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Abstract. Topical profiling of the datasets contained in the Linking Open Data cloud diagram (LOD cloud) has been of interest
for a longer time. Different automatic classification approaches have been presented, in order to overcome the manual task of
assigning topics for each and every individual new dataset. Although the quality of those automated approaches is comparable
sufficient, it has been shown, that in most cases, a single topical label for one datasets does not reflect the variety of topics
covered by the contained content. Therefore, within the following study, we present a machine-learning based approach in order
to assign a single, as well as multiple topics for one LOD dataset and evaluate the results. As part of this work, we present the
first multi-topic classification benchmark for the LOD cloud, which is freely accessible and discuss the challenges and obstacles
which needs to be addressed when building such benchmark datasets.
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1. Introduction

In 2006, Tim-Berners Lee [39] introduced the
Linked Open Data (LOD) paradigm. It refers to a set
of best practices for publishing and connecting struc-
tured data on the Web. The adoption of such best prac-
tices assures that the structure and the semantics of
the data are made explicit which is also the main goal
of the Semantic Web. The datasets to be published
as Linked Data need to adopt a series of rules in a
way that it would be simple for them to be searched
and queried [40]. These datasets should be published
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adopting W3C1 standards in RDF2 format and made
available for SPARQL3 endpoint queries. The adop-
tion of Linked Data over the last few years have raised
from 12 datasets in 2007, to more than 1000 datasets as
of April 2014 [2], a number that is constantly increas-
ing. These datasets4 cover different domains which is
also shown by the different colors in the LOD cloud
described in Fig. 1. Although publishing such amount
of data adopting the principles of Linked Data has
many advantages, its consumption is still limited.

1https://www.w3.org/
2https://www.w3.org/RDF/
3http://www.w3.org/TR/rdf-sparql-query/
4http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
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The process of exploring Linked Data for a given
target is long and not intuitive. Especially when the
dataset do not provide metadata information about its
topic/s a lot of exploration steps are required in order to
understand if the information contained in the dataset
is useful or not. The decision of using such dataset
is done through accessing the metadata that describe
its content. The datasets in the LOD cloud 2014 be-
long to different domains, with social media, govern-
ment data, and publications data being the most promi-
nent areas [2]. For some dataset published as LOD
such as Linked Movie Database5, or GeoNames6 the
metadata are completely missing, while for some oth-
ers e.g., DBpedia7 the topics it covers are not explicitly
described.

The topic of a dataset can be defined as the dataset’s
subject, i.e. the subject or theme of a discourse or of
one of its parts. As the LOD cloud was manually cre-
ated, for every dataset in the cloud, the topic can be
assigned by either verifying its content or by accessing
the metadata assigned by the publisher.

It is very important to have a classification of
datasets according to their topical domain. Agents nav-
igating through the Web of Linked Data should know
the topic of a dataset discovered by following links in
order to judge whether it is useful for the use case at
hand or not. Furthermore, as shown in [2], it is often
interesting to analyze characteristics of datasets clus-
tered by topical domains, so that trends and best prac-
tices that exist only in a particular topical domain can
be identified. Link discovery also can be supported by
knowing the topic of the dataset. Datasets that share
the same topic, probably share equivalent instances.
Topical classification is also important for coloring
of the Linked Data cloud as in Fig. 1, which marks
datasets according to their topical domain.

Up till now, topical categories were manually as-
signed to LOD datasets either by the publishers of the
datasets themselves via the datahub.io dataset cat-
alog or by the authors of the LOD cloud [2].

The topic profiling of Linked Data has not yet re-
ceived sufficient attention from the Linked Data com-
munity and it poses a number of unique challenges.

– Linked Data come from different autonomous
sources and are continuously evolving. The de-
scriptive information or the metadata may depend

5http://www.linkedmdb.org/
6http://www.geonames.org/
7http://www.dbpedia.org

on the data publishers’ will. Often publishers are
more interested in publishing their data in RDF
format without taking care very much about the
metadata. Moreover, data publishers find difficul-
ties in using appropriate terms for the data to be
described. Apart from a well-known group of vo-
cabularies, it is hard to find vocabularies for most
of the domains that would be a good candidate for
the dataset at hand [43].

– Billions of triples is a daunting scale that poses
very high performance and scalability demands.
Managing large and rapidly increasing volume
of data is being a challenge for developing tech-
niques that scale well with the volume of data in
the LOD cloud.

– Because of the high volume of data, data con-
sumers need also automatic approaches to assign
the topic of the datasets

– Topic profiling techniques should deal with the
structural, semantic and schema heterogeneity of
the LOD datasets.

– Searching through or browsing LOD cloud is
hard, because the metadata are often not struc-
tured and not in a machine-readable format. For
example if a data consumer wants to select all
datasets that belong to the media category, she
faces the challenge of having the metadata de-
scribing topic not in a machine-readable format.
The topic of the datasets in LOD cloud was
manually assigned and it is not represented in a
machine-readable format.

Topic profiling approaches can be evaluated with
topic benchmarking datasets. The capability to com-
pare the efficiency and/or effectiveness of different so-
lutions for the same task is a key enabling factor in
both industry and research. Moreover in many research
areas the possibility to replicate existing results pro-
vided in the literature is one of the pillars of the sci-
entific method. In the ICT field, benchmarks are the
tools which support both comparison and reproducibil-
ity tasks. In database community the benchmark series
defined by the TPC8 is a very famous example. Topic
benchmarks over Linked Data are important for several
reasons; (i) they allow developers to assess the perfor-
mance of their tool; (ii) help to compare the different
available tools that exist and evaluate the suitability for
their needs; and (iii) researchers can address new chal-
lenges. Although the importance of such needs, topic

8http://www.tpc.org
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benchmarking is relatively new. This is also reflected
in the fact that there is only one gold standard for topic
classification of LOD datasets as we will describe in
section 7.

This paper presents our experience in designing and
using a new benchmark for multi-topic profiling and
discuss the choke points which influence the perfor-
mance of such systems. In [45] we investigated to
which extent we can automatically classify datasets
into a single topic category used within the LOD cloud.
We used the LOD cloud data collection of 2014 [2]
to train different classifiers for determining the topic
of a dataset. In this paper we also report the results
achieved from the experiments for single-topic clas-
sification of LOD datasets [45], with the aim to pro-
vide the reader a complete view of the datasets, exper-
iments and analysis of the results. Learning from the
results of the first experiment as most of the datasets
expose more than one topic, we then investigated the
problem of multi-topic classification of LOD datasets,
by extending the original benchmark, adding to some
datasets more than one topic. Results of this new
benchmark are not satisfactory due to the nature of
the content of selected datasets and the topics’ choice
(taken for the original benchmark). We make an anal-
ysis of the lessons learned on this very complex and
relevant task. Furthermore, we make publicly available
the benchmark for the multi-topic classification, dif-
ferent features extracted from the datasets of the LOD
cloud, and the results of our experiments with the hope
to help the LOD community to improve the existing
techniques for benchmark creation and evaluation.

The paper is organized as follows: In Section 2 we
report the data corpus that we used in our experiments
and describe the topics that these datasets belong to.
Section 3 describes the methodology that we adopted
for the creation of the new benchmark for the multi-
topic classification. Section 4 describes the extraction
of different features that characterize the LOD datasets
and introduces the different classification algorithms
used for the classification. In Section 5 we present the
result of the experiment in order to evaluate the bench-
mark for multi-topic classification. Section 6 reports
the analysis of the results in depth and the lessons
learned, while in Section 7 the state of the art in topic
profiling and topic benchmarking are discussed. Fi-
nally, in Section 8 we draw conclusions and present
future directions.

Fig. 1. Linked Data (LOD) Cloud

2. Data Corpus

In this section we report the data corpus used for
the creation of the benchmark. We used the crawl of
Linked Data referred to April 2014 by [2]. Authors
used the LD-Spider crawler originally designed by [3],
which follows dataset interlinks to crawl LOD. The
crawler seeds originate from three resources:

(1) Datasets from the lod-cloud group in datahub.io
datasets catalog, as well as other datasets marked
with Linked Data related tags within the same
catalog

(2) A sample from the Billion Triple Challenge
2012 dataset9

(3) Datasets advertised on the public-lodw3.org
mailing list since 2011.

