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Abstract. One of the major issues encountered in the generation of knowledge bases is the integration of data coming from
a collection of heterogeneous data sources. A key essential task when integrating data instances is the entity matching. Entity
matching is based on the definition of a similarity measure among entities and on the classification of the entity pair as a match
if the similarity exceeds a certain threshold. This parameter introduces a trade-off between the precision and the recall of the
algorithm, as higher values of the threshold lead to higher precision and lower recall, and lower values lead to higher recall
and lower precision. In this paper, we propose a stacking approach for threshold-based classifiers. It runs several instances of
classifiers corresponding to different thresholds and use their predictions as a feature vector for a supervised learner. We show that
this approach is able to break the trade-off between the precision and recall of the algorithm, increasing both at the same time and
enhancing the overall performance of the algorithm. We also show that this hybrid approach performs better and is less dependent
on the amount of available training data with respect to a supervised learning approach that directly uses properties’ similarity
values. In order to test the generality of the claim, we have run experimental tests using two different threshold-based classifiers
on two different data sets. Finally, we show a concrete use case describing the implementation of the proposed approach in the
generation of the 3cixty knowledge base.
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1. Introduction

In the last decade, we have witnessed to the genera-
tion of several knowledge bases that grant access to an
enormous amount of structured data and knowledge.
However, the generation of knowledge bases has re-
quired a tremendous manual effort to overcome sev-
eral challenges. One of the typical issues in the gen-
eration of knowledge bases that integrate data from
a collection of heterogeneous sources is that of au-
tomatically detecting duplicate records. Entity match-
ing (also known as instance matching, data reconcili-
ation or record linkage) is the process of finding non-
identical records that refer to the same real-world en-
tity among a collection of data sources [1]. Entity
matching allows to identify redundant data, remove
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them (deduplication) and obtain unambiguous entities.
Entity matching is rendered troublesome by the differ-
ent data models used by the data providers, by possi-
ble misspellings, errors and omissions in data descrip-
tions, by the use of synonyms, as well as the presence
of implicit semantics in the textual descriptions. Con-
sider as an example the case in which one record is
named “Black Diamond BGWB14 Inc.” and the sec-
ond record is named “Black Diamond f.s.b.”. In or-
der to understand whether the two records correspond
to the same real world entity, in addition to taking
into account other properties such as the address, the
state or the geographical position, it is clearly neces-
sary to have expertise in the domain and to be able to
understand the meaning of the abbreviations, as well
as to rule out evident misspellings or mistakes. Nev-
ertheless, a manual comparison from human experts
is in most cases unfeasible, as matching entities re-
quires a quadratic computational time (e.g. matching
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∼ 103 entities requires ∼ 106 comparisons). Thus, en-
tity matching systems typically define a metric to mea-
sure a similarity between entities. This metric can be
defined through knowledge of the domain and a trial-
and-error process, in a top-down manner [2,3], or can
be learned from annotated examples, in a bottom-up
way [4,5]. Then, the similarity is turned into a confi-
dence score, which represents the degree of confidence
in asserting that the pair of entities is a match. Finally,
a threshold has to be specified, in order to convert the
confidence score into a decision, namely classifying
the pair as a match or not. This decision threshold in-
troduces a trade-off between the precision, i.e. the ca-
pacity of discriminating false positives, and the recall,
i.e. the capacity of individuating true positives, of the
algorithm. Indeed, higher values of the threshold lead
to a more selective classifier, which tends to incur in
false negatives, reducing the recall of the algorithm,
while lower values of the threshold produce the oppo-
site effect. Thus, the user typically attempts to find a
balance between these two measures, either manually
or using more sophisticated approaches that are able
to learn a configuration from annotated examples. In
this paper, we present an approach that is able to break
the trade-off between the precision and the recall of
the algorithm, increasing both at the same time, and
consequently the F-score of the algorithm. The algo-
rithm is based on the principle of Stacking (or Stacked
Generalization) [6], which consists in training a meta-
learner to combine the predictions of a number of
base classifiers. STEM (Stacked Threshold-based En-
tity matching) creates several instances, corresponding
to different values of the final decision threshold, of
a base classifier. Then, the classifications of this en-
semble of classifiers are used as a binary feature vec-
tor for a supervised learner, which is trained on a set
of manually annotated data. In order to test the gen-
erality of our claim, we run experimental tests using
two different unsupervised threshold-based classifiers.
The first is a Naive Bayes classifier [7,8], which fol-
lows the approach popularized by the Paul Graham’s
spam filter1 and is implemented by the open source
deduplication framework Duke.2 The second is a lin-
ear classifier, implemented by the open source frame-
work Silk,3 [9] which is currently quite widespread in
the Semantic Web and Linked Data communities. The
dataset used for the experimental evaluation is that re-

1http://www.paulgraham.com/spam.html
2https://github.com/larsga/Duke
3https://github.com/silk-framework/silk

leased by the organizers of the Financial Entity Identi-
fication and Information Integration (FEIII) Challenge.
We also test the performance of STEM on the dataset
of the DOREMUS project, released by the instance
matching track of the Ontology Alignment Edition Ini-
tiative (OAEI). In addition to these datasets, we further
validate STEM by describing its implementation in a
concrete use case, represented by the 3cixty project.4

In this context, STEM is used to match entities and re-
move duplicates representing places and events com-
ing from a number of heterogeneous local and global
data sources in order to create a cleaner and of better
quality knowledge base, which is used to support the
planning of tourist visits and to offer a digital guide for
tourists when exploring the city. The novel contribu-
tions of this paper are:

– We design a generic framework based on stacked
generalization that is able to improve the perfor-
mance of threshold-based entity matching sys-
tems;

– We provide empirical evidence of this claim by
testing it with two different threshold-based en-
tity matching systems, showing that performance
gain can be up to 43% of F1 from a base classifier;

– We show that STEM performs better and has a
weaker dependence on the amount of manually
annotated entity pairs with respect to pure ma-
chine learning approaches;

– We describe the implementation of the framework
in the generation of the 3cixty knowledge base,
providing evidence of its performance on a newly
generated gold standard data set;

The remainder of the paper is structured as follows: in
Sec. 2 we describe the relevant related work in entity
matching, in Sec. 3 we describe the problem of entity
matching and of the trade-off between precision and
recall, in Sec. 4 we describe the STEM approach and
the theoretical background of the base classifiers uti-
lized in the experimental part, in Sec. 5 we describe
the experimental setup and the configuration process,
in Sec. 6 we show the experimental results, in Sec. 7
we describe the implementation of STEM in the 3cixty
project and in Sec. 8 we conclude the paper.

43cixtyhttps://www.3cixty.com
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2. Related Work

Entity matching is a crucial task for data integration
[10] and probabilistic approaches able to handle un-
certainty have been proposed since the 60s [11].
A survey of frameworks for entity matching is reported
by Köpcke in [12], where a classification of several
entity matching frameworks is done by analyzing the
entity type, i.e. how the entity data is structured, block-
ing methods, i.e. the strategy employed to reduce the
search space and avoiding the comparison of each pos-
sible pair of records, the matching method, i.e. the
function utilized to determine if a pair of records rep-
resents the same real world entity and the training se-
lection, i.e. if and how training data is used. By tak-
ing into account the matching method, entity match-
ing frameworks may be divided in frameworks with-
out training, in which the model needs to be manually
configured, training-based frameworks, in which sev-
eral parameters are self-configured through a learning
process on an annotated training set, and hybrid frame-
works, which allow both manual and automatic con-
figuration.
The authors of the survey thoroughly compare differ-
ent frameworks on a set of key performance indicators
and highlight a research trend towards training-based
and hybrid approach, which, in spite of the dependence
on the availability, size and quality of training data,
significantly reduce the effort of manual configuration
of the system. Training can be used for learning match-
ing rules, learning in which orders matchers should
be applied, automatically setting critical parameters
and/or determining weights to combine matchers sim-
ilarity values and the most commonly used supervised
learners are Decision Trees and SVM [18,13,14,15].
In [16], a comparison among the most common su-
pervised (training-based) learning models is reported
together with an experimental evaluation. The authors
report a high degree of complementarity among differ-
ent models which suggests that a combination of dif-
ferent models through ensemble learning approaches
might be an effective strategy. The idea of ensemble
learning is to build a prediction model by combin-
ing the strengths of a collection of simpler base mod-
els. Ensemble learning can be broken down into two
tasks: developing a population of base learners from
the training data, and then combining them to form
the composite predictor [17]. In [18] the authors re-
port that an ensemble of base classifiers built through
techniques such as bagging, boosting or stacked gener-
alization (also known as stacking) generally improves

the performance of entity matching systems. Another
evidence of the efficiency of ensemble approaches to
entity matching is reported in [19].

In the past years, the Linked Data [20] research
community has shown a great deal of interest for En-
tity Matching. More specifically, Entity Matching (or
Instance Matching) can be seen as a part of the pro-
cess of Link Discovery. Link Discovery has the pur-
pose of interlinking RDF data sets that are published
on the Web, following the evidence of recent studies
that show that 44% of the Linked Data datasets are not
connected to other datasets at all [21]. Link Discovery
can be seen as a generalization of Entity Matching, be-
cause it can be used to discover other properties than
an equivalence relation between instances. Moreover,
as remarked in [22], in Link Discovery resources usu-
ally abide by an ontology, which describes the prop-
erties that resources of a certain type can have as well
as the relations between the classes that the resources
instantiate. The authors of [22] report a comprehensive
survey of Link Discovery frameworks, which shows
that modern framework such as Silk [23] and LIMES
[24] combine manually defined match rules with su-
pervised learning approaches to automatize the config-
uration process.
Another recent line of work, which is relevant but not
strictly related to the STEM approach, is that of collec-
tive entity matching (or resolution) systems, which are
not based on pairwise similarity comparison as STEM,
but rather on the attempt to capture the dependencies
among different matching decisions [25,26,27,28].

3. Problem Formulation

The problem of entity matching can be defined as
follows [29]: given two datasets A and B, find the sub-
set of all pairs of entities for which a relation ∼ holds:

M = {a ∈ A, b ∈ B, (a, b) ∈ AxB : a ∼ b} (1)

Thus, given a pair of entities e1 ∈ A and e2 ∈ B, a
confidence function f (e1, e2) has to be defined and a
linkage rule is specified by:

Match ⇐⇒ f (e1, e2) > t (2)

where t is a given threshold. The linkage rule has a very
intuitive interpretation. A pair of records is considered
to be a match if the degree of confidence f that the pair
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is a match is above a certain threshold. The confidence
function f typically depends on a number of atomic
similarity measures si, defined over a number of prop-
erties i = 1..K of entities e1 and e2 that are selected
as relevant for the matching problem. The threshold t
has to be defined experimentally or can be