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Abstract. Large amounts of geo-spatial information have been made available with the growth of the Web of Data. While
discovering links between resources on the Web of Data has been shown to be a demanding task, discovering links between
geo-spatial resources proves to be even more challenging. This is partly due to the resources being described by the means
of vector geometry. Especially, discrepancies in granularity and error measurements across data sets render the selection of
appropriate distance measures for geo-spatial resources difficult. In this paper, we survey existing literature for point-set measures
that can be used to measure the similarity of vector geometries. We then present and evaluate the ten measures that we derived
from literature. We evaluate these measures with respect to their time-efficiency and their robustness against discrepancies in
measurement and in granularity. To this end, we use samples of real data sets of different granularity as input for our evaluation
framework. The results obtained on three different data sets suggest that most distance approaches can be led to scale. Moreover,
while some distance measures are significantly slower than other measures, distance measure based on means, surjections and
sums of minimal distances are robust against the different types of discrepancies.
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1. Introduction The result of the function is then compared to a thresh-

old. The result of the comparison is finally used to sug-

The Web of Data has grown significantly over
the last years. In particular, very large data sets per-
taining to different domains such as bio-medicine
(e.g., LinkedTCGA with now 20+ billion triples [40])
and geo-locations (e.g., LinkedGeoData with approxi-
mately 30 billion triples [4]) have been made available.
Implementing the fourth Linked Data principle (i.e.,
the creation of links between these knowledge bases
and other knowledge bases) for these knowledge bases
has been shown to be a difficult problem in previous
works [15]. Most of the existing solutions (see [29] for
an overview) address this problem by using a complex
similarity or distance function to compare instances
from two (not necessarily distinct) knowledge bases.

*Corresponding author.

gest the existence of a link between instances.

While previous works have compared a large num-
ber of measures with respect to how well they per-
form in the link discovery task [12]], measures for link-
ing geo-spatial resources have been paid little atten-
tion to. Previous works have yet shown that domain-
specific measures and algorithms are required to tackle
the problem of geo-spatial link discovery [31]. For ex-
ample, 20,354 pairs of cities in DBpedia 2014 share
exactly the same label. For villages in LinkedGeoData
2014, this number grows to 3,946,750. Consequently,
finding links between geo-spatial resources requires
devising means to distinguish them using their geo-
spatial location. On the Web of Data, the geo-spatial
location of resources is most commonly described us-
ing either points or more generally by means of vector
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ny = (14.34,35.93)
ns = (14.33, 35.99)
ns = (14.39, 35.96)
na = (14.56, 35.82)
ns = (14.42, 35.83)
ne = (14.21, 36.08)
ny = (14.34, 36.03)
ns = (14.22, 36.02)
ng = (14.19, 36.04)
di = (14.46, 35.89)
dy = (14.46, 35.88)
ds = (14.5, 35.88)
ds = (14.5, 35.89)
Iy = (14.5,35.9)

Fig. 1. Vector description of the country of Malta. The blue poly-
gons shows the vector geometry for Malta in the NUTS data set,
the red polygon shows the same for the DBpedia, while the black
point shows the location of the same real-world entity according to
LinkedGeoData.

geometry. Thus, devising means for using geo-spatial
information to improve link discovery requires provid-
ing means to measure distances between such vector
geometry data.

Examples of vector geometry descriptions for the
country of Malta are shown in As dis-
played in the examples, two types of discrepancies
occur when one compares the vector descriptions of
the same real-world entity (e.g., Malta) in different
data sets: First, the different vector descriptions of a
given real-world entity often comprise different points
across different data sets. For example, Malta’s vec-
tor description in DBpedia contains the point with lat-
itude 14.46 and longitude 35.89. In LinkedGeoData,
the same country is described by the point of latitude
14.5 and longitude 35.9. We dub the discrepancy in
latitude and longitude for points in the vector descrip-
tion measurement discrepancy. A second type of dis-
crepancy that occurs in the vector description of geo-
spatial resources across different data sets are discrep-
ancies in granularity. For example, Malta is described
by one polygon in DBpedia, two polygons in NUTS
and a single point in LinkedGeoData.

Analysing the behaviour of different measures with
respect to these two types of discrepancies is of cen-
tral importance to detect the measures that should be
used for geo-spatial link discovery. In this paper, we
address this research gap by first surveying existing
measures that can be used for comparing point sets.
We then compare these measures in series of experi-
ments on samples extracted from three real data sets

with the aim of answering the questions introduced in

Note that throughout the paper, we model com-
plex representations of geo-spatial objects as point
sets. While more complex representations can be cho-
sen, comparing all corresponding measures would go
beyond the scope of this paper. In addition, we are
only concerned with atomic measures and do not con-
sider combinations of measures. Approaches that al-
low combining measures can be found in [29]].

The remainder of this paper is structured as follows:
introduces some basic assumption and no-
tations that will be used all over the rest of the paper.
introduces our systematic survey methodol-
ogy. Then, in we give a detailed descrip-

tion of each of point set distance functions, as well
as their mathematical formulation and different im-
plementations. Thereafter, in we introduce
evaluation of our work for both scalability and ro-
bustness. Finally, we conclude the paper with a brief
overview of related work (Section 6)), as well as a con-
clusion and future work (Section 7). All measures and
algorithms presented herein were integrated into the
LIMES framework [1]

2. Preliminaries and Notation

We assume the link discovery (LD) problem as be-
ing formulated in a way akin to [31]]: Given two sets S
and T of resources as well as a predicate p, compute
the set M = {(s,t) € S x T :< s,p,t > holds},
where < s, p,t > is the RDF triple with the subject s,
the predicate p and the object t. Computing M directly
is commonly a non-trivial task. State-of-the-art link
discovery systems thus most commonly aim to com-
pute an approximation M’ of M with M’ = {(s,t) :
d(s,t) < 0}, where ¢ is a complex distance function
and 0 is a distance threshold. § most commonly con-
sists of a combination of atomic measures which can
be used to compare property values of the resources s
and ¢. For example, the edit distance is an atomic mea-
sure that can be used to compare the labels of two re-
sources.

