
Semantic Web 0 (2017) 1–0 1
IOS Press

Evaluating Systems and Benchmarks for
Archiving Evolving Linked Datasets
Vassilis Papakonstantinou a,∗, Giannis Roussakis a, Kostas Stefanidis b, Irini Fundulaki a, and
Giorgos Flouris a

a Institute of Computer Science-FORTH, Greece
E-mail: papv@ics.forth.gr, rousakis@ics.forth.gr, fundul@ics.forth.gr, fgeo@ics.forth.gr
b University of Tampere, Finland
E-mail: kostas.stefanidis@uta.fi

Abstract. As dynamicity is an indispensable part of Linked Data, which are constantly evolving at both schema and instance
level, there is a clear need for archiving systems that are able to support the efficient storage and querying of such data. The
purpose of this paper is to provide a framework for systematically studying the state-of-art RDF archiving systems and the
different types of queries that such systems should support. Specifically, we describe the strategies that archiving systems follow
for storing multiple versions of a dataset, and detail the characteristics of the archiving benchmarks. Moreover, we evaluate
the archiving systems, and present results regarding their performance. Finally, we highlight difficulties and open issues arisen
during experimentation in order to serve as a springboard for researchers in the Linked Data community.

Keywords: benchmarking archiving systems, archiving and storage, versioning, LOD, RDF

1. Introduction

With the growing complexity of the Web, we face
a completely different way of creating, disseminating
and consuming big volumes of information. The recent
explosion of the Data Web and the associated Linked
Open Data (LOD) initiative [5] has led several large-
scale corporate, government, or even user-generated
data from different domains (e.g., DBpedia [2], Free-
base [6], YAGO [32]) to be published online and be-
come available to a wide spectrum of users [8]. Most
of these datasets are represented in RDF, the de facto
standard for data representation on the Web.

Dynamicity is an indispensable part of LOD [15,
33]; both the data and the schema of LOD datasets are
constantly evolving for several reasons, such as the in-
clusion of new experimental evidence or observations,
or the correction of erroneous conceptualizations [37].

*Corresponding author. E-mail: papv@ics.forth.gr.

The open nature of the Web implies that these
changes typically happen without any warning, cen-
tralized monitoring, or reliable notification mecha-
nism; this raises the need to keep track of the different
versions of the datasets and introduces new challenges
related to assuring the quality and traceability of Web
data over time. Indeed, for many applications, having
access to the latest version of a dataset is not enough.
For example, applications may require access to both
the old and the new version(s) to allow synchronization
and/or integration of autonomously developed (but in-
terlinked) datasets [9,16,26]. Moreover, many applica-
tions focus on identifying evolution trends in the data,
in which case features like visualizing the evolution
history of a dataset [25,27], or supporting historical or
cross-version queries [31] are necessary.

The challenge of managing different versions of
an evolving dataset is handled by archiving systems.
Archiving systems should not only store and provide
access to the different versions, but should also be able
to support various types of queries on the data, includ-
ing queries that access multiple versions [31] (cross-

1570-0844/17/$35.00 c© 2017 – IOS Press and the authors. All rights reserved

2 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

version queries), queries that access the evolution his-
tory (delta) itself [10], as well as combinations of the
above. For example, traditional Web archives, such
as the Internet Archive1 are only going half-way, be-
cause, even though the different versions are appropri-
ately archived, time-traversing query capabilities are
not considered.

To support these advanced functionalities, various
RDF archiving mechanisms and tools have been devel-
oped [37]. In their simplest form, archiving tools just
store all the different snapshots (versions) of a dataset
(full materialization); however, alternative proposals
include delta-based approaches [7,12,14,26,28], the
use of temporal annotations [24,35], as well as hybrid
approaches that combine the above techniques [21,31,
35]. Also, even though “pure” SPARQL does not sup-
port cross-version or delta-based queries, recent exten-
sions [12,20] are addressing this need.

All these archiving strategies can support the needs
associated with versioning and archiving, but different
approaches excel at different aspects or needs. For ex-
ample, delta-based approaches may be able to quickly
answer queries on the evolution history of the data, but
may not be equally efficient at cross-version queries.
On the other hand, delta-based approaches are gen-
erally (depending on the evolution intensity of the
dataset) less demanding in terms of storage space than,
e.g., full materialization approaches.

Given the complexity of the problem and the mul-
titude of aspects that need to be considered, being
able to objectively evaluate the pros and cons of each
archiving system is a challenging task that requires ap-
propriate benchmarks. Benchmarking is an important
process that allows not only the evaluation of different
systems across different dimensions, but also the iden-
tification of their weak and strong points. Thus, bench-
marks play the role of a driver for improvement, and
also allow users to take informed decisions regarding
the quality of different systems for different problem
types and settings.

The problem of benchmarking archiving systems
has been considered only very recently, and, to the best
of our knowledge, only two such benchmarks exist up
to this day [10,19].

In this paper, we leverage on existing benchmarks
and systems in order to provide the first complete
evaluation of existing archiving systems using existing
archiving benchmarks. Our work shows that the lack of

1https://archive.org/

mature benchmark systems and standard methodolo-
gies/languages for storing and querying multiple ver-
sions causes a lot of technical difficulties in evaluating
archiving systems. The main contributions of our work
are the following:

– We present the existing archiving benchmarks
and describe their features and characteristics.

– We analyse the most popular archiving systems,
revisiting the different strategies and approaches
used for maintaining multiple versions.

– We evaluate the archiving systems using existing
benchmarks and we report on the different identi-
fied technical difficulties as well as systems’ per-
formance.

The paper is organized as follows: Section 2 de-
scribes the basic strategies used for implementing
archiving systems, and organizes the different query
types that need to be supported by such systems. Sec-
tion 3 describes the most popular archiving systems
and frameworks in the literature, whereas Section 4
gives some basic requirements for archiving bench-
marks, and describes in detail existing benchmarks.
We present an experimental evaluation in Section 5
and conclude in Section 6.

2. About Versioning

2.1. Archiving Strategies

In the literature, three alternative RDF archiving
strategies have been proposed: full materialization,
delta-based, and annotated triples approaces, each
with its own advantages and disadvantages. Hybrid
strategies (that combine the above) have also been con-
sidered. A detailed description of those approaches fol-
lows.

2.1.1. Full Materialization
Full materialization was the first and most widely

used approach for storing different versions of datasets.
Using this strategy, all different versions of an evolv-
ing dataset are stored explicitly in the archive [36].
Although there is no processing cost for storing the
archives, the main drawback of the full materializa-
tion approach concerns scalability issues with respect
to storage space: since each version is stored in its en-
tirety, unchanged information between versions is du-
plicated (possibly multiple times). In scenarios where
we have large versions that change often (and no mat-

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 3

ter how little), the space overhead may become enor-
mous. On the other hand, query processing over ver-
sions is usually efficient as all the versions are already
materialized in the archive.

2.1.2. Delta-based
The delta-based approach is an alternative proposal

where one full version of the dataset needs to be stored,
and, for each new version, only the set of changes
with respect to the previous version (also known as
the delta) has to be kept. This strategy has much
more modest space requirements when compared to
the full materialization approach, as deltas are (typi-
cally) much smaller than the dataset itself. However,
the delta-based strategy imposes additional computa-
tional costs for computing and storing deltas. Also, an
extra overhead at query time is introduced, as many
queries would require the on-the-fly reconstruction of
one or more full versions of the data. Various ap-
proaches try to ameliorate the situation, by storing the
first version and computing the deltas according to
it [7,12,35] or storing the latest (current) version and
computing reverse deltas with respect to it [14,17].

2.1.3. Annotated Triples
The annotated triples approach is based on the idea

of augmenting each triple with its temporal validity.
Usually, temporal validity is composed of two times-
tamps that determine when the triple was created and
deleted; for triples that exist in the dataset (thus, have
not been deleted yet) the latter is null [24]. This an-
notation allows us to reconstruct the dataset version
at any given time point t, by just returning all triples
that have been created before t and were deleted after
time point t (if at all). An alternative annotation model
uses a single annotation value that is used to deter-
mine the version(s) in which each triple existed in the
dataset [35].

