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Abstract. The availability of structured data has increased significantly over the past decade and several approaches
to learn from structured data have been proposed. These logic-based, inductive learning methods are often
conceptually similar, which would allow a comparison among them even if they stem from different research
communities. However, so far no efforts were made to define an environment for running learning tasks on a variety
of tools, covering multiple knowledge representation languages. With SML-Bench, we propose a benchmarking
framework to run inductive learning tools from the ILP and semantic web communities on a selection of learning
problems. In this paper, we present the foundations of SML-Bench, discuss the systematic selection of benchmarking
datasets and learning problems, and showcase an actual benchmark run on the currently supported tools.
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1. Introduction

With the growth of the number and size of data
sources over the last years, there is an increasing
demand for algorithms and tools to perform accu-
rate analysis of these datasets. History in computer
science has shown that the main driver to scientific
advances, and in fact a core element of the scientific
method as a whole, is the provision of benchmarks
to make progress measurable. A famous example
from database benchmarking (specifically TPC-A)
is considered to have been the motor that improved
transaction performance of relational databases by
an order of magnitude on equal hardware in the
90s. Other more recent benchmarking areas related
to semantic technologies have been ‘question an-
swering benchmarks’ (QALD), ontology matching
(OAEI), as well as graph and triple store query
performance (LDBC). All of those have led to sig-
nificant performance improvements.

One area, which is not extensively covered by
benchmarks yet is symbolic supervised machine

learning from structured data. In this task, back-
ground knowledge is modelled using RDF, OWL,
Prolog, or other knowledge representation lan-
guages. Within this background knowledge, enti-
ties are selected as positive and negative examples
(supervised learning). Based on those examples,
logical formulas e.g. Horn rules or OWL class ex-
pressions are learned, using some algorithms, which
separate positive and negative examples. These
formulas or rules are later used to predict further
unseen entities. For instance, given a dataset de-
scribing chemical compounds in which negative
examples are compounds known to cause cancer
and positive examples are compounds which do
not cause cancer, the algorithms would induce for-
mulas describing what causes cancer. Two major
advantages of those methods are that 1.) they can
work with complex background knowledge includ-
ing inference and 2.) the result can be interpreted
and understood by humans.

While a large body of research work has been de-
voted to this area, the evaluation scenarios are scat-
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tered and no generally accepted reference bench-
marking platform exists. There are at least two
major reasons for this: 1.) The first problem is that
the use of different knowledge representation lan-
guages makes results very difficult to compare. For
instance, logic programs are incomparable in terms
of expressivity to the description logics underlying
OWL. In practice, the knowledge modelling is dif-
ferent to such an extent, that automatic conver-
sion methods do not output satisfactory results.
2.) The second reason is that the effort required to
model the background knowledge using semantic
technologies can be considered significantly high.
Doing this for many learning problems and setting
up a repository is a major effort. Overall, this has
led to benchmarks being scattered across different
publications and scientific communities.

To overcome this problem, we have performed a
systematic scientific literature analysis in order to
collect relevant benchmarks. Those were then trans-
lated into different knowledge representation lan-
guages if needed. For the execution of benchmarks,
a framework has been implemented, which allows
the execution of different learning systems over
a given set of learning tasks and measure perfor-
mance metrics. Moreover, wrappers for the systems
Progol', Golem?, Aleph?, FuncLog*, TopLog?*, Pro-
Golem*, TreeLiker® and DL-Learner® have been
written to include them in the framework. Overall,
our main contributions are:

— A systemic survey of articles published in the
last 10 years in relevant scientific conferences
and journals collecting benchmarks for struc-
tured machine learning.

— The preparation of nine learning tasks, which
constitute our current benchmark suite, in-
cluding translations of the background knowl-
edge in OWL and different logic programming
dialects.

— The creation of a framework (called SML-
Bench), which allows comparison of systems
which differ in the knowledge representation

Ihttp://www.doc.ic.ac.uk/~shm/progol.html

2http://www.doc.ic.ac.uk/~shm/golem.html

3http://www.cs.ox.ac.uk/activities/machinelearning/
Aleph/

4http://www.doc.ic.ac.uk/~jcs06/GILPS/

Shttp://ida.felk.cvut.cz/treeliker/ TreeLiker html

6nttp://dl-learner.org

languages they support, and the programming
languages they are written in.

— The creation of wrappers for eight learning
systems for their inclusion in SML-Bench.

The paper is structured as follows: In section 2
we give an overview of related work followed by a
section describing our dataset review process (sec-
tion 4). In section 5 we introduce our benchmark
framework and describe our evaluation setup and
results in section 6. After a discussion in section 7
we give an outlook and conclude our paper in sec-
tion 8.

2. Related Work

This section presents a brief review of some of
the prominent related benchmarking efforts in the
machine learning community. Machine learning is
a vast field with a variety of different domains
and learning problems. Our focus in this paper is
on symbolic machine learning approaches on ex-
pressive structured data. An analogous systematic
benchmarking initiative has not been attempted
so far, to the best of our knowledge. We describe
related projects.

In terms of benchmarking data collection, some
of the well known benchmark suites are UCI [5],
Statlog [11] and Statlib [25]. Most of the datasets
in these repositories are in tabular or CSV format,
which can be categorised as structured data. How-
ever, the underlying structure of the data is often
flat and simple, which is not the primary focus of
this paper.

A noticeable effort for benchmarking, both
datasets and algorithms, can be seen in libsvim? [6].
The authors have collected datasets from various
repositories and scaled them to make them com-
patible with the format required by libsvm. This
work mainly focuses on tabular data presented in a
preprocessed format, which renders it beyond the
scope of SML-Bench.