The crawled data contained 900 129 documents de-
scribing 8 038 396 resources with altogether 188 mil-
lion RDF triples. To group all the resources in datasets,
it was assumed that all the data originating by one pay-
level domain (PLD) belong to a single dataset. The
gathered data originates from 1024 different datasets
from the Web and is publicly available10. Fig. 2 shows
the distribution of the number of resources and docu-
ments per dataset contained in the crawl.

For creating the diagram, the newly discovered
datasets were manually annotated with one of the fol-
lowing topical categories: media, government, publi-
cations, life sciences, geographic, cross-domain, user
generated content, and social networking [2].

Media category contains datasets providing infor-
mation about films, music, TV and radio pro-

9http://km.aifb.kit.edu/projects/btc-2012/
10http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-

RDB/
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Fig. 2. Distribution of the number of resources and documents (log
scale) per dataset contained in the crawl

grammes, as well as printed media. Some datasets
in this category are the dbtune.org music
dataset, the New York Times dataset, and the BBC
radio and television program datasets.

Government category contains Linked Data published
by federal or local governments, including a lot
of statistical datasets. Examples of the datasets
in this category include the data.gov.uk and
opendatacommunities.org dataset.

Publications category holds information library datasets,
information about scientific publications and con-
ferences, reading lists from universities, and cita-
tion database. Prominent datasets in this category
include German National Library dataset, the
L3S DBLP dataset and the Open Library dataset.

Geographic category contains datasets like
geonames.org and linkedgeodata.org
comprising information about geographic enti-
ties, geopolitical divisions and points of interest.

Life science category comprises biological and bio-
chemical information, drug-related data, and in-
formation about species and their habitats. Exam-
ples of datasets that belong to this category are
Drugbank FU-Berlin, Geospecies and Biomodels
RDF.

Cross-domain category includes general knowledge
bases such as DBpedia or UMBEL, linguistic re-
sources such as WordNet or Lexvo, as well as
product data.

User-generated content category contains data from
portals that collect content generated by larger
user communities. Examples include metadata
about blogposts published as Linked Data by
wordpress.com, data about open source soft-
ware projects published by apache.org, scien-
tific workflows published by
myexperiment.org, and reviews published
by goodreads.com or revyu.com.

Social networking category contains people profile as
well as data describing the social ties among peo-
ple. In this category individual FOAF profiles are

Fig. 3. Topics Distribution within LOD Cloud Datasets

included, as well as data about the interconnec-
tions among users of the distributed microblog-
ging platform StatusNet.

The authors of the LOD cloud [2] make a distinction
between the categories user-generated content and so-
cial networking. Datasets in the former category focus
on the actual content while datasets in the later cate-
gory focus on user profiles and social ties. Fig. 3 shows
the distribution of categories over the dataset within
the LOD cloud.

As we can see from Fig. 3, the cloud is dominated by
datasets from the social networking category, followed
by government datasets. Only less than 25 datasets are
included in the cloud for each of the domains media
and geographic. The topical category is manually as-
signed to each dataset in the LOD cloud thus we con-
sider as a gold standard for our experiments. The im-
balance needs to be taken into account for the later
model learning, as some classification algorithms tend
to predict better for stronger represented classes.

Given a large RDF dataset with heterogeneous con-
tent, we want to derive the topic or topics that can be
understood as the subject/s of the dataset by using dif-
ferent feature vectors that describe the characteristics
of the data.

Definition 1 (Topical category) Given a set of RDF
triples (s, p, o), a topic T is a set of labels { l1, l2, ...lk }
that describes the content of the dataset relating it with
a specific area of the real world.

Definition 2 (Single-topic classification) Given a set
{ D1, D2, ...DN } of datasets, where each Di is associ-
ated with a feature vector xi= (xi1, xi2, ... xiM), the pro-
cess of assigning only a single label l j from the set of
labels { l1, l2, ...lp } to Di, is called single-topic classi-
fication.

Definition 3 (Multi-topic classification) Given a set
{ D1, D2, ...DN } of datasets, where each Di is associ-
ated with a feature vector xi= (xi1, xi2, ... xiM), the pro-
cess of assigning a subset of labels lk ⊆ L to Di, where
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L = { lk : k = 1..p } is the set of p possible labels, is
called multi-topic classification.

We first report the results of the experiments for
the single-topic classification algorithms as in [45]
to which extent we can automatically assign a single
topic to each dataset in the cloud. Considering the re-
sults of the first benchmark about single-topic classifi-
cation we investigate the problem of multi-topic clas-
sification of LOD datasets.

3. Benchmark Development Methodology

In this section we discuss the methodology we fol-
lowed to build the benchmark for the multi-topic pro-
filing. For the single topic classification we used as
benchmark the information that is currently used in the
LOD cloud, as the topic for each dataset was manually
assigned, while for the multi-topic classification due to
the lack of the presence of a benchmark we create one.
Based on the results of the single-topic classification of
LOD datasets, for the development of the multi-topic
benchmark we considered some criteria for the selec-
tion of the datasets such as; size, number of different
data-level descriptors ( called feature vectors see sec-
tion 4.1), and non-overlap of topics.

200 datasets were randomly selected from the
whole LOD cloud. In the selection of the datasets we
consider small-size datasets (<500 triples), medium-
size datasets (501< size < 5000 triples) and big-size
datasets (>5000 triples). As we investigated schema
level information we also considered the number of
different attributes for each feature vector that we con-
sidered in our approach. For example, if a dataset uses
less than 20 vocabularies it is considered in the group
of weak-schema descriptors; 20-200 are considered
lite-schema descriptors and datasets that make use of
more than 200 vocabularies are categorized as strong-
schema descriptors. Another criteria for building our
benchmark is the non-overlap of topics.

In the topical categories that are present in the LOD
cloud it is not clear what datasets should go into social
networking and which ones into user-generated con-
tent. User-generated content can cover different topical
domains thus to avoid misclassification of datasets we
remove this category from the list of topical categories
for LOD datasets. We face the same problem classi-
fying datasets into the cross-domain category and any
other category. Because under the cross-domain cat-
egory, also datasets in life science domain, or media
domain can be categorized, we removed this category

from the list of topics that we used for the multi-topic
classification of LOD datasets. From eight categories
in the single topic experiments, in the multi-topic clas-
sification we have only six categories life science, gov-
ernment, media, publications, social networking and
geographic.

Two researchers were involved for this task. They
independently classified datasets in the LOD, into
more than one category. To assign more than one top-
ical category to each dataset the researchers cloud ac-
cess the descriptive metadata published into Mannheim
Linked Data Catalog11 which represents the metadata
in the form of tags. Also, they had the possibility to
take a deeper look inside the data itself. From the re-
sults, the researchers had an inter-rater agreement of
95.64%. Cases for which the assigned topics differ be-
tween the two researchers were further discussed with
two professors.

Table 1
Distribution of number datasets per number of topics

Number of topics 1 2 3 4 5

Number of datasets 85 87 22 4 2

Table 1 shows the distribution of the number of
datasets by the number of topics. As we can see, in our
benchmark for the multi-topic classification, most of
the datasets have one or two topics, while less than 3%
of the datasets have more than four topics.

The benchmark that we build for the multi-topic
classification of LOD datasets is available for further
research in this topic12. Also, the work presented in
[35], build a gold standard for the multi-topic classifi-
cation of RDF datasets, but this work was done before
the presentation of TAPIOCA framework [35]. More-
over the gold standard they provide can not be used as
we will discuss in Section 7.

4. Benchmark Settings

In the following we provide details about bench-
mark settings for our task in assigning more than one
topic to LOD datasets. We first introduce the fea-
ture vectors that we extracted from the datasets in the
cloud, and after report the classification algorithms,
sampling and normalization techniques.