2.1.4. Hybrid Approaches
Hybrid approaches aim at combining the above

strategies in order to enjoy most of the advantages of
each approach, while avoiding many of their respective
drawbacks. This is usually implemented as a combina-
tion of the full materialization and delta-based strate-
gies, where several (but not all, or just one) of the
versions are materialized explicitly, whereas the rest
are only stored implicitly through the corresponding
deltas [21]. To determine how many, and which, ver-
sions must be materialized, a cost model (such as the
one proposed in [31]) could be used to quantify the
corresponding overheads (including space overhead

for storage, time overhead at storage time, and time
overhead at query time), so as to determine the opti-
mal storage strategy. Another combination is the use
of delta-based and annotated triples strategies as there
are systems that store consecutive deltas, in which each
triple is augmented with a value that determines its ver-
sion [35].

2.2. Versioning Query Types

An important novel challenge imposed by the man-
agement of multiple versions is the generation of dif-
ferent types of queries (e.g., queries that access multi-
ple versions and/or deltas). There have been some at-
tempts in the literature [10,31] to identify and catego-
rize these types of queries. Our suggestion, which is a
combination of them, is shown in Figure 1.

Firstly, queries are distinguished when consider-
ing their focus, in version and delta queries. Ver-
sion queries consider complete versions, whereas delta
queries consider deltas. Version queries can be fur-
ther classified to modern and historical, depending on
whether they require access to the latest version (the
most common case) or a previous one. Obviously, such
a categorization cannot be applied to delta queries, as
they refer to time changes between versions (i.e., inter-
vals).

In addition, queries can be further classified accord-
ing to their type, to materialization, single-version and
cross-version queries. Materialization queries essen-
tially request the entire respective data (a full version,
or the full delta); single-version queries can be an-
swered by imposing appropriate restrictions and filters
over a single dataset version or a single delta; whereas
cross-version queries request data related to multiple
dataset versions (or deltas).

Of course, the above categories are not exhaustive;
one could easily imagine queries that belong to mul-
tiple categories, e.g., a query requesting access to a
delta, as well as multiple versions. These types of
queries are called hybrid queries.

More specifically the types of queries that we con-
sider are:

– Modern version materialization queries ask for a
full current version to be retrieved. For instance,
in a social network scenario, one may want to ask
a query about the whole network graph at present
time.

– Modern single-version structured queries are per-
formed in the current version of the data. For in-

4 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

Fig. 1. Different types of queries according to their focus and type.

stance, a query that asks for the number of friends
that a certain person has at the present time.

– Historical version materialization queries on the
other hand ask for a full past version. E.g., a query
that asks for the whole network graph at a specific
time in the past.

– Historical single-version structured queries are
performed in a past version of the data. For ex-
ample, when a query asks for the number of com-
ments a post had at a specific time in the past.

– Delta materialization queries ask for a full delta
to be retrieved from the repository. For instance,
in the same social network scenario, one may
want to pose a query about the total changes of the
network graph that happened from some version
to another.

– Single-delta structured queries are queries which
are performed on the delta of two consecutive ver-
sions. One, for instance, could ask for the new
friends that a person obtained between some ver-
sion and its previous one.

– Cross-delta structured queries are evaluated on
changes of several versions of the dataset. For ex-
ample, a query that asks about how friends of a
person change (e.g., friends added and/or deleted)
belongs in this category.

– Cross-version structured queries must be evalu-
ated on several versions of the dataset, thereby re-
trieving information common in many versions.
For example, one may be interested in assessing
all the status updates of a specific person through
time.

3. RDF Archiving Systems

A variety of RDF archiving systems and frame-
works have been proposed in recent years; details on
these systems are discussed in the subsections below,
whereas an overview of their characteristics appears in
Table 1. Such characteristics are the archiving strategy
that each system/framework implements, their ability
to answer SPARQL queries and to identify equivalent
blank nodes across versions and, finally, their ability to
support versioning features such as committing, merg-
ing, branching etc.

3.1. x-RDF-3X

Neumann and Weikum [24] proposed an extension
of the RDF-3X RDF engine [23]. Even though the
original RDF-3X did not support archiving and ver-
sioning features, x-RDF-3X is essentially a timestamp-

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 5

System / Framework Archiving Strategy SPARQL
support

Blank nodes
support

Versioning
features

x-RDF-3X [24] Annotated Tuples X - -

SemVersion [36] Full Materialization - X X

Cassidy et al. [7] Delta Based - - X

Memento [30] Full Materialization - - -

R&Wbase [35] Annotated Tuples X X X

R43ples [12] Delta Based X - X

TailR [21] Hybrid - - -

Im et al. [14] Delta Based - - -

Dydra [1] Full Materialization X - -

Table 1: An overview of RDF archiving systems and frameworks

based temporal RDF engine that supports versioning,
time-travel access (i.e., temporal SPARQL queries)
and transactions on RDF databases. To achieve such
functionality they employ the annotated triples strat-
egy, and augment triples with two timestamp fields re-
ferring to the creation and deletion time of each triple.
Using these timestamps, the database state of a given
point in time can be easily reconstructed.

Ideally, timestamps reflect the commit order of
transactions, but unfortunately the commit order is not
known when inserting new data. To overcome this
problem, a write timestamp is assigned to each trans-
action once it starts updating the differential indexes
(temporal small indexes that are periodically merged
to the main ones), and this timestamp is then used for
all subsequent operations.

To support cross-version queries, snapshot isolation
and the efficient retrieval of transactions order, a trans-
action inventory is proposed. The transaction inven-
tory (see Table 2) tracks transaction ids, their begin
and commit times (BOT and EOT), the version num-
ber used for each transaction, and the largest version
number of all committed transactions (highCV #) at
the commit time of a transaction.

3.2. SemVersion

SemVersion [36] is inspired by the Concurrent Ver-
sioning System (CVS) [4] which was basically used
in earlier years to allow collaborative development of
source code during software development. SemVer-
sion is a java library for providing versioning ca-
pabilities to RDF models and RDF-based ontology
languages like RDFS. More specifically it supports

branch and merge operations at the version level, as
well as the reporting of conflicts.

In SemVersion, every version is annotated with
metadata like its parent version, its branches, a label
and a provenance URI. Versions are identified by a
globally unique URI and they follow the approach of
full materialization for storage, as they focus more on
the management of the distributed engineering pro-
cesses rather than the storage space necessary to store
the different versions. Users can commit a new version
either by providing the complete contents of the graph
or by providing the delta with respect to the previous
one. In both cases, every version of the RDF model is
stored independently as a separate graph.

One of the main functionalities of SemVersion is
the calculation of diffs in the structural or semantic
level. A structural diff is the set of changes reported as
sets of added/deleted triples (taking into account only
the explicit triples), whereas a semantic diff consid-
ers also the semantically inferred triples while report-
ing the set of changes. One problem that may occur
when building structural diffs is that the system can-
not decide whether two blank nodes are equal or not,
as they cannot be globally identified. This can be se-
mantically wrong, if a blank node in one version rep-
resents the same resource as a blank node in another
version. To overcome this problem, SemVersion intro-
duces a technique called blank node enrichment. With
this solution, an inverse functional property that leads
to a unique URI is added to each blank node making it
globally identifiable.

6 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

transId version # BOT EOT highCV#

T101 100 2009-03-20 16:56:12 2009-03-20 17:00:01 300
T102 200 2009-03-20 16:58:25 2009-03-20 16:59:15 200
T103 300 2009-03-20 16:59:01 2009-03-20 16:59:42 300

...

Table 2: The transaction inventory that keeps information about all transactions [24]

3.3. Version Control for RDF Triple Stores

Cassidy and Ballantine [7] have proposed an archiv-
ing system for RDF triple stores that is based on Darcs2

(a version control system built to manage software
source code) and its theory of patches.

The system uses the delta-based strategy: each ver-
sion is described as a sequence of patches (deltas) that
are all applied sequentially to one version in order to
construct the current one. Each of these patches is rep-
resented as a named graph consisting of a set of added
and deleted triples and is stored in a different RDF
store than the original data. Optionally, a dependency
sub-graph may be included in the patch, which is a set
of triples that have to exist in the dataset in order for a
patch to be applicable to it.

A set of operations on patches is supported: the com-
mute operation can revert the order of two patches; the
revert operation reverts the most recent patch from the
context; whereas the merge operation can be applied to
parallel patches in order to combine them into one.

An implementation on MySQL3 backend for the
RedLand store [3] was evaluated and it was shown that
their proposed approach of managing versions adds a
significant overhead compared to the raw RDF store.
More specifically, query answering becomes four to
eight times slower and space consumption increased
from two to four times from the raw RDF store of Red-
Land.