BioBench [1] is a benchmark suite for bioinfor-
matics related problems. It contains different tools
that could perform a variety of different tasks asso-
ciated with numerous applications in the bioinfor-

Thttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/
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matics field. This benchmark particularly focuses
on genomics applications.

There are some benchmarking efforts which em-
phasise a particular task e.g. reinforcement learn-
ing. One approach in this direction® aims at im-
plementing reinforcement learning algorithms in
a uniform manner so that new algorithms can be
easily tested on a set of different problems. The
learning problems in this benchmark are syntheti-
cally generated and contain reinforcement learning
specific parameters like state, rewards, actions etc.

A benchmark focusing on neural networks is the
Shirley’s Next-Generation Benchmark Suwite®. It
includes numerous types of neural networks that
perform different tasks on the provided data. The
benchmark suite contains several datasets collected
from different internet resources together with re-
sults from simulation of different machine learn-
ing algorithms. This covers bitmap or numerical
data tailored for certain neural network techniques
which is not the focus of our approach.

Most of the recent benchmarking and data col-
lection attempts cover big data tools, in particular
scalability tests. The ongoing effort Bench-ML!°
provides a minimal benchmark of learning tools
for preprocessing, visualisation and machine learn-
ing algorithms for commonly used open source im-
plementations e.g. in R, Python, H20 and Spark-
MLIib. This benchmark can be used for testing scal-
ability, speed and accuracy of the above mentioned
machine learning tools. However, it uses only one
dataset from an airline for the evaluation. This
dataset is tabular and lacks any semantic structure.

Another big data tool comparison effort!! as-
sesses Redshift, Hive, Shark, Impala and Stinger,
with the goal of providing understandable and re-
producible results. The benchmark data includes
unstructured HTML documents and tables con-
taining summary information.

Fox et al. [8] evaluate multiple existing big data
benchmark suites with respect to the coverage of
the so called Ogres facets derived from an analysis
of real world big data applications. The approach
by Ming et al. [19] is more focused on the creation
of a big data generator that creates different types
of data for numerous big data related tasks reflect-

8http://hunch.net/~rlbench/
9http://lava.cs.virginia.edu/shirley_benchmark/
Ohttps://github.com/szilard/benchm-ml
Uhttps://amplab.cs.berkeley.edu/benchmark/

ing properties of real world datasets. It supports
the generation of structured, semi-structured and
unstructured data such as text, graph, or tables.
In a Spark specific benchmarking suite [18], a
variety of different algorithms related to machine
learning (logistic regression, SVM, matrix factori-
sation), graph computation (PageRank, SVD++,
TriangleCount), SQL queries and streaming appli-
cations have been presented. The tests are carried
out using synthetic datasets with a variety of work-
loads. Some other big data related benchmarks are
[9,10,4] and [3]. However, the provided datasets are
not sufficiently structured for our benchmarking
approach.
One of the noticeable benchmarks in the seman-
tic web community assessing query performance
is proposed by the Linked Data Benchmark Coun-
cil (LDBC)* [2]. Tt comprises two sets of bench-
marks covering semantic publishing and social net-
works. RdfStoreBenchmarking'® is a repository
that provides an exclusive collection of references
to RDF benchmarks, benchmarking results and
papers about RDF benchmarking. The main focus
in most of these benchmarking efforts is to collect
different types of RDF data or to provide meaning-
ful schema information. Some of the tasks include
evaluating the query performance of different se-
mantic web repositories that provide a SPARQL
endpoint. Some other directions explored in these
efforts include query performance on graphs with
different properties (e.g. regarding their connect-
edness), or linked data translation and integration
tasks. Some benchmarks are also focused towards
measuring the performance of federated query en-
gines, linked data quality assessment or data fusion
systems. In summary, most of these systems are
concerned with basic triple storage and retrieval
performance related tasks. On the other hand, we
are interested in data sets that are particularly
suitable for supervised machine learning tasks. We
require that the data allows to derive a classifica-
tion problem as described in section 1. The bench-
marking projects mentioned above do not deal with
this type of data explicitly, making our benchmark-
ing effort considerably different from these existing
approaches.

2http://1dbcouncil.org/industry/organization/origins
L https://www.w3.org/wiki/RdfStoreBenchmarking
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3. Challenges of Structured Machine
Learning

In this section, we describe some of the challenges
of machine learning on structured data grouped by
category:

Background Language Ezpressivity A powerful
property of machine learning algorithms operat-
ing on structured data is their ability to reason
about the background knowledge. Generally, more
expressive languages for the background knowledge,
e.g. an expressive description logic such as SROZQ,
have a higher (worst case) time complexity than a
lightweight language. Structured machine learning
algorithms usually either include a reasoner as part
of their architecture or integrate reasoning capabil-
ities into the core of their algorithms (sometimes
without completeness and correctness guarantees
for results).

Size Larger datasets affect the efficiency of struc-
tured machine learning tools. There are three main
aspects of size: (1) The size of the schema, (2)
the size of the instance data and (3) the number
of examples. The first aspect, schema size, affects
mainly the hypothesis space as the learned con-
cepts are constructed from the available schema.
The schema size is the number of predicates in the
background knowledge (where OWL classes are
unary and OWL properties are treated as binary
predicates). In the abscence of a particular lan-
guage bias, e.g. restrictions on the length of learned
concepts, nested concepts etc., the size of the hy-
pothesis space can become extremely large for big
schemata. The second and third aspect, i.e. the
instance data size and number of examples, affect
mainly the time for hypothesis checking, i.e. vali-
dating whether a concept fits the given examples
well.