11http://linkeddatacatalog.dws.informatik.uni-mannheim.de/
12https://github.com/Blespa/TopicalProfiling
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4.1. Feature Vectors

For each of the datasets contained in our collection,
we created ten different feature vectors. We extracted
ten feature vectors because want to verify which of the
dataset descriptors are the most relevant for the task of
assigning the topical category.

Vocabulary Usage (VOC): As vocabularies mostly
describe a set of classes for a particular domain,
e.g. foaf for describing persons, or bibo for
bibliographic information, we assume that the vo-
cabularies used by a dataset form a helpful in-
dicator for determining the topical category of
the dataset. We extract the predicates and classes
which represent the set of terms of the vocabular-
ies used by the dataset. We determine the vocab-
ularies by aggregating the namespaces of these
terms. We than summed up the number of occur-
rences resulting in a total of 1 453 vocabularies.

Class URIs (CURI): As a more fine-grained feature,
the rdfs:classes and owl:classeswhich
are used to describe entities within a dataset might
provide useful information to determine the topi-
cal category of the dataset. Thus, we extracted all
used classes of the datasets in the cloud and gen-
erated 914 attributes.

Property URIs (PURI): Beside the class information
of an entity, it might also help to have a look at
the properties which are used to describe it. For
example it might make a difference, if people in
a dataset are annotated with foaf:knows state-
ments or if her professional affiliation is provided.
To leverage this information, we collected all the
properties which are used within one dataset from
the crawled data. This feature vector consists of
2 333 attributes.

Local Class Names (LCN): Different vocabularies
might contain synonymous (or at least closely re-
lated) terms that share the same local name and
only differ in their namespaces, e.g. foaf:Person
and dbpedia:Person. Creating correspon-
dences between similar classes from different
vocabularies reduces the diversity of features,
but on the other side might increase the num-
ber of attributes which are used by more than
one dataset. As we lack correspondences be-
tween all the vocabularies, we bypass this by us-
ing only the local names of the classes, meaning
vocab1:Country and vocab2:Country
are mapped to the same attribute. We used a sim-

ple regular expression to determine the local class
name checking for #, : and / within the class
URI. By focusing only on the local part of a class
name, we increase the number of classes that are
used by more than one dataset in comparison to
CURI and thus generate 1 041 attributes for the
LCN feature vector.

Local Property Names (LPN): Using the same as-
sumption as for the LCN feature vector, we also
extracted the local name of each property that
is used by a dataset. This results in treating
vocab1:name to vocab2:name as a single
property. We used the same heuristic for the ex-
traction as for the LCN feature vector and gener-
ated 2 073 different local property names which
are used by more than one dataset, resulting in an
increase of the number of attributes in compari-
son to the PURI feature vector.

Text from rdfs:label (LAB): Beside the vocabulary-
level features, the names of the described enti-
ties might also indicate the topical domain of
a dataset. We thus extracted objects (values) of
rdfs:label properties, lower-cased them, and
tokenized the values at space characters. We fur-
ther excluded tokens shorter than three and longer
than 25 characters. Afterward, we calculated the
TF-IDF [10] value for each token while excluding
tokens that appeared in less than 10 and in maxi-
mal 200 datasets, in order to reduce the influence
of noise. This resulted in a feature vector consist-
ing of 1 440 attributes. For LAB, we could only
gather data for 455 datasets, as the remaining did
not make use of the rdfs:label property.

Text from rdfs:comment (COM): We also extracted
the values describing entities using the
rdfs:comment property. We extracted all val-
ues of the comment property, and proceed in the
same way as with the LAB feature. We lower-
case all values and tokenize them at space charac-
ters and filtered out all values shorter than 3 char-
acters and longer that 25 characters. This prop-
erty is used by only 252 datasets, and not by
the whole datasets in the cloud. For this feature
we got 1 231 attributes. In difference from the
LAB feature vector, we did not filter out tokens
that were used by less than 10 datasets or more
than 200 datasets. This because the number of
the datasets that were using the rdfs:comment
was only 252 in whole LOD cloud.

Vocabulary Description from LOV (VOCDESC):
In the website of LOV metadata about the vo-
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cabularies found in the LOD cloud are provided.
Among different metadata, it is also given the
description in natural language for each vocabu-
lary. From this description we can understand for
which domain or topic we could use this vocabu-
lary. In the LOV website, there exist 58113 differ-
ent vocabularies. While in LOD as described in
the VOC feature vector there are 1 453 different
vocabularies. From 1 438 vocabularies in LOD,
only 119 have a description in LOV, thus for 1 319
vocabularies used in LOD, we do not have a de-
scription.

Top-Level Domains (TLD): Another feature which
might help to assign datasets to topical categories
is the top level domain of the dataset. For in-
stance, government data is often hosted under
the .gov top-level domain, whereas library data
might be found more likely on .edu or .org
top-level domains14.

In & Outdegree (DEG): In addition to vocabulary-
based and textual features, the number of out-
going RDF links to other datasets and incoming
RDF links from other datasets could provide use-
ful information for classifying the datasets. This
feature could give a hint about the density of the
linkage of a dataset, as well as the way the dataset
is interconnected within the whole LOD cloud
ecosystem.

We extracted all the described feature vectors sepa-
rately from the crawled data. We were able to gather all
features (except for LAB and COM) for 1001 datasets.

4.2. Classification Approaches

Classification problem has been widely studied in
the database [11], data mining [12], and information
retrieval communities [13], and aims at finding reg-
ularities in patterns of empirical data (training data).
The problem of classification is defined as follows:
given a set of training records D= {X1, X2,...Xn}every
record should be labeled with a class value drawn from
a set of l different discrete values indexed by {1, 2,...l}.
We choose to test different classification approaches.
Although there are tons of alternative classification al-
gorithms available, we selected the ones for which the

13Numbers here refer to the version of LOV in the time when
experiments for the topic classification were running.

14We restrict ourselves to top-level domains, and not public suf-
fixes

need for tuning is not too large, as for example the sup-
port vector machines because we do not want to overfit
our learners by parameter tuning. The overfitting oc-
curs when a model, does not fit to training data, thus is
not reliable in making predictions.

k-Nearest Neighbour: kNN is one of the oldest non-
parametric classification algorithms [14]. The
training examples are vectors described by n di-
mensional numeric attributes. In kNN classifica-
tion an object is classified by a majority vote of its
neighbours, with the object being assigned to the
class most common among its k nearest neigh-
bours measured by a distance function. Choosing
the right k value is done by inspecting the dataset
first. In our experiments, based on some prelim-
inary experiments on a comparable but disjunct
set of data, we found that a k equal to 5 performs
best. Euclidean measure is a good distance mea-
sure to use if data in input are of similar type, e.g.,
all data are measured by the same metric such as
heights and widths. While Jaccard distance is a
good measure when the data in input are of dif-
ferent types, e.g., data are measured by different
metrics such as age, weights, gender, etc. For this
reason we used Euclidean-similarity for the bi-
nary term vectors and Jaccard-similarity for the
relative term occurrence vectors as it will be de-
scribed in 4.4.

J48 Decision Tree: Decision Trees are a powerful
classification algorithms that run a hierarchical
division of the underlying data. The most known
algorithms for building decision trees are Classi-
fication and Regression Trees [15] and ID3 and
C4.5 [16]. The decision tree is a tree with deci-
sion nodes which has two or more branches and
leaf nodes that represents a classification or a de-
cision. The splitting is based on the feature that
gives the maximum information gain or uses en-
tropy to calculate the homogeneity of a sample.
The leaf node reached is considered the class la-
bel for that example. We use the Weka implemen-
tation of the C4.5 decision tree [17] called J48.
Many algorithms try to prune their results. The
idea behind pruning is that apart from producing
fewer and more interpreted results, you reduce the
risk of overfitting to the training data. We build a
pruned tree, using the default settings of J48 with
a confidence threshold of 0.25 with a minimum
of 2 instances per leaf.
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Naive Bayes: As a last classification algorithm, we
use Naive Bayes. A Naive Bayesian [18] model
is easy to build, with no complicated iterative pa-
rameter estimation which makes it particularly
useful for very large datasets. It is based on Bayes
’s theorem with independence assumptions be-
tween predictors. It considers each feature to con-
tribute independently to the probability that this
example is categorized as one of the labels. Naive
Bayes classifier assumes that the effect of the
value of a predictor (x) on a given class (c) is in-
dependent to the values of other predictors. This
assumption is called class conditional indepen-
dence. Although this classifier is based on the as-
sumption that all features are independent, which
is mostly a rather poor assumption, Naive Bayes
in practice has shown to be a well-performing ap-
proach for classification [19].