3.4. Memento

Memento [29] is an HTTP-based framework pro-
posed by Van de Sompel et al. that connects Web
archives with current resources by using datetime ne-
gotiations in HTTP. More specifically, each original re-
source (identified in memento terminology with URI-
R) may have one or more mementoes (identified with

2http://darcs.net/
3https://www.mysql.com/

URI-Mi, i = 1, .., n) which are the archived represen-
tations of the resource that summarize its state in the
past. The time ti that a memento was captured is called
Memento-datetime.

Memento can also be adopted in the context of
Linked Data [30] as it had been used for providing ac-
cess to prior versions of DBpedia. To do so, versions
of DBpedia are stored in a MySQL database as com-
plete snapshots, so the full materialization approach is
followed, and served through a Memento endpoint.

3.5. R&Wbase

R&Wbase [35] tracks changes and versions by fol-
lowing a hybrid strategy, as it uses the delta-based in
conjunction with the annotated triples archiving strate-
gies. In particular, triples are stored in a quad-store
as consecutive deltas. Each altered triple is assigned
a context value, which is a number from a continu-
ous sequence. More specifically, every new delta ob-
tains an even number 2 · y that is larger than all pre-
ceding delta numbers. Then, each triple of said delta
is assigned the value 2 · y (even for added triples) and
2 · y + 1 (odd for deleted triples). Furthermore, the
delta identifier 2 · y is used in order to store the delta’s
provenance metadata in triple format, using the PROV-
O vocabulary [18]. These metadata include a UID, the
delta’s parent, the responsible person of the changes,
the delta’s date etc. By following the above approach,
it is possible to significantly reduce the required stor-
age space, as the number of stored triples is relative to
the delta size instead of the graph size, which is much
smaller in most cases.

R&Wbase allows querying the data stored, using
SPARQL queries that are translated in such a way that
the quad-store is treated as a triple-store. In particu-
lar, when a query is applied in a specific version, all
version’s ancestors have to be identified, by traversing
the metadata of such version, and then the query is ap-
plied to the set of returned versions. Finally, being a
Git-like tool, R&Wbase supports versioning features

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 7

like branching and merging of previously committed
graphs.

3.6. R43ples

R43ples [12] offers a central repository based on a
Copy-Modify-Merge mechanism, where clients get the
requested information via SPARQL (copy), work with
it locally (modify) and commit their updates also via
SPARQL (merge).

Much like R&Wbase, R43ples supports the ba-
sic versioning features like tagging, branching and
merging. To do so, it introduces an enhanced, non-
standard version of the SPARQL language that in-
cludes a set of new keywords (REVISION, USER,
MESSAGE, BRANCH and TAG).

R43ples follows the delta-based approach for stor-
ing versions. In particular, each version is represented
using a temporary graph which is connected to two
additional named graphs corresponding to the delta’s
ADD and DELETE sets. The connection is based on
an extended version of the PROV-O ontology [18],
called Revision Management Ontology (RMO). Ap-
plying these delta sets to the prior revision will lead
to the current one. The aforementioned approach of
using temporary copies of graphs for storing versions
and deltas tends to be rather costly when querying the
data, as only medium sized data sets can be handled by
R43ples. In fact, the authors of [12] noted that queries
on datasets with more than a few thousand triples take
longer than most users are willing to wait.

3.7. TailR

TailR [21] is a platform for preserving the history
of arbitrary linked datasets over time, implemented as
a Python web application. It follows the hybrid ap-
proach for storing the data: the history of each in-
dividual tracked resource is encoded as a series of
deltas or deletes based on interspersed snapshots. More
specifically, their storage model consists of reposito-
ries, changesets and blobs. A repository can be cre-
ated by users and is actually the linked dataset along
with its history. A changeset encodes the information
about modifications that happen to the data at a par-
ticular time point. According to the archiving strategy
they follow, there are three types of changesets: snap-
shot, delta and delete (a set of deleted triples). To de-
cide which one must be stored when changes occurred
in the data, a set of rules is followed, which are de-
fined in such a way that try to minimize the storage and

retrieval cost. Finally, blobs contain optional data that
refer to changesets, as they are sometimes needed in
order to answer some types of queries.

Their implementation consists of two HTTP APIs:
a Push API for submitting changes according to a
dataset, and a read-only Memento API for access-
ing the previously stored versions. All entities such
as changesets and blobs are stored in the relational
database system MariaDB4.

In their experimental evaluation, the authors mea-
sured the response times of the Push and Memento
API [29] as well as the growth of the required storage
space for an increasing number of versions. For their
experiments they used a random sample of 100K re-
sources selected from each version of DBpedia [2] 3.2
to 3.9. Regarding the Push API response times, push
requests for the first release took the longest time on
average. Memento API response times tend to slightly
increase for later revisions due to the longer base/delta
chains that result to higher reconstruction costs. Fi-
nally, the storage overhead is directly related to the na-
ture of the data and especially to the delta encoding.

3.8. A version management framework for RDF triple
stores

Im et al. [14] propose a framework for managing
RDF versions on top of relational databases (where
all triples are stored in one large triple table). Their
framework follows the delta-based approach as they
store the last version and the deltas that led to it. To
improve the performance of cross-delta queries, the
authors introduce aggregated deltas, which associate
the latest version with each of the previous ones (not
only the last one); obviously, this comes at the cost
of increasing space (storage) requirements. The delta
of each version is separately stored in an INSERT and
a DELETE relational table, so a version can be con-
structed on the fly using appropriate SQL statements.

For evaluating their approach, Im et al. used the
Uniprot dataset [34] versions v1-v9 on top of an im-
plementation in Oracle 11g Enterprise edition5. They
evaluated their approach of aggregated deltas against
the approaches of full materialization and sequential
deltas. The authors conducted experiments related to
storage overhead, version construction and delta com-
putation times, compression ratio and query perfor-

4https://mariadb.org/
5http://www.oracle.com/technetwork/

database/enterprise-edition

8 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

mance. As expected, their approach is less efficient
than the sequential deltas, but outperforms the full
materialization approach regarding storage space and
deltas computation time. Moreover, their approach
highly outperforms the sequential deltas approach re-
garding version re-construction. In particular, while
construction time in the sequential delta approach is
proportional to the number of past versions that must
be considered, the aggregated delta can compute any
version almost at constant time (with respect to the
number of past versions). Regarding the query answer-
ing performance, the full materialization approach has
the best performance for the types of queries that refer
to specific versions, but the aggregated delta approach
outperforms the sequential delta one in most cases.

3.9. Dydra

Dydra [1] is an RDF graph store service in the cloud
that stores and retrieves RDF data through SPARQL,
LDF and LDP interfaces. In order to have access to
previous store states, in addition to the current one, in-
cludes a REVISION clause analogous to GRAPH, as
each versioned dataset is stored in its own named graph
in a quad store. They characterize the queries that are
supported by Dydra according to two dimension: the
dataset constitution, and algebra combination. Consti-
tution determines the revisions that are included in the
target dataset, and may be: none, single, multiple, a
range or a difference of versions and Combination con-
cerns how the query combines the later versions.

4. Benchmarking RDF Archiving Systems

A benchmark is a set of tests against which the
performance of a system is evaluated. In particular, a
benchmark helps computer systems to compare and as-
sess their performance in order for them to become
more efficient and competitive.

In order for the systems to be able to use the bench-
mark and report reliable results, a set of generic and
more domain-specific requirements and characteristics
must be satisfied. First, the benchmark should be open
and easily accessible from all third parties that are in-
terested to test their systems. Second, it has to be un-
biased, which means that there should not exist a con-
flict of interest between the creators of the benchmark
and the creators of the system(s) under test. These fea-
tures guarantee a fair and reproducible evaluation of
the systems under test.

To guarantee (additionally) that the benchmark will
produce useful results, it should be highly configurable
and scalable, in order to cope with the different char-
acteristics and needs of each system. Pertaining to our
focus on benchmarks for archiving systems, configura-
bility and scalability may refer to the number of ver-
sions that a data generator can produce, the size of each
version, the number of changes from version to version
etc.

In addition, the benchmark should be approach-
agnostic to different implementation techniques. For
example, for benchmarks related to RDF archiving
systems, one should also take into account the different
strategies that are being employed, and should be ag-
nostic with regards to the strategy that an RDF archiv-
ing system uses for its implementation. In particular,
the benchmark should be fair with respect to the real
expected use of such a system, and should not artifi-
cially boost or penalize specific strategies.

