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AbstractThe maintenance and use of metadata such as provenance and time-related information (when was a data entity created
or retrieved) is of increasing importance in the Semantic Web, especially for Big Data applications that work on heterogeneous
data from multiple sources and which require high data quality. In an RDF dataset, it is possible to store metadata alongside
the actual RDF data and several possible metadata representation models have been proposed. However, there is still no in-
depth comparative evaluation of the main representation alternatives on both the conceptual level and the implementation level
using different graph backends. In order to help to close this gap, we introduce major use cases and requirements for storing
and using diverse kinds of metadata. Based on these requirements, we perform a detailed comparison and benchmark study
for different RDF-based metadata representations, including a new approach based on so-called companion properties. The
benchmark evaluation considers two datasets and evaluates different representations for three popular RDF stores.
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1. Introduction

Within the Semantic Web community, the topic of
metadata has been subject of many different discus-
sions and works for many years. These works range
from the publication of different metadata vocabular-
ies (e.g., PROV-O1, the Dublin Core Metadata Initia-
tive2, and the Data Catalog Vocabulary3), the applica-
tion of these vocabularies in datasets, the development
of different metadata representation models (MRM),
metadata support by graph backends, and much more.

1https://www.w3.org/TR/prov-o/
2http://dublincore.org/documents/dcmi-

terms/
3https://www.w3.org/TR/vocab-dcat/

In the context of this paper, we focus on metadata
representation models (MRM) for knowledge graphs
and their efficient connection of data with its meta-
data in the same RDF store. As a knowledge graph,
we understand a graph based solution, which stores
information about entities (or nodes) and their rela-
tions (or edges). Prominent examples are the Google
Knowledge Graph4 and DBpedia [13]. These knowl-
edge graphs very often consist of information from dif-
ferent data sources, which evolve over time and can
reach large dimensions. Usually, these different data
sources contain information about similar or equiva-
lent entities, which represent the same real world re-

4https://www.google.com/intl/bn/
insidesearch/features/search/knowledge.html
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Figure 1. Structure of different Metadata Representation Models: Six different ways of describing (or reifying) an RDF triple s, p, owith
a metadata key and value pair are studied in this work. Companion property (cpprop), nary relation (naryrel), named graphs (ngraphs), sin-
gleton properties (sgprop), standard reification (stdreif), and the Blazegraph-specific Reification Done Right (rdr). Besides rdr all the approaches
use an explicit statement identifier (red), which is used to attach metadata (green) to the data (grey). Cpprop and stdreif are based on additional
triple handlers (white). Properties which also deal as subjects are drawn with dashed lines.

source. Overlapping entities which are stored in dif-
ferent datasets will have common (e.g., birth year),
conflicting (e.g., different heights of a mountain) and
complementary property attributes (e.g., fact about an
entity only available in one dataset). The process of
merging these entity information into one common
dataset is called knowledge fusion [3] which can in-
clude operations such as provenance tracing, conflict
detection, conflict resolution and merge. For knowl-
edge fusion, metadata, such as provenance information
(e.g., source, last modification date) provides valuable
information that can help to improve these operations.
Furthermore, data traceability is an important use case
where not only source provenance data is recorded,
but also data processing information such as results
from normalization and cleaning operations, informa-
tion about applied algorithms, and much more. Trace-
ability can help users and developers to understand the
results of Big Data systems and allows them to track
erroneous statements back to its datasources and the
involved algorithms, by inspecting provenance meta-
data. This topic has reached a political level and the
EU5 is pushing for new regulations, which will force
commercial solutions to add traceability of data to Big
Data systems.

As metadata representation model (MRM), we de-
fine a strategy of splitting an RDF triple t and its set of
key-value based metadata facts m into several triples
or quads, such that we can store and query metadata,
for all triples individually, in an RDF Store.

5http://irishtechnews.net/ITN3/eu-
regulations-on-the-traceability-of-your-
data-is-looming-on-the-horizon/

In RDF version 1.1, the W3C standard provides an
RDF Reification Vocabulary6 which allows "an RDF
graph to act as metadata describing other RDF triples".
While the standard specifies (informatively) that a
"reification of a triple does not entail the triple" itself,
we deviate from this interpretation in this paper and
employ a stronger semantics, assuming that the reified
triple holds, but under the conditions and dimensions
which are described in the metadata (scoping).

A brief example: John said on Feb 2nd, 2017: “Bob
married Alice today.”

Within the RDF Reification Vocabulary the focus is
on the fact that John said something and that he did
so on a specific date, it does not state anything about
whether Bob and Alice are married or not. But from our
interpretation of a MRM follows that Bob is married
to Alice and we provide John as provenance metadata
and Feb 2nd, 2017 as the creation date of the triple.

Handling data and metadata alongside each other
can be considered a challenging task. Since more data
has to be processed, stored and indexed, a negative im-
pact on the overall system performance might occur.
In many existing software solutions, which employ the
use of metadata, data and metadata are stored in sepa-
rate tables or stores and thus require joins, lookups or
query federation solutions. Such setups are generally
harder to maintain, since the data and its metadata can
get out of sync. Furthermore, it is potentially complex
and time-consuming to query the data and metadata
backend, especially if the data and metadata are stored
in separate backend types (e.g., data in RDF store and
metadata in relational database). Hence this work is
going to evaluate how to store data alongside meta-
data, using different MRMs and RDF stores. Figure 1

6https://www.w3.org/TR/rdf11-mt/
#reification
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illustrates the main structural differences between the
various MRMs.

The contributions of this work are as follows: First
requirements and criteria for an evaluation of metadata
representation models are defined, based on an anal-
ysis of existing RDF datasets and uses cases where
metadata is involved. Driven by these requirements,
different approaches for metadata handling in RDF are
systematically compared and evaluated for different
datasets and against different RDF graph backends. In
this context we reproduce and validate previous exper-
imental results from a Wikidata study [10]. Addition-
ally, we create a dataset and benchmark queries spe-
cific to a knowledge fusion use case. Trying to improve
shortcomings of existing models, we propose Com-
panion Properties, a new MRM based on the Single-
ton Property MRM [15]. Since the usage of Singleton
Properties results in a very uncommon uniform distri-
bution, the usage of Singleton Properties can lead in
increased query times as shown in [10]. This issue is
addressed by the Companion Property model, which
will be explained in more detail in Section 4.1.5.

The Evaluation considers the following questions:

– How do MRMs impact regular data queries?
– Which MRM can be applied on datasets which

contain high ratio of diverse metadata?
– Is it possible to generalize results or does it de-

pend on the use case, dataset or backend?

The rest of the paper is structured as follows: The
next section 2 gives an overview about related work.
Then the evaluation requirements and criteria are pre-
sented in section 3. In section 4 we describe different
models to represent metadata and introduce compan-
ion properties. Once all the background information
is presented and discussed, we describe the evaluation
datasets in section 5 and the evaluation setup in section
6. Then the evaluation results are presented in section
7 and compared to other studies. The last part of this
work is a conclusion and future work section.

2. Related Work

Over the past years several benchmarks have been
created, which focus on the performance evaluation of
RDF stores. When creating these benchmarks, differ-
ent creation strategies have been applied. In the case
of synthetic benchmarks like LUBM[2], BSBM[7] and
SP2Bench[18], the idea for the datasets and search
queries are deducted from real-world use cases, but

both the dataset and the queries are automatically
generated. Despite the fact that they are inspired by
real-world use uses, the characteristics of neither the
datasets nor the queries will adequately represent com-
mon real world usage scenarios. Hence the authors of
[14] use the DBpedia benchmark as an example, where
both the actual dataset and the user query logs are used
to create the benchmark. One step further go the au-
thors of [17]. In their work a framework for feature
based tailoring of benchmark queries based on user
query logs is described, where it is possible to create
benchmark queries which, fulfill preset requirements
(e.g Aggregates, GroupBy etc.). This can be particu-
larly useful, if certain aspects should be evaluated. In
the context of our work, we have decided to reuse ex-
isting real-world datasets, which were created from re-
search or industrial projects. We believe that character-
istics of these datasets will help to come to meaningful
results, which can be applied to other domains.

An example on how scientific datasets can be en-
hanced with metadata is explained in [12]. The authors
propose how scientific data can be published using
RDF as so called “nano-publications”. The described
approach does not only cover the creation of scientific
datasets, which are described by metadata (e.g. prove-
nance), but in addition it describes an infrastructure,
which allows researchers to publish and retrieve rele-
vant scientific datasets. Due to the fact that for many
datasets the same metadata is redundantly shared for
many entities and sometimes for the complete dataset
(e.g. all triples have the same author, the same publi-
cation date), it is difficult to create a variety of queries,
which cover different usage scenarios. The redundancy
problem of provenance data in scientific datasets was a
focus of [4], where provenance data was analysed for
datasets in the life science domain. Different MRMs
were used to add metadata to the chosen datasets in or-
der to store provenance data alongside the actual data.
The datasets were loaded into different RDF stores
against which the evaluation was performed. Although
the authors of [4] evaluate datasets with metadata, their
work focuses on the impact of redundant metadata. In
addition the evaluated number of MRMs is not as ex-
haustive as in this work. Another benchmark including
metadata is the LDBC benchmark [11], which is avail-
able for different domains, such as semantic publish-
ing and social network. Since these benchmarks do not
focus on metadata, we were not able to reuse it for our
evaluation.

Despite the fact that the handling of metadata is an
important topic in the Linked Data community, not
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many benchmarks and evaluations exist. In [1] the au-
thors evaluate different RDF benchmarks and show
that many of them are not sufficient enough for sys-
tems with varied queries and workloads. Hence they
present the WatDiv benchmark, which addresses their
highlighted problems. Although the authors do not
specifically evaluate datasets with metadata, they high-
light the need for benchmarks which cover prove-
nance and temporal data as well. The most relevant
publications which focus on the evaluation of differ-
ent MRMs are [10] and [9]. In these evaluations the
authors apply different MRMs on a Wikidata dataset
which are loaded into several storage backends. In
the former work Virtuoso, Blazegraph, PostgreSQL,
Neo4J in combination with different MRMs have been
used to answer several template queries against Wiki-
data. In the latter one the focus lies on RDF data man-
agement systems with a fixed set of queries. Although
the authors have done an extensive evaluation for the
Wikidata use case, we would like to come to a more
general conclusion and see whether the results are also
valid for other datasets. Therefore we have decided to
repeat and extend these experiments in the context of
this work and we compare these result to the results of
our own experiments.

3. Evaluation requirements and criteria

To establish an objective foundation for the evalu-
ation, we define requirements and criteria for meta-
data usage, MRMs and their comparison. For a bet-
ter understanding, we will give a brief rundown of our
top-down and bottom-up analysis approach, which we
used to define the requirements. Based on these re-
quirements, we are then going to present a set of crite-
ria, which are used to measure and analyze the perfor-
mance of the different MRMs.