4.3. Sampling techniques

The training data is used to build a classification
model, which relates the elements of a dataset that we
want to classify to one of the categories. In order to
measure the performance of the classification model
build on the selected set of features we use cross-
validation. Cross-validation is used to assess how the
results of the classification algorithm will generalize
to an independent dataset. The goal of using cross-
validation is to define a dataset to test the model
learned by the classifier in the training phase, in order
to avoid overfitting. In our experiments we used a 10-
fold cross-validation, meaning that the sample is ran-
domly partitioned into 10 equal size subsamples. Nine
of the 10 subsamples are used as training data, while
the other left is used as validation data. The cross-
validation process is then repeated 10 times (the folds),
with each of the 10 subsamples used exactly once as
the validation data. The 10 results from the folds can
after be averaged in order to produce a single esti-
mation. As we described in section 2 the number of
datasets per category is not balanced and over half of
them are assigned to the social networking category.
For this reason we explore the effect of balancing the
training data. Even though there are different sampling
techniques, as in [20], we explored only three of them:

Down sampling: We down sample the number of
datasets used for training until each category is
represented by the same number of datasets; this
number is equal to the number of datasets within

the smallest category. The smallest category is
geographic with 21 datasets.

Up sampling: We up sample the datasets for each cat-
egory until each category is at least represented
by the number of datasets equal to the number of
datasets of the largest category. The largest cate-
gory is social networking with 520 datasets.

No sampling: We do not sample the datasets, thus we
apply our approach in the data where each cate-
gory is represented by the number of datasets as
in the distribution of LOD in Fig. 3.

The first sampling technique, reduces the chance to
overfit a model into the direction of the larger repre-
sented classes, but it might also remove valuable infor-
mation from the training set, as examples are removed
and not taken into account for learning the model. The
second sampling technique, ensures that all possible
examples are taken into account and no information is
lost for training, but by creating the same entity many
times can result in emphasizing those particular data.

4.4. Normalization techniques

As the total number of occurrences of vocabularies
and terms is heavily influenced by the distribution of
entities within the crawl for each dataset, we apply two
different normalization strategies to the values of the
vocabulary-level features VOC, CURI, PURI, LCN,
and LPN:

Binary version (bin): In this normalization technique
the feature vectors consist of 0 and 1 indicating
the presence and the absence of the vocabulary or
term.

Relative Term Occurrence (rto): In this normaliza-
tion technique the feature vectors captures the
fraction of the vocabulary or term usage for each
dataset.

In Table 2 it is given an example how we create the
binary (bin) and relative term occurrence (rto) given
the term occurrence for a feature vector.

Table 2
Example of bin and rto normalization

Feature Vectors Version
Feature Vector

t1 t2 t3 t4
Term Occurrence 10 0 2 6

Binary (bin) 1 0 1 1

Relative Term Occurrence 0.5 0 0.1 0.4
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5. Benchmark Evaluation

We first report the results of our experiments us-
ing different feature vectors for single topic in Sec-
tion 5.1 in order to show the goodness of the single
topic benchmark and our approach. Afterward, we ap-
ply our classification algorithms with the goal of the
multi-topic classification and report the results in sec-
tion 5.2.

5.1. Single-topic classification

In this section we report the results for the experi-
ments for single topic classification of LOD datasets
as addressed in [45]. We first report the results of our
experiments training different feature vectors in sepa-
ration 5.1.1. Afterward, we combine all feature vectors
for both normalization techniques and train again our
classification algorithms considering the three sam-
pling techniques and report the results in section 5.1.2.

5.1.1. Results of Experiments on Single Feature
Vectors

For the first experiment we learned a model to clas-
sify LOD datasets in one of the eight categories de-
scribed in 2. In this experiment we considered VOC,
LCN, LPN, CURI, PURI, DEG, TLD and LAB feature
vectors applying the approach described in section 4.
For the above feature vectors, we trained the different
classification techniques as in 4.2 with different sam-
pling techniques as in 4.3 and different normalization
techniques as in 4.4.

In order to evaluate the performance of the three
classification techniques, we use 10-fold cross-validation
and report the average accuracy. Table 3 reports the
accuracy that is reached using the three different clas-
sification algorithms with and without sampling the
training data. Majority Class is the performance of a
default baseline classifier always predicting the largest
category: social networking. As a general observation,
the schema based feature vectors (VOC, LCN, LPN,
CURI, PURI) perform on a similar level, LAB, TLD
and DEG show a relatively low performance and in
some cases are not at all able to beat the trivial base-
line. Classification models based on the attributes of
the LAB feature vector perform on average (without
sampling) around 20% above the majority baseline,
but predict still in half of all cases the wrong cate-
gory. Algorithm-wise, the best results are achieved us-
ing the decision tree (J48) without balancing (maxi-
mal accuracy 80.59% for LCNrto) and the k-NN al-

gorithm, also without balancing for the PURIbin and
LPNbin feature vectors. Comparing the two balancing
approaches, we see better results using the up sam-
pling approach for almost all feature vectors (except
VOCrto and DEG). In most cases, the category-specific
accuracy of the smaller categories is higher when us-
ing up sampling. Using down sampling the learned
models make more errors for predicting the larger cat-
egories. Furthermore, when comparing the results of
the models trained on data without applying any sam-
pling approach, with the best model trained on sam-
pled data, the models applied on non sampled data are
more accurate except for the VOCbin feature vectors.
We see that the balanced approaches are in general
making more errors when trying to predict datasets for
the larger categories, like social networking and gov-
ernment.

5.1.2. Results on Experiments of Combined Feature
Vectors

In the second experiment, we combine all the feature
vectors that we used in the first experiment and train
again our classification models.

As before, we generate a binary and relative term
occurrence version of the vocabulary-based features.
In addition, we create a second set (binary and relative
term occurrence), where we omit the attributes from
the LAB feature vector, as we wanted to measure the
influence of this particular feature, which is only avail-
able for less than half of the datasets. Furthermore, we
create a combined set of feature vectors consisting of
the three best performing feature vectors from the pre-
vious section.

Table 4 reports the results for the five different com-
bined feature vectors:

ALLrto: Combination of the attributes from all eight
feature vectors, using the rto version of the
vocabulary-based features (This feature vector is
generated for 455 datasets).

ALLbin: Combination of the attributes from all eight
feature vectors, using the bin version of the
vocabulary-based features (This feature vector is
generated for 455 datasets).

NoLabrto: Combination of the attributes from all fea-
ture, without the attributes of the LAB feature
vectors, using the rto version.