In addition to bearing properties similar to those
bared by other types of resources (label, country,
etc.), geo-spatial resources are commonly described
by means of vector geometryE] Each vector descrip-

Ihttp://limes.sf.net
ZMost commonly encoded in the WKT format, see http://
www.opengeospatial.org/standards/sfa.
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tion can be modelled as a set of points. We will write
s = (s1,...,8n) to denote that the vector description
of the resource s comprises the points si,...,s,. A
point s; on the surface of the planet is fully described
by two values: its latitude lat(s;) = ; and its longi-
tude lon(s;) = A;. We will denote points s; as pairs
(¢4, Ai). Then, the distance between two points s; and
59 can be computed by using the orthodromic distance

8(s1,82) = Recos™" (sin(epy) sin(ipa)+
cos(p1) cos(pa) cos(Ag — )\1))7 €))

where R = 6371km is the planet’s radius[]

Alternatively, the distance between two points s;
and s can be computed based on the great elliptic
curve distance [10]]. Note that this distance is recom-
mended in previous works (e.g., [[13]]) as it is more ac-
curate than the orthodromic distance. However, given
that our evaluations (see showed that the dis-
tance error of orthodromic distance did not affect the
LD results and that the orthodromic distance has a
lower time complexity that the great elliptic curve dis-
tance, we rely on the orthodromic distance throughout
the explanations in this paper.

Computing the distance between sets of points is
yet a more difficult endeavor. Over the last years, sev-
eral measures have been developed to achieve this task.
Most of these approaches regard vector descriptions
as ordered set of points. In the following sections, we
present such measures and evaluate their robustness
against different types of discrepancies.

3. Systematic Survey Methodology

We carried out a systematic study of the literature
on distance measures for point sets according to the
approach presented in [24128]]. In the following, we
present our survey approach in more detail.

3.1. Research question formulation

We began by defining research questions that guided
our search for measures. These questions were as fol-
lows:

(21: Which of the existing measures is the most time-
efficient measure?

3Here, we assume the planet to be a perfect sphere.

(22: Which measure generates mappings with a high
precision, recall, or F-measure?

®3: How well do the measures perform when the data
sets have different granularities?

(Q4: How sensitive are the measures to measurement
discrepancies?

(25: How robust are the measures when both types of
discrepancy occur?

3.2. Eligibility criteria

To direct our search process towards answering
our research questions, we created two lists of inclu-
sion/exclusion criteria for papers. Papers had to abide
by all inclusion criteria and by none of the exclusion
criteria to be part of our survey:

— Inclusion Criteria

o Work published in English between 2003 and
2013.

e Studies on geographic terms based link discov-
ery.

e Algorithms for finding distance between point
sets.

e Techniques for improving performance of some
well-known point sets distance Algorithms.

— Exclusion Criteria

e Work that were not peer-reviewed or published.

e Work that were published as a poster abstract.

e Distance functions that focused on finding dis-
tances only between convex point sets.

3.3. Search strategy

Based on the research question and the eligibility
criteria, we defined a set of most related keywords.
There were as follows: Linked Data, link discovery,
record linkage, polygon, point set, distance, metric,
geographic, spatial, non-convex. We used those key-
words as follows:

— Linked Data AND (Link discovery OR record
linkage) AND (geographic OR spatial)

— Non-convex AND (polygon OR point set) AND
(distance OR metric)

A keyword search was applied in the following list
of search engines, digital libraries, journals, confer-
ences and their respective workshops:

— Search Engines and digital libraries:



4 Sherif and Ngonga Ngomo / A Systematic Survey of Point Set Distance Measures for Link Discovery

Google ScholaIﬂ
ACM Digital Libraryf|
Springer Linkﬂ
Science Direct’]

ISI Web of Sciencd?]

— Journals:

e Semantic Web Journal(SWJ ﬂ

e Journal of Web Semantics(JWS)[|

e Journal of Data and Knowledge Engineer-
ing J(DWE)|

3.4. Search Methodology Phases

In order to conduct our systematic literature review,
we applied a six-phase search methodology:

1. Apply keywords to the search engine using the
time frame from 2003-2013.

2. Scan article titles based on inclusion/exclusion
criteria.

3. Import output from phase 2 to a reference man-
ager software to remove duplicates. Here, we
used Mendele)|”|as it is free and has functionality
for deduplication.

4. Review abstracts according to include/exclude
criteria.

5. Read through the papers, looking for some ap-
proaches that fits the inclusion criteria and ex-
clude papers that fits the exclusion criteria. Also,
retrieve and analyze related papers from refer-
ences.

6. Implement point sets distance functions found in
phase 5.

provides details about the number of retrieved
articles through each of the first five search phases.
Note that in the sixth phase we only implemented
distance functions found in the articles resulted from
phase 5.