Finally, the benchmark should be extensible, to be
able to test additional features or requirements for an
archiving system that may appear in the future.

To our knowledge, there have been only two pro-
posed benchmarks for RDF archiving systems in the
literature, which are described in detail below.

4.1. BEAR

Fernandez et al. [11,10] have proposed a blueprint
on benchmarking semantic web archiving systems by
defining a set of operators that cover crucial aspects of
querying and archiving semantic web data. To instan-
tiate their blueprints in a real-world scenario, they in-
troduced the BEAR benchmark, along with an imple-
mentation and evaluation of the three archiving strate-
gies (Full Materialization, Delta-Based and Annotated
Triples) described in Section 2.1.

Based on their analysis of these RDF archiving
strategies, they provide a set of directions that must
be followed when evaluating the efficiency of RDF
archiving systems, many of which are similar to the
requirements we outlined above. The first BEAR di-
rective for benchmarks is that they should be agnostic
with respect to the used archiving strategy in order for
the comparison to be fair. Secondly, queries have to be
simple and become more complex as the strategies and
systems are better understood. And finally, the bench-
mark should be extensible as lessons learnt from pre-
vious work and new retrieval features arise.

As a basis for comparing the different archiving
strategies, they introduced 4 features that describe the

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 9

dataset configuration. The proposed features are the
following:

– Data dynamicity measures the number of changes
between versions, and is described via the change
ratio and the data growth. The change ratio quan-
tifies how much (what proportion) of the dataset
changes from one version to another and the data
growth determines how its size changes from one
version to another.

– Data static core contains the triples that exist in
all dataset versions.

– Total version-oblivious triples computes the to-
tal number of different triples in an archive, inde-
pendently of their timestamp (i.e., the version in
which they appear).

– RDF vocabulary represents the different subjects,
predicates and objects in an RDF archive.

Regarding the generation of the queries of the
benchmark, the result cardinality and selectivity of the
query should be considered, keeping in mind that the
results of a query can highly vary among different ver-
sions. For example, by selecting queries with similar
result cardinality and selectivity, one could guarantee
that potential retrieval differences in response times
could be attributed to the archiving strategy. In order
to be able to judge the different systems, authors in-
troduced various categories of queries, which are sim-
ilar to the ones we discussed in Section 2.2 and have
been used as a source of inspiration for our categoriza-
tion. In particular, the authors propose queries on ver-
sions (i.e., modern and historical version materializa-
tion queries), deltas (delta materialization and struc-
tured queries), as well as the so-called change materi-
alization queries, which essentially check the version
in which the answer to a query changes with respect to
previous versions.

Even though BEAR provides a detailed theoretical
analysis of the features that are useful in the process of
designing a benchmark, it fails to satisfy one of the five
requirements that we have previously set. In particular,
its data workload is composed of a static dataset, so
BEAR is not a benchmark generator; thus, the config-
urability and scalability requirements are not met.

4.2. EvoGen

Meimaris and Papastefanatos have proposed the
EvoGen Benchmark Suite [19], a generator for evolv-
ing RDF data that is used for benchmarking archiving
and change detection systems. EvoGen is based on the

LUBM generator [13], extended with 10 new classes
and 19 new properties in order to support schema evo-
lution. Their benchmarking methodology is based on a
set of requirements and parameters that affect the data
generation process, the context of the tested applica-
tion and the query workload, as required by the nature
of the evolving data.

EvoGen is a Benchmark Generator, and is exten-
sible and highly configurable in terms of the number
of generated versions and the number of changes oc-
curring from version to version. Similarly, the query
workload is generated adaptively to the data genera-
tion process. EvoGen takes into account the archiving
strategy of the system under test, by providing ade-
quate input data formats (full versions, deltas, etc.) as
appropriate.

In more details, EvoGen defines a set of parame-
ters that are taken into account in the data and query
workload generation processes. The first category of
parameters refers to the evolution of instances and con-
sists of the parameters Shift and Monotonicity. The
Shift parameter shows how a dataset evolves with re-
spect to its size and can be distinguished to a positive
and a negative shift for versions of increasing or de-
creasing size respectively. The monotonicity property
is a boolean value that determines whether the above
shift is monotonic (i.e., only additions or only dele-
tions happen); monotonic shifts can be used to simu-
late datasets where data strictly increased or decreased,
such as sensor data.

The second category of parameters includes the pa-
rameters ontology evolution and schema variation that
refer to the schema evolution of the dataset. The on-
tology evolution parameter is a number representing
the amount of change to happen, computed as the ratio
of the number of added classes to the number of total
classes in the original dataset. The schema variation
parameter ranges from 0 to 1 and quantifies the per-
centage of different characteristic sets, with respect to
the total number of possible characteristic sets that will
be created for each new class introduced in the schema.
We recall the characteristic set definition from [22]
where for each entity s occurring in an RDF data set,
its characteristic set R is defined as follows:

S c(s) = {p | ∃o : (s, p, o) ∈ R}.

In EvoGen, the user is able to choose the output
format of the generated data by allowing him to re-
quest fully materialized versions or deltas; this allows
supporting (and testing) systems employing different
archiving strategies.

10 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

The query workload produced by EvoGen leverages
the 14 LUBM queries, appropriately adapted to apply
for evolving versions. In particular, EvoGen generates
the following six types of queries, which are based on
the previous generated data and their characteristics:

– Retrieval of a diachronic dataset: a query asking
for all the triples in all versions of a dataset.

– Retrieval of a specific version: a query request-
ing all triples in a specific version (i.e., modern or
historical version materialization queries).

– Snapshot queries on the data, i.e., queries ac-
cessing a single version (single-version historical
queries).

– Longitudinal (temporal) queries that retrieve the
timeline of particular subgraphs, through a sub-
set of past versions (cross-version structured
queries).

– Queries on changes, which access the deltas
(delta materialization or single-delta structured
queries).

– Mixed queries which use a mix of sub-queries
from the above types (hybrid queries).

EvoGen is, in practice, a more complete bench-
mark, as it is a approach-agnostic, highly config-
urable and extensible benchmark generator. However,
its query workload seems to exhibit some sort of
approach-dependence, in the sense that the delta-based
queries require that benchmarked systems store infor-
mation about the low level deltas (additions/deletion
of classes, addition/deletion of class instances etc.) in
order to be answered. Moreover, to successfully an-
swer the 14 original LUBM queries, the benchmarked
systems are required to support reasoning (forward or
backward). As a result, archiving systems that do not
support reasoning functionalities fail to answer the ma-
jority (11 of 14) of generated queries (see Section 5.3
on how we handled this problem for R43ples).

5. Evaluation

Taking into consideration the characteristics of
the previously described benchmarking approaches,
BEAR and EvoGen (Subsections 4.1 and 4.2, respec-
tively), we chose to use the latter as our baseline
benchmark. The main reason behind this choice was
that EvoGen is a benchmark generator which allows
us to produce datasets of varying sizes or change gran-
ularity, thereby enabling us to meet the requirements
for checking the limitations of benchmarked systems.

On the contrary, BEAR’s dataset uses a static set of
data, composed of the first 58 weekly snapshots from
the Dynamic Linked Data Observatory6 corpus, which
monitors weekly crawls from more than 650 different
domains.

Out of the 9 RDF Archiving Systems appearing in
Table 1, we succeeded to conduct experiments only in
R43ples and TailR. For the rest, we encountered vari-
ous difficulties related to the installation and use (e.g.,
no documentation on how to use a given API, no way
to contact with developers for further instructions, no
access to the versioning extensions, or no option for a
local deployment to be tested).

All the experiments were conducted in a single ma-
chine, which uses an Intel Xeon E5-2630 at 2.30GHz,
with a total of 384GB of RAM running Debian Linux
wheezy version, with Linux kernel 3.16.4. We dedi-
cated 64GB of memory for R43ples which is imple-
mented in JAVA. TailR was free to allocate as much
memory as it required to execute the benchmarks.

5.1. Data Generator

Keeping in mind the limitations of benchmarked
systems, we chose to use EvoGen for producing three
different datasets with initial size of around 1M, 5M
and 10M triples. Each of these datasets evolved (pro-
ducing new versions) until we had 3, 5 and 7 total ver-
sions for each of the above dataset sizes. Regarding the
version-to-version growth, we used a realistic rate of
around 3.5% per version, so the total growth rate for
3, 5 and 7 versions was around 6%, 14% and 23%, re-
spectively, as shown in Tables 3, 4 and 5.