Target Concept Language Given the same back-
ground knowledge, the performance of a structured
machine learning algorithm will still heavily depend
on the target concept language which is not neces-
sarily the same as the background knowledge lan-
guage. For instance, some algorithms can learn ar-
bitrarily nested predicate structures (e.g. “parents
having studied in Germany” could be represented
via nesting of the predicates parent and studied).
Moreover, in particular for description logics, avail-
able concept constructors, such as existential and

universal quantification or qualified cardinality re-
strictions, can be included or excluded. Including
them increases the search space, but potentially
also allows to find better solutions.

Within our evaluation, we will discuss how the
tools perform on the selected datasets with respect
to the above challenges (often also reffered to as
choke points in the benchmarking literature).

4. Datasets

To review and collect datasets already proposed
or used in other works, we performed an extensive
literature review. The five co-authors investigated
publications that appeared in major conferences
and journals related to structured machine learning
in the past 10 years. An overview of the conferences
and journals covered is given in Table 1.

The actual review was performed by either re-
viewing the accepted papers as linked in the con-
ference schedule or in the corresponding proceed-
ings and journal issues. The papers were scanned
for relevant learning tasks involving datasets that
are suitable for our benchmarking approach. The
following selection criteria were used in order to
determine whether a learning task is relevant:

Paper is available One first requirement was to
be able to access an electronic version of the paper
on the Web. This included PDF versions of the
accepted submissions that were made available on
the conference website as well as papers provided
by the publishers of the corresponding conference
proceedings or journals. All considered publications
met this criterion.

Availability of the Dataset A major requirement
regarding the actual data was its accessibility on
the Web to be able to investigate its suitability.
In the easiest case downloads and further informa-
tion were provided on dedicated Web pages. How-
ever, frequently datasets were just referred to by
name. In such cases we considered a dataset avail-
able if we could find an entry via a search engine
or in one of the major public machine learning
dataset repositories with an unambiguously match-
ing name, file name or description. If datasets were
only indirectly referenced by pointing to other pub-
lications introducing or using them, we considered
them available if we could find a corresponding
Web site after (transitively) following and review-
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Table 1

Conferences and journals with number of surveyed papers
(#P) and candidate datasets (#C)

Source Year #P #C Source Year #P #C
2006 39 0 2006 100 0

2007 28 2 2007 91 0

2008 25 0 2008 104 1

2009 105 0 2009 100 0
ECML 2010 120 0 IMLR 2010 118 1
2011 121 2 2011 105 0

2012 128 3 2012 119 0

2013 158 10 2013 118 2

2014 147 8 2014 118 1

2015 139 8 2015 118 1

2006 27 1 2006 126 3

2007 22 0 2007 116 0

2008 40 14 2008 119 0

2009 40 8 2009 145 0

ILP 2010 31 5 KDD 2010 136 0
2011 66 7 2011 178 0

2012 35 12 2012 210 0

2013 31 14 2013 197 0

2014 40 10 2014 218 5

2015 36 13 2015 253 6

2006 140 0 2006 55 0

2007 150 0 2007 46 0

2008 158 0 2008 55 0

2009 159 0 2009 52 13

ICML 2010 159 0 MLJ 2010 61 2
2011 160 0 2011 58 0

2012 247 0 2012 55 2

2013 283 0 2013 61 0

2014 310 0 2014 63 0

2015 270 0 2015 80 0

2010 19 0

2012 23 2

StarAI 2013 19 0

2014 24 2

2015 16 2

ing the referenced papers. Although the portion of
datasets actually available varies among the consid-
ered literature sources and time, we observed that
only a small fraction of approximately 40% of the
datasets were accessible, whereas the majority of
them stems from benchmark dataset repositories.

Structure of the Dataset Since the main aim of
our framework is to provide benchmark scenarios
for inductive learning tools working on structured
logical representations, we focused on datasets that
contain logical relations between single data entries
or attributes. Hence, flat datasets mainly describ-
ing data with numeric attributes were not consid-
ered. However, data that does not comply with
this requirement, but could easily be enriched with

other structured data, was also further investigated
in our review. An example of such a case would
be data from clinical trials that could be linked to
the Gene Ontology'* or phenotype ontologies like
e.g. the Mammalian Phenotype Ontology'®.

Dataset Size A further requirement was that a
candidate dataset should be sufficiently complex in
terms of its size. The main aim behind this require-
ment was to not just provide small toy examples
that will show only negligible differences between
the benchmarked tools. Ideally, datasets should
cover non-synthetic, real world problems to prove
the practical applicability of tools obtaining high
SML-Bench scores.

Derivable Inductive Learning Problems The last
requirement was that the described dataset repre-
sents an inductive learning scenario, or that such a
scenario could be derived trivially. This means that
a supervised machine learning task with positive
and (optionally) negative examples is provided or
can easily be constructed. This might not be the
case if, for example, structured data is used in an
unsupervised setting like clustering.

The review was performed in two rounds: In
the literature review phase candidate datasets are
selected based on their description in the corre-
sponding paper or after briefly checking the actual
data. The publications were then marked as either
not, maybe, or likely containing suitable datasets.
In the candidate review round all papers maybe
or likely containing suitable datasets were exam-
ined in depth. Overall 6 890 publications were re-
viewed and 160 candidate datasets selected. From
the datasets that were found and could be used
for our framework, data conversions and adaptions
were performed to work with all tools, if neces-
sary. Besides common and simple formats like CSV
or relational databases, data was also provided
in special file formats like the Chemical Table file
(CTfile)'S. If not available dedicated parsers and
converters had to be written to transform such
data into the different KR language formats. Apart
from the conversion of the actual data, metadata
was added. This additional information comprised

Mnttp://geneontology.org/

5 https://github.com/obophenotype/
mammalian-phenotype-ontology

6 http://accelrys.com/products/collaborative-science/
biovia-draw/ctfile-no-fee.html
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Table 2

Surveyed benchmark dataset repositories with their number
of datasets (#D) as of March 2017, and the number of
candidates (#C) that could be used in our framework.