3.1. Evaluation requirements analysis

We performed a bottom-up and a top-down analy-
sis on the application of metadata to achieve objective
conclusions.

3.1.1. Metadata usage analysis
The analysis was conducted by inspecting existing

datasets which provide metadata and generalising sim-
ilarities of how and what type of metadata is used.

In order to find relevant datasets, we used several
search strategies. First repositories such as datahub.io7,
as well as other CKAN8 repository instances were
searched. Second, with the help of LODVader9, Lod-
Laundromat10 and lodstats11 we searched for datasets
containing MRM patterns and specific metadata vo-
cabulary in the Linked Open Data (LOD) cloud. The
metadata vocabulary we investigated was the PROV-
O12, Dublin Core13 vocabulary for provenance related
metadata. Furthermore, we checked for more dataset
oriented metadata vocabularies such as DCAT14, VoID15

and Data Cube16.
In order to find out, how often metadata vocabular-

ies are already used in the LOD cloud, we were us-
ing the LODVader service, which indexed most ac-
tive datasets of the LOD cloud. With the help of this
index, we were able to perform an in-depth anal-
ysis on 43,777 datasets. Out of all searched datat-
sets, 4843 datasets contain provenance related meta in-
formation, which is about 11% of all datasets. This
shows that metadata vocabularies already are an im-
portant part of existing LOD datasets. Within these
matched datasets on average 9% of all triples are meta-
data triples. In the datasets, where PROV-O vocabu-
lary was used, the PROV-O related information cov-
ers on average 62% of all the triples. The most popu-
lar predicate is prov:wasDerivedFrom with more than
128 million occurrences, followed by dc:language (94
million), dc:title (63 million), dc:rights (48 million).
This highlights that provenance, right and language in-
formation are the most relevant metadata predicates
till date. Furthermore, we were able to find 7088
datasets, which use more dataset centric vocabular-
ies and if the Data Cube vocabulary is added, we
find about 14,767 matches. When only datasets with
DCAT and VoID are evaluated, on average nearly
28% of all triples are metadata triples. This is not a
surprise, since many of these datasets describe other
datasets. The top predicates in this metadata category
are cube:Dataset (840 million), void:vocabulary (109
million), dcat:distribution (84 million), etc. Besides

7https://datahub.io/
8http://ckan.org/
9http://lodvader.aksw.org/
10http://lodlaundromat.org/
11http://aksw.org/Projects/LODStats.html
12https://www.w3.org/TR/prov-o/
13http://dublincore.org/documents/dc-rdf/
14https://www.w3.org/TR/vocab-dcat/
15https://www.w3.org/TR/void/
16https://www.w3.org/TR/vocab-data-cube/

https://datahub.io/
http://ckan.org/
http://lodvader.aksw.org/
http://lodlaundromat.org/
http://aksw.org/Projects/LODStats.html
https://www.w3.org/TR/prov-o/
http://dublincore.org/documents/dc-rdf/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/void/
https://www.w3.org/TR/vocab-data-cube/
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we were not able to find datasets which use the Single-
ton Property MRM. When it comes to RDF reification,
we did not find any dataset, which uses rdf:Statement.
Looking for the standard reification predicates, al-
lowed us to identify 15 datasets, where the number of
occurrences of rdf:subject, rdf:predicate and rdf:object
differed.

In addition, we requested help via the Seman-
tic Web17 and PROV-O18 mailing lists for known
metadata datasets or projects, where the handling
and storage of RDF metadata is an essential part.
This search pointed us towards Nano-publications,
Bio2RDF, OpenCitations.

Overall, the search strategy and metadata vocabu-
lary analysis helped us to find relevant datasets and
it showed us that metadata is already used within the
Linked Data community, since more than 11% of all
datasets contain metadata information.

3.1.2. Metadata datasets Analysis
From the dataset candidates returned by our search

strategies, we selected exemplary datasets with more
than 5 million triples for a deeper analysis and will
present them in the following:

Yago 3: is a prominent knowledge base extracted
from Wikipedia and other sources. It stores meta
and provenance information per triple using a non-
standardized way of assigning triple-ids via turtle com-
ments. The ids are associated with metadata in the
same way as in the other MRMs. While there is a
source URL and extraction technique recorded for al-
most every triple, metadata from other dimensions
(e.g. geo location, time) is only available for a very
small subset of triples.

Artists Knowledge Graph: In [6] a knowledge
graph, containing fused data about 161,465 artists
from 4 sources, had been created. For every statement
a detailed provenance object (explaining sources and
the processes the data went through) is recorded, using
a role object19 similar to nary-relation (see next chap-
ter). If the same value for one entity attribute occurs
in several datasets, multiple provenance objects are at-
tached to it.

Bio2RDF: Within the Bio2RDF project various
datasets from the life sciences have been converted to

17https://lists.w3.org/Archives/Public/
semantic-web/2016Sep/0034.html

18https://lists.w3.org/Archives/Public/
public-prov-comments/2016Sep/0000.html

19http://blog.schema.org/2014/06/
introducing-role.html

RDF. More than 30 datasets contain simple provenance
information, which describe each graph. A graphs con-
tains all triples from one source. The number of differ-
ent graphs for the majority of datasets is very small.

LinkLion: is a database for owl:sameAs links be-
tween entities. In this dataset standard reification is
used, to represent which linksets support a specific
sameAs link. Furthermore, provenance information
such as dump time and the used extraction algorithm
name are provided.

LinkedGeoData: is a mapping of relational data
from OpenStreetMap20 to RDF. It provides revision
metadata information for every node such as ver-
sion_number, user_id, timestamp, changeset_id.

Linked Clinical Trials: translates XML export files
of clinical trials to RDF. For some entities (e.g. facil-
ity, drug, condition, address, state, person) the XML
document provenance information is kept.

Nano-publications: is a data model, which can
be represented in cascaded RDF graphs (one con-
tainer graph for the nano-publication and three ad-
ditional graphs for the fact (assertion), provenance
and publication information (meta-metadata)). Nano-
publications are primarily used in the life sciences.
One big dataset21 consists of 204 million associa-
tions between gene and disease concepts. For each
of these relations the percentile rank of the match
score is stored in combination with other prove-
nance information such as prov:wasDerivedFrom and
prov:wasGeneratedBy. In addition, a nano-publication
dataset stores metadata about license, right-holder, au-
thors, creation date. For the checked datasets, the meta-
data is not diverse, i.e. many/all nano-publications
share the same authors.

Open Citations Corpus: The Open Citations Cor-
pus22 contains information about the author-created
bibliographic references present in publications that
cite other publications. It consists of 1,074,415 cit-
ing/cited bibliographic resources with a total number
of 1,266,820 citation links. For bibliographic entities,
provenance and versioning metadata (changes between
versions, which agent changed the version and source
information) is tracked.

20https://www.openstreetmap.org/
21http://datadryad.org/resource/doi:

10.5061/dryad.gn219
22http://rawgit.com/essepuntato/

opencitations/master/paper/occ-driftalod2016.
html

https://lists.w3.org/Archives/Public/semantic-web/2016Sep/0034.html
https://lists.w3.org/Archives/Public/semantic-web/2016Sep/0034.html
https://lists.w3.org/Archives/Public/public-prov-comments/2016Sep/0000.html
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http://datadryad.org/resource/doi:10.5061/dryad.gn219
http://rawgit.com/essepuntato/opencitations/master/paper/occ-driftalod2016.html
http://rawgit.com/essepuntato/opencitations/master/paper/occ-driftalod2016.html
http://rawgit.com/essepuntato/opencitations/master/paper/occ-driftalod2016.html
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Wikidata: Within the Wikidata Statement Model
claims (which are similiar to triples in RDF) can be
described with qualifiers consisting of keys and val-
ues (analogous to MRMs). Qualifiers are used to pro-
vide a context or scope for a claim (e.g. how long the
marriedTo-relation between two persons is valid). In
contrast to this factual metadata, there also exists the
concept of references, which records provenance for
claims. One third of the qualifiers embed the claims in
a validity time context.

3.2. Evaluation dimensions

During our investigation, we identified four main
dimensions which are influencing the performance of
different RDF stores when handling metadata. Due to
the fact that this paper focuses on MRMs, we will fo-
cus on the MRM dimension and the other dimensions
will be discussed only in as much detail as it is required
for this work.

3.2.1. Dimension: Purpose and types of metadata
Metadata can be used to record different types of

descriptive information at different levels of granular-
ity. The type of information, which is recorded with
metadata, can be about facts like the author, the cre-
ation date, extraction tools, confidence values, license,
file format, storage information and much more. In the
context of this evaluation, we defined three granularity
levels:

Dataset/Graph level: level which provides infor-
mation for all entities and statements within the same
dataset/graph. For a dataset like DBpedia, this meta in-
formation can be information about the Wikipedia ver-
sion, the Wikipedia chapter language, the number of
entities in the dataset, to name just a few examples.

Entity/Resource level: level where all statements
about the entity share the same meta information. If
facts about an entity from a Wikipedia page are ex-
tracted, then the meta information of the Wikipedia
page can be used as meta information for all the ex-
tracted statements/triples of this entity such as revision
information, publication date, number of edits, etc.

Triple level: level where metadata is stored for each
statement or triple. When dealing with information
from different DBpedia language datasets, it is possi-
ble that two or more data sources share information
about the same real world entities. In this scenario it is
required to store meta information at a triple/statement
level in order to use the metadata for filtering or fusion
algorithms.

Depending on a given use case, an appropriate gran-
ularity level has to be selected.

3.2.2. Dimension: MRM
As shown in Figure 1, the way MRMs allow the ac-

cess of meta information can differ significantly. The
analysis of the potential impact of MRMs towards the
other dimensions is going to be one of the driving fac-
tors of this evaluation. More information about each of
these MRMs will be given in section 4. In several use
cases we identified the requirement for supporting data
evolution over time. While it is possible to store both
the metadata of a revision (e.g. the date when the name
of an entity was changed) as well as the actual previous
and next revision of the triple itself (e.g. by connect-
ing the statement ids with a newRevisionOf property),
we are not going to address the latter, since it overlaps
with the research area of triple versioning, which is out
of the scope for this work. Related to the topic of data
evolution is the ability to extend the metadata model
with extra information at a later stage. To the best of
our knowledge, this requirement is fulfilled by all the
tested MRMs, since they depend on RDF. With RDF it
is possible, to add new properties without the need to
adapt a schema.

Supporting one or more levels of granularity and
the ability to track meta information from different
data sources, are two of the requirements for an MRM.
Many of the examined datasets have meta information
at a dataset level, where the metadata is used to de-
scribe the dataset itself or big parts of it. Other datasets,
like nano-publications23, support meta information at
an entity or statement level. Since metadata might be
used to describe data at different granularity levels, it
is important that a MRM can be applied at different
levels of granularity.