NoLabbin: Combination of the attributes from all fea-
ture, without the attributes of the LAB feature
vectors, using the bin version.
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Table 3
Single-topic classification results on single feature vectors

Accuracy in %
Classification VOC CUri PUri LCN LPN
Approach bin rto bin rto bin rto bin rto bin rto LAB TLD DEG

Majority Class 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85

k-NN (no sampling) 77.92 76.33 76.83 74.08 79.81 75.30 76.73 74.38 79.80 76.10 53.62 58.44 49.25

k-NN (downsampling) 64.74 66.33 68.49 60.67 71.80 62.70 68.39 65.35 73.10 62.80 19.57 30.77 29.88

k-NN (upsampling) 71.83 72.53 64.98 67.08 75.60 71.89 68.87 69.82 76.64 70.23 43.67 10.74 11.89

J48 (no sampling) 78.83 79.72 78.86 76.93 77.50 76.40 80.59 76.83 78.70 77.20 63.40 67.14 54.45

J48 (down sampling) 57.65 66.63 65.35 65.24 63.90 63.00 64.02 63.20 64.90 60.40 25.96 34.76 24.78

J-48 (up sampling) 76.53 77.63 74.13 76.60 75.29 75.19 77.50 75.92 75.91 74.46 52.64 45.35 29.47

Naive Bayes (no sampling) 34.97 44.26 75.61 57.93 78.90 75.70 77.74 60.77 78.70 76.30 40.00 11.99 22.88

Naive Bayes (down sampling) 64.63 69.14 64.73 62.39 68.10 66.60 70.33 61.58 68.50 69.10 33.62 20.88 15.99

Naive Bayes (up sampling) 77.53 44.26 74.98 55.94 77.78 76.12 76.02 58.67 76.54 75.71 37.82 45.66 14.19

Average (no sampling) 63.91 66.77 77.10 69.65 78.73 75.80 78.35 70.66 79.07 76.53 52.34 45.86 42.19

Average (down sampling) 62.34 67.34 66.19 62.77 67.93 64.10 67.58 63.38 68.83 64.10 26.38 28.80 23.55

Average (up sampling) 75.30 64.81 71.36 66.54 76.22 74.40 74.13 68.14 76.36 73.47 44.81 33.92 18.52

Best3: Includes the attributes from the three best per-
forming feature vectors from the previous sec-
tion based on their average accuracy: PURIbin,
LCNbin, and LPNbin

We can observe that when selecting a larger set of
feature vectors, our model is able to reach a slightly
higher accuracy of 81.62% than using just the at-
tributes from one feature vector (80.59%, LCNbin).
Still the trained model is unsure for certain decisions
and has a stronger bias towards the categories publica-
tions and social networking.

5.2. Multi-topic classification

In this section we report the results from the exper-
iments for multi-topic classification of LOD datasets.
We first report the results of using the different feature
vectors in separation as for the single-topic classifica-
tion in section 5.2.1. Afterward, we report the results
of experiments combining attributes from multiple fea-
ture vectors in section 5.2.2.

5.2.1. Results of Experiments on Single Feature
Vectors

In this section we report the results for classifying
LOD datasets in more than one topical category de-
scribed in 1, that we define as multi-topic classification
of LOD datasets.

The objective of multi-label classification is to build
models able to relate objects with a subset of labels,
unlike single-label classification that predicts only a

single label. Multi-label classification has two major
challenges with respect to the single-label classifica-
tion. The first challenge is related to the computational
complexity of algorithms especially when the number
of labels is large, then these approaches are not ap-
plicable in practice. While the second challenge is re-
lated to the independence of the labels and also some
datasets might belong to an infinite number of labels.
One of the biggest challenge in the community is to
design new methods and algorithms that detect and ex-
ploit dependencies among labels [26].

In [22] is given an overview of different algorithms
used in the multi-label classification problem. The
most straightforward approach for the multi-label clas-
sification is the Binary Relevance (BR) [44]. BR re-
duces the problem of multi-label classification to mul-
tiple binary classification problems. Its strategy in-
volves training a single classifier per each label, with
the objects of that label as positive examples and all
other objects as negatives. The most important disad-
vantage of the BR, is the fact that it assumes labels
to be independent. Although BR have many disadvan-
tages, it is quite simple and intuitive. It is not com-
putationally complex compared to other methods and
is highly resistant to overfitting label combinations,
since it does not expect examples to be associated with
previously-observed combinations of labels [23]. For
this reason it can handle irregular labeling and labels
can be added or removed without affecting the rest of
the model.
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Table 4
Single-topic classification results on combined feature vectors

Classification Accuracy in %
Approach ALLrto ALLbin NoLabrto NoLabbin Best3

k-NN (no sampling) 74.93 71.73 76.93 72.63 75.23

k-NN (down sampling) 52.76 46.85 65.14 52.05 64.44

k-NN (up sampling) 74.23 67.03 71.03 68.13 73.14

J-48 (no sampling) 80.02 77.92 79.32 79.01 75.12

J-48 (down sampling) 63.24 63.74 65.34 65.43 65.03

J-48 (up sampling) 79.12 78.12 79.23 78.12 75.72

Naive Bayes (no sampling) 21.37 71.03 80.32 77.22 76.12

Naive Bayes (down sampling) 50.99 57.84 70.33 68.13 67.63

Naive Bayes (up sampling) 21.98 71.03 81.62 77.62 76.32

Multi-label classifiers can be evaluated from differ-
ent points of view. Measures of evaluating the per-
formance of the classifier can be grouped into two
main groups: example-based or label-based [25]. The
example-based measures compute the average differ-
ences of the actual and the predicted sets of labels
over all examples. While the label-based measures
decompose the evaluation with respect to each label.
For label-based measures we can use two metrics;
macro-average in equation 1 and micro-average given
in equation 2. Consider a binary evaluation measure
B(tp, tn, fp, fn) that is calculated based on the num-
ber of true positives (tp), true negatives (tn), false pos-
itives (fp) and false negatives (fn). Let tpl, f pl, tnl and
f nl be the number of true positives, false positives,
true negatives and false negatives after binary evalua-
tion for a label l. The macro-average averages the mea-
sures label-wise, while micro-average merges all la-
bel predictions and computes a single value over all
of them. Macro-average measures give equal weight
to each label, and are often dominated by the perfor-
mance on rare labels. In contrast, micro-average met-
rics gives more weight to frequent labels. These two
ways of measuring performance are complementary
one each other, and both are informative [26]. For this
experiment we will report the micro-average measure
for precision (P), recall (R) and the harmonic mean be-
tween them, the F-measure (F).

Bmacro =
1

p

p∑
l=1

B(tpl, f pl, tnl, f nl) (1)

Bmicro = B(
p∑

l=1

tpl,

p∑
l=1

f pl,

p∑
l=1

tnl,

p∑
l=1

f nl) (2)

Similarly, as for the single topic experiments, we
also applied our classification algorithms on different
feature vectors, taking into account also the different
sampling and normalization techniques described in
section 4.3 and 4.4. Also for the multi-topic classifica-
tion of LOD datasets we use a 10-fold cross-validation.
For our first experiment we consider the LCN, LPN,
CURI and PURI feature vectors as from the results of
the experiments on the single topic classification they
performed better with respect to the other feature vec-
tors.

Table 5 and 6 show the micro-accuracy in terms of
precision, recall and f-measure achieved by our clas-
sification algorithms. Algorithm-wise, the best results
precision-wise are achieved using kNN, without sam-
pling with a P = 0.68, R = 0.21 and F = 0.32 trained on
LCN binary, while for the best results for the harmonic
mean between precision and recall are achieved for
the same feature vector (LCN) training Naive Bayes
on binary normalization technique. For the same fea-
ture vector and classification algorithm, the results
achieved are in similar level for both sampling tech-
niques; no sampling and up sampling; P = 0.41, R =
0.56 and F = 0.47. Sampling-wise, the results achieved
by the down-sampling are lower than the two other
techniques. Also, normalization-wise there is a mix-
ture in the results depending on the classification algo-
rithm and the feature vector in input.

5.2.2. Results of Experiments for Combined Feature
Vectors

In the second experiment for the multi-topic classi-
fication of LOD datasets we combine the feature vec-
tors that we used in the first experiment and train again
our classification algorithms. Table 7 shows the results
of ALL feature vector and the combination of CURI,
PURI, LCN and LPN.