4http://scholar.google.com/
Shttp://dl.acm.org/
Shttp://link.springer.com/
Thttp://www.sciencedirect.com/
Shttp://portal.isiknowledge.com/
9http://www.semantic-web-journal.net/
Whttp://www.websemanticsjournal.org/
http://www.journals.elsevier.com/
data-and-knowledge—engineering/
“http://www.mendeley.com/

Table 1

Number of retrieved articles during each of the search methodology
Phases.

Search Phase Phase Phase Phase Phase
Engines 1 2 3 4 5
Google Scholar 9,860 21 19 10 4
ACM Digital Library 3,677 16 16 5 3
Springer Link 5,101 22 21 11 8
Science Direct 1055 21 18 10 4
ISI Web of Science 176 15 14 4 2
SWI 0 0 0 0 0
JWS 0 0 0 0 0
JDWE 0 0 0 0 0

4. Distance Measures for Point Sets

In the following, we present each of the distance
measures derived from our systematic survey and ex-
emplify it by using the DBpedia and NUTS descrip-
tions of Malta presented in The input for
the distance measures consists of two point sets s =
(s1,-.-,8n) and t = (t1,...,tm), where n resp. m
stands for the number of distinct points in the descrip-
tion of s resp. t. W.l.o.g, we assume n > m.

4.1. Mean Distance Function

The mean distance is one of the most efficient dis-
tance measures for point sets [16]. First, a mean point
is computed for each point set. Then, the distance be-
tween the two means is computed by using the ortho-
dromic distance. Formally:

Z 5 tZG:ttj
Dmean(sat) =4 £> - . (2)

n m

D, ean can be computed in O(n). For our example, the
mean of the DBpedia description of Malta is the point
(14.48, 35.89). The mean for the NUTS description are
(14.33, 35.97). Thus, D,,cqn returns 18.46km as the
distance between the two means points.

4.2. Max Distance Function

The idea behind this measure is to compute the over-
all maximal distance between points s; € sandt; € t.
Formally, the maximum distance is defined as:

Dipas(s,t) = max_ 6(s;,t5). 3)

si€s,t €t


http://scholar.google.com/
http://dl.acm.org/
http://link.springer.com/
http://www.sciencedirect.com/
http://portal.isiknowledge.com/
http://www.semantic-web-journal.net/
http://www.websemanticsjournal.org/
http://www.journals.elsevier.com/data-and-knowledge-engineering/
http://www.journals.elsevier.com/data-and-knowledge-engineering/
http://www.mendeley.com/
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For our example, D, ., returns 38.59km as the dis-
tance between the points ds and ng. Due to its con-
struction, this distance is particularly sensitive to out-
liers. While the naive implementation of Max is in
O(n?), [9] introduced an efficient implementation that
achieves a complexity of O(nlogn).

4.3. Min Distance Function

The main idea of the Min is akin to that of Max and
is formally defined as

Dyin(s,t) = min_ (s;, ;). 4)

S;€s8,t; €L

Going back to our example, D,,;, returns 7.82km as
the distance between the points ds and ns. Like D, 42,
D nin can be implemented to achieve a complexity of
O(nlogn) [26/47].

4.4. Average Distance Function

For computing the average point sets distance func-
tion, the orthodromic distance measures between all
the source-target points pairs is cumulated and divided
by the number of point source-target point pairs:

— Y (sinty (5)

sEst €t

Dyg(s,t)

For our example, D4 returns 22km. A naive imple-
mentation of the average distance is O(n?),

4.5. Sum of Minimums Distance Function

This distance function was first proposed by [33]
and is computed as follows: First, the closest point
t; to each point s; is to be detected, i.e., the point

t; = argmin 6(s;, tx). The same operation is carried
tpE€t
out with source and target reversed. Finally, the aver-

age of the two values is then the distance value. For-
mally, the sum of minimums distance is defined as:

Dsom S, t

(Zmln(S Si, 4 —|—Zm1n5 tzasj))

sls' t; €t

(6)

Going back again to our example, the sum of mini-
mum distances from each of DBpedia points describ-
ing Malta to the ones of NUTS is 37.27km, and from

NUTS to DBpedia is 178.58km. Consequently, Dy,
returns 107.92km as the average of the two values.
The sum of minimum has the same complexity as
Dm'm~

4.6. Surjection Distance Function

The surjection distance function introduced by [37]
defines the distance between two point sets as follows:
The minimum distance between the sum of distances
of the surjection of the larger set to the smaller one.
Formally, the Surjection distance is defined as:

Dy(s,t) =min 3 d(er,ea), ™

(el,e2)en

where 7 is the surjection from the larger of the
point sets s and ¢ to the smaller. In to our example,
n = (n1,ds), (n2,d1), (n3,d2), (n4,ds), (ns,ds),
(nﬁ, dl), (n7, dl), (ns, dl) and (ng, dl) Then, Ds re-
turns 184.74km as the sum of the orthodromic dis-
tances between each of the point pairs included in 7. A
main drawback of the surjection is being biased toward
some points ignoring some others in calculations. (i.e.
putting more weight in some points more than the oth-
ers) For instance in our example, 7 contains 5 different
points surjected to d;, while only one point surjected
to dg.