3.2.3. Dimension: Dataset characteristics
Each dataset differs in features such as entity in-

/out degrees, property distribution and many more. The
datasets which are used in this evaluation should con-
tain real-world data, since these graph features are dif-
ficult to reproduce in a synthetic dataset. These dataset
characteristics have a direct impact on different mea-
surement values such as the dataset size and query ex-
ecution time. Therefore we have decided to only use
datasets, which use real-world data. In order to verify
the impact of MRMs, the level of granularity at which
metadata is stored can have an impact on the dataset

23http://nanopub.org/wordpress/

http://nanopub.org/wordpress/
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size, query complexity and the query execution times.
Hence we were only interested in datasets which store
metadata at least at the entity or triple level. Further-
more, it is important that metadata contains diverse
and not just repetitive data (e.g. different data sources,
annotators, dates) and covers different metadata types
(e.g. date, provenance) which were seen in the bottom-
up analysis. Finally the dataset should be big enough,
in order to stress the graph backend. These require-
ments shall ensure that the amount of metadata allows
us to create and execute diverse search queries which
can not be cached by the backend.

3.2.4. Dimension: Query requirements
Although the other dimensions have an signifi-

cant impact on the query execution performance, the
queries themselves can differ in complexity and there-
fore in runtime performance. It is not only the number
of triple patterns which impact the execution time, but
also the number of used SPARQL features can have a
significant impact on a query execution time. The au-
thors in [16] have studied complexity classes of differ-
ent SPARQL elements. The conclusions are summa-
rized in three theorems, which are used for our evalu-
ation when we create simple, medium and hard query
templates.

Theorem 1: the evaluation of SPARQL queries
with AND and FILTERS depends on the size of the
dataset and the number of triple patterns in the query.

Theorem 2: establishes that UNIONs between non
union-compatible basic graph patterns (BGPs) are NP-
complete, where two BGPs are union compatible if
they share variables.

Theorem 3: states that OPTIONAL values increase
also time complexity.

Based on this work we define three complexity
classes for the SPARQL templates.

3.3. Evaluation Criteria

Based on the analysis steps and the presented re-
quirements, we deducted the following criteria and
give metrics for the evaluation, whenever possible.

3.3.1. Criteria for metadata representations
Storage cost - evaluates the size of the metadata rep-

resentation format and will be measured by triple
count and by overall database size in byte.

Data-only query overhead/impact - the addition of
metadata to an existing dataset increases the size
and complexity of structure significantly, which
in terms influences handling update and query

complexity of data-only queries (which do not
take metadata into account). Our evaluation mea-
sures query time in ms for data-only queries with
and without loaded metadata.

Mixed (metadata and data) query execution time -
for a set of query templates over data and meta-
data we compare the execution time (in ms)

Usability - querying over metadata should not result
in difficult query formulation for both data and
metadata queries. We think the comparison of the
number of variables, triple patterns and additional
SPARQL elements, which are necessary to query
a single triple with a metadata fact, are indicators
for the usability of a MRM.

3.3.2. Criteria for metadata extension and SPARQL
implementations

Bulk load - evaluates metadata bulk loading capaci-
ties for stores and is measured in milliseconds.

SPARQL conformance - evaluates store-specific meta-
data extensions and measures whether stores are
able to handle all SPARQL queries as well as dis-
cussed in the individual metadata extensions.

3.3.3. Additional criteria
Backward compatibility of queries - evaluates data-

only queries, which should still work after the
addition of metadata without the need to rewrite
them.

4. Metadata Representation Models

Within the Linked Data community different ways
of representing metadata have been developed. The
most common MRMs were described in [9] and [10].
This work is going to use the same MRMs for this eval-
uation. In this section, we are going to present RDF-
compliant MRMs and we will have a brief discussion
about native metadata support by graph backends. Fig-
ure 1 visualizes the major differences between MRMs
and can be used as a visual reference.

4.1. RDF compliant techniques

In order to make it easier for the reader to under-
stand the differences between the MRMs, a running
example is used. In the example two entities are shown
with birth year values for Person p1 and p2 using the
dbo:birthYear attribute. For each RDF statement meta-
data about the last modification date (dc:modified) ex-
ists. The presented query searches for the most current
birth date for each distinct person.
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4.1.1. named graphs
The named graph feature, which is supported by

many graph backends, allows the assignment of one
IRI for one or more triples as a graph id. The same
IRI can then be used as a subject for a metadata entity,
which itself can store the metadata about the associated
triple(s) as predicates and objects.

# data with birth year values for
# Person p1 and p2 (trig notation)
<g1> { <p1> dbo:birthYear "1981". }
<g2> { <p1> dbo:birthYear "1983". }
<g3> { <p2> dbo:birthYear "1982". }

# metadata:
meta:dbpedia { <g1> dc:modified "2016-11"^^xsd:gYearMonth .

<g2> dc:modified "2014-12"^^xsd:gYearMonth .
<g3> dc:modified "2012-01"^^xsd:gYearMonth . }

# query
SELECT ?person ?birth {

{ GRAPH ?g {?person dbo:birthYear ?birth } .
GRAPH meta:dbpedia {?g dc:modified ?modified}

} FILTER NOT EXISTS {
GRAPH ?g2 {?person2 dbo:birthYear ?birth2 }
GRAPH meta:dbpedia {?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

The ngraphs MRM is easy to understand, since it
just builds on top of the existing triple format. Hence
it is possible to reuse existing data queries. In addition,
the metadata can be reached by only adding one ad-
ditional triple into the search query. Another big ad-
vantage of this approach is that fact, that the ngraphs
MRM is capable of supporting different granularity
levels. The same metadata IRI can be reused at dataset,
entity and triple level. The one big drawback of the
ngraphs model is the fact that it uses the named graph
IRI as a URI for a metadata resource, which itself
stores a set of key-value based metadata facts. If the
original dataset uses a named graph to store the data
facts then a ngraphs MRM can not be applied in a
backward compatible way .

4.1.2. RDF reification
As specified in the RDF standard, it is possible to

create a resource which describes a triple and its sub-
ject, predicate and object. The resource IRI can then be
used to connect provenance or meta information with
the triple.
# birth year values for
# Person p1 and p2 (turtle notation)
<stmt-56e8> rdf:type rdf:Statement ;

rdf:subject <p1> ;
rdf:predicate dbo:birthYear ;
rdf:object "1981" .

<stmt-4f83> rdf:type rdf:Statement ;
rdf:subject <p1> ;
rdf:predicate dbo:birthYear ;
rdf:object "1983" .

<stmt-4327> rdf:type rdf:Statement ;
rdf:subject <p2> ;
rdf:predicate dbo:birthYear ;
rdf:objec "1982" .

# metadata:
<stmt-56e8> dc:modified "2016-11"^^xsd:gYearMonth .
<stmt-4f83> dc:modified "2014-12"^^xsd:gYearMonth .
<stmt-4327> dc:modified "2012-01"^^xsd:gYearMonth .

# query
SELECT ?person ?birth {

{ {?g rdf:subject ?person; rdf:predicate dbo:birthYear;
rdf:object ?birth ; a rdf:Statement . } .

{?g dc:modified ?modified . }
} FILTER NOT EXISTS {

{?g2 rdf:subject ?person2; rdf:predicate dbo:birthYear;
rdf:object ?birth2 ; a rdf:Statement . } .

{?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

Compared to the ngraphs MRM, it is not possible
to reuse existing data queries out of the box. In or-
der for them to work, a custom reasoning mechanism
would have to be applied. Furthermore each original
data triple has to be represented by a resource entity,
which itself consists of four statements (rdf:subject,
rdf:predicate, rdf:object and rdf:Statement). This does
not only increase the dataset size, but adds more triple
patterns to potential search queries. All four compo-
nents of a reified resource have to be used as triple pat-
terns in order to find the correct reified triple in the
dataset. Although this MRM looks unusual at a first
glance, once identified the resource IRI can be used
to access data and metadata. Furthermore, it supports
datasets, which use named graphs.

4.1.3. nary-relation
A relationship instance is created as a resource of

the subject-predicate-pair instead of the object of the
triple. The object is connected to the relationship re-
source, using a renamed version of the predicate (ap-
pending designated suffix). The same relationship re-
source is utilized, to relate meta information to the
statement.24

# birthyear values for
#Person p1 and p2 (turtle notation)
<p1> dbo:birthYear <rel-56e8> .
<rel-56e8> dbo:birthYear-value "1981" .
<p1> dbo:birthYear <rel-4f83> .
<rel-4f83> dbo:birthYear-value "1983" .
<p2> dbo:birthYear <rel-4327> .
<rel-4327> dbo:birthYear-value "1982" .

# metadata:
<rel-56e8> dc:modified "2016-11"^^xsd:gYearMonth .
<rel-4f83> dc:modified "2014-12"^^xsd:gYearMonth .
<rel-4327> dc:modified "2012-01"^^xsd:gYearMonth .

# query
SELECT ?person ?birth {

{ { ?person dbo:birthYear ?g. ?g dbo:birthYear-value ?birth . } .
{?g dc:modified ?modified . }

} FILTER NOT EXISTS {
{ ?person2 dbo:birthYear ?g2.

?g2 dbo:birthYear-value ?birth2 . } .

24https://www.w3.org/TR/swbp-n-
aryRelations/

https://www.w3.org/TR/swbp-n-aryRelations/
https://www.w3.org/TR/swbp-n-aryRelations/
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{?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

Similar to the standard reification, an IRI can be
used to access data and metadata. In the case of the
nary-relation MRM the IRI is a relation resource IRI.
Due to the introduction of the relation resource IRI one
more statement per triple value has to be added. Exist-
ing data queries can not be reused, but compared to the
standard reification fewer triple patterns are required
to access either data values or metadata. Furthermore
it is possible to support datasets with named graphs.

4.1.4. Singleton Property
The singleton property[15] scheme uses a unique

property for every triple with associated metadata.
This unique property deals as a triple identifier, which
can be used to describe the statement with meta
information. In order to be able to reconstruct the
original property of the statement, every singleton
property is linked to its original predicate using a
rdf:singletonPropertyOf relationship.
# birth year values for
# Person p1 and p2 (turtle notation)
<p1> <56e8-783f-9cd3> "1981" .
<p1> <4f83-6cd5-88da> "1983" .
<p2> <4327-367e-439b> "1982" .

# property reconstruction information
<56e8-783f-9cd3> rdf:singletonPropertyOf dbo:birthYear .
<4f83-6cd5-88da> rdf:singletonPropertyOf dbo:birthYear .
<4327-367e-439b> rdf:singletonPropertyOf dbo:birthYear .