From the results we can observe that when selecting
a larger set of attributes, our model is not able to reach
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Table 5
Multi-topic classification results on single feature vectors

Micro -averaged measure
Classification CUri LCN
Approach bin rto bin rto
Approach P R F P R F P R F P R F

k-NN (no sampling) 0.66 0.20 0.31 0.65 0.18 0.29 0.68 0.21 0.32 0.34 0.25 0.29
k-NN (downsampling) 0.58 0.21 0.31 0.55 0.02 0.28 0.53 0.22 0.31 0.68 0.19 0.30
k-NN (upsampling) 0.47 0.31 0.38 0.44 0.30 0.36 0.46 0.29 0.36 0.45 0.28 0.34
J48 (no sampling) 0.54 0.16 0.25 0.57 0.15 0.23 0.58 0.17 0.27 0.59 0.15 0.23
J48 (down sampling) 0.46 0.19 0.27 0.35 0.22 0.27 0.47 0.21 0.29 0.34 0.22 0.27
J-48 (up sampling) 0.50 0.20 0.28 0.51 0.18 0.26 0.50 0.21 0.29 0.52 0.18 0.27
Naive Bayes (no sampling) 0.41 0.53 0.46 0.45 0.41 0.43 0.41 0.56 0.47 0.45 0.40 0.42
Naive Bayes (down sampling) 0.35 0.46 0.39 0.41 0.41 0.41 0.38 0.42 0.40 0.39 0.41 0.40
Naive Bayes (up sampling) 0.41 0.53 0.46 0.45 0.41 0.43 0.41 0.56 0.47 0.45 0.40 0.42

Average (no sampling) 0.54 0.30 0.34 0.56 0.25 0.32 0.56 0.31 0.35 0.46 0.27 0.31
Average (down sampling) 0.46 0.29 0.32 0.44 0.22 0.32 0.46 0.28 0.33 0.47 0.27 0.32
Average (up sampling) 0.46 0.34 0.37 0.47 0.30 0.35 0.46 0.35 0.37 0.47 0.29 0.34

Table 6
Multi-topic classification results on single feature vectors

Micro -averaged measure
Classification PUri LPN
Approach bin rto bin rto
Approach P R F P R F P R F P R F

k-NN (no sampling) 0.61 0.21 0.31 0.64 0.19 0.29 0.61 0.20 0.30 0.60 0.19 0.29
k-NN (downsampling) 0.52 0.22 0.31 0.58 0.19 0.29 0.55 0.22 0.32 0.56 0.21 0.30
k-NN (upsampling) 0.47 0.29 0.36 0.46 0.26 0.33 0.49 0.27 0.35 0.48 0.26 0.34
J48 (no sampling) 0.58 0.24 0.34 0.59 0.24 0.34 0.57 0.24 0.34 0.59 0.24 0.34
J48 (down sampling) 0.36 0.40 0.38 0.45 0.26 0.33 0.46 0.29 0.36 0.39 0.29 0.33
J-48 (up sampling) 0.53 0.27 0.35 0.55 0.27 0.36 0.56 0.29 0.39 0.54 0.27 0.36
Naive Bayes (no sampling) 0.61 0.21 0.31 0.64 0.19 0.29 0.61 0.20 0.30 0.60 0.19 0.29
Naive Bayes (down sampling) 0.52 0.22 0.31 0.58 0.19 0.29 0.55 0.22 0.32 0.56 0.21 0.30
Naive Bayes (up sampling) 0.47 0.29 0.36 0.46 0.26 0.33 0.49 0.27 0.35 0.48 0.26 0.34

Average (no sampling) 0.60 0.22 0.32 0,62 0,21 0,31 0,60 0,21 0,31 0.60 0,21 0,31
Average (down sampling) 0.47 0.28 0.33 0.54 0.21 0.30 0.52 0.24 0.33 0.50 0.24 0.31
Average (up sampling) 0.49 0.28 0.36 0.49 0.26 0.34 0.51 0.28 0.36 0.5 0.26 0.35

a higher performance than using only the attributes
from one feature vector (P = 0.68, R = 0.21, F = 0.32).
Our models are precision-oriented and reach a satisfy-
ing precision but the recall is very low, which means
that our models are not able to retrieve the right topic
for the LOD datasets. The highest performance for the

experiments taking in input a combination of features
is achieved by training LCN and LPN binary vector as
input for Naive Bayes on no sampling data P = 0.42, R
= 0.48 and F = 0.45.
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Table 7
Multi-topic classification results on combined feature vectors

Micro -averaged measure
Classification PUri & CUri LPN & LCN ALL
Approach bin rto bin rto bin rto
Approach P R F P R F P R F P R F P R F P R F

k-NN (no sampling) 0.66 0.19 0.29 0.60 0.13 0.22 0.65 0.18 0.29 0.58 0.15 0.23 0.44 0.07 0.12 0.54 0.13 0.21
k-NN (downsampling) 0.53 0.23 0.32 0.56 0.16 0.25 0.53 0.23 0.32 0.51 0.19 0.28 0.42 0.08 0.13 0.51 0.14 0.22
k-NN (upsampling) 0.47 0.27 0.34 0.42 0.21 0.28 0.49 0.26 0.34 0.46 0.21 0.29 0.43 0.12 0.18 0.48 0.18 0.26
J48 (no sampling) 0.58 0.23 0.33 0.58 0.23 0.33 0.57 0.01 0.02 0.56 0.21 0.31 0.58 0.25 0.35 0.57 0.23 0.33
J48 (down sampling) 0.36 0.38 0.37 0.33 0.24 0.28 0.45 0.29 0.35 0.35 0.29 0.32 0.44 0.31 0.37 0.44 0.33 0.38
J-48 (up sampling) 0.54 0.27 0.36 0.55 0.27 0.36 0.53 0.27 0.35 0.52 0.24 0.33 0.58 0.25 0.35 0.51 0.25 0.34
Naive Bayes (no sampling) 0.51 0.39 0.44 0.50 0.34 0.41 0.42 0.48 0.45 0.54 0.34 0.41 0.54 0.34 0.42 0.52 0.31 0.39
Naive Bayes (down sampling) 0.42 0.43 0.43 0.38 0.40 0.39 0.40 0.40 0.40 0.37 0.42 0.40 0.41 0.42 0.41 0.38 0.41 0.39
Naive Bayes (up sampling) 0.51 0.39 0.44 0.50 0.34 0.41 0.53 0.36 0.43 0.54 0.34 0.41 0.55 0.32 0.40 0.52 0.31 0.39

Average (no sampling) 0.58 0.27 0,35 0.56 0.23 0.32 0.55 0.22 0.25 0.56 0.23 0.32 0.52 0.22 0.30 0.54 0.22 0.31
Average (down sampling) 0.44 0.35 0.37 0.42 0.27 0.31 0.46 0.31 0.36 0.41 0.30 0.33 0.42 0.27 0.30 0.44 0.29 0.33
Average (up sampling) 0.51 0.31 0.38 0.49 0.27 0.35 0.52 0.30 0.37 0.51 0.26 0.34 0.52 0.23 0.31 0.50 0.25 0.33
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6. Lessons Learned

In the following, we discuss the results achieved by
our experiments and analyze the most frequent errors
of the best performing approach.

6.1. Single-topic classification

The best performing approach is achieved by ap-
plying Naive Bayes trained on the attributes of the
NoLabbin feature vector using up sampling. This ap-
proach achieved an accuracy of 81.62%. We take a
closer look at the confusion matrix of the second ex-
periment described in Table 8, where on the left side
we list the predictions by the learned model, while the
head names the actual topical category of the dataset.
As observed in the table, there are three kinds of errors
which occur more frequently than 10 times.

Table 8
Confusion Matrix for the NoLABbin feature vector.
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social networking 489 4 5 10 2 4 11 1
cross-domain 1 10 3 1 1 0 1 1
publication 8 10 54 9 4 4 2 2
government 3 4 14 151 1 2 0 2
life science 5 3 12 0 72 2 5 5
media 6 3 4 1 1 7 2 0
user-generated content 6 1 1 2 0 2 26 0
geographic 1 5 1 5 1 0 0 8

The most common confusion occurs for the publi-
cation domain, where a larger number of datasets are
predicted to belong to the government domain. A rea-
son for this is that government datasets often contain
metadata about government statistics which are rep-
resented using the same vocabularies and terms (e.g.
skos:Concept) that are also used in the publication
domain. This makes it challenging for a vocabulary-
based classifier to distinguish those two categories
apart. In addition, for example the http://mcu.es/
dataset the Ministry of Culture in Spain was manually
labeled as publication within the LOD cloud, whereas
the model predicts government which turns out to be

a borderline case in the gold standard (information
on the LOD cloud). A similar frequent problem is
the prediction of life science for datasets in the pub-
lication category. This can be observed, e.g., for the
http://ns.nature.com/publications/, which describe the
publications in Nature. Those publications, however,
are often in the life sciences field, which makes the
labeling in the gold standard a borderline case.