4.7. Fair Surjection Distance Function

In order to fix the bias of the surjection distance
function, [37] introduces an extension of the surjection
function which is dubbed fair surjection. The surjec-
tion between sets S and ¢ is said to be fair if 1’ maps
elements of s as evenly as possible to ¢t. The fair sur-
Jjection is defined formally as:

Dys(s,t) mln Z d(er,ea), )

(el,e2)en’

where 7’ is the evenly mapped surjection from the
larger of the sets s and ¢ to the smaller. For our ex-
ample, 7' = (n1,d1), (n2,dz), (ns,ds), (na,ds),
(n5,d1), (ng,d2), (n7,d3), (ns,ds) and (ng,d1).
Then, Dy returns 137.42km as the sum of the ortho-
dromic distances between each of the point pairs in-
cluded in 7.
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4.8. Link Distance Function

The link distance introduced by [17] defines dis-
tance between two point sets s and t as a relation
R C s x t satisfying

1. For all s; € s there exists t; € t such that
(Si,tj) S R

2. For all t; € t there exists s; € s such that
(Si,tj) €R

Formally, The minimum link distance between two
point sets s and ¢ is defined by

Di(s,t) =min Y d(si,1;), )

(sit;)ER

where minimum is computed from all relations R,
where R is a linking between s and ¢ satisfying the pre-
vious two conditions. For our example, the small gran-
ularity of the Malta descriptions in the data sets at hand
leads to D; having the same results as D,. See [17]
for complexity analysis for surjection, fair surjection
and link distance functions.

4.9. Hausdorff Distance Function

The Hausdorff distance is a measure of the maxi-
mum of the minimum distances between two sets of
points. Hausdorff is one of the commonly used ap-
proach for determining the similarity between point
sets [22]. Formally, the Hausdorff distance is defined
as

Dy (s,t) = max {min{(S(si, tj)}} ) (10)

tjet

Back to our example, First, the algorithm finds the or-
thodromic distance between each of the points of DB-
pedia to the nearest point NUTS, which found to be the
distances between the point pairs (d1,ns), (d2,ns5),
(ds,m4), and (dy, ng). Then, Dy, is the maximum dis-
tance of them, which is between the point ds and
ny equals 34.21km. [31] introduces two efficient ap-
proaches for computing bound Hausdorff distance.

4.10. Fréchet Distance Function

Most of the distance measures presented before have
a considerable common disadvantage. Consider the

two curves shown in[Figure 2] Any point on one of the
curves has a nearby point on the other curve. There-

fore, many of the measures presented so far (incl.
Hausdorff, min, sum of mins) return a low distance.
However, these curves are intuitively quite dissimilar:
While they are close on a point-wise basis, they are not
so close if we try to map the curves continuously to
each other. A distance measure that captures this intu-
ition is the Fréchet [[19]] distance.

Fig. 2. Fréchet vs other distance approaches

The basic idea behind the Fréchet distance is encap-
sulated in the following example{ﬂ Imagine two for-
mula one racing cars. The first car, A, hurtles over a
curve formulated by a first point set. The second car
does the same over a curve formulated by the second
point set. The first and second car will vary in veloc-
ity but they do not move backwards over their curves.
Then the Fréchet distance between the point sets is the
minimum length of a non-stretchable cable that would
be attached to both cars and would not break during
the race.

In order to drive a formal definition of Fréchet dis-
tance, First we define A curve as a continuous map-
ping f : [a,b] — V with a,b € R, and a < b,
where V' denote an arbitrary vector space. A polygo-
nal curve is P : [0,n] — V with n € N, such that for
alli € {0,1,...,n — 1} each P[i,i + 1] is affine, i.e.
P(i+X) =(1—-XNP()+AP(i+1) forall A € [0,1].
n is called the length of P. Then, Fréchet distance is
formally defined as:

Dy(sit)= inf { sup {5(f(04(7))—9(6(T)))}},

al0,1]5[51,5n]
Bl (er it LTEO]

Y

where f : [s1,s,] =@ V and g : [t1,tm] — V. a,
[ range over continuous and increasing functions with
a(0) = s1, a(l) = sp, B(0) = t; and B(1) = tpy,
only. Computing the Fréchet distance for our example
returns 34.62km. See [1] for a complexity analysis of
the Fréchet distance.

13Adapted from [1]].
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Overall, the distance measures presented above re-
turn partly very different values ranging from 7.82km
to 184.74km even on our small example. In the fol-
lowing, we evaluate how well these measures can be
used for link discovery.

5. Evaluation

The goal of our evaluation was to answer the five
questions mentioned in To this end, we
devised four series of experiments. First, we evaluated
the use of different point-to-point geographical dis-
tance formulas together with the point set distance in-
troduced in Next, we evaluated the scala-
bility of the ten measures with growing data set sizes.
Then, we measured the robustness of these measures
against measurement and granularity discrepancies as
well as combinations of both. Finally, we measured the
scalability of the measures when combined with the
ORCHID algorithm.

5.1. Experimental Setup

In this section, we describe the experimental setup
used throughout our experiments. We focus on datasets
of geo-spatial regions for all experiments as they were
the major motivation behind this study. Other experi-
ments with varying object densities (e.g., buildings) go
beyond the scope of this paper.

5.1.1. Datasets

We used three publicly available data sets for our ex-
periments. The first data set, V. UTSFE] was used as core
data set for our scalability experiments. We chose this
data set because it contains fine-granular descriptions
of 1,461 geo-spatial resources located in Europe. For
example, Norway is described by 1,981 points. The
second data set, DBpedicE], contains all the 731,922
entries from DBpedia that possess geometry entries.
We chose DBpedia because it is commonly used in
the Semantic Web community. Finally, the third data
set, LinkedGeoData, contains all 3,836,119 geo-spatial
objects from http://linkgeodata.org that are

14Version 0.91 available at http: //nuts.geovocab.org/
data/is used in this work

15We used version 3.8 as available athttp: //dbpedia.org/
Datasets.

instances of the class Waypﬂ Further details to the data
sets can be found in [31]].