# metadata:
<56e8-783f-9cd3> dc:modified "2016-11"^^xsd:gYearMonth .
<4f83-6cd5-88da> dc:modified "2014-12"^^xsd:gYearMonth .
<4327-367e-439b> dc:modified "2012-01"^^xsd:gYearMonth .

# query
SELECT ?person ?birth {

{ {?person ?g ?birth .
?g rdf:singletonPropertyOf dbo:birthYear .} .

{?g dc:modified ?modified . }
} FILTER NOT EXISTS {

{?person2 ?g2 ?birth2.
?g2 rdf:singletonPropertyOf dbo:birthYear. }

{?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

This unique property can be seen as a predicate re-
source IRI. The predicate resource IRI can be used to
access metadata and the original predicate type. Since
the predicate resource has the rdf:singletonPropertyOf
relation, it is possible to use RDFS entailment rules
to infer the original statements. When looking at the
dataset triples, it is not possible to deduct the direct
meaning of a triple predicate. It is always required to
use the predicate resource IRI to find the associated
rdf:singletonPropertyOf property and with it the orig-
inal predicate. Furthermore it is possible to support
datasets with named graphs.

4.1.5. Companion Properties
As was shown in [10], the singleton property rep-

resentation model suffers from the fact that it creates
a new property for every statement in order to create
globally unique properties. This results in a very un-
common uniform distribution of properties, and there-
fore, in increased query times.

Since this is a novel MRM, we explain it in more
detail compared to the other MRMs. The companion
properties representation model uses a fixed naming
scheme to create a property, which is unique with re-
spect to the subject of the statement. In order to sup-
port the naming scheme, an occurrence counter can be
utilized when creating the new dataset. An individual
occurrence counter is used per property p for its sub-
ject s. The occurrence count is appended as a suffix to
every instance of p. Every such generated property cp
has, depending on the used profile, at least one com-
panion property, which is from a graph theoretic view
a sibling of p with respect to s. The IRI of this com-
panion property consists of the IRI of cp plus the addi-
tional suffix “.SID”. For each subject and companion
property pair, a statement ID is created which serves
as a unique metadata resource identifier for the triple s
cp o .

The number of different companion property names
is bound by

∑
p∈D(maxOut(p) · 2), where maxOut(p)

is the maximum number of edges per resource for
the property p in the dataset D. When merging two
datasets which use this MRM, the naming scheme
should include a dataset specific prefix for the counter
values, in order to avoid name collisions. Analogous
to a singleton property, RDFS entailment rules can be
used to infer the original statements.

# birth year values for
# Person p1 and p2 (turtle notation)
<p1> dbo:birthYear.1 "1981" ;

dbo:birthYear.1.SID <sid-56e8> .
<p1> dbo:birthYear.2 "1983" ;

dbo:birthYear.2.SID <sid-4f83> .
<p2> dbo:birthYear.1 "1982" ;

dbo:birthYear.1.SID <sid-4327> .

# property reconstruction and SID association vocabulary
dbo:birthYear.1.SID rdf:idPropertyOf dbo:birthYear.1 .
dbo:birthYear.1 rdf:companionPropertyOf dbo:birthYear .
dbo:birthYear.2.SID rdf:idPropertyOf dbo:birthYear.2 .
dbo:birthYear.2 rdf:companionPropertyOf dbo:birthYear .

# metadata:
<sid-56e8> dc:modified "2016-11"^^xsd:gYearMonth .
<sid-4f83> dc:modified "2014-12"^^xsd:gYearMonth .
<sid-4327> dc:modified "2012-01"^^xsd:gYearMonth .

# inference "rule"
rdf:companionPropertyOf rdfs:subPropertyOf rdfs:subPropertyOf .

# query
SELECT ?person ?birth {

{ { ?person ?cp ?birth; ?cpid ?g.
?cp rdf:companionPropertyOf dbo:birthYear.
?cpid rdf:idPropertyOf ?cp . } .
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{?g dc:modified ?modified . }
} FILTER NOT EXISTS {

{ ?person2 ?cp2 ?birth2; ?cpid2 ?g2.
?cp2 rdf:companionPropertyOf dbo:birthYear.
?cpid2 rdf:idPropertyOf ?cp2. } .

{?g2 dc:modified ?modified2 }
FILTER ( ?person = ?person2 && ?modified2 > ?modified )

}
}

In contrast to the other triple based MRMs, the iden-
tifiers are not required for reconstructing the original
triple. Thus it allows, likewise to ngraphs, sharing of
statement identifiers and additionally multiple identi-
fiers per statement. This enables companion properties
to support different granularity levels.

4.2. Vendor Specific Metadata Support in RDF Stores

Some of the database vendors for RDF stores have
already recognized and discussed the potential of
adding a custom support for metadata on statement
level or a native way of using statement identifiers in
their backends. We investigated the online documen-
tation of several major RDF stores and asked their
vendors whether they are planning ore already imple-
mented a specific support for metadata. To the best
of our knowledge, we provide a short overview of the
current state at the time of writing this paper.

4.2.1. Blazegraph25

The Java based graph store Blazegraph offers a
feature called Reification Done Right26. It is based
on SPARQL* and RDF* which are well founded [8]
syntactic extensions of the SPARQL, respectively the
Turtle grammar. Since the marketing name of RDF*
is RDR, we are going to refer to RDF* with the
term RDR. The existence of a translation to RDF and
SPARQL ensures backward compatibility and pro-
vides formal semantics.
Reification feature: RDR To import and bulk load
reified RDF data, two additional file formats based
on N-Triples and Turtle have been introduced. It al-
lows a statement to occur as subject and/or object of
another statement by enclosing it with double angle
brackets. «:Bob foaf:age 23» dc:creator
:Joe. RDR even supports nested reified statements.
Unfortunately, there is one major limitation caused by
the translation into RDF. Multiple reifications of the
same triple are translated into one standard W3C reifi-
cation rdf:Statement, and therefore, it is not possible

25https://www.Blazegraph.com/product/
26https://wiki.Blazegraph.com/wiki/index.

php/Reification_Done_Right

to distinguish grouped annotations (e.g., when a confi-
dence score and the tool which produced the data and
the score, are stored as individual values, the confi-
dence values only makes sense in the scope of the tool)
anymore.
SPARQL reification extension: SPARQL* Using
SPARQL* it is possible to bind a whole statement or
a statement pattern, which can contain variables, to a
variable which can be used as subject or object of an-
other SPARQL triple pattern. A new type of SPARQL
result sets similar to the notion of RDR allows to fetch
reified statements and its attached metadata.

SELECT ?age ?src WHERE {
?bob foaf:name "Bob" .
BIND( <<?bob foaf:age ?age>> AS ?t ) .
?t dct:source ?src .

}

Besides the support for CONSTRUCT and DE-
SCRIBE, Blazegraph allows data mutation for reified
triples using UPDATE and INSERT queries.
Implementation The reified statement is embedded
directly into the representation of each statement about
that reified statement. This is achieved by using in-
dices with variable lengths and recursively embedded
encodings of the subject and object of a statement.

4.2.2. Virtuoso27

To the best of our knowledge the Virtuoso back-
end does not have extensions for handling metadata
use cases. The community and an OpenLink employee
have discussed a possible extensions 28 29, but no ad-
ditional reification feature has been added to Virtuoso
yet. In order to use Virtuoso for provenance and meta-
data scenarios the RDF-compatible MRMs have to be
utilized.

4.2.3. Others
Other RDF store providers have created extensions

for storing and retrieving metadata more efficiently.
AllegroGraph30 supports the handling of metadata
with its Direct Reification feature, which uses state-
ment identifiers. Stardog31 allows the support of meta-
data by introducing a statement identifier, which is also
used to support property graphs. Both systems provide

27http://Virtuoso.openlinksw.com/dataspace/
doc/dav/wiki/Main/

28https://lists.w3.org/Archives/Public/
public-lod/2010Oct/0094.html

29http://www.openlinksw.com/weblog/oerling/
?id=1572

30http://franz.com/agraph/allegrograph/
31http://Stardog.com/

https://www.Blazegraph.com/product/
https://wiki.Blazegraph.com/wiki/index.php/Reification_Done_Right
https://wiki.Blazegraph.com/wiki/index.php/Reification_Done_Right
http://Virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://Virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
https://lists.w3.org/Archives/Public/public-lod/2010Oct/0094.html
https://lists.w3.org/Archives/Public/public-lod/2010Oct/0094.html
http://www.openlinksw.com/weblog/oerling/?id=1572
http://www.openlinksw.com/weblog/oerling/?id=1572
http://franz.com/agraph/allegrograph/
http://Stardog.com/
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a proprietary SPARQL extension to query a statement
identifier. Unfortunately at the time of writing this
work, none of the systems provide a way to bulk load
data making use of statement identifiers. Aside from
that, AllegroGraph supports storage and bulk loading
of JSON based so-called triple attributes. The fact, that
the attributes have to be defined in a schema before
they can be loaded, and the missing SPARQL integra-
tion limit the usage of this extension.

5. Evaluation Datasets with Metadata

Finding suitable datasets for the evaluation is cru-
cial. In section 3 dataset requirements for this evalua-
tion were discussed. Although synthetically generated
data can be used to model real world situations, it is not
always possible to reproduce occurrences in real world
graphs such as the distribution of the predicates, the
graph density and others measures without a thorough
analysis of multiple domain datasets. In the context of
this work, we decided to use real-world datasets, since
we believe that the results can be transferred into other
real-world scenarios more easily.

After the review of the available metadata datasets,
we decided to use the following RDF datasets for the
evaluation:

Wikidata: In order to reproduce and compare the
work from [10], we reused the same Wikidata dump
with time, geospatial and source/reference metadata
for a part of the statements (in Wikidata referred to
as claims). The converted dataset from 2016/01/04
JSON dump contains over 81 million claims, describ-
ing around 16 million entities (out of 19 million enti-
ties in total) and using 1600 different properties. The
metadata is modelled on a statement level, so a state-
ment id is kept for every claim, but 1.5 million claims
have qualifiers (key-value metadata facts like start time
of a claim), only. The 2.1 million qualifiers are based
on 953 distinct qualifier keys (denoted as metadata key
in Figure 1). In the excerpt below a shortened example
of two different claims with metadata about the pres-
idency of Grover Cleveland is given. Furthermore the
example illustrates the special case, where the same
claim occurs more than once, but with different meta-
data. For a more detailed description about the data we
refer to [10].

# 2 Wikidata claims about Grover Cleveland
<claim1> {

<claim1> rdf:type wb:Statement .
# Grover Cleveland held position President of U.S.
wde:Q35171 wdp:P39 wde:Q11696 .

# start time qualifier of presidency (claim metadata)

<claim1> wdp:P580 wdq:abb3c2c8a00 .
# start time qualifier value object
wdq:abb3c2c8a00 rdf:type wb:TimeValue ;

wb:timeValue "+1893-03-04T00:00:00Z"^^xsd:dateTime ;
wb:timeTimeZone "0"^^xsd:integer ;
wb:timePrecision "11"^^xsd:integer ;
wb:timeCalendarModel wde:Q1985727 .