Despite the fact that EvoGen gives the ability to pro-
duce scalable datasets, it is not stable enough regard-
ing the way that the initial dataset evolves. In particu-
lar, the shift parameter of EvoGen (ranging from 0 to
1, as only positive monotonic shifts are supported on
its implementation), along with the schema evolution
parameter, do not seem to evolve the initial dataset ac-
cording to the specifications, leading to minor changes
even for their maximum possible values. Also, the shift
parameter does not have a deterministic effect; for ex-
ample, in one experiment, the same shift (0.1) changed
the 1M, 5M and 10M datasets by 987%, 304% and
187% through 30 versions, respectively.

In order to overcome the above undesirable behavior
of EvoGen and reach the growth rates that we had set,

6http://swse.deri.org/dyldo

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 11

we produced a large number of versions and manually
chose those that would meet our goals. More specif-
ically, in order to produce the 1M dataset, we pro-
duced 5 universities (recall that EvoGen is based on
the LUBM generator) and requested the production of
20 versions, using 0.05 as the value of the shift param-
eter and the value 0.7 for the schema evolution param-
eter; from the 20 produced versions, we selected the
1st, 6th, 9th, 11th, 14th, 15th and 17th, and labelled
them with v0, v1, v2, v3, v4, v5 and v6, as shown
in Table 3. Likewise, for creating the 5M and 10M
datasets we produced 13 and 23 universities respec-
tively, that evolved in 30 versions with 0.1 shift and
0.7 schema evolution, and selected the appropriate in-
termediate ones, to get the versions shown in Tables 4
and 5.

Table 3: Versions generation with about 1M triples.

Triples New (added) triples Cumulative growth

v0 1,291,816 − −
v1 1,335,681 43,865 3.40%

v2 1,379,150 43,469 6.76%

v3 1,439,175 60,025 11.41%

v4 1,499,579 60,404 16.08%

v5 1,565,415 65,836 21.18%

v6 1,593,791 28,376 23.38%

Table 4: Versions generation with about 5M triples.

Triples New (added) triples Cumulative growth

v0 5,039,543 − −
v1 5,165,491 125,948 2.50%

v2 5,314,252 148,761 5.45%

v3 5,536,769 222,517 9.87%

v4 5,687,347 150,578 12.85%

v5 5,959,572 272,225 18.26%

v6 6,253,809 294,237 24.09%

5.2. Data Ingestion

For benchmarking data ingestion, we measured the
execution time and the space requirements of R43ples
and TailR for storing the different versions of our 3
datasets.

Tables 6 and 7 show, respectively, the experimen-
tal results for the datasets with about 1M and 5M

Table 5: Versions generation with about 10M triples.

Triples New (added) triples Cumulative growth

v0 10,438,730 − −
v1 10,744,654 305,924 2.93%

v2 10,986,713 242,059 5.25%

v3 11,424,557 437,844 9.44%

v4 11,750,295 325,738 12.56%

v5 12,126,162 375,867 16.17%

v6 12,577,826 451,664 20.49%

triples, when R43ples is used7. It is clear that the exe-
cution time for the ingestion of the first version is much
higher compared to the other versions, which is rea-
sonable given that R43ples is a delta-based archiving
system which keeps materialized the first version pro-
duced. In fact, R43ples stores v0, as-is (because it is
the first version), whereas the other versions are stored
through their (smaller) deltas. This is also reflected on
the space requirements, where the first version requires
much more space than the rest. Overall, for all ver-
sions, except the first one, the ingestion execution time
and space requirement are proportional to the number
of added triples.

Table 6: Data ingestion in R43ples - 1M.

Duration (ms) Size (KBs) Size increase (KBs)

v0 265,000 753 −
v1 11,000 761 8

v2 12,000 777 16

v3 14,000 811 34

v4 14,000 849 38

v5 16,000 888 39

v6 7,000 912 24

Table 7: Data ingestion in R43ples - 5M.

Duration (ms) Size (KBs) Size increase (KBs)

v0 1,201,000 2,778 −
v1 42,000 2,841 63

v2 36,000 2,930 89

v3 63,000 3,058 128

v4 43,000 3,144 86

v5 88,000 3,310 166

v6 101,000 3,480 170

7Due to memory limitations entailing from the implementation of
R43ples, we could not conduct experiments with 10M triples.

12 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

Unlike R43triples, TailR allowed us to load all three
datasets, leading to the results shown in Tables 8, 9
and 10. Unlike R43ples, the execution time for the data
ingestion is not correlated to the version itself (first
or other), but is roughly proportional to the size of
the imported version. As for the space requirements,
TailR uses a hybrid approach in which some versions
are materialized and stored as they are within the sys-
tem, whereas for others only the deltas from the pre-
vious versions are stored. This can be seen clearly in
Table 10, where the number of triples in version v4 are
more than those in version v3, while the space require-
ments are less in v4 compared to v3, which implies
that v4 was not fully materialized during its ingestion.

Table 8: Data ingestion in TailR - 1M.

Duration (ms) Size (KBs) Size increase (KBs)

v0 55,000 13,984 −
v1 58,000 27,296 13,312

v2 60,000 41,632 14,336

v3 63,000 58,016 16,384

v4 66,000 70,304 12,288

v5 68,000 86,688 16,384

v6 69,000 10,3072 16,384

Table 9: Data ingestion in TailR - 5M.

Duration (ms) Size (KBs) Size increase (KBs)

v0 209,000 148,128 −
v1 220,000 197,280 49,152

v2 229,000 242,340 45,060

v3 239,000 295,588 53,248

v4 246,000 348,836 53,248

v5 257,000 406,180 57,344

v6 270,000 467,620 61,440

Table 10: Data ingestion in TailR - 10M.

Duration (ms) Size (KBs) Size increase (KBs)

v0 418,000 565,924 −
v1 428,000 656,036 90,112

v2 455,000 754,340 98,304

v3 471,000 869,028 114,688

v4 488,000 963,236 94,208

v5 508,000 1,073,828 110,592

v6 526,000 1,188,516 114,688

Overall, our tables show that R43ples requires less
space for the storage of the datasets versions due to
its delta-based implementation and is also faster with
respect to import time for all versions, except from
the first one which has to be materialized. However,
R43ples has some limitations regarding the size of a
dataset that can be stored, due to its main memory im-
plementation; this is not an issue for TailR.

5.3. Query performance

For studying query performance, we used the R43ples
system only, because TailR supports data storing and
archiving, but does not offer query facilities on the
stored data.

As already mentioned, EvoGen’s query workload
leverages the 14 original LUBM queries, appropriately
adapted as to be applicable on evolving data8. For
our experiments on query performance, we ran these
queries on the generated datasets and report on the
query evaluation time and the number of the query re-
sults. Query evaluation time consists of the time re-
quired for version materialization, when a version re-
construction is needed, and the time required for the
actual query execution. Given the fact that Evogen pro-
duces queries which (unrealistically) assume reason-
ing capabilities on behalf of the query engine in order
to be answered properly (Section 4.2), we had to up-
date them accordingly in order to get non-empty result
sets by R43ples. These updates included the replace-
ment of certain implicit triple patterns that were only
implicitly present in the datasets, with similar ones that
were explicitly present.

Our analysis is broken down into three types of
queries, namely single-version queries, cross-version
queries and materialization queries. For getting the
cross-version queries, we converted the single-version
ones by rewriting them so as to consider all versions
(details in Appendix B). For materialization queries,
according to their definition, we retrieve the contents
of an entire version of a dataset, or even the whole set
of versions of the dataset.

Note, that Evogen produces also queries that can be
applied over the changes (i.e., deltas) between the pro-
duced versions. However, even though R43ples imple-
ments a delta-based approach for storing versions, it
does not provide any functions for the access or man-
agement of each produced delta; this process remains

8Detailed descriptions on the queries can be found in Appendix A
and B.

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 13

as a black box. As a result, we were unable to conduct
any experiments over this type of queries.

5.3.1. Single-version queries
Single-version queries are answered by applying re-

strictions and filters over a single dataset version. In
our study, we considered settings in which either 3, 5
or 7 versions participate. In all cases, only one version
needs to be materialized for answering a query. When
the query refers to a non-materialized version, R43ples
had to build this version using its deltas from the ma-
terialized one, and run the query over it.