The third most common confusion occurs between
the user-generated content and the social network-
ing domain. Here, the problem is in the shared use
of similar vocabularies, such as foaf. At the same
time, labeling a dataset as either one of the two is
often not so simple. In [2], it has been defined that
social networking datasets should focus on the pre-
sentation of people and their inter-relations, while
user-generated content should have a stronger focus
on the content. Datasets from personal blogs, such
as www.wordpress.com however, can convey both as-
pects. Due to the labeling rule, these datasets are la-
beled as user-generated content, but our approach fre-
quently classifies them as social networking.

In summary, while we observe some true classifi-
cation errors, many of the mistakes made by our ap-
proach actually point at datasets which are difficult to
classify, and which are rather borderline cases between
two categories. For this reason as it will be described in
section 5.2, we investigate the problem of multi-topic
classification of LOD datasets.

6.2. Multi-topic classification

In the following, we discuss the results achieved
by our experiments on the multi-topic classification
of LOD datasets and analyze the most frequent errors
of the best performing approach. As from the results
on section 5.2.1 and section 5.2.2 for the multi-topic
classification of LOD datasets the best performing ap-
proach in terms of harmonic mean is achieved training
the LCN using Naive Bayes on no sampling data with
a performance of P=0.41, R=0.56 and F=0.47. Con-
sider the problem of classifying the datasets with two
topics, e.g., media and social networking. A represen-
tative example is the bbc.co.uk/music dataset, which in
our gold standard is labeled with both topics. Our clas-
sifier predicts it as belonging to only media category.
This dataset except of including music data, contains
also other social networking data as a result of the pos-
sibility to sign up and create a profile, follow other peo-
ple or comment in different music posts. For this rea-
son we classify this dataset in our gold standard also
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as belonging to the social networking category. The
classifier failed to classify the second topic because
the vocabularies and classes used in this dataset belong
mostly to the bbc vocabulary which is used only in
datasets belonging to bbc.co.uk domain. Because the
classifier learned the social networking category from
datasets that make no use of such vocabulary it is diffi-
cult for it to classify also the bbc.co.uk/music into the
social networking category.

Consider the problem of classifying the datasets
with three labels, e.g., government, publication and
geographic. One of the datasets belonging to these
topics is europa.eu. Our model classifies it as be-
longing to publication and government. The model
was not able to predict geographic as the third topic.
Even though this dataset contains some geograph-
ical data for all countries in the European Union,
for example http://europa.eu/european-union/about-
eu/countries/member-countries/italy_en the amount of
geographic data with respect to the government and
publication data is smaller. In this small amount of ge-
ographical data, the classifier could not find similar at-
tributes as those used for training, considering them to
be noise and not assigning a topic.

For the datasets that have more than three topics, it
is even harder for the classifier to predict all labels, if
there are few examples (instances) belonging to each
topic and they use similar vocabularies to define also
instances that belong to other topics.

Because of the results discussed above indicate that
only schema-level data are not a good input to the clas-
sifiers, we also exploited the text information in these
datasets. For this reason we extracted the LAB and
COM feature vectors. At a second moment we manu-
ally checked the text from LAB and COM feature vec-
tors for the datasets in the gold standard to understand
if this information could be a good input. We were able
to find significant text only for 15 datasets (out of 200
in the gold standard) while for all the others, the text
was not in English, or rather it contained acronyms,
or was encoded. Because the number of datasets con-
taining significant text is very low, we did not further
continue testing LAB and COM feature vectors as in-
put for the classifier for the multi-topic classification
of LOD datasets.

Except of LAB and COM, also the VOCDES fea-
ture vector was not considered in our experiments.
From 1, 438 vocabularies that are used in LOD, only
119 have a description in LOV. From 119 vocabularies
with a description, 90 of them are used in less than 10
datasets, while 5 of them are used in more than 200

datasets. For this reason we did not use the descrip-
tion of vocabularies in LOV as a feature vector for our
classifiers.

In table 9 we summaries the errors and possible so-
lutions in determining the datasets to use for bench-
marking LOD.

7. Related Work

Topical profiling has been studied in data mining,
database, and information retrieval communities. The
resulting methods find application in domains such
as documents classification, contextual search, content
management and review analysis [27,28,29,30,31]. Al-
though topical profiling has been studied in other set-
tings before, only a few methods exist for profil-
ing LOD datasets. These methods can be categorized
based on the general learning approach that is em-
ployed into the categories unsupervised and super-
vised, where the first category does not rely on labeled
input data, the latter is only applicable for labeled data.
Moreover existing approaches consider schema-level
[4,5,6] or data-level information [7,8] as input for the
classification task. In [34] the topic extraction of RDF
datasets is done through the use of schema and data
level information.

Authors in [4] try to define the profile of datasets
using semantic and statistical characteristics. They use
statistics about vocabulary, property, and datatype us-
age, as well as statistics on property values, such as
average strings length, for characterizing the topic of
the datasets. For classification, they propose a fea-
ture/characteristic generation process, starting from
the top discovered types of a dataset and generating
property/value pairs. In order to integrate the prop-
erty/value pairs they consider the problem of vocab-
ulary heterogeneity of the datasets by defining corre-
spondences between terms in different vocabularies.
This can be done by using ontology matching tech-
niques. Authors intended to align only popular vocab-
ularies. They have pointed out that it is essential to au-
tomate the feature generations and proposed the frame-
work to do so, but do not evaluate their approach on
real-world datasets. Also, considering only the most
popular vocabularies, makes this framework not appli-
cable to any dataset or belonging any kind of domain.
In our work, we draw from the ideas of [4] on using
schema-usage characteristics as features for the topical
classification, but focus on LOD datasets.
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Table 9
Evaluation of benchmark criteria

Benchmarking criteria Benchmark issues
Errors Recommendations

Size small feature vectors to learn the classifier use mid or big size datasets
Schema-level descriptors very specific feature vectors used for different topics use of specific feature vectors for specific topic
Topic overlap topic overlap, e.g., between social networking and media label datasets with specific and non-overlapping topics

Authors in [7] propose the application of aggrega-
tion techniques to identify clusters of semantically re-
lated Linked Data given a target. Aggregation and ab-
straction techniques are applied to transform a basic
flat view of Linked Data into a high-level thematic
view of the same data. Linked Data aggregation is per-
formed in two main steps; similarity evaluation and
thematic clustering. This mechanism is the backbone
of the inCloud framework [7]. As an input, the system
takes a keyword-based specification of a topic of in-
terest, namely a real-world object/person, an event, a
situation, or any similar subject that can be of interest
for the user and returns a part of the graph related to
the keyword in input. Authors claim that they evalu-
ated the inCloud system by measuring user satisfaction
and system evaluation in terms of accuracy and scala-
bility but do not provide any experimental data. In our
approach we do not imply any matching algorithm, but
use schema-based information to assign the topic.

An approach to detect latent topics in entity-relationship
graphs is introduced by [5]. This approach works
in two phases: (1) A number of subgraphs having
strong relations between classes are discovered from
the whole graph, and (2) the subgraphs are combined
to generate a larger subgraph, called summary, which
is assumed to represent a latent topic. Topics are ex-
tracted from vertices and edges for elaborating the
summary. This approach is evaluated using DBpedia
dataset. Their approach explicitly omits any kind of
features based on textual representations and solely re-
lies on the exploitation of the underlying graph. Thus,
for datasets that do not have a rich graph, but instances
are described with many literal values, this approach
cannot be applied. Differently from [5], in our ap-
proach we extract all schema-level data. In this ap-
proach only strong relations between classes are dis-
covered from the whole graph, while in our approach
we do not consider the relation between classes but
extract all classes and all properties used in the dataset.