# as 24th president (claim metadata)
<claim1> wdp:P1545 "24" .

}

<claim2> {
<claim2> rdf:type wb:Statement .

# Grover Cleveland held position President of U.S.
wde:Q35171 wdp:P39 wde:Q11696 .

# as 22nd president
<claim2> wdp:P1545 "22" .

}

Wikipedia history and DBpedia: Since DBpedia
data does not come with diverse metadata, we decided
to apply the Wikipedia Revision history on top of a
company focused dataset. This dataset allows insights
into the data evolution of a DBpedia entity, which is
going to be part of future research projects.

In [5] a system has been presented, which can be
used to create an RDF dataset with revision informa-
tion for a Wikipedia chapter (e.g. French, German, En-
glish). We adopted these scripts32, to transform the re-
vision metadata XML dumps, which are published ev-
ery month on Wikipedia, into a Turtle representation.
Additionally the script writes metadata such as the cor-
responding DBpedia instance, the number of revisions
per time frames (e.g., months, years), author informa-
tion, change dates, etc. to the output turtle file.

Considering that on average more than 277 meta-
data revision statements exist per DBpedia entity, we
decided not use the complete DBpedia dataset. There-
fore, we extracted data from the German and English
DBpedia chapters about companies, their associated
locations and persons. Focusing the dataset around
companies and their related resources, helped to nar-
row down the dataset. Due to the different types of
entity classes, this dataset still ensures a diverse dis-
tribution of entity relations within the graph. The re-
duced dataset contains more than 83 thousand enti-
ties (approx. 37,000 companies, 27,000 places and
19,000 persons). Once extracted, the selected DBpe-
dia resources were enriched with the resource revi-
sion meta information for the German and English
Wikipedia chapter. Although the revision information
is only available per resource, it was applied on a per
triple level. This action was performed, in order to
allow the usage of MRMs like standard reification,
which are designed for triple level associations, only.
The meta information, which is associated with every

32https://github.com/dbpedia/Historic

https://github.com/dbpedia/Historic
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triple, comprises aggregated metadata based on all re-
visions of an article like the number of revisions (to-
tal, last 2 years/months), creation and last modifica-
tion date, but also links to every Wikipedia revision for
the article of the triples entity. In the dataset, a dedi-
cated resource exists for every link, which contains ad-
ditional information such as editor name and date of
the revision. While a link to a revision remains sta-
ble, the aggregated metadata is dependent on a specific
dump file created at a given point of time. We therefore
save meta-metadata for this aggregated metadata in the
form of a link to the used dump file. Note that stor-
ing provenance for the metadata requires reifying the
metadata, too. In total over 23 million revisions are as-
sociated with the entities. More than 12,800 properties
are used for data statements, but just 21 for metadata
keys. The dataset is characterized by a 1:10 data/meta-
data ratio (10 metadata triples for a data triple) and
1:100 data/revision ratio (100 triples of revision infor-
mation for one data triple). In contrast to the Wiki-
data dataset the number of metadata statements (948
million revision information statements and 94 million
statements for aggregated metadata plus the links to
the revisions) exceeds the number of data statements
(9.7 million) by two orders of magnitude. This is mo-
tivated by use cases where traceability or provenance
information make up a greater portion than the data it-
self. A fragment of the dataset which shows the full ag-
gregated metadata for one entity, with incomplete data
and revision links, is listed below.

# DBpedia dataset with revision metadata (trig notation)
# triples of one entity share same metadata
dbr:Ang_Lee-Statements {
dbr:Ang_Lee

rdf:type <http://dbpedia.org/ontology/Person> ;
foaf:givenName "Ang"@de ;
foaf:surname "Lee"@de ;
owl:sameAs <http://dbpedia.org/resource/Ang_Lee> ;

}

# aggregated metadata for entity
dbr:Ang_Lee-Meta {
dbr:Ang_Lee-Statements

dc:created "2001-08-08T08:21:09"^^xsd:dateTime ;
dc:modified "2016-10-14T17:06:34"^^xsd:dateTime ;
historic:uniqueContributorNb 235 ;
<http://www.w3.org/2004/03/trix/wp-2/isVersion> 378 ;
historic:revPerLastMonth1 1 ;
historic:revPerLastMonth2 1 ;
historic:revPerYear2016 10 ;
historic:revPerYear2015 10 .

}

{# meta-metadata for aggregated metadata from above
dbr:Ang_Lee-Meta

historic:hasSource historic:de_xml_16_11_14 .
# links to revisions metadata resources
dbr:Ang_Lee-Statements

historic:hasMainRevision wiki:wiki/Ang_Lee;
historic:hasOldRevision

wikiv:index.php?title=Ang_Lee&oldid=10 ,
wikiv:index.php?title=Ang_Lee&oldid=96519084 ,
wikiv:index.php?title=Ang_Lee&oldid=9713203 .

}

6. Evaluation Setup

To allow a comparison of this work with respect
to different evaluation hardware and setup, we repro-
duced the loading and the quin query pattern experi-
ments from [10]. In addition, we measured the execu-
tion and loading times as well as the database sizes. For
this evaluation, we created a DBpedia based dataset
which uses Wikipedia revision information as meta-
data. Combining the results of all the experiments al-
lows us to take a more detailed look on how different
MRMs perform for different datasets and use cases.

The evaluation was executed on an Ubuntu 14.04.3
server system with a 3.19.0-33 kernel, Oracle Java
1.8.0_66, ruby 2.2.5p319, a 1.8GHz Intel Xeon E5-
2630L CPU, 256GB RAM and a 3.6TB hard disk
drive. We used Blazegraph in version 2.1.2, Virtuoso
07.20.3215-pthreads and Stardog 4.2.3. The database
configuration parameters for Virtuoso and Blazegraph
were reused from [10]. According to the settings in
[10], we use the recommended 6GB Java heap mem-
ory size for Blazegraph. Blazegraph relies on the file
system cache to improve disk access and the rela-
tively small memory footprint should keep interrup-
tions by the GC at a minimum. Furthermore, we dis-
abled swap as per recommendation of the Blazegraph
performance guide33. For Virtuoso we used a buffer ac-
cording to 32GB available RAM and additional 2GB
for the query processor. The recommended settings for
Stardog were not sufficient for our dataset. We there-
fore set java parameters to 32GB heap (for better com-
parison with Virtuoso) and 32GB as maximum direct
memory.

According to our requirements for SPARQL inte-
gration and bulk loading we did not consider the ven-
dor specific metadata extensions for Stardog and Al-
legroGraph due to their limitations. Moreover license
restrictions prevent the evaluation of AllegroGraph in
this work. Therefore we selected Blazegraph, Stardog
and Virtuoso for this evaluation.

6.1. Dataset Conversion

For the experiment which was described in [10], we
were able to reuse the existing conversion scripts.

To create the DBpedia based dataset, we developed
a Java based framework and command line utility34,

33https://wiki.Blazegraph.com/wiki/index.
php/PerformanceOptimization

34https://github.com/JJ-Author/meta-rdf
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which allows us to apply various metadata represen-
tation formats on top of datasets. The framework fea-
tures a novel JSON representation, which allows the
association of metadata to quad(s) for different lev-
els of granularity. Once the source dataset is con-
verted into the novel JSON representation, this inter-
mediate JSON-based dataset can be used to create test
datasets, which use the different metadata represen-
tations. All datasets had been converted into several
gzipped nquads (.ntx for rdr) files.

6.2. Evaluation Procedures

The evaluation is separated into two parts. First,
datasets are loaded, and the following metrics are mea-
sured: loading time, database size, statement count.
For every MRM and dataset we created an isolated new
database instance to prevent side effects. Once all the
data is loaded, the second part, the query execution, is
started. For each query template, we restart the back-
end and clear the cache. Then we run all instances for
one query template sequentially.

In order to execute the queries, we adapted35 the
framework, which is described in [10]. We measure
both, the execution times and the loading times, by re-
trieving a ruby time stamp before sending the query,
respectively executing the bulk load command and af-
ter the execution is finished. The database sizes were
measured with the UNIX ls command. We use both a
client side and a database internal timeout. The former
one is used as a fallback, in case the database time-
out did not trigger. For Wikidata we kept the database
timeout of 60 seconds and a client timeout of 120 sec-
onds. As we want to evaluate more challenging queries
within the DBpedia scenario, we have chosen timeouts
of 240 seconds and 400 seconds respectively.

6.3. Wikidata Scenario

For this work we extended the scenario, which is
described in [10], by evaluating the Blazegraph feature
RDR, which had not been studied for the Wikidata use
case yet. In order to circumvent the limitation of RDR,
that every triple needs to be unique, we do not attach
the metadata directly to the data triple. Instead, we use
(multiple) statement identifiers as metadata, which are
then linked to the actual metadata. This is necessary,

35https://github.com/JJ-Author/wikibase-
bench

to model the Grover Cleveland example listed above.
The technique is illustrated in the following example:

<< :s :p :o >> :hasMeta :id1 ;
:hasMeta :id2 .

6.3.1. Wikidata Loading Time
When we looked at the the original experiment

webpage36, we were surprised about the huge load-
ing times of Blazegraph (e.g. more than 66 hours for
ngraphs) in contrast to Virtuoso (4 hours). We repeated
loading the data for ngraphs and rdr with the same
database configurations and measured 76 and 80 hours
respectively on our machine. We could identify two
minor issues in the original setup, which were caus-
ing this huge difference. First the original Wikidata
dataset uses a non-RDF compliant encoding of dates.
When loading the data into the RDF backend, various
warnings are recorded in the log-files, which decreased
the insertion throughput. We therefore converted the
dates into the appropriate format and repeated measur-
ing the loading time and achieved 47 hours for rdr and
44 hours for ngraphs. Furthermore we switched the
commit process from an incremental commit to a batch
commit. This guarantees a fair comparison to Virtu-
oso, where indexing and commits have been disabled
for the bulk loading procedure. This change resulted
in an additional speedup and also reduced the database
size. The final results are shown in Table 1 and will be
discussed in section 7.