Repository #D  #C
UCI Machine Learning Repository!? 349 2
StatLib Datasets Archive!® 104 0
Stanford Large Network Dataset Collection!® 103 0
LIBSVM Data?® 100 0
Relational Dataset Repository?2! 66 4
DL-Learner example datasets?? 26 5
Mulan Datasets?3 26 0
Delve Datasets?* 18 0
IDA Benchmark Repository2® 13 0

TBox axioms in case of OWL background knowl-
edge, and mode declarations which had to be added
for each Prolog-based learning system. In addition
to these efforts usual testing cycles were performed
to check whether the (constructed) learning prob-
lem contains enough and consistent information
for inductive learning.

As of March 2017, 9 out of 78 datasets were
converted and integrated in SML-Bench. Due to the
high effort to prepare benchmarks of good quality,
including the configuration and verification in the
participating inductive learning programs, this is
an ongoing task for which we also acknowledge
support from the community. The datasets were
then labelled with the initial version tag v0.1 and
added to our learning task repository. After internal
reviews and discussions or external user feedback
this version number can be increased to allow a
unique reference to the dataset and represent its
maturity.

Apart from conference and journal publica-
tions, we also investigated public machine learn-
ing dataset repositories mentioned in the reviewed
literature. The investigated repositories are sum-
marised in Table 2. If possible, we pre-filtered the
repository to classification datasets, ignoring re-
gression or clustering use cases. However, we also
examined all datasets that were not grouped into
any of those categories or could not be pre-filtered.

Table 3
Overview of the datasets that are part of the SML-Bench
framework

Dataset Description

Carcinogenesis Prediction of carcinogenic drugs

Hepatitis Prediction of the Hepatitis type based
on patient data

Lymphography Prediction of diagnosis class based on
lymphography patient data

Mammographic Prediction of breast cancer severity
based on screening data

Mutagenesis Prediction of the mutagenicity of chem-
ical compounds

NCTRER Prediction of a molecule’s estrogen re-
ceptor binding activity

Premier Find a predictive description of goal

League keepers based on player statistics in
soccer matches

Pyrimidine Prediction of the inhibition activity of
pyrimidines and the DHFR enzyme

Suramin Find a predictive description of suramin

analogues for cancer treatment

Table 4
Overview of the OWL versions of the datasets that are part
of SML-Bench with their number of axioms (#A), classes
(#C), object properties (#0), datatype properties (#D)
and expressivity (Expr.)

Dataset #A  #C #O #D Expr.
Carcinogenesis 74,566 142 4 15 ALC(D)
Hepatitis 73,114 14 5 12 ALED)
Lymphography 2,187 53 0 0 AL
Mammographic 6,808 19 3 2 AL(D)
Mutagenesis 62,066 86 5 AL(D)
NCTRER 92,861 37 9 50 ALCI(D)
Prem. League 214,566 10 14 202 ALEH(D)
Pyrimidine 2,006 1 0 27 AL(D)
Suramin 13,506 46 3 1 AL(D)

An overview of datasets that are part of the
SML-Bench framework is given in Table 3 and 4.

The datasets Lymphography, Mammographic,
Pyrimidine and Suramin are rather small in terms
of their instance and schema data. They have a very

" https://archive.ics.uci.edu/ml/datasets.html

8http://lib.stat.cmu.edu/datasets/

http://snap.stanford.edu/data/index.html

20https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

?Inttps://relational fit.cvut.cz/

22nttps://github.com/AKSW/DL-Learner (test and ex-
amples directories)

23http://mulan.sourceforge.net/datasets-milc.html

24http://www.cs.toronto.edu/~delve/data/datasets.html

25nttp://www.raetschlab.org/Members/raetsch/
benchmark
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low expressivity and mainly differ in their number
of examples with Suramin having the fewest (16),
followed by Pyrimidine (40), Lymphography (148),
and Mammographic (961).

Mutagenesis, Hepatitis and Carcinogenesis can
be considered as ‘medium size’ datasets w.r.t our
benchmarking repository. While the OWL repre-
sentation of the Mutagenesis dataset also shares
the very simple DL family AL(D), Hepatitis and
Carcinogenesis are more complex. However, with
ALC(D) being the most expressive DL used, they
can still be considered simple. In terms of their
example sets, Mutagenesis provides the smallest
number (84), followed by Carcinogenesis (298) and
Hepatitis (500).

The most complex dataset w.r.t. the expressivity
of its OWL representation is NCTRER. In size,
however, it can also be considered medium, be it
in terms of schema and instance data, or w.r.t. the
number of examples.

The biggest dataset we provide is Premier
League. It provides a lot of different statistics which
are expressed through an extensive (though still
simple) schema and comprehensive instance data.

5. SML-Bench Framework

With SML-Bench our aim is to provide a frame-
work which is open and extensible but already
comes with predefined benchmark scenarios and
presets for relevant tools, thus being ready for use.
The core framework is developed in the Java pro-
gramming language and is intended to be used via
a command line interface. However, the system
can easily be extended to support graphical user
interfaces. SML-Bench is provided as free software
and accessible on the Web?26.

Architecture The overall architecture of SML-
Bench is shown in Figure 1. The framework’s main
building blocks are the tools to execute during
a benchmark run and the benchmark scenarios.
SML bench provides means to connect a set of
inductive learning tools with such scenarios to run
the evaluation on. This overall setting is held in a
benchmark configuration and the framework will
take care of providing the tools with the required

26http://github.com/AKSW/SML-Bench
p://g

) oY
SML-Bench Rl

benchmark

settings

learnsysX

s g

run validate

benchmark
results

e

Fig. 1. Overview of the SML-Bench framework. Learning
problems (IpP, red) are defined on a learning task (taskA,
yellowish) and contain positive/negative examples and op-
tional learning system configurations. An overall benchmark
configuration defines which learning systems (learnsysX,
green) to run on which learning problem to produce bench-
mark results.

data, performing the benchmark and collecting the
results.