5.1.2. Benchmark

To the best of our knowledge, there is no gold stan-
dard benchmark geographic data set that can be used
to evaluate the robustness of geo-spatial distance mea-
sures. We thus adapted the benchmark generation ap-
proach proposed by [18] to geo-spatial distance mea-
sures. In order to generate our benchmark data sets,
we implemented two modifiers dubbed as granular-
ity and measurement error. The implemented geo-
spatial modifiers are analogous with the data sets gen-
eration algorithms from the field cartographic gener-
alisation [25]. The granularity modifier implements
the most commonly used simplification operator [27]],
while the measurement error modifier is akin with
the displacement operator [32]. Both modifiers take a
point set s and a threshold as input and return a point
set s’. Note that, both modifiers do not preserve the
topological consistency of the input geometries. How-
ever, this is not necessary when dealing with point set
measures given that the order of points in a set does not
matter per definition of a set. Hence, the two modifiers
implemented in our evaluation scenario may generate a
topologically invalid geometries with self-intersecting
polygons, overlapping polygons and/or sliver poly-
gons. Altering our modifiers to preserve the topologi-
cal consistency among generated geometries remains a
future work for a more specific paper about automatic
generation of geographic benchmark.

The granularity modifier M, regards the threshold
~ € [0, 1] as the probability that a point of s will be in
the output point set s’. To ensure that an empty point
set is never generated, the modifier always includes the
first point of s into s’. For all other points s; € s, a
random number 7 between 0 and 1 is generated. If r <
~, then s; is added to s'. Else, s; is discarded.

The measurement error modifier M, emulates mea-
surement errors across data sets. To this end, it alters
the latitude and longitude of each points s; € s by at
most the threshold p. Consequently, the new coordi-
nates of a point s} are located within a square of size 24
with s; at the center. We used a sample of 200 points
from each data set for our discrepancy experiments.

To measure how well each of the distance measures
performed w.r.t. to the modifiers, we first created a ref-

16We used the RelevantWays data set (version of April 26th, 2011)
of LinkedGeoData as available at http://linkedgeodata.
org/Datasets|
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erence mapping M = {(s,s) € S} when given a set
of input resources S. Then, we applied the modifier to
all the elements of .S to generate a target data set 7'. We
then measured the distance between each of the point
sets in the set 7" and the resources in .S. For each ele-
ment of S we stored the closest point ¢ € 7" in a map-
ping M’. We now computed the precision, recall and
F-measure achieved within the experiment by compar-
ing the pairs in M’ with those in M.

5.1.3. Hardware

All experiments were carried out on a server run-
ning OpenJDK 64-Bit Server 1.6.0_27 on Ubuntu
14.04.2 LTS. The processors were 64-core Authenti-
cAMD clocked at 2.3 GHz. Unless stated otherwise,
each experiment was assigned 8 GB of memory and
was ran 5 times.

5.2. Point-to-Point Geographic Distance Evaluation

To evaluate the effect of the basic point-to-point ge-
ographic distance 6(s;, t;) in the aforementioned point
sets distance functions (Section 4)), we carried out two
sets of experiments. In the first set of experiments, we
used the orthodromic distance (see as the
basic point-to-point distance function d(s;,¢;), while
the great elliptic curve distance [[10]] was used to com-
pute 0(s;,t;) in the second set of experiments. As
input we used a sample of 200 randomly picked re-
sources from the three data sets of NUTS, DBpedia,
and LinkedGeoData. We did not apply any modifiers
in these two sets of experiments as we aimed to evalu-
ate how the measures perform on real data. In each of
the two sets of the experiments, we measured the pre-
cision, recall, F-measure and run time for each of the
10 point sets distance function.

The results (see show that both the ortho-
dromic and elliptic curve distances achieved the same
precision, recall and F-measure when applied to the
same resources. Moreover, the elliptic distance (in av-
erage) was 3.9 times slower than the orthodromic dis-
tance. Given that the great elliptic curve distance is
known to be more accurate than the orthodromic dis-
tance [13l], these observations emphasise that (1) the
distance error of the orthodromic distance did not af-
fect the link discovery results and that (2) the ortho-
dromic distance has a lower time complexity than the
great elliptic distance. Therefore, we rely on the ortho-
dromic distance throughout the rest of experiments in
this paper.

It is important to notice that the setting mentioned
above could also be used with planar spaces. To this

end, one would only have to replace the Orthodromic
distance with the Euclidean distance. One could also
consider computing the point-to-point geographic dis-
tance §(s;,t;) by using the Euclidian distance com-
puted on 2D projected geometries. While this approach
would work well for small regions of space, we did
not consider the usage of this method in our evaluation
here because projections distort distances more dras-
tically when they are applied on large areas and the
datasets chosen for evaluating the surveyed distance
measures have a large geographic extent. For selecting
the appropriate projection type based on use case and
scale, please refer to the INSPIRE DirectiveE] recom-
mendations.