6.3.2. Wikidata Quins Experiment
A quin represents a data-metadata look-up query,

where for a data triple pattern s,p,o the attached
metadata key k and its corresponding values v are
queried. For this quin pattern (s,p,o,k,v) the au-
thors defined 31 templates based on 31 binary masks of
length 5 (from (0,0,0,0,1) to (1,1,1,1,1)),
which define whether the corresponding position of
the quin deals as a constant or as a variable in the
query. For example the mask (1,1,1,0,0) gen-
erates queries retrieving all the metadata information
for one specific triple (s,p,o are constants and k,v
are variables). Every template has 300 query instan-
tiations, whereas for every template the same pool of
300 randomly sampled quin instances is used for the
constants in the query. The query instances are trans-
lated into the respective representations of the ngraphs,
naryrel, sgprop, stdreif and rdr formats. Figure 2

36http://users.dcc.uchile.cl/~dhernand/
wquery/#results

https://github.com/JJ-Author/wikibase-bench
https://github.com/JJ-Author/wikibase-bench
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Table 1
Wikidata experiment The number of statements for the Wikidata
dataset, its respective loading times and the final database size for
the different MRMs.
naryrel ngraphs sgprop stdreif rdr

#statements 563,678,588 482,371,357 563,676,547 644,981,737 563,676,547

loading time Virtuoso (hours) 3.39 3.04 3.22 3.15 -
db size Virtuoso (GiB) 45.94 46.83 46.25 45.21 -

loading time Blazegraph (hours) 14.57 13.03 7.12 7.09 10.40
db size Blazegraph (GiB) 60.73 98.25 60.73 60.73 66.87

loading time Stardog (hours) 1.12 1.35 1.07 0.85 -
db size Stardog (GiB) 32.34 56.52 32.31 32.19 -

shows the overall results of the 9300 queries for the
different MRMs and stores. In addition, we replaced
the triple pattern (?p a wikibase:Property) in
the queries with an equivalent FILTER EXISTS state-
ment. We studied the different runtime behavior of
this optimziation for ngrahps and rdr which are re-
ferred to as fngraphs and frdr. While this just slightly
improves Virtuoso’s query execution performance, for
Blazegraph various queries do not time out anymore
(e.g. fngraphs). The performance improvement can be
explained with a different query plan, since due to
the FILTER statement one join could be omitted. De-
tailed results are presented on the experiment descrip-
tion website37.

6.4. DBpedia Scenario

For the DBpedia based dataset we used a slightly
different setup for loading and created a new set of
queries, which we will introduce in this section. Aside
from that, we will discuss the support of entity granu-
larity levels and shared metadata.

6.4.1. Potential dataset sizes study and MRM
comparison

Before creating the DBpedia based dataset, we eval-
uated how data statements should be combined with
its corresponding metadata. Furthermore we analyzed
how queries should be constructed for the differ-
ent MRMs and counted its number of patterns and
variables. As outlined in the introduction, knowledge
graphs can contain merged entity attributes, which
have been retrieved from different sources. Hence it is
required to track meta information at a statement level.
In order to gain statement level metadata, the revision
metadata is replicated for every triple of a DBpedia en-

37http://vmdbpedia.informatik.uni-leipzig.
de:8088/frey/meta-evaluation/

tity. We created a sample dataset for each MRM con-
sisting of 100 DBpedia entities and their Wikipedia
revision meta information.

Dataset sizes: Table 2 highlights that the dataset
sizes vary significantly. The input raw data size is
about 1.2 MB for 100 entities. When different MRMs
are applied on the data, the dataset sizes vary from
about 20MB to more than 2.8 GB. Table 2 clearly
shows that cpprop and ngraphs MRM are using a lot
less triples than the other MRMs for the same amount
of information. Since on average nearly 950 statements
describe the revision history of an entity, repeating all
these metadata statements per data triple has a knock-
on effect on the size of the MRM datasets. Due to the
high number of meta information per triple, this ex-
periment shows very strongly the different character-
istics of these MRMs. Based on these results, we es-
timated that for 100.000 entities the dataset size will
grow to more than a terabyte when applied on our eval-
uation DBpedia dataset. Furthermore the results in Ta-
ble 2 show, that both the named graphs and the com-
panion property MRMs support factorization, by us-
ing the same identifier for all statements of a resource,
which share metadata. Therefore both MRMs support
the storage of meta information at different levels of
granularity.

Due to the large dataset sizes for some MRMs, we
decided to introduce a shared resource, which holds
metadata information for one DBpedia entity. For each
representation format, which does not support factor-
ization, we link to the shared resource only once per
statement, instead of attaching every metadata fact to
it. This strategy allows to emulate an on entity level
granularity in a cost effective manner. For rdr we ap-
ply this technique for the revisions, only. However
the aggregated metadata is applied on triple level, us-
ing nested rdr statements. The resulting differences
are displayed with shared in Table 2. Once a shared
metadata resource is introduced for each statement, the

http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/meta-evaluation/
http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/meta-evaluation/
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Table 2
Comparison for a set of 100 DBpedia entities and its revision metadata (95,864 meta facts, 950 on avg. per entity). Furthermore the query
complexity between different MRMs is compared. Note: The first number in the statements count column of rdr MRMs corresponds with the
number of rdr (nested) statements in the database, whereas the second represents the number of triples, obtained by unnesting the rdr statements.
The file format for rdr is .ntx, an extension of N-Triples.

# statements .nq file size (MB) backward comp. #(triple
patterns)

#(overhead variables) & #(sparql
elements)

raw data 8,444 1.16 / / /

cpprop 115,822 19.76 yes - w/ rdfs reasoning 5 3

naryrel 11,202,942 2161.53 no 3 2 & 1 BIND + 3 string-functions

naryrel (shared) 122,812 21.36 no 4 3 & 1 BIND + 3 string-functions

ngraphs 104,308 19.34 quads: no / triples: yes 2 1 & 1 GRAPH

rdr 11,126,845 / 22,169,250 2856.60 (.ntx) quads: no / triples: yes 2 1 & 1 BIND

rdr (shared) 246,947 / 314,499 44.55 (.ntx) quads: no / triples: yes 3 2 & 1 BIND

sgprop 11,202,942 2193.75 yes - w/ rdfs reasoning 3 1

sgprop (shared) 122,812 21.52 yes - w/ rdfs reasoning 4 2

stdreif 11,354,934 2188.17 yes - w/ custom reasoning 5 1

stdreif (shared) 141,316 24.63 yes - w/ custom reasoning 6 2

dataset sizes only vary slightly between all the MRMs
with the ngraphs MRM using the least amount of space
and stdreif as well as rdr the most.

Query complexity: As outlined in 4, the data lay-
out and the query structure differ between MRMs, the
query complexity has to be analysed for each MRM.
First the number of triple patterns and the number of
extra SPARQL elements has to be considered. This
gives an indication of how easy it is to read, understand
and create a search query. Hence it might have an im-
pact on how a MRM is going to be adopted by other
practitioners. The amount of extra triple patterns and
the number of extra SPARQL elements (e.g. GRAPH,
BIND) for each MRM search query is shown in the
last two columns of Table 2. The second last column
shows the number of triple patterns which are required
to find a metadata statement which is associated to a
data statement. A query which is based on the Sin-
gleton Property requires 2 triple patterns to reach the
meta information and one more triple pattern to access
it. If the meta information is shared for different data
statements, then an additional triple pattern is required
to access the meta information. This adds up to 3 or
4 triple patterns per query, depending on whether the
meta information is shared or not. On top of the ex-
tra triple patterns, additional variables or SPARQL el-
ements have to be added to the query. They are dis-
played in the last column of the table. When looking
at the last two columns of the table, the ngraphs and
rdr MRMs show the easiest usability, since the query
complexity for these MRMs is the lowest.

In addition, we checked the backwards compatibil-
ity for data queries, meaning the ability to execute
existing data queries on a mixed dataset with graph
and metadata statements. This is shown in the sec-
ond last column. Apart from the naryrel MRM, all
other MRMs support at least basic backward com-
patibility, if using a reasoning strategy. The ngraphs
and rdr MRM only support backward compatibility for
queries, which do not use the RDF named graph fea-
ture. But they do not need to rely on reasoning, in case
triples are used, only. If the named graph feature of an
RDF dataset is required, the graph IRI has to be treated
as metadata, if using ngraphs or rdr MRM, or one of
the other MRMs has to be used.

6.4.2. DBpedia Loading Times
For the DBpedia datasets we started pre-loading the

revisions metadata first. This part of the metadata is in-
dependent of the used MRM. We then replicated this
database to load the MRM-specific parts of the dataset.
Unfortunately we could use this strategy for the triple
based MRM, only. Blazegraph and Stardog use a dif-
ferent indexing for rdr and ngraphs, which does not al-
low to use the triple based pre-loaded database. For vir-
tuoso it was possible to reuse the database for ngraphs.

6.4.3. Query Templates
The query complexity theorems described in 3.2.4

were used as the basis for the creation of the query
templates for this evaluation.

In order to allow a meaningful comparison between
the different MRMs, we need to define a set of queries
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Table 3
DBpedia experiment: Number of statements for the DBpedia based dataset, its respective loading times and the final database size for the
different MRMs. All loading times are in hours, whereas database sizes are in GiB. In the second row the number of statements without counting
the revision metadata is shown. The overhead of the MRM in row 2 is illustrated in contrast to the most compact representation ngraphs in row
3 for a simpler comparison.

cpprop naryrel ngraphs sgprop stdreif rdr data revision
metadata

total # statements 1,065,086,298 1,078,194,485 1,051,908,211 1,078,194,485 1,104,459,275 1,213,393,958 957,576,433 947,842,639
w/o revisions 117,243,659 130,351,846 104,065,572 130,351,846 156,616,636 265,551,319 9,733,794 0
MRM overhead compared to ngraphs 13,178,087 26,286,274 0 26,286,274 52,551,064 161,485,747 -94,331,778 -

time (MRM) part Virtuoso 0.39 0.47 0.60 0.46 0.48 - 0.29 2.14
time complete dataset Virtuoso 2.53 2.61 2.73 2.60 2.61 - 2.43 -
db size Virtuoso 37.71 39.46 38.26 39.92 38.92 - 33.96 32.65

time (MRM) part Blazegraph 3.46 4.61 - 4.83 5.40 - 0.09 42.51
time complete dataset Blazegraph 45.98 47.13 42.51 47.35 47.91 29.31 42.60 -
db size Blazegraph 77.03 79.72 157.61 80.34 80.07 89.25 68.63 66.60

time (MRM) part Stardog 0.50 0.66 - 0.56 0.56 - 0.17 0.97
time complete dataset Stardog 1.48 1.64 1.75 1.54 1.53 - 1.15 -
db size Stardog 76.94 77.97 86.27 78.72 73.58 - 67.09 56.86

which cover different query types and complexities. As
in [10] we also use query templates. But instead of ap-
plying systematic pattern based generation, we define
a set of individual and heterogeneous templates (based
on one template variable), which differ in complexity,
the number of triple patterns and used SPARQL fea-
tures.

The SIMPLE class is characterized by queries with
a low number of triple patterns while MEDIUM class
applies for queries containing a large number of
triple patterns. Queries consisting of more than one
non union-compatible UNION or more than one OP-
TIONAL are classified as HARD. As outlined in the in-
troduction, knowledge fusion is an important use case
if multiple, overlapping graphs are combined in one
knowledge graph. Inspired by this use case, we defined
2 templates For each class which were inspired by a
knowledge fusion use case. We choose randomly a set
of 40 instances from the DBpedia dataset to populate
the templates.