To support a wide range of tools and the intro-
duction of own inductive learning implementations
the SML-Bench framework follows a lightweight
extensibility approach. Based on the relations
between benchmark scenarios, their background
knowledge, utilised KR languages, and bench-
marked inductive learning systems we define some
conventions which allow the extension of the frame-
work with new use cases and tools without any
changes in the code base or further wiring.

Benchmark scenarios To better structure scenar-
ios and allow different benchmark variations based
on the same data we distinguish between learning
tasks and learning problems. Learning tasks define
the actual background knowledge the benchmark
is run on for learning problems. Learning problems
are thus learning task-specific and comprise a set
of positive and (optionally) negative examples, as
well as optional tool settings dedicated to the given
example declarations (cf. Figure 1). Accordingly,
varying example constellations or tool configura-
tions are realised as separate learning problems.
In our ‘convention over configuration’ approach
the files containing the background knowledge for
a learning task A, given in a knowledge represen-
tation language L, are expected to reside in the
directory path learningtasks/A/L/data/ (relative
to the framework’s root directory). Examples for
L, in use already, are owl and prolog. If additional
tool-specific data is required (as in case of the
Prolog-based tools which usually require particular
mode declarations), e.g. for a tool X, this should be
put into the directory learningtasks/A/L/data/X/.
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Data might be spread across multiple files which
are all read and merged during a benchmark run.
An individual learning problem P can be defined
adding a file containing positive positives and an
optional file containing negative examples to a di-
rectory named learningtasks/A/L/lp/P/. A learn-
ing problem might also comprise tool-specific con-
figurations which are put into a file named after
the respective tool with the file suffix .conf, e.g.
learningtasks/A/L/lp/P/X.conf.

Benchmarked Tools A similar approach is fol-
lowed to integrate inductive learning tools into
SML-Bench. To make a tool X available to the
benchmark framework, a corresponding directory
has to be created at learningsystems/X/. For a
given learning system under assessment we are
mainly interested in two things: 1) the learned rule
or class expression and 2) a measure of how well
this rule or expression performs on the provided
examples. Accordingly, the benchmark process is
divided into two phases: 1) the training phase and
2) the wvalidation phase. In the training phase the
learning system generates the rules or class expres-
sions for a particular learning problem, which are
then assessed in the validation phase. Whereas the
output of phase 1 might be a tool-specific represen-
tation of the learned description, the validation out-
put has to follow a fixed pattern, quantifying the
number of true positive, false positive, true nega-
tive and false negative examples covered. Since the
integration of all these particularities into the core
framework would render it inflexible and hardly
extensible, we rely on a wrapper-based interface
to the respective learning systems: For each phase
a dedicated executable has to be provided. One
executable runs the learning system to generate the
rules or class expressions which are then assessed
by a validation executable producing the standard-
ised output. These executables have to be named
run and validate, respectively, and can be written
in any programming language (cf. Figure 1).

Benchmark settings To generate a custom bench-
mark on a selection of tools and learning problems,
a global configuration has to be provided defin-
ing which tools to run, which learning problems
to tackle, and optionally, additional benchmark-
specific tool configurations. The framework then
executes the run and wvalidate executables with the
corresponding configurations of all selected tools.
SML-Bench supports arbitrary train-test splits, n-

fold cross validation, as well as running the train-
ing and validation on the whole set of examples?”.
The actual execution can be performed in paral-
lel threads or sequentially. A simple benchmark
configuration snippet is shown in Listing 1.

Listing 1: Example configuration of the SML-Bench
benchmark runner

learningsystems = aleph, dllearner, progol, progolem
learningsystems.aleph.noise =
learningsystems.progol.noise =
learningsystems.progolem.positive__example_inflation=

scenarios = mammographic/1, mutagenesis/
framework.crossValidationFolds =

framework.maxExecutionTime =
framework.threads =

SML-Bench supports the generation of semantic
descriptions of a benchmark setup based on the
MEX vocabulary [7]. Such descriptions do not only
comprise general configuration issues as shown in
Listing 1 but cover all the details to comprehend the
benchmark settings in detail. This includes detailed
specifications of the tools executed together with
their runtime configurations, details about the data
used in the benchmark and the actual evaluation
results.

Available learning systems In its current state
SML-Bench supports eight inductive learning tools,
collected during our literature review. A tool was
introduced into SMIL-Bench as learning system
if it implements a published inductive learning
algorithm, if it is freely available and sufficiently
documented.

The oldest of the available learning systems is
the classic ILP tool Golem [21] which was published
in the year 1990, implementing a Relative Least
General Generalisations-based induction approach.
Golem supports a Prolog-based knowledge repre-
sentation language. Another, slightly more recent
ILP tool called Progol [20] uses inverse entailment
to derive covering clauses based on examples and
background knowledge given as Prolog-like logic
programs. An ILP tool completely implemented
in Prolog is Aleph which supports a number of

2"Though uncommon in machine learning, this was a
required in a 3rd party use case for a separate feature
extraction phase over the example set.
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ILP algorithms. Similarly, the General Inductive
Logic Programming System (GILPS) comprises sev-
eral Prolog programs realising different inductive
learning approaches. FuncLog [24], one tool of the
GILPS collection, is specialised in learning on Head
Output Connected learning problems. Besides this,
the tools TopLog [23] and ProGolem [22] which
are based on Top Directed Hypothesis Derivation
and Asymmetric Relative Minimal Generalisations,
respectively, are also part of GILPS and supported
in SML-Bench.