In [8] authors propose an approach for creating
dataset profiles represented by a weighted dataset-
topic graph which is generated using the category
graph and instances from DBpedia. In order to create

such profiles, a processing pipeline that combines tai-
lored techniques for dataset sampling, topic extraction
from reference datasets, and relevance ranking is used.
Topics are extracted using named-entity-recognition
techniques, where the ranking of the topics is based on
their normalized relevance score for a dataset. These
profiles are represented in RDF using VOID vocab-
ulary and Vocabulary of Links15. The accuracy for
the dataset profiles is measured using normalized dis-
counted cumulative gain which compares the ranking
of the topics with the ideal ranking indicated by the
ground truth. In our approach we do not use any entity-
recognition techniques but rather use schema-level in-
formation and different algorithms for the topic classi-
fication of LOD datasets.

Automatic identification of topic domains of the
datasets utilizing the hierarchy within Freebase dataset
is presented in [6]. This hierarchy provides back-
ground knowledge and vocabulary for the topic labels.
This approach is based on assigning Freebase types
and domains to the instances in an input LOD dataset.
The main challenge in this approach is that it fails to
identify the prominent topic domains if in Freebase
there are no instances that match entities in the dataset.

Some approaches propose to model the documents
as a mixture of topics, where each topic is treated as
a probability distribution over words such as Latent
Dirichlet Allocation (LDA) [32], Pachinko Allocation
[33] or Probabilistic Latent Semantic Analysis (pLSA)
[34]. As in [35], authors present TAPIOCA16, a Linked
Data search engine for determining the topical simi-
larity between datasets. TAPIOCA takes as input the
description of a dataset and searches for datasets with
similar topic which are assumed to be good candidate
for linking. Latent Dirichlet Allocation (LDA) is used
to identify the topic or topics of RDF datasets. For
the probabilistic topic-modelling based approach two
types of information are used; instances and the struc-
ture of RDF datasets. The metadata comprises classes
and properties used in the dataset, removing the classes

15http://data.linkededucation.org/vol/
16http://aksw.org/Projects/Tapioca.html
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and properties of most known vocabularies such as
RDF, RDFS, OWL, SKOS and VOID because they do
not provide any information about the topic. By ex-
tracting this structural metadata from a dataset TAPI-
OCA transforms it into a description of the topically
content of the dataset. In this work author build a gold
standard and make it available, but it is difficult to use
it as the information is encoded. As described by the
authors, the challenge is to search for a good num-
ber of topics and how to handle classes and proper-
ties in other languages rather than English. Thus, pick-
ing a good number of topics has a high influence on
the model ’s performance. Moreover, approaches that
use LDA are very challenging to adapt in cases when
a dataset has many topics. These approaches are very
hard to be applied in LOD datasets because of the lack
of the description in natural language of the content of
the dataset.

The approach proposed by [34] uses LDA for the
topical extraction of RDF datasets. For the probabilis-
tic topic-modeling two types of information are used;
instances and the structure of RDF datasets. This is
a very challenging approach to adapt especially when
the dataset belongs to many topics or the description of
the dataset is in other languages rather than in English.

8. Conlusions

Benchmark is a mandatory tool in the toolbox of re-
searchers allowing us to compare and reproduce the
results of different approaches found in the literature.
In this paper we discussed the problem of the creation
and evaluation of a benchmark for multi-topic profil-
ing. The performance of the classification model for
the multi-topic benchmark is not as good as of the
same approach we used by analyzing a benchmark for
single topic. The error analysis of the misclassified
cases showed that many datasets use same or very sim-
ilar feature vectors to describe entities. Moreover, the
distribution of the datasets for each topical category
highly influences the classifier. The distribution of in-
stances belonging to different topics within a dataset
is also highly influencing the classifier. If the dataset
contains only a few instances belonging to a topic, our
classifier consider this information as noise. The multi-
topic benchmark is heavy imbalance, with roughly half
of the data belonging to the social networking domain.
Moreover, some datasets belonging to a specific topic
such as bbc.co.uk belonging to the media category,
make use of specific vocabularies such as bbc vocabu-

lary. Because our learning classifier learned the model
on specific vocabularies, it fails to assign the same top-
ical category also to other datasets belonging to the
same category but not using such vocabulary.

As future work, when regarding the problem as
a multi-label problem, the corresponding approach
would be a classifier chains, which make a prediction
for one category after the other, taking the prediction
for the first category into account as features for the
remaining classifications [37]. Another direction is the
application of stacking, nested stacking or dependent
binary methods [38].
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classificationâĂŤrevisiting neural networks. In Joint European
Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 437-452. Springer Berlin Heidelberg, 2014.

[29] Basu, Tanmay, and C. A. Murthy. Effective text classification
by a supervised feature selection approach. In Data Mining

Workshops (ICDMW), 2012 IEEE 12th International Confer-
ence on, pp. 918-925. IEEE, 2012.

[30] Shivane, Padmaja, and Rakesh Rajani. A Survey on Effective
Quality Enhancement of Text Clustering and Classification Us-
ing METADATA.

[31] Song, Ge, Yunming Ye, Xiaolin Du, Xiaohui Huang, and Shifu
Bie. Short Text Classification: A Survey. Journal of Multimedia
9, no. 5 (2014): 635-643.

[32] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. Latent
dirichlet allocation. Journal of machine Learning research 3, no.
Jan (2003): 993-1022.

[33] Li, Wei, and Andrew McCallum. Pachinko allocation: DAG-
structured mixture models of topic correlations. In Proceedings
of the 23rd international conference on Machine learning, pp.
577-584. ACM, 2006.

[34] Hofmann, Thomas. Probabilistic latent semantic indexing. In
Proceedings of the 22nd annual international ACM SIGIR con-
ference on Research and development in information retrieval,
pp. 50-57. ACM, 1999.

[35] Roder, Michael, Axel-Cyrille Ngonga Ngomo, Ivan Ermilov,
and Andreas Both. Detecting Similar Linked Datasets Using
Topic Modelling. In International Semantic Web Conference, pp.
3-19. Springer International Publishing, 2016.

[36] Montanes, Elena, Robin Senge, Jose Barranquero, Jose Ramon
Quevedo, Juan Jose del Coz, and Eyke Hullermeier. Dependent
binary relevance models for multi-label classification. Pattern
Recognition 47.3 (2014): 1494-1508.

[37] Zhang, Min-Ling, and Zhi-Hua Zhou. A review on multi-label
learning algorithms. IEEE transactions on knowledge and data
engineering 26, no. 8 (2014): 1819-1837.

[38] Montanes, Elena, Robin Senge, Jose Barranquero, Jose Ramon
Quevedo, Juan Jose del Coz, and Eyke Hullermeier. Dependent
binary relevance models for multi-label classification. Pattern
Recognition 47, no. 3 (2014): 1494-1508.

[39] Berners-Lee, Tim. Linked data, 2006. (2006).
[40] Bizer, Christian, Tom Heath, and Tim Berners-Lee. Linked

data-the story so far. Semantic services, interoperability and
web applications: emerging concepts (2009): 205-227.

[41] Vandenbussche, Pierre-Yves, Ghislain A. Atemezing, Maria
Poveda-Villalon, and Bernard Vatant. Linked Open Vocabular-
ies (LOV): a gateway to reusable semantic vocabularies on the
Web. Semantic Web 8, no. 3 (2017): 437-452

[42] Naumann, Felix. Data profiling revisited. ACM SIGMOD
Record 42, no. 4 (2014): 40-49.

[43] Zimmermann, Antoine. Ontology recommendation for the data
publishers. for the Semantic Web, Aachen, Germany (2010): 95.

[44] Tsoumakas, Grigorios, Ioannis Katakis, and Ioannis Vlahavas.
Mining multi-label data. In Data mining and knowledge discov-
ery handbook, pp. 667-685. Springer US, 2009.

[45] Robert Meusel, Blerina Spahiu, Christian Bizer, Heiko Paul-
heim. Towards Automatic Topical Classification of LOD
Datasets, In Proceedings of the Workshop on Linked Data on the
Web, LDOW 2015,co-located with the 24th International World
Wide Web Conference (WWW) 2015