5.3. Scalability Evaluation

To quantify how well the measures scale, we mea-
sured the runtime of the measures on fragments of
growing size of each of the input data sets. This ex-
periment emulates a naive deduplication on data sets
of various sizes. The results achieved on NUTS are
shown in We chose to show NUTS because
it is the smallest and most fine-granular of our data
sets. Thus, the measures achieved here represent an up-
per bound for the runtime behaviour of the different
approaches. D,,cqn 1s clearly the most time-efficient
approach. This was to be expected as its algorithmic
complexity is linear. While most of the other mea-
sures are similar in their efficiency, the Fréchet dis-
tance sticks out as the slowest to run. Overall, it is at
least two orders of magnitude slower than the other
measures. These results give a clear answer to ques-
tion ()1, which pertains to the time-efficiency of the
measures at hand: D¢, is clearly the fastest.

5.4. Robustness Evaluation

We carried out three types of evaluations to measure
the robustness of the measures at hand. First, we mea-
sured their robustness against discrepancies in gran-
ularity. Then, we measured their robustness against
measurement discrepancies. Finally, we combined dis-
crepancies in measurement and granularity and evalu-
ated all our measures against these. We chose to show
only a portion of our results for the sake of space. All
results can be found at http://limes.sf.net.

Thttp://inspire.ec.europa.eu/
documents/Data_Specifications/INSPIRE_
DataSpecification_RS_v3.2.pdf


http://limes.sf.net
http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_RS_v3.2.pdf
http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_RS_v3.2.pdf
http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_RS_v3.2.pdf
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Table 2

Comparison of the orthodromic and great elliptic distances using
200 randomly selected resources from each data set, where precision
(P), recall (R), F-measure (F) and run time (T) are presented. Note
that all run times are in milliseconds.

Data | Point Set Orthodromic Distance Elliptic Curve Distance
set Measure P R F T P R F T
Min 0.19 1.00 0.32 1806 0.19 1.00 0.32 7506
Max 0.85 0.85 0.85 1696 0.85 0.85 0.85 7448
Average 090 0.90 0.90 1676 090 0.90 0.90 7468
Sum of Min 1.00 1.00 1.00 3421 1.00 1.00 1.00 15035
2 Link 1.00 1.00 1.00 2357 1.00 1.00 1.00 8878
E Surjection 1.00 1.00 1.00 2066 1.00 1.00 1.00 8666
Fair Surjection 1.00 1.00 1.00 2253 1.00 1.00 1.00 8879
Hausdorff 096 1.00 098 1719 096 1.00 0.98 7524
Mean 1.00 1.00 1.00 185 1.00 1.00 1.00 250
Frechet 1.00 1.00 1.00 1311 1.00 1.00 1.00 3652
Min 1.00 1.00 1.00 122 1.00 1.00 1.00 108
Max 1.00 1.00 1.00 64 1.00 1.00 1.00 102
Average 1.00 1.00 1.00 46 1.00 1.00 1.00 100
; Sum of Min 1.00 1.00 1.00 46 1.00 1.00 1.00 159
3 Link 1.00 1.00 1.00 146 1.00 1.00 1.00 140
§ Surjection 1.00 1.00 1.00 124 1.00 1.00 1.00 246
Fair Surjection 1.00 1.00 1.00 107 1.00 1.00 1.00 153
Hausdorff 1.00 1.00 1.00 40 1.00 1.00 1.00 87
Mean 1.00 1.00 1.00 84 1.00 1.00 1.00 77
Frechet 1.00 1.00 1.00 110 1.00 1.00 1.00 286
Min 1.00 1.00 1.00 1175 1.00 1.00 1.00 4554
Max 1.00 1.00 1.00 1113 1.00 1.00 1.00 4483
Average 1.00 1.00 1.00 1079 1.00 1.00 1.00 4480
g Sum of Min 1.00 1.00 1.00 2180 1.00 1.00 1.00 8999
(58 Link 1.00 1.00 1.00 1552 1.00 1.00 1.00 5603
3 Surjection 1.00 1.00 1.00 1397 1.00 1.00 1.00 5406
é Fair Surjection 1.00 1.00 1.00 1472 1.00 1.00 1.00 5491
Hausdorff 1.00 1.00 1.00 1107 1.00 1.00 1.00 4510
Mean 1.00 1.00 1.00 101 1.00 1.00 1.00 244
Frechet 1.00 1.00 1.00 1201 1.00 1.00 1.00 4493

5.4.1. Robustness against Discrepancies in
Granularity

We measured the effect of changes in granularity
on the measures at hand by using the five granularity
thresholds 1, %, %, i and % Note that the threshold of
1 means that the data set was not altered. This setting
allows us to answer (02, which pertains to the measures
that are most adequate for deduplication. On NUTS
(see[Figure 4(a)), our results suggest that D,,,;, is the

least robust of the measures w.r.t. the F-measure. In ad-

dition to being the least time-efficient measure, Fréchet
is also not robust against changes in granularity. The
best performing measure w.r.t. to its F-measure is the
sum of minimums, followed closely by the surjection
and mean measures. On the DBpedia and LinkedGeo-
Data data sets, all measures apart from the Fréchet dis-
tance perform in a similar fashion (see [Figure 4(b)).
This is yet simply due the sample of the data set con-
taining point sets that were located far apart from each
other. Thus, the answer to question (J3 on the effect
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Fig. 3. Scalability evaluation on the NUTS data set.

of discrepancies in granularity is that while the sum
of mins is the least sensitive to changes in granularity.
However, note that sum of mins is closely followed by
the mean measure.

The answer to (02 can be derived from the evaluation
with the granularity threshold set to 1. Here, mean, fair
surjection, surjection, sum of mins and link perform
best. Thus, mean should be used because it is more
time-efficient.