On the description logics-based knowledge rep-
resentation field, several algorithms are integrated
via one tool: DL-Learner [16] is a framework for
inductive learning on RDF and OWL-based back-
ground knowledge. It supports a wide range of
algorithms, including refinement operator based
algorithms and evolutionary inspired approaches,
as well as different OWL profiles.

In terms of Statistical Relational Learning (SRL)
tools, we considered RapidMiner*® and Tree-
Liker?® [13]. Unfortunately we were not able to
integrate RapidMiner since its server component
imposed requirements that were not fulfilled in
our overall workflow??. However, we provide ex-
perimental support for the TreeLiker tool, which
also works on background knowledge expressed in
a Prolog-like syntax and contains implementations
for different SRL algorithms.

6. Evaluation

To evaluate our framework, we ran SML-Bench
on the available learning problems with 10-fold
cross validation, excluding Suramin due to its small
number of examples. In the case of DL-Learner
and TreeLiker we executed a set of available algo-
rithms introduced in the following. The OWL Class
Ezxpression Learner (OCEL) algorithm, which is
part of the DL-Learner, is a refinement operator-
based learning algorithm using heuristics guiding
the search. An evolution of OCEL which is more
biased towards short and human readable concepts
is the Class Expression Learning for Ontology En-
gineering (CELOE) algorithm [17]. A third imple-

28https://rapidminer.com

29nttp://ida.felk.cvut.cz/treeliker/ TreeLiker. html

30See https://github.com/AKSW/SML-Bench/issues/14
for more details

mentation provided by the DL-Learner framework
is the EL Tree Learner (ELTL) algorithm which is
restricted to OWL EL as target concept language.

The TreeLiker tool can be configured to utilize
a block-wise construction of tree-like relational fea-
tures (RelF) [15], a hierarchical feature construction
(HiFi) [14], or a Gaussian Logic-based algorithm
(Poly) [12] for classification. These three algorithms
can also be run in a grounding-counting setting
(GC) considering the number of examples covered
by a generated feature during learning. Since the
TreeLiker works on a Prolog-like knowledge repre-
sentation language that does not support certain
Prolog expressions, we could not assess it on the
Mutagenesis and NCTRER datasets.

All learning systems were executed using de-
fault configurations except the DL-Learner running
OCEL which requires a noise value to be set to
allow a certain number of misclassifications. Thus,
we set the noisePercentage parameter to 30.

We set an overall maximum execution time of
300 seconds and executed all tools sequentially.
The benchmark was performed on a machine with
2 Intel Xeon ‘Broadwell’ CPUs with 8 cores run-
ning at 2.1 GHz with 128 GB of RAM. A bench-
mark description based on the MEX RDF vocab-
ulary can be found at http://aksw.org/Projects/
SMLBench.html. The benchmark results are sum-
marised in Table 5 and Table 6. Besides their av-
erage accuracies and F-scores we also report when
nothing (or just the trivial solution listing all the in-
put examples) could be learned (no results), when
learning systems could not finish within the given
300 seconds (timeout), or when learning systems
ran out of memory (out of mem.).

Since we executed all learning systems in their
default settings, the results might not show the
tool’s optimal performance. They will rather re-
flect whether a tool performs well ‘out-of-the-box’
and whether the executed algorithms fit the par-
ticular learning scenarios. This also means that
highly specialized algorithms might not work well
on all of the learning scenarios, or even, that our
learning problems do not have certain, expected
characteristics an algorithm requires to function
well. Thus, to provide a meaningful benchmarking
environment we would expect to see that 1) not
all learning problems can be ‘solved’ easily in de-
fault settings 2) the learning problems are able to
distinguish the field of competitors, i.e. that they
point out certain strengths and weaknesses of the


https://rapidminer.com
http://ida.felk.cvut.cz/treeliker/TreeLiker.html
https://github.com/AKSW/SML-Bench/issues/14
http://aksw.org/Projects/SMLBench.html
http://aksw.org/Projects/SMLBench.html
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Table 5

Evaluation results of an SML-Bench benchmark run. All
tools were run with a maximum execution time of 5 min-
utes. Reported are the average accuracy and its standard
deviation of 10-fold cross validation.

Learning Aleph DL- DL- DL- Golem Progol ProGolem
problem Learner Learner Learner
(CELOE) (OCEL) (ELTL)

carcinog. /1 0.48 +0.10 0.55+0.02 no results 0.55 +0.02 no results 0.49 £+ 0.06 timeout
hepatitis/1 0.67£0.05 0.47+£0.05 0.66+0.14 0.41£0.01 0.59 +0.01 no results 0.29 £0.10
lymphogr. /1 0.83 £0.10 0.83+0.11 0.73+£0.12  0.54+£0.03 0.40£0.11 0.79+0.09 0.28+0.16

mammogr./1  0.65+ 0.04 0.49 +0.02 0.82+0.05 0.46 +0.01 0.54 £0.00  timeout timeout
mutag./42 0.72 £0.25 0.94 +0.13 0.53+£0.29 0.30 £ 0.07 0.42 +£0.25 no results timeout
nctrer/1 0.72 £0.14 0.59 £ 0.02 0.81 £0.09 0.58 £0.02 0.41 £0.01 no results 0.00 £ 0.00

prem.leag./1 0.95 £+ 0.09 0.99+0.04 0.85£0.10 0.49 £ 0.02 out of mem.  no results 0.00 £+ 0.00
pyrimidine/1  0.95 +0.16 0.83 £0.17 0.85 £0.24 no results 0.15£0.21 no results 0.35 +£0.32