In order to measure the overhead of a MRM, when
executing data queries, we have created two versions
for each template. The first template version executes
queries over the data only and the second query tem-
plate over the data and the metadata. In the results
section, these queries are denoted as data (DBQ) and
mixed queries (DBM) respectively. A description of
the used data and mixed patterns can be seen in Ta-
ble 4. We refer to the experiment website38 for the

38http://vmdbpedia.informatik.uni-leipzig.
de:8088/frey/meta-evaluation/

SPARQL syntax of the used templates and query in-
stances.

7. Evaluation Results

This section will discuss the results of the Wikidata
and DBpedia experiments which will be followed by a
general discussion about findings.

7.1. Loading times and sizes

When looking at the statement counts in Table 1,
ngraphs can be identified as the most compact repre-
sentation. Sgprop and rdr are the most compact triple
based MRMs. In the Wikidata scenario, an naryrel se-
rialization scheme similar to sgprop is used, which
links the p-NARY-value edges shown in Figure 1
to its original predicate names p. Thus it has a higher
number of statements. When we examined database
sizes, we observed it the other way around. While
the stdreif MRM transformation results in the high-
est number of statements, it consumes the least stor-
age in the database files and ngraphs the most, due to
the fact that additional index structures for the graph
identifiers are maintained. For Blazegraph and Star-
dog this additional overhead is ranging from 60 to 75
%. Virtuoso uses index structures for graphs per se,
which results in an overhead less than 4%. Rdr does
consume more storage than the triple based MRMs but
less than ngraphs. The difference between the triple
based MRM is not significant. Blazegraph increases its
journal file with fixed memory blocks (extents), which
explains the equal sizes for all triple MRMs.

http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/meta-evaluation/
http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/meta-evaluation/
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Table 4
Query templates for DBpedia dataset: DBQ-SIM-01 to DBQ-HAR-02 are data query templates to study the impact of the MRMs for data-only
queries. X deals as the template variable, which is replaced with an existing constant from the dataset during query instantiation. Every mixed
query DBM is an extension of its respective DBQ query by taking additional metadata for selected triple patterns of the query into account

Data Query DBQ Mixed Query DBM

SIM-01 Show all properties and objects of the Person X. . . . as well as the information when the triple (p-o pair) was created.

SIM-02 Show all cities and its population which are located in country X and having more
than 20,000 inhabitants.

. . . and additionally the provenance (last wikipedia revision url) information for the
city

MED-01 Show properties and its according objects of an entity X, which match exactly with
the same entity (owl:sameAs) of another language version of DBpedia.

. . . plus the number of unique contributors for the used sameAs link as confidence
indicator.

MED-02 Count (distinct) all companies of a country X. . . . and the number of revisions in 2016 for the location information (as
up-to-dateness indicator) and also the number of contributors for the company type

information of the entity

HAR-01 Find potentially matching companies within an industry sector X, having at least
one exact match of the OPTIONAL properties label, city and country.

. . . furthermore the modification dates of the sector information of the entities

HAR-02 Find Entities which are associated with a specific geographical region X. The
association is defined in that sense, that the entity has an outgoing edge to a Place

p, whereas p (or another subject which is the same as p) is part of that region.

. . . and the provenance for the type information.

The rankings in the DBpedia scenario shown in Ta-
ble 3 are slightly different. Cpprop is the most compact
representation after ngraphs, which also is reflected in
the smallest database size for Virtuoso and Blazegraph.
For these stores the database size difference between
sgprop, stdreif and naryrel is very small, too. Except
for Virtuoso, ngraphs database files are similar to the
Wikidata case the biggest. While Virtuoso and Stardog
can benefit from the reduced number of graph identi-
fiers (around 0.8 million for DBpedia vs. 80 million for
Wikidata) the graph overhead almost doubles Blaze-
graph‘s journal size. Due to an optimized scheme for
naryrel, its number of statements is equal to sgprop. In
contrast rdr has more statements overhead than stdreif,
because we do not use a shared resource for the aggre-
gated metadata.

Examining the loading times of the Wikidata datasets,
we observed that naryrel tends to be the slowest and
stdreif followed by sgprop the fastest. Whereas for
Blazegraph and Stardog ngraphs is rather slow, Virtu-
oso processed it most rapidly. Cpprop is the fastest so-
lution for DBpedia. Ngraphs followed by naryrel per-
form worst. However, the loading of stdreif is slower
in relation to the Wikidata experiments. The huge gap
between Blazegraph’s loading times and its competi-
tors is caused by a limited loading parallelization of the
used version. Despite index updates themselves are be-
ing executed multi-threaded, the parser is not executed
while the index updates are being performed. Further-
more files which could be read in parallel (nquads) are
not processed in parallel and if multiple files are pro-
vided for bulk-loading these are loaded sequentially, as
well. With ongoing progress of the bulkload procedure
we observed a continuously dropping rate of inserted
triples per second as well as a decreasing CPU usage

but an increasing time of waiting for I/O request com-
pletion. Albeit Stardog does load files in parallel and
we could observe that it utilized all CPU cores, which
explains the short loading times.

Summarising we found that for Stardog and Virtu-
oso the MRMs are competitive w.r.t loading times. For
Blazegraph the variance is much higher, but seems to
be dataset dependent. When it comes to database sizes
ngraphs files are significantly larger for Stardog and
Blazegraph. If Virtuoso in combination with ngraphs
or the other MRMs is used, the choice is of no conse-
quence for disk space.

7.2. Wikidata query results

In Figure 2 we can identify stdreif as best solu-
tion for Blazegraph for the Wikidata use case. No
single timeout occurs. In Virtuoso stdreif performs
also well for queries having an execution time longer
than 30 milliseconds. For queries shorter than that
the additional number of joins caused by the 4 triple
patterns has a greater impact of the execution time.
While singleton property performs worst for Virtu-
oso, in Blazegraph there is no huge difference between
sgprop, naryrel and ngraphs. Moreover sgprop is the
best model for Stardog but with no significant dif-
ference to stdreif. Though naryrel is faster for sim-
ple queries in Stardog, it is not competitive for chal-
lenging queries. Surprisingly ngraphs is exceptional
slow.Since the Stardog code is not publicly available,
it is hard to make correct assumptions. The rdr feature
which is used to encode the statement identifier and
not the metadata directly (caused by the data model of
Wikidata as mentioned before) can not benefit from its
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Figure 2. Comparison of MRM performance for metadata related queries between Wikidata and DBpedia Queries: Overall results for
all queries of DBM patterns (bottom) and a random sample (240 queries) from all Wikidata quin patterns (top). The queries are sorted by its
execution time (fastest query has rank 0) for each MRM individually.

indexing strategy. It is the worst performing MRM for
the Wikidata use case.

Generalising over all quin queries and stores, stdreif
performs best.

7.3. DBpedia query template results

Considering the mixed Queries for the DBpedia
dataset, ngraphs is the clear winner, as can be seen in

Figure 2. For the triple based MRM naryrel performs
best in Virtuoso. We can in theory observe the same
behaviour for Blazegraph. Unfortunately the naryrel
queries for Blazegraph do not return the full number
of results. This explains why the queries are executed
quickly and why naryrel seems to even outperform
ngraphs. Blazegraph showed issues evaluating queries
with multiple BIND statements correctly. We tried to
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circumvent this observation by rewriting the queries
for Blazegraph. When executing the rewritten queries,
Blazegraph froze when processing the DBM-HAR-01
queries. Therefore we were not able to test naryrel in
a reliable way. As a consequence the best triple based
MRM for Blazegraph is standard reification. However
sgprop outperforms all triple MRMs in Stardog. But
we have to mention that naryrel potentially is a better
choice, since we experienced several non-deterministic
HTTP 500 Errors, when we executed sgprop queries
(see section 7.5). Stdreif turns out to be the most inef-
ficient approach for Stardog. The rdr feature is almost
competitive with ngraphs for the simple and medium
queries taking not the revisions into account. While we
found performance problems for queries over revision
metadata (which are just links to other resources sim-
ilar to the Wikidata dataset), Blazegraph can leverage
its nested statements and benefit from the special struc-
ture of the aggregated metadata, which is reified itself.
In best case these nested statements allow Blazegraph
to materialize the joins which are necessary in other
MRMs. Nonetheless we cannot observe this advantage
for hard queries. For those queries we encountered sev-
eral timeouts, which is indicated by the platue in the
rdr curve in the plot. De facto there are two plateus,
which will be discussed in more detail in section 7.5.

Looking at the overhead of MRMs for regular data
queries (Figure 3) we observed, that ngraphs is closest
to the baseline for the majority of queries against Vir-
tuoso. For queries shorter than two seconds cpprop is
competitive. In spite of this for stdreif and cpprop fol-
lowed by sgprop occur many timeouts for hard queries.
Summing all query execution times, naryrel is the best
triple MRM for Virtuoso. In contrast to that naryrel
and ngraphs MRMs introduce the most overhead in
Stardog, though to the latter is performing well for
short queries. Cpprop is the best option. Likewise, sg-
prop shows similar good results as for mixed queries
in Stardog. While there is a significant overhead for
queries shorter than one second, rdr is outstanding for
challenging data queries. Cpprop deals as second-best
option in Blazegraph. Stdreif and ngraphs show al-
most the same behavior. Sgprop appears as the slow-
est MRM. Note that naryrel returns incomplete result
sets for a fraction of Blazegraph’s queries, as already
mentioned for mixed queries.