Tables 11 and 12 show the query performance eval-
uation when 3, 5 and 7 versions with about 1M and 5M
triples are used (recall that the 10M-triple dataset could
not be loaded in R43ples). The detailed SPARQL rep-
resentation of the queries can be found in Appendix A.

The tables show that the materialization part, which
is needed for query answering, is solely affected by the
dataset version that is mentioned in the query. Overall,
5 queries refer to the first version, 5 queries refer to
the last version and 4 queries refer to the version in the
middle of the dataset (namely, to the second, third or
fourth version, of the dataset with the 3, 5 or 7 versions,
respectively). This explains the different amounts of
time required for version materialization.

The query execution time is, in principle, affected
by both the query form, i.e., query complexity, and by
the number of results. Looking deeper in our results,
we noticed that the query form is much more impor-
tant than the number of results. For instance, in the
3 versions scenario, the queries l10 and l13 are two
of the three queries with the highest execution times
and fetch 1 and 0 results, respectively. This is because
both queries contain the triples pattern of the generic
form: ?x rdf:type ?y (Table 20), which is instantiated
by many thousands of triples within the dataset ver-
sions. This pattern is also joined with another triple
pattern in both cases, causing the queries to be “expen-
sive”.

5.3.2. Cross-version queries
Cross-version queries request data related to mul-

tiple dataset versions. Again, we considered cases in
which either 3, 5 or 7 versions participate. When a
query is submitted, R43ples constructs the needed ver-
sions in order to be able to identify the query results.
The queries constructed by EvoGen and used in our
benchmark need all dataset versions for identifying
their results.

Tables 13 and 14 show the query performance eval-
uation when 3, 5 and 7 versions with about 1M triples

and 5M triples, respectively, are used. Compared to
single-version queries, cross-version queries demand
many more version reconstructions, and thus, the ma-
terialization time is significantly larger.

Regarding query execution, we noticed that the
query form is more important than the number of re-
sults, as in single-version queries. That is, given that
queries are applied over the union of the versions of
a dataset, the number of joins plays a critical role for
query execution. For instance, query ll9 (Appendix B)
is the most time-consuming query, as each part of its
union consists of 6 triple patterns, which should be
satisfied along with 3 joins. The same also holds for
query ll2, which is the second most expensive query,
consisting also of 6 query patterns per union part and
3 joins.

5.3.3. Materialization queries
Materialization queries request an entire version of

a dataset, or even the whole set of versions of a dataset
(diachronic queries). Intuitively, this type of queries
examines how effectively each system can retrieve the
contents of a specific version or the contents of the en-
tire dataset (i.e., all versions). As in single- and cross-
version queries, we considered datasets that consists of
3, 5 and 7 versions. Given the nature of these queries,
both R43ples and TailR can be used for experimenta-
tion.

Running the EvoGen materialization queries (origi-
nally expressed in SPARQL) over R43ples and TailR
required some preprocessing. For R43ples, this was
relatively easy: we only had to change them syntacti-
cally, i.e., as explained above, replace certain implicit
triple patterns that were only implicitly present in the
datasets, with others that were explicitly present. On
the other hand, TailR does not support SPARQL, and
access to versions is managed using the Restful API
provided by Memento [29]. As a result, the provided
queries had to be “transformed” into the correspond-
ing service calls which would be applied over the Me-
mento API, and the query execution times reported be-
low actually refer to the response times of the corre-
sponding service calls. As a result of this “hack”, the
direct comparison of the performance of materializa-
tion queries between TailR and R43ples is somewhat
problematic.

Tables 15 and 16 present the query evaluation per-
formance, i.e., the version materialization time and the
query execution time, in R43ples, in which only one
version is materialized, when 3, 5 and 7 versions with
about 1M and 5M triples are used. As expected, di-

14 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

Table 11: Query evaluation performance for single-version queries when 3, 5 and 7 versions with about 1M triples
are used: version materialization time, query execution time, number of query results.

Queries
3 versions 5 versions 7 versions

Material. (ms) Exec. (ms) # results Material. (ms) Exec. (ms) # results Material. (ms) Exec. (ms) # results

l1 6 2 1 5 1 1 5 1 1

l2 47,206 185 9 86,991 189 9 61,634 250 9

l3 8 2 10 5 1 10 6 2 10

l4 49,858 7 49 63,413 17,398 49 85,960 11 49

l5 52,462 12,304 871 59,062 7 871 63,034 20,639 871

l6 67,481 78 38,151 76,708 74 41,725 71,662 83 46,771

l7 5 2 31 4 2 50 4 2 50

l8 4 110 11,065 3 124 11,403 4 162 12,227

l9 58,929 411 2,077 59,211 536 2,175 59,323 635 2,302

l10 53,113 13,000 1 61,208 3 1 83,163 4 1

l11 47,618 3 15 63,270 21,368 15 81,953 4 15

l12 47,547 7 661 81,641 7 661 86,855 9 661

l13 52,442 12,850 0 81,666 3 0 86,243 3 0

l14 9 54 41,725 8 42 51,229 8 44 58,550

Table 12: Query evaluation performance for single-version queries when 3, 5 and 7 versions with about 5M triples
are used: version materialization time, query execution time, number of query results.

Queries
3 versions 5 versions 7 versions

Material. (ms) Exec.(ms) # results Material.(ms) Exec.(ms) # results Material.(ms) Exec.(ms) # results

l1 6 1 13 5 2 13 6 1 13

l2 219,647 1,498 36 381,304 524 36 310,699 659 36

l3 8 2 10 6 2 10 5 1 10

l4 240,145 10 49 280,493 73,794 83 427,223 9 83

l5 268,850 54,923 964 240,778 12 2,202 328,638 93,508 2,202

l6 187,771 194 250,046 258,127 134 121,996 300,788 153 137,062

l7 4 2 115 3 3 148 4 3 148

l8 4 146 13,109 4 196 17,395 3 278 19,391

l9 275,716 1,359 5,735 240,125 1,384 6,179 302,739 1,781 6,744

l10 255,133 55,875 1 253,774 3 1 400,907 3 1

l11 235,678 4 15 282,567 78,811 15 392,096 4 15

l12 218,862 9 661 326,273 8 661 437,186 12 661

l13 247,911 54,739 0 341,057 4 0 418,462 3 0

l14 9 87 121,996 9 81 147,309 17 202 184,600

achronic queries are the most time consuming both for

version materialization and query execution, because

the system has to reconstruct all the un-materialized

versions at query time; also the result set is much larger

compared to other query types. Similar conclusions

can be reached for TailR, whose results are reported in

Tables 17, 18 and 19, respectively.

6. Summary

The primary focus of this paper was on systemati-
cally studying the state-of-art approaches for manag-
ing and benchmarking evolving RDF data. We pre-
sented the basic strategies that archiving tools fol-
low for storing multiple versions of a dataset, and de-
scribed the existing archiving benchmarks along with
their features and characteristics. Moreover, we eval-
uated the archiving systems using the EvoGen bench-

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 15

Table 13: Query evaluation performance for cross-version queries when 3, 5 and 7 versions with about 1M triples
are used: version materialization time, query execution time, number of query results.

Queries
3 versions 5 versions 7 versions

Material. (ms) Exec. (ms) # results Material. (ms) Exec. (ms) # results Material. (ms) Exec. (ms) # results

ll1 116,707 2 3 257,981 2 5 477,153 2 7

ll2 115,874 688 30 259,569 1,310 52 464,257 1796 84

ll3 116,776 4 30 260,452 3 50 456,867 3 70

ll4 120,280 4 147 257,719 5 245 439,493 8 343

ll5 100,591 15 2,613 257,307 17 4,355 464,413 25 6,097

ll6 121,222 88 118,027 258,583 132 238,313 435,356 216 397,736

ll7 118,686 3 150 258,887 4 250 468,027 5 350

ll8 118,484 387 32,837 260,846 629 55,663 459,865 899 85,589

ll9 119,229 1,870 6,329 270,951 3,095 11,630 441,341 5,089 17,995

ll10 116,929 3 3 259,301 4 5 464,372 3 7

ll11 116,826 2 45 262,036 2 75 461,161 3 105

ll12 114,633 31 1,983 258,842 60 3,305 464,661 64 4,809

ll13 120,205 2 0 258,916 2 0 473,763 2 0

ll14 121,050 76 118,027 252,186 109 238,313 471,760 194 397,736

Table 14: Query evaluation performance for cross-version queries when 3, 5 and 7 versions with about 5M triples
are used: version materialization time, query execution time, number of query results.

