6.1.2). 

A full list of extra matches can be found online [56]. 

While the performance of original is reasonable, the 

average reasoning time for full is almost two orders of 

magnitude larger. Applying a conformant, non do-

main-specific rule subset yields only a slight (ca. 10%) 

improvement. The non-conformant ruleset performs 

much better, improving performance by ca. 59%. As 

expected, the domain-specific selection yields larger 

performance increases, respectively ca. 29% and 74%. 

However, to calculate the domain-specific ruleset, this 

selection requires access to all (or at least, representa-

tive) user goals / services and their related schema, 

which may not be possible in practice.  

From these results, we can conclude that semanti-

cally-enhanced service matching, with its potential to 

increase the amount of valid matches, has a distinct 

utility. Depending on application constraints, the total 

performance overhead per service match (including 

matching pre- and post-conditions, and in both direc-

tions) ranges from ca. 0,95s to 0,28s. 

7. Related Work 

In the state of the art on rule-based OWL reasoning, 

most works focus on separating TBox from ABox rea-

soning [5], [17], [25], [40], [41]. In most cases, a sep-

arate OWL reasoner is utilized to compute and mate-

rialize schema inferences [5], [17], [40]. However, this 

is inadvisable on mobile platforms, since it necessi-

tates deploying two (resource-heavy) reasoner sys-

tems, i.e., an OWL reasoner and rule engine. After this 

separate schema reasoning step, some works [5], [40], 

[41] proceed with a rule-template approach; where 

OWL2 RL rules are instantiated based on the materi-

alized input ontology. In particular, multiple instanti-

ated rules are created for each rule, whereby schema 

variables are replaced by concrete schema references. 

We support a similar solution to support certain n-ary 

rules, and applied it in our benchmarks. Implementing 

and benchmarking this as an optimization for all rules 

is considered future work.  

Tai et al. [53] propose a selective rule loading algo-

rithm, which automatically composes an OWL2 RL 

ruleset depending on the input ontology. In our bench-

marks, we found that this domain-based rule selection 

can significantly improve performance. Another body 

of work studies the extraction of a (smallest) module 

from a larger ontology, which still captures the mean-

ing of a particular set of terms (e.g., yielding the same 

relevant entailments or query results) [15], [36], [43]. 

This kind of approach could be useful to support se-

mantically-enhanced, rule-based service matching, by 

automatically extracting relevant ontology parts for 

service descriptions (see Section 6.2.2).  

Yus et al. [62] analyzed whether currently available 

DL reasoners are deployable on Android devices. 

However, their evaluation is limited to classification, 

and does not consider OWL2 RL-based reasoners. 

They found that performance greatly depends on the 

engine and ontology size, with times ranging from 4s– 

1609s. Interestingly, they found a performance in-

crease of ca. 30% between mobile devices only 1 year 

apart, which is a promising evolution. Nonetheless, 

Yus et al. [62] and Kazakov et al. [28] found orders of 

magnitude difference between PC and Android rea-

soning times. As future work, Kazakov et al. aim to 

study the reason behind this poor performance on 

smartphones. Yus et al. point to Android memory re-

strictions (and e.g., resulting garbage collections) be-

ing the main barrier to efficient performance, although 

further study needs to validate this claim. 

Patton et al. [44] report that, due to the single-

threaded nature of most reasoners, a near linear rela-

tion exists between consumed energy and computing 

time for OWL inferences on mobile systems. As such, 

energy usage estimates, based on reasoning times, 

could already be realistic. Regardless, future work in-

volves recording detailed battery measurements. 



8. Conclusion and Future Work 

This paper presented the following contributions:   

- A selection of OWL2 RL subsets, with the goal 

of optimizing reasoning performance on mobile sys-

tems. Orthogonally, these methods include OWL2 

RL-conformant vs. non-conformant selections; and 

selections suiting “stable” (i.e., not subject to frequent 

and significant changes) vs. “volatile” ontologies. Our 

benchmarks showed that, depending on ontology vol-

atility and need for conformity, these selections may 

greatly improve performance.  

-  The MobiBench cross-platform, extensible mo-

bile benchmark framework, for evaluating mobile 

reasoning performance. Given a reasoning setup, in-

cluding process flow, reasoning task, ruleset (if any) 

and ontology, developers can use MobiBench to 

benchmark reasoners on mobile platforms, and thus 

find the best system for the job. The large differences 

in performance between engines and scenarios, as ob-

served in our benchmarks, clearly point towards the 

need for such a framework. To facilitate the devel-

oper’s job, the framework includes a Semantic Web 

layer, selection and pre-processing services, as well as 

automation and analysis tools. Further, we indicated 

the extensibility for each component, allowing devel-

opers to easily plug in new variants.  

- Mobile benchmarks, which measure reasoning 

performance when materializing ontology inferences; 

focusing on the impact of different OWL2 RL ruleset 

selections, as well as the computational cost of best-

performing OWL2 RL rulesets for particular scenarios 

and systems. We put these performance results side-

by-side with the performance of 3 OWL2 DL reason-

ers. Depending on the concrete scenario, we found that 

OWL2 RL reasoning can be greatly optimized. Fur-

ther, we showed the distinct utility of the semantic en-

hancement of service matching, with performance 

overhead depending on application constraints. 

- A study of the usefulness of OWL2 RL in mo-

bile semantic reasoning. By outfitting rule-based 

tasks, such as service matching, with an OWL2 RL 

ruleset, ontological knowledge can be leveraged to im-

prove results. Service matching is a useful task in mo-

bile settings, as it enables mobile apps to, e.g., identify 

services in smart environments [58]. As such, our 

work contributes to studying both the feasibility and 

utility of OWL2 RL on mobile systems.  

Despite the presented work, as well as advance-

ments reported in the state of the art, scalable mobile 

performance remains elusive. A huge gap still looms 

between PC and mobile reasoning times. Therefore, 

future work includes integrating additional optimiza-

tion methods into MobiBench, such as utilizing rule 

templates for all rules. Optimizing and porting do-

main-specific rule selection, in light of its positive im-

pact on performance, is also an avenue of future work. 

Similarly, we aim to deploy pre-processing solutions 

for n-ary rules directly on the mobile device, and com-

pare their performance on an ontology corpus featur-

ing large amounts of relevant n-ary assertions. Re-

garding service matching, we aim to represent user 

goals and services as complex class descriptions, 

which allows benchmarking service matching via 

OWL2 DL entailment.  Measuring energy consump-

tion, an important aspect for mobile systems, is also 

part of future work.  

Our major focus in this paper was on materializing 

ontology inferences. Reasoning per query (via e.g., 

SLG) may also have its merits on mobile platforms, 

since it does not require a priori materialization. Stud-

ying its performance on mobile systems is considered 

a major avenue of future work. Finally, identifying ad-

ditional OWL2 RL rule subsets for particular reason-

ing tasks (such as instance checking and realization) is 

also viewed as future work. 
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