7.4. Dataset and metadata characteristics impact

To examine the influence of the dataset and the type
of metadata we compared the DBpedia related mixed

simple queries to a query pattern from the quins exper-
iment. The S IMPLE group applies for these kinds of
queries. Hence the query impact is low, so that we po-
tentially can observe an influence of the dataset or the
metadata type. We selected the 10010 query pattern,
as it projects all properties and values of a specific en-
tity and all its metadata values for a given key. Besides
the fact that DBQ-SIM-01 instances are querying for
persons only and use a non-varying key constant (cre-
ation date) the templates are the same. We can observe
for Blazegraph that the trends for the selected quin pat-
tern in Figure 4 are in line with the overall results for
Wikidata from Figure 2. Stdreif outperforms the other
MRMs, sgprop and naryrel are slower but do not sig-
nificantly differ. Ngraphs is slower and (f)rdr performs
worst. In contrast to that there is a different order for
the DBpedia dataset. While ngraphs undoubtedly is the
best, sgprop is much slower. Stdreif deals as best triple
MRM candidate. The fact that ngraphs performs bet-
ter for DBM-SIM-01 can be explained by the struc-
ture of the metadata. As already mentioned parts of
the metadata in the DBpedia dataset like the creation
date are reified as well in order to store meta-metadata.
For ngraphs the metadata is stored "as is", while for
stdreif and the other triple based MRMs the metadata
triple is split into several triples. Hence the complex-
ity for query evaluation is higher for these MRMs. For
Virtuoso the results are very similar to the DBM over-
all results. But the gap between sgprop and the other
MRM is drastically bigger. When having a look at the
execution times from Wikidata we see that there is no
such gap.Moreover naryrel is the fastest alternative op-
tion for ngraphs for the DBM queries, but the worst
MRM for the Wikidata scenario. Taking into account
that this is not the case for the overall quins results and
additionally that the average execution time for Wiki-
data and DBpedia are close to each other, we think
that this is caused by a general overhead when eval-
uating the queries for naryrel. Thus this observation
does not seem to reflect a dataset impact. But is note-
worthy, that again stdreif is worse in relation to the
other MRMs. Following the overall trends for Stardog,
sgprop performs well for both datasets. But using the
DBpedia based dataset ngraphs is the fasted approach
as opposed to Wikidata, where it is the worst solu-
tion. We think, that this is caused by the higher number
of graph identifiers (around 100 times more in Wiki-
data). Stdreif is notably slower in the DBpedia sce-
nario likewise for Virtuoso. Furthermore we observed
a poor performance executing DBM-SIM-02 queries
for naryrel.
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Figure 3. MRM overhead for data only queries: Overall results for all DBQ queries in relation to baseline representation containing data triples
(purple line)

Figure 4. Studying dataset influence I - Blazegraph & Virtuoso: A random sample of 80 query instances of the Wikidata quin 10010 query
template is compared to all DBM-SIM-01 and DBM-SIM-02 instances. The queries are very similar in structure and/or complexity.

7.5. Timeouts, db instabilities & pitfalls

As mentioned before, we implemented an additional
client side timeout in the benchmarking framework.
For both Blazegraph and Stardog it is crucial to use
this as fallback to continue benchmarking. For chal-
lenging queries these Java based stores had issues ter-
minating the query within the specified database time-
out of 240 seconds. If a lot of data is processed, sev-
eral Java Objects are created. The garbage collection
seems to be the reason that both stores struggle and

get unresponsive. The framework therefore waits up to
additional 160 seconds to let the store clean up mem-
ory before executing the next query. In [10] it had al-
ready been reported that subsequent queries did time
out randomly. The client timeout helps to reduce such
domino effects caused by unterminated queries run-
ning in parallel. However even this additional time-
out is too short for stopping every challenging query.
Therefore a second plateu at 400 seconds can be ob-
served in the plots for various MRMs. Despite this
we observed both databases transitioning into an un-
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Figure 5. Studying dataset influence II - Stardog:

defined state after executing a number of queries. The
backends were still running, but did not respond to
any command or activity and did not consume CPU
time. For some templates this was random and rerun-
ning solved the issue. The garbage collection over-
head can be tackled by using off-heap data structures.
For Blazegraph a so-called analytic query mode exists,
leveraging a custom memory management. Yet, for the
rewritten Blazegraph naryrel queries, several attempts
did not succeed. According to the issue tracker not
all database components and query execution stages
utilize this memory management. Likewise, for Star-
dog we were not able to run the original HAR-01
templates. Splitting its 3 pairwise OPTIONAL clauses
into 6 clauses resolved this issue. Further investiga-
tion revealed that due to sub-optimal query optimiza-
tion and planning, Stardog performs several loop joins
and finally exceeds memory. As already stated internal
server errors occurred for subsequent sgprop and cp-
prop HAR-02 queries, starting at random position in
the queries. In the upcoming Stardog 5 release memory
management issues are going to be addressed.

In order to allow a comparison of Stardog for this
template, we decided to use the rewritten template for
the other backends as well. Figure 6 illustrates the sig-
nificant changes in runtime behavior between this tem-
plate variations. The fix leads to an improvement for
sgprop and cpprop for Virtuoso. As a result Blaze-
graph’s performance for sgprop, cpprop and especially
ngraphs declined sharply but increased for rdr. This ob-
servation exposes a major problem. The performance
of a MRM is not just dependent on its structure, the
complexity of the query and database architecture de-
tails like data structures and indices. In practice the
way how the template query is expressed and how

BGP’s are ordered or grouped may have a huge im-
pact on the performance. Depending on the structure
the query optimizer may choose an appropriate join or-
der. Thus a MRM based on many joins (e.g. cpprop)
has a higher risk that unfavorable join orders are used
in the query plan.

To check whether all MRMs are consistent, we com-
pared result sizes. We discovered that a few template
queries returned incorrect results. Virtuoso evaluates
the FILTER EXISTS expression in HAR-02, which
contains an optional variable, as false if the variable
is unbound. As opposed to this Blazegraph and Star-
dog evaluate this condition as true. We therefore added
bound conditions to the queries. A similar issue arise
for fngraphs queries in Stardog, which we therefore
excluded. Virtuoso shows different results, if strings
(containing numbers only) are compared to integers.

7.6. Comparison with other studies

The results in [4] show a complete different picture.
Regarding sgprop, Virtuoso performed well, Stardog
was 3 to 4 times slower than Virtuoso and Blazegraph
was much slower than both of them. As the used nary-
relation serialization is really different in structure it
is hard to compare with our naryrel results, but in-
stead it makes more sense to compare the trends with
stdreif model. Stardog clearly outperformed Blaze-
graph (5 times slower) and Virtuoso (around 2 to 20
times slower) for queries against this standard reifica-
tion variant. Several factors may explain the different
outcome. The dataset is rather small and from another
domain, the evaluation setup differs and the used stor-
age backends have received major updates.

8. Conclusion and Future Work

To summarize, this work defined requirement-based
criteria to drive an evaluation of different approaches
for metadata handling in three prominent RDF stores.
Furthermore a systematic comparison of several MRMs
and its corresponding queries was presented. Based
on previous work, additional datasets and use cases
which elaborated different aspects about dealing with
metadata in RDF datasets were created. Additionally,
we introduced a novel metadata representation model
called Companion Properties, which has been proven
to be a good alternative to existing triple based MRMs
for DBQ Queries, even outperforming ngraphs in Star-
dog. Unfortunately, it did not perform well for chal-
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Figure 6. Query optimization impact: Comparison of original and rewritten (Stardog fix) DBQ-HAR-01 queries for Blazegraph and Virtuoso

lenging DBM queries. Substituting idPropertyOf
triple patterns, in order to reduce joins and increase
performance, will be subject to future research.

The results clearly show, that ngraphs outperforms
the other MRMs for challenging mixed queries, which
confirms the results presented in [10] for more com-
plex templates than the quin queries. As long as the
use case or source dataset does not require the usage
of quads, ngraphs is the most suitable solution. In case
existing datasets rely on named graphs, naryrel turned
out to be a very good alternative for Virtuoso. With
the used Blazegraph version, it was not possible to fin-
ish the Blazegraph naryrel experiments due to an un-
responsive backend. In contrast to [10], we were not
able to confirm performance problems with sgprop. It
is the best triple MRM for Stardog and it seems to be
a more reliable replacement for naryrel in Blazegraph.
Stdreif performs good in Blazegraph and Stardog for
simple queries, but it has shortcomings in Stardog and
for challenging queries in all tested stores. This is not
in line with findings in [10], where stdreif had been re-
ported as competitive to ngraphs. The obtained results
indicate that metadata characteristics have an impact
on the ranking of the MRMs. Ngraphs and rdr sup-
port queries against meta-metadata much better than
the other MRMs. In general, rdr can compete with
ngraphs, if the metadata is on statement level granular-
ity and does not require logical units of metadata facts.

In addition, experimental results show that MRM
ranking differs between data-only and mixed query
scenarios. Moreover, ngraphs and rdr offer the best
trade-off for both, mixed and data query workloads.
When the query templates were created, the query
optimizers were strongly impacted by even minimal

structural changes in the queries. After investigat-
ing incomplete or wrong query results, we encoun-
tered SPARQL implementation errors and variations
in the used stores.Therefore an adoption of existing
SPARQL test suites to check for these errors is advis-
able.Besides, memory and stability issues for Stardog
and Blazegraph were observed, which were caused by
garbage collection pressure. Improving query (plan)
optimizers and memory management is ongoing work
for upcoming major releases of Stardog and Blaze-
graph. Therefore it will be interesting to repeat these
experiments in the future, in order to evaluate the im-
pact of these changes on the query execution perfor-
mance.

8.1. Future Work

With regard to benchmarking MRMs, we see many
aspects, which need to be studied in the future. In
this work, we did not consider parallel query work-
loads with multiple users. Depending on whether high
throughput or low latency are required, it would be in-
teresting to evaluate, which factors influence the per-
formance of a parallel execution. If multiple query op-
erators are evaluated in parallel, this can improve ex-
ecution performance of an individual query, but it can
result in higher costs, which in turn can potentially de-
crease the overall system performance, if many queries
are run in parallel. Hence a future work will validate,
whether the results are also valid for parallel work-
loads.

In this evaluation the queries are read-only. Having
Big Data systems in mind, we can think of scenarios,
where data is streamed (added and changed) continu-
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ously into the database. Changing metadata of a triple
using a shared statement identifier (ngraphs & cpprop)
is more complex than for other MRMs. So MRMs op-
timized for fast reading, may perform worse in update
scenarios.

The evaluation could be extended by other datasets,
to gain a better insight into dataset impact.

Furthermore the mixed queries used in this evalu-
ation are characterized by selecting and filtering (e.g.
for confidence) of metadata. Therefore metadata has
a supportive role for the data parts of a query. We
think, that studying queries, with patterns evaluating
metadata statements over different entities or using
other more elaborated metadata-centric query patterns,
could be an interesting area of research. On top of this,
different ways in how to query a specific MRM need
to be analyzed in more detail. For cpprop and naryrel
other SPARQL expression can be used to reduce the
number of joins or BIND statements. Additionally the
injection of query hints, when transforming a template
for a MRM, can help to support the query plan selec-
tion.

In order to improve metadata handling, combina-
tions of MRMs can be considered as well. For the pur-
pose of backwards compatibility and performance, it
seems reasonable to use a triple MRM for the first
metadata level but ngraphs for meta-metadata. More-
over rdr could be combined with an adopted version
of cpprop to logically tie metadata facts, which be-
long to the same group. As these queries would re-
quire users to have detailed knowledge of the applied
MRMs, the usability could be improved by using a
SPARQL proxy. Such a service could (similar to our
query transformation framework), use special MRM-
independent annotations within a query, to translate
it into the appropriate format. To go one step further,
a more sophisticated metadata-aware system could be
developed, which enables unified querying, regardless
the used MRMs, granularity levels and metadata lev-
els.
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