5.4.2. Robustness against Measurement
Discrepancies

The evaluation of the robustness of the measures at
hand against discrepancies in measurement are shown
in Interestingly, the results differ across the
different data sets. On the NUTS data, where the re-
gions are described with high granularity, five of the
measures (mean, fair surjection, link, sum of mins
and surjection) perform well. On LinkedGeoData, the
number of points pro resources is considerably smaller.
Moreover, the resources are partly far from each other.
Here, the Hausdorff distance is the poorest while max
and mean perform comparably well. Finally, on the
DBpedia data set, all measures apart from Fréchet are
comparable. Our results thus suggest that the answer to
@4 is as follows: The mean distance is the distance of
choice when computing links between geo-spatial data
sets which contain measurement errors, especially if
the resources described have a high geographical den-
sity or the difference in granularity is significant.

5.4.3. Overall Robustness

We emulated the differences across various real geo-
graphic data sets by combining the granularity and the
measurement modifiers. Given a data set .S, we gener-
ated a modified data set S’ using the granularity modi-
fier. The modified data set was used as input for a mea-
surement modifier, which generated our final data set
T'. The results of our experiments are shown in [Fig]

Again, the results vary across the different data
sets. While mean performs well on NUTS

and LinkedGeoData, it is surjection that outperforms
all the other measures on DBpedia This
surprising result is due to the measurement errors hav-
ing only a small effect on our DBpedia sample. Thus,
after applying the granularity modifier, the surjection
value is rarely affected.

Overall, our results suggest that the following an-
swer to (5: In most cases, using the mean distance
leads to high F-measures. Moreover, mean present
the advantage of being an order of magnitude faster
than the other approaches. Still, the surjection measure
should also be considered when comparing different
data sets as it can significantly outperform the mean
measure

5.5. Scalability with ORCHID

We aimed to know how far the runtime of measures
such as mean, surjection and sum of mins can be re-
duced so as to ensure that these measures can be used
on large data sets. We thus combined these measures
with the ORCHID approach presented in [31]]. The idea
behind ORCHID is to improve the runtime of algo-
rithms for measuring geo-spatial distance measures by
adapting an approach akin to divide-and-conquer. OR-
CHID assumes that it is given a distance measure (not
necessarily a metric) m that abides by m(s,t) < 6 —
Vs; € s 3tj € t:6(sq,t;) < 0. This condition is obvi-
ously not satisfied by all measures considered herein,
including min and mean. However, dedicated exten-
sions of ORCHID can be developed for these measures.
Overall, ORCHID begins by partitioning the surface of
the planet. The points in a given partition are then only
compared with points in partitions that abide by the
distance threshold underlying the computation.
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We used the default settings of the implementation
provided in the LIMES framework and the distance
threshold of 0.02° (2.2km). [Figure 7(a)| shows the run-
time results achieved on the same data sets as
Clearly, the runtimes of the approaches can be
decreased by up to an order of magnitude. Therewith,
ORCHID allows most measures (i.e., all apart from
Fréchet) to scale in a manner comparable to that of the
mean measure. Therewith, the measures can now be
used on the whole of the data sets at hand. For exam-
ple, all distance measures apart from the Fréchet dis-
tance require less than five minutes to run on the whole
of the DBpedia data set (see [Figure 7(b)).

Overall, we can conclude that all measures apart
from the Fréchet distance are amenable to being used
for link discovery. While mean performs best overall,
surjection-based and minimum-based measures are
good candidates to use if mean returns unsatisfactory
results. The Fréchet distance on the other hand seems
inadequate for link discovery. This can yet be due to
the point set approach chosen in this paper. An anal-
ysis of the Fréchet distance on the description of re-
sources as polygons remains future work. Note that the
high Fréchet distances computed when minor discrep-
ancies between representations of geo-spatial objects

occurred can be of importance when carrying out other
tasks such as analyzing the quality of RDF datasets.

5.6. Experiment on Real Datasets

We were interested in knowing whether the mean
function performs well on real data. Validating link
discovery results on geo-spatial data is difficult due to
the lack of reference data sets. We thus measured the
increase in precision and recall achieved by using geo-
spatial information by sampling 100 links from the re-
sults of real link discovery tasks and evaluating these
links manually. The links were evaluated by the au-
thors who reached an agreement of 100%.

In the first experiment, we computed links between
cities in DBpedia and LinkedGeoData by comparing
solely their labels by means of an exact match string
similarity. No geo-spatial similarity metric was used,
leading to cities being linked if they have exactly the
same name. Overall only 74% of the links in our sam-
ple were correct. The remaining 26% differed in coun-
try or even continent. We can assume that a recall of 1
would be achieved by using this approach as a particu-
lar city will most probably have the same name across
different geo-spatial data sets. Thus, in the best case,
linking geo-spatial resources in DBpedia to Linked-
GeoData would only lead to an F-measure of 0.85.



Sherif and Ngonga Ngomo / A Systematic Survey of Point Set Distance Measures for Link Discovery 13

107
. { | —&—— Frechet
v 146 4 ——— Sum of Min
é ———— Surjection
o —a— Link
£ 10° 1 —— Max
= —=— Min
g 4 —— Average
= 1071 : ——m—— Fair Surjection
3 ;| ——— Hausdorff
V] ——— Mean

34

ﬁ 10

102 T T T T T

200 400 600 800 1000 1200 1400
Number of point sets
(a) NUTS
6 -

1.2x10 (7 | Fair Surjection
— [l Average
g 106 ] Frechet
= [] Hausdorff
© 8.0x105 Il Link
£ [ Max
=] s | B Mean
g 6.0x10 ] Min
= . [l Sum Of Min
8 4.0x10° M Surjection
(9]
& 2.0x10% 1

04
111.22 222.44 333.66

Orchid threshold (km)
(b) DBpedia

Fig. 7. Scalability evaluation with ORCHID.