Learning TopLog TreeLiker TreeLiker TreeLiker TreeLiker TreeLiker TreeLiker
problem (HiF1i) (RelF) (Poly) (HiFi GC) (RelF GC) (Poly GC)

carcinog./1 0.40 £0.12 0.38 £0.12 0.38 £0.12 0.38 £0.12 0.43 £0.11 0.43 £0.11 0.38 £0.12
hepatitis/1 0.18 £ 0.04 0.46 £ 0.05 0.46 £ 0.05 0.46 £ 0.05 0.49 £0.16 0.56 £ 0.03 0.46 £ 0.05
lymphogr. /1 0.28 £0.16 0.29 £0.17 0.29 £0.17 0.29 £0.17 0.52 £0.11 0.51 £0.09 0.29 £0.17
mammogr. /1 0.18 £ 0.05 0.22 +0.04 0.22 +0.04 0.22 +0.04 0.54 +£0.01 0.54 +£0.01 0.22 £ 0.04

mutag./42 0.23 +0.18 — — — — — —
nctrer/1 0.00 £+ 0.00
prem.leag./1 0.00 £ 0.00 out ofmem.  outofmem. outofmem. outofmem. outofmem. outofmem.

pyrimidine/1 0.18 £ 0.26 0.20 £ 0.26 0.20 £ 0.26 0.18 £0.26 0.60 £0.24 0.60 £ 0.39 0.18 £0.26

Table 6

Evaluation results of an SML-Bench benchmark. All tools were run with a max. execution time of 5 minutes. Reported are
the average F-score and its standard deviation of 10-fold cross validation.

Learning Aleph DL- DL- DL- Golem Progol ProGolem
problem Learner Learner Learner

(CELOE) (OCEL) (ELTL)
carcinog./1 0.46 £ 0.12 0.71 £ 0.01 no results 0.71 £ 0.01 no results 0.16 £ 0.12 timeout
hepatitis/1 0.38 +0.12 0.60 + 0.02 0.64 +0.07 0.58+0.01 0.00 £ 0.00 no results 0.32+0.10
lymphogr./1 0.84 +0.09 0.87 £0.07 0.76 +0.10 0.70 £ 0.03 0.134+0.10 0.79 £ 0.10 0.26 + 0.18
mammogr./1  0.48 &+ 0.08 0.64 +0.01 0.78 £0.08 0.63 +0.00 0.00 £ 0.00 timeout timeout
mutag./42 0.43 +0.47 0.93+0.14 0.29 +0.42 0.46 4+ 0.08 0.16 +£0.25 no results timeout
nctrer/1 0.71 £0.18 0.73 £ 0.02 0.85+0.06 0.73£0.02 0.00 £ 0.00 no results 0.00 £+ 0.00

prem.leag./1 0.94 +£0.11 0.99+0.04 0.97+0.06 0.66 + 0.02 out of mem. no results 0.00 £+ 0.00
pyrimidine/1 0.90+0.32 0.84+£0.15 0.80 £0.13 no results 0.04 £0.13 no results 0.33 £0.32

Learning TopLog TreeLiker TreeLiker TreeLiker TreeLiker TreeLiker TreeLiker
problem (HiF1) (RelF) (Poly) (HiFi GC) (RelF GC) (Poly GC)

carcinog./1 0.38 £0.17 0.39 £0.18 0.39 £0.18 0.39 £0.18 0.16 £0.15 0.16 £0.15 0.39 £0.18
hepatitis/1 0.21 £0.08 0.48 +0.10 0.48 +0.10 0.48 +0.10 0.26 4+ 0.22 0.17+0.18 0.48 £0.10
lymphogr./1 0.26 +0.18 0.24 +0.19 0.24 +£0.19 0.23 +£0.19 0.31+0.23 0.20 +£0.22 0.23 +0.19
mammogr. /1 0.24 £ 0.07 0.24 £ 0.08 0.24 £ 0.08 0.24 £ 0.08 0.02 £0.03 0.02 £0.03 0.24 £ 0.08

mutag./42 0.23 +£0.25 — — — . I o
nctrer/1 0.00 £ 0.00 — — — — _ _
prem.leag./1 0.00 £ 0.00 out of mem. out of mem. out of mem. out of mem. out of mem. out of mem.

pyrimidine/1 0.20 £ 0.26 0.20 £ 0.26 0.20 +0.26 0.20 £ 0.26 0.68 £0.24 0.50 £ 0.45 0.20 £ 0.26
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learning systems under assessment 3) the learning
problems are diverse enough to address different
strengths and weaknesses of the learning systems
under assessment.

One first observation we made is that we seem
not to have a suitable learning scenario which would
benefit from FuncLog’s specialization in learning
with head output connected predicates. Since it
did not return learned rules on any of the learning
problems we did not list FuncLog in Table 5 and
Table 6.

Another observation is that Aleph, CELOE and
OCEL already provide default settings which work
well on the learning problems and lead to very
good results on mutagenesis/42, premierleague/1
and pyrimidine/1.

Taking into consideration that Golem was im-
plemented in the 1990s one possible explanation
for its lower performance could be that the default
settings reflect hardware expectations in terms of
available memory and computing power that are
now superseded. This might also apply to con-
stants defined in Golem’s source code. Hence, ad-
justing settings to current hardware capabilities
might make a considerable difference here. A sim-
ilar argumentation might apply for Progol. Be-
sides this Golem’s mode declarations do not pro-
vide means to express explicitly which predicates
should appear in the head of a learned rule. This
might be an explanation for some of the results
that do not provide a description for the given
examples, at all, as in the case of nctrer/1 where
we observed learned rules like bound__atom(A,B) :-
first_bound__atom(A,atom__232_2) that should ac-
tually characterize molecules, i.e. positive examples
like molecule(molecule13).