Queries
3 versions 5 versions 7 versions

Material. (ms) Exec. (ms) # results Material. (ms) Exec. (ms) # results Material. (ms) Exec. (ms) # results

ll1 590,115 1 15 1,247,531 3 65 2,343,355 3 91

ll2 586,536 2,062 108 1,248,570 3,514 185 2,256,628 4,913 288

ll3 564,908 2 30 1,229,323 2 50 2,223,244 4 70

ll4 607,541 6 181 1,252,369 9 415 2,132,360 12 581

ll5 505,789 24 4,130 1,248,326 45 11,010 2,262,908 60 15,414

ll6 595,201 297 342,826 1,242,965 313 695,557 2,096,159 580 1,178,254

ll7 600,583 4 264 1,271,684 8 740 2,283,217 10 1,036

ll8 580,881 450 34,885 1,223,805 766 69,831 2,207,608 1,384 135,737

ll9 533,036 5,096 17,649 1,245,004 7,368 34,066 2,160,584 13,946 53,908

ll10 603,552 3 15 1,227,828 3 65 2,198,790 5 91

ll11 586,861 2 45 1,234,594 3 75 2,254,713 3 105

ll12 582,098 35 2,070 1,243,615 49 3,815 2,237,536 99 6,713

ll13 578,978 6 0 1,267,584 3 0 2,307,237 2 0

ll14 606,849 167 342,826 1,238,183 294 695,557 2,306,815 542 1,178,254

mark, which allows producing datasets of varying
sizes and change granularity, thereby enabling us to
check the limitations of benchmarked systems. Our re-
sults showed that, even though EvoGen can produce
datasets of varying sizes and characteristics, it is not
stable or reliable enough regarding the production of
the evolving datasets.

We succeeded to conduct experiments only in R43ples
and TailR; for the other systems, we encountered a

number of difficulties related to installation and use.
R43ples requires less space than TailR for the storage
of the datasets versions due to its delta-based imple-
mentation and it is also faster with respect to import
time for all versions, except from the first one which
has to be fully materialized. However, R43ples has
some limitations regarding the size of a dataset that
can be stored, due to its main memory implementation;
this is not an issue in TailR.

16 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

Table 15: Query evaluation performance, in R43ples, for materialization queries when 3, 5 and 7 versions with
about 1M triples are used: version materialization time and query execution time.

Queries
3 versions 5 versions 7 versions

Material. (ms) Exec. (ms) Material. (ms) Exec. (ms) Material. (ms) Exec. (ms)

diachronic 84,269 2,680 218,994 3,525 412,871 5,710

version1 71,526 583 77,047 586 91,116 725

version2 65,026 728 76,570 592 84,383 689

version3 11,298 1,125 74,518 725 87,080 732

version4 - - 84,832 771 96,754 626

version5 - - 14,014 1,126 87,860 701

version6 - - - - 88,206 857

version7 - - - - 19,915 1,278

Table 16: Query evaluation performance, in R43ples, for materialization queries when 3, 5 and 7 versions with
about 5M triples are used: version materialization time and query execution time.

Queries
3 versions 5 versions 7 versions

Material. (ms) Exec. (ms) Material. (ms) Exec. (ms) Material. (ms) Exec. (ms)

diachronic 366,275 7,707 1,167,750 14,140 2,203,072 22,319

version1 281,348 2,061 299,671 2,131 409,601 2,966

version2 261,406 2,282 332,564 3,081 372,448 2,443

version3 40,337 3,290 301,379 2,216 389,982 2,259

version4 - - 301,661 3,372 357,960 2,805

version5 - - 53,522 3,086 354,783 3,221

version6 - - - - 386,212 3,429

version7 - - - - 75,942 3,374

Table 17: Query execution time, in TailR, for
materialization queries when 3, 5 and 7 versions with

about 1M triples are used.

Queries
3 versions 5 versions 7 versions
Exec. (ms) Exec. (ms) Exec. (ms)

diachronic 7,010 12,046 19,183

version1 2,600 262 2,630

version2 2,770 269 2,710

version3 2,910 271 2,630

version4 - 289 2,330

version5 - 253 2,950

version6 - - 2,700

version7 - - 3,150

For evaluating query performance, we used mostly
the R43ples system, since TailR does not support query
facilities on the stored data. For running our experi-
ments, we had to update the queries produced by Evo-
Gen, since it assumes impractical reasoning capabili-
ties on behalf of the query engine in order to answer
queries properly. For both single- and cross-version

Table 18: Query execution time, in TailR, for
materialization queries when 3, 5 and 7 versions with

about 5M triples are used.

Queries
3 versions 5 versions 7 versions
Exec. (ms) Exec. (ms) Exec. (ms)

diachronic 29,210 51,100 77,260

version1 8,930 8,210 9,050

version2 10,870 110,020 10,240

version3 9,710 9,350 10,010

version4 - 11,150 10,980

version5 - 11,010 11,100

version6 - - 10,770

version7 - - 11,680

queries, we noticed that the execution time depends
mostly on the query complexity than on the size of the
result set. Given the nature of materialization queries,
both R43ples and TailR can be used for experimenta-
tion. However, since TailR does not support SPARQL,
we had to transform the queries, so as to access the
versions via particular service calls. This way, the ex-

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 17

Table 19: Query execution time, in TailR, for
materialization queries when 3, 5 and 7 versions with

about 10M triples are used.

Queries
3 versions 5 versions 7 versions
Exec. (ms) Exec. (ms) Exec. (ms)

diachronic 61,510 108,000 154,340

version1 19,830 19,560 20,100

version2 20,150 20,230 20,320

version3 19,910 19,120 18,950

version4 - 21,170 20,150

version5 - 22,520 21,220

version6 - - 22,800

version7 - - 25,180

ecution times of materialization queries from R43ples
and TailR cannot be directly compared. Finally, even
though R43ples implements a delta-based approach for
storing versions, it does not provide functionalities for
accessing the produced deltas, thus, we were unable to
conduct any experiments over delta-based queries.

Overall, the technical difficulties that arose during
experimentation, indicate the lack of mature bench-
mark systems and standard methodologies for storing
and querying multiple datasets versions.

Acknowledgments

The work presented in this paper was funded by the
H2020 project HOBBIT (#688227).

References

[1] Anderson, J., Bendiken, A.: Transaction-time queries in dydra.
In: Joint Proceedings of the 2nd Workshop on Managing the
Evolution and Preservation of the Data Web (MEPDaW 2016)
and the 3rd Workshop on Linked Data Quality (LDQ 2016) co-
located with 13th European Semantic Web Conference (ESWC
2016): MEPDaW-LDQ. vol. 1585, pp. 11–19 (2016)

[2] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R.,
Ives, Z.: DBpedia: A nucleus for a web of open data. In: The
Semantic Web (2007)

[3] Beckett, D.: The design and implementation of the Redland
RDF application framework. Computer Networks 39(5) (2002)

[4] Berliner, B.: CVS II: Parallelizing software development. In:
USENIX Winter 1990 Technical Conference. vol. 341 (1990)

[5] Bizer, C., Heath, T., Berners-Lee, T.: Linked Data-the story so
far. Semantic Services, Interoperability and Web Applications:
Emerging Concepts (2009)

[6] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.:
Freebase: a collaboratively created graph database for structur-
ing human knowledge. In: SIGMOD (2008)

[7] Cassidy, S., Ballantine, J.: Version Control for RDF Triple
Stores. ICSOFT (ISDM/EHST/DC) 7 (2007)

[8] Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Reso-
lution in the Web of Data. Synthesis Lectures on the Semantic
Web: Theory and Technology, Morgan & Claypool Publishers
(2015)

[9] Cloran, R., Irvin, B.: Transmitting RDF graph deltas for a
cheaper semantic Web. In: SATNAC (2005)

[10] Fernandez Garcia, J.D., Umbrich, J., Polleres, A.: BEAR:
Benchmarking the Efficiency of RDF Archiving. Tech. rep.,
Department für Informationsverarbeitung und Prozessmanage-
ment, WU Vienna University of Economics and Business
(2015)

[11] Fernandez Garcia, J.D., Umbrich, J., Polleres, A., Knuth, M.:
Evaluating Query and Storage Strategies for RDF Archives. In:
SEMANTiCS (2016)

[12] Graube, M., Hensel, S., Urbas, L.: R43ples: Revisions for
triples. LDQ (2014)

[13] Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web 3(2) (2005)