In our second experiment, we extended the speci-
fication described above by linking two cities if their
names were exact matches (which was used in the first
experiment) and the mean distance function between
their geometry representation returned a value under
100km. In our sample, we achieved a perfect accuracy
and thus an F-measure of 1. While this experiment is
small, it clearly demonstrates the importance of us-
ing geo-spatial information for linking geo-spatial re-
sources. Moreoveor, it suggest that the mean distance
is indeed reliable on real data. More experiments yet
need to be carried out to ensure that the empirical re-
sults we got in this experiment are not just a mere ar-
tifact in the data. We will achieve this goal by creating
a benchmark for geo-spatial link discovery in future
work.

6. Related Work

This paper is related to distance measures for point
sets and link discovery. Several reviews on distance
measures for point sets have been published. For
example, [17] reviews some of the distance func-

tions proposed in the literature presents efficient algo-
rithms for the computation of these measures. Also, [3]]
presents parallel implementation of some distance
functions between convex and non-convex (possibly
intersecting) polygons.

Ramon et al. [39] introduce a metric computable
in polynomial time for measuring the similarity be-
tween sets of points, while [45] presents an approach
to compute the similarity between multiple polylines
and a polygon using dynamic programming. Barequet
et al. [6]] show how to compute the respective nearest-
and furthest-site Voronoi diagrams of point sites in the
plane, [7]] provides near-optimal deterministic time al-
gorithms to compute the corresponding nearest- and
furthest-site Voronoi diagrams of point sites.

Hausdorff distances are commonly used in fields
such as object modelling, computer vision and ob-
ject tracking. [2]] focuses on the Hausdorff distance
and presents an approach for its efficient computa-
tion between convex polygons. While the approach is
quasi-linear in the number of nodes of the polygons,
it cannot deal with non-convex polygons as commonly
found in geographic data. [40] presents a similar ap-
proach that allows approximating Hausdorff distances
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within a certain error bound, while [8] presents an ex-
act approach. [36] proposes an approach to compute
Hausdorff distances between trajectories using R-trees
within an Ly-space.

Fréchet distance is basically used in piecewise curve
similarity detection like in case of hand writing recog-
nition. For example, [1] introduces an algorithm for
computing Fréchet distance between two polygonal
curves, while [[11] presents a polynomial-time algo-
rithm to compute the homotopic Fréchet distance be-
tween two given polygonal curves in the plane avoid-
ing a given set of polygonal obstacles. [15] pro-
vides an approximation of Fréchet distance for realistic
curves in near linear time. Dealing with non-flat sur-
faces, [[14] presented three different methods to adapt
the original Fréche distance in non-flat surfaces.

There are number of techniques presented in litera-
ture that -if applied in combination with the presented
distance approaches- can achieve better performance.
In order to limit the number of polygons to be com-
pared in deduplication problems, [23] proposed a dis-
similarity function for clustering geospatial polygons.
A kinematics-based method proposed in [41] approx-
imates large polygon using less number of points is
proposed, thus requires less execution time for dis-
tance measurement. Yet, another algorithm presented
by [38] models non-convex polygons as the union of
a set of convex components, the algorithm construct a
hierarchical bounding representation based on spheres.
[21] shows an approach for the comparison of 3D mod-
els represented as triangular meshes. The approach is
based on a subdivision sampling algorithm that makes
used of octrees to approximate distances. ORCHID [31]
was designed especially for the Hausdorff distance but
can be extended to deal with other measures.

The problem of time-efficient LD has been ad-
dressed by several frameworks such as LIMES [30],
SILK [48]], KNOFuUSS [34]] and ZHISHI.LINKS [35]].
These frameworks incorporate declarative approaches
towards LD. Both SILK and KnoFuss implement
blocking techniques to identify links between knowl-
edge bases in order to reduce the number of unneces-
sary comparisons between resources. LIMES reduces
the time-complexity of the LD process by combining
techniques such as PPJoin+ [49] and refinement oper-
ators [43]]. A review comprising further LD approaches
can be found in [29]]. Up until now, only SILK and
LIMES support point set, temporal and topological dis-
tances. SILK supports such distances by incorporat-
ing the work of Smeros et al.[44], while LIMES im-

plementation of these distances are based on the work
presented in [20,31142].

7. Conclusion and Future Work

In this paper, we presented an evaluation of point set
distance measures for link discovery on geo-spatial re-
sources. We evaluated these distances on sample from
three different data sets. Our results suggest that while
different measures perform best on the data sets we
used, the mean distance measure is the most time-
efficient and overall best measure to use for link dis-
covery. We also showed that all measures apart from
the Fréchet distance can scale even on large data sets
when combine with an approach such as ORCHID.
While working on this paper, we realized the need for a
full-fledged benchmark for geo-spatial link discovery.
In future work, we will devise such a benchmark and
make it available to the community. All the measures
presented in this paper were integrated in the LIMES
framework available at http://limes.sf.net.
In future work, we will extend this framework with
dedicated versions of ORCHID for the different mea-
sures presented herein. Moreover, we will aim to de-
vise means to detect the best measure for any given
geo-spatial data set.
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