Progol and ProGolem appear to be overly cur-
tailed by the restricted execution time. In those
cases, the algorithm itself may be very suitable
for the learning problems but increasing the time
limit further would lead to prohibitive runtimes of
the evaluation scenario. Currently, the maximum
runtime is approximately 100 hours (10 folds x 8
learning problems x 15 configured learning systems
X 5 minutes).

In their default settings, the GILPS tools Pro-
Golem and TopLog often returned identical results.
Even though we can only report a low performance
on all the learning problems, the authors of Pro-
Golem and TopLog published experiments showing
much better results on Carcinogenesis, Pyrimidine

and Mutagenesis [23,22]. This might emphasize
that a proper configuration substantially impacts
the tool’s performance, or suggest that differing
versions of the respective datasets were in use.

For the TreeLiker algorithms we can also observe
that different settings might give identical results.
The low performance can be attributed to the fact
that TreeLiker is a collection of feature construc-
tion algorithms and to the way we use it in our
benchmark framework. Since the TreeLiker algo-
rithms usually produce a high number of features
we currently only consider the best one for our
evaluation. This might not fully exploit TreeLiker’s
capabilities and we are in contact with one of the
tool authors to improve this.

Even though the premierleague/1 learning prob-
lem is large in terms of background knowledge with
more than 200 thousand axioms, Aleph was able to
learn almost perfect results. For the TreeLiker we
gradually increased the maximum available JVM
heap size up to 10 GB. Increasing it even further
might also give results for its algorithms. However,
since other Java implementations could generate
results with 2 GB of available maximum heap size,
we stopped there.

Overall, the evaluation supports our initial ex-
pectations. However, we also have to admit that
some of the learning systems need to be adjusted
properly to provide competitive performances. This
will be discussed in the following.

7. Discussion

With SML-Bench we built a benchmarking
framework that is extensible and comes with a set
of initial scenarios to evaluate arbitrary inductive
learning tools. As shown in the previous section, the
provided learning problems are able to discriminate
the performance of different learning systems but
are not complete in the sense that we are lacking
some datasets that are tailored for particular capa-
bilities of certain tools (in particular FuncLog). We
also believe — and verified this in some cases man-
ually — that most of the results can be improved
by spending more effort in configuring the learn-
ing systems, hence generating more competitive
results. We already tried to get in contact with the
tool authors to support this, but only got a reply
from one of the TreeLiker developers. In the future,
we may allow an explicit parameter tuning phase,
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e.g. via nested cross validation or explicit tuning
examples, in our benchmark for systems which are
capable of this functionality. Apart from the issues
revolving around system configuration, the liter-
ature survey and the actually converted datasets
have shown that datatype properties are widely
used in many learning scenarios. However, the tools
currently do not fully exploit this part and focus
more on the structured components. In this sense,
the tools would benefit more from deeper struc-
tures in the datasets. To this end, we will work on
further enriching datasets in this direction if possi-
ble. Of course doing so requires considerable effort
and extensive domain knowledge (e.g. in chemistry
or genetics). Through the community feedback we
obtain, we will continuously extend and refine the
learning problem library. SML-Bench is part of
a funded research programme and benchmarking
challenges will be presented in a series of (yet to
be finally determined) venues. We will use those
as a feedback channel.

A further issue that needs to be discussed is the
representation of knowledge in different KR lan-
guages. Most of the design decisions for the dataset
conversions were made individually, since an au-
tomatic conversion would not yield a satisfactory
modelling result exploiting the strengths of Prolog
or different OWL profiles even in cases when it
is theoretically possible. This can potentially lead
to a bias since particular modelling choices may
lead to different solutions provided by the tools.
While we acknowledge this problem, we do not see
a straightforward solution and also believe that
to some extent this could spur some competition
in terms of finding appropriate KR languages or
dialects to support in inductive learning.

In our opinion, the availability of SML-Bench
will improve the state of the art for symbolic ma-
chine learning from expressive background knowl-
edge in the next years. While many efforts in this
field date back to the early 90s, only in the past
years the availability of data has increased signifi-
cantly. However, it was still challenging for individ-
ual researchers or small groups to perform a com-
prehensive benchmark. We believe to have closed
this gap, which could in turn lead to similar im-
provements as we have seen for question answering,
link discovery and query performance for RDF.

8. Conclusion and Outlook

In this paper, we have presented SML-Bench — a
benchmarking framework for structured machine
learning. We performed a systematic literature sur-
vey to obtain relevant benchmark datasets. Over-
all, we analysed 6890 papers, which led to 160
candidate learning problems. For 9 of those, we
converted them across the used KR languages and
set them up for all learning systems. Currently, 8
learning systems are integrated with two further
inclusion requests in the works. A first analysis
presented here has identified some shortcomings of
individual tools. Generally, we believe that a ma-
ture research area requires a benchmark to evolve
further. In particular, we want to contribute to
bringing the Semantic Web and machine learning
areas close together. We also aim to reduce the
boundaries of knowledge representation languages
as well as the research communities behind them.
We further envision that SML-Bench could in the
future evolve into a central hub for comparing sug-
gested tool settings, learning problems, and perfor-
mances.

We will perform further analysis and regular
benchmarking runs in the scope of the HOBBIT
project3! which will fund this benchmarking ac-
tivity until end of 2018 after which it will be
taken over by the HOBBIT association. SMIL-
Bench based challenges are planned in further work-
shops, e.g. the Know@QLOD workshop to which we
contributed for the past 5 years. In the future, it
is likely that we will support further languages,
e.g. full first order logic based systems, combina-
tions of rules and description logics as well as fuzzy
and probabilistic description logics and statistical
relational learning systems.

Another direction for future work is the integra-
tion of means to import MEX machine learning ex-
periment descriptions to generate benchmark con-
figurations. In combination with our MEX export
function this would allow to load experiments from
other researchers or share own benchmark settings.
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