[14] Im, D.H., Lee, S.W., Kim, H.J.: A version management frame-
work for RDF triple stores. IJSEKE 22(01) (2012)

[15] Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan,
A.: Observing Linked Data Dynamics. In: ESWC (2013)

[16] Kondylakis, H., Plexousakis, D.: Ontology evolution without
tears. JWS 19 (2013)

[17] Kondylakis, H., Plexousakis, D.: Ontology evolution without
tears. Journal of Web Semantics 19 (2013)

[18] Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney,
J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao,
J.: PROV-O: The PROV Ontology. W3C Recommendation 30
(2013)

[19] Meimaris, M., Papastefanatos, G.: The EvoGen Benchmark
Suite for Evolving RDF Data. MeDAW (2016)

[20] Meimaris, M., Papastefanatos, G., Viglas, S., Stavrakas, Y., Pa-
teritsas, C., Anagnostopoulos, I.: A Query Language for Multi-
version Data Web Archives. In: arXiv:1504.01891 (2016)

[21] Meinhardt, P., Knuth, M., Sack, H.: TailR: a platform for pre-
serving history on the web of data. In: SEMANTiCS. ACM
(2015)

[22] Neumann, T., Moerkotte, G.: Characteristic sets: Accurate car-
dinality estimation for RDF queries with multiple joins. In:
ICDE (2011)

[23] Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for
RDF. VLDB Endowment 1(1) (2008)

[24] Neumann, T., Weikum, G.: x-RDF-3X: fast querying, high up-
date rates, and consistency for RDF databases. VLDB Endow-
ment 3(1-2) (2010)

[25] Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A Framework for
Ontology Evolution in Collaborative Environments. In: ISWC
(2006)

[26] Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D.,
Christophides, V.: High-level change detection in RDF(S)
KBs. ACM TODS 38(1) (2013)

[27] Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G.: D2V:
A tool for defining, detecting and visualizing changes on the
data web. In: Proceedings of the 14th International Semantic
Web Conference, Posters and Demonstrations Track (ISWC-
15) (2015)

[28] Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G.,

18 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

Stavrakas, Y.: A flexible framework for understanding the dy-
namics of evolving RDF datasets. In: Proceedings of the 14th

International Semantic Web Conference (ISWC-15) (2015)
[29] Van de Sompel, H., Nelson, M.L., Sanderson, R., Balakireva,

L.L., Ainsworth, S., Shankar, H.: Memento: Time travel for the
web. arXiv preprint arXiv:0911.1112 (2009)

[30] Van de Sompel, H., Sanderson, R., Nelson, M.L., Balakireva,
L.L., Shankar, H., Ainsworth, S.: An HTTP-based versioning
mechanism for linked data. arXiv preprint arXiv:1003.3661
(2010)

[31] Stefanidis, K., Chrysakis, I., Flouris, G.: On designing archiv-
ing policies for evolving RDF datasets on the Web. In: ER
(2014)

[32] Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of se-
mantic knowledge. In: WWW (2007)

[33] Umbrich, J., Hausenblas, M., Hogan, A., Polleres, A., Decker,
S.: Towards Dataset Dynamics: Change Frequency of Linked
Open Data Sources. In: LDOW (2010)

[34] UniProt, Consortium: The universal protein resource
(UniProt). Nucleic acids research 36(suppl 1) (2008)

[35] Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S.,
Mannens, E., Van de Walle, R.: R&Wbase: git for triples. In:
LDOW (2013)

[36] Völkel, M., Groza, T.: SemVersion: An RDF-based ontology
versioning system. In: IADIS Int’l Conf. WWW/Internet. vol.
2006 (2006)

[37] Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondy-
lakis, H., Motta, E., Plexousakis, D., Sabou, M.: Ontology evo-
lution: a process-centric survey. KER 30(1) (2015)

Appendix

A. Single-version Queries

In this section, we present the SPARQL queries l1-
l14, which were used for the evaluation of R43ples. For
all queries, we used the namespace http://www.
w3.org/1999/02/22-rdf-syntax-ns# for rdf
and http://swat.cse.lehigh.edu/onto/
univ-bench.owl\# for ub. The SPARQL repre-
sentation of the queries appears in Table 20. In or-
der for the queries to be executed by R43ples, a spe-
cific named graph is used, i.e., GRAPH ?g, which
is enriched with all the appropriate revision informa-
tion collected by the R43ples API. The revision num-
ber is denoted in every query, i.e., REVISION ?rev.
We should mention here that Evogen produces queries

which are applied in the first, middle or the last ver-
sion. For instance, in the 3 versions scenario, the first
version is denoted by “2”, the version in the middle
is denoted by “3” and last version is denoted by “4”.
Number “1” denotes the initial “empty” version in
R43ples.
B. Cross-version Queries

Each single-version query presented above can be
converted into a cross-version query by rewriting it
into a union which considers all the versions. For in-
stance, consider the single version query l1:

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev{
?X rdf:type ub:GraduateStudent.
?X ub:takesCourse ?X ub:takesCourse <http://www.
Department0.University0.edu/GraduateCourse0>.
} }

and a scenario in which we have three versions. Then,
the cross-version query, ll1, can be expressed as fol-
lows:

SELECT ?X WHERE {
{
GRAPH ?g REVISION "2"{
?X rdf:type ub:GraduateStudent.
?X ub:takesCourse ?X ub:takesCourse <http://www.
Department0.University0.edu/GraduateCourse0>.
} } UNION {
GRAPH ?g REVISION "3"{
?X rdf:type ub:GraduateStudent.
?X ub:takesCourse ?X ub:takesCourse <http://www.
Department0.University0.edu/GraduateCourse0>.
} } UNION {
GRAPH ?g REVISION "4"{
?X rdf:type ub:GraduateStudent.
?X ub:takesCourse ?X ub:takesCourse <http://www.
Department0.University0.edu/GraduateCourse0>.
}
}
}
In a similar manner, all single-version queries were

transformed into their corresponding cross-version
queries, taking into consideration the number of ver-
sions that appear in a dataset.

V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets 19

Table 20: Single Version Queries

Query SPARQL

l1

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev{
?X rdf:type ub:GraduateStudent.
?X ub:takesCourse ?X ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>.
}
}

l2

SELECT ?X ?Y ?Z WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:memberOf ?Z .
?Z ub:subOrganizationOf ?Y .
?X ub:undergraduateDegreeFrom ?Y.
}
}

l3

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ub:Publication .
?X ub:publicationAuthor <http://www.Department0.University0.edu/AssistantProfessor0>
}
}

l4

SELECT ?X ?Y1 ?Y2 ?Y3 WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?Professor.
?X ub:worksFor <http://www.Department0.University0.edu> .
?X ub:name ?Y1 .
?X ub:emailAddress ?Y2 .
?X ub:telephone ?Y3.
}
}

l5

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?Person.
?X ub:memberOf <http://www.Department0.University0.edu>.
}
}

l6

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type [rdfs:subClassOf ?Student].
}
}

l7

SELECT ?X ?Y WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?Student.
?Y rdf:type ub:Course .
?X ub:takesCourse ?Y .
<http://www.Department0.University0.edu/AssociateProfessor0> ub:teacherOf ?Y.
}
}

20 V. Papakonstantinou et al. / Evaluating Systems and Benchmarks for Archiving Evolving Linked Datasets

Query SPARQL

l8

SELECT ?X ?Y ?Z WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?Student .
?Y rdf:type ?Department .
?X ub:memberOf ?Y .
?Y ub:subOrganizationOf <http://www.University0.edu> .
?X ub:emailAddress ?Z.
} }

l9

SELECT ?X ?Y ?Z WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?Student .
?Y rdf:type ?Faculty .
?Z rdf:type ?Course .
?X ub:advisor ?Y .
?Y ub:teacherOf ?Z .
?X ub:takesCourse ?Z.
}
}

l10

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?Student .
?X ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>.
}
}

l11

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?ResearchGroup .
?X ub:subOrganizationOf <http://www.University0.edu>.
}
}

l12

SELECT ?X ?Y WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?Chair .
?Y rdf:type ?Department.
?X ub:worksFor ?Y .
?Y ub:subOrganizationOf <http://www.University0.edu>.
}
}

l13

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ?Person .
<http://www.University0.edu> ub:hasAlumnus ?X.
}
}

l14

SELECT ?X WHERE {
GRAPH ?g REVISION ?rev {
?X rdf:type ub:UndergraduateStudent.
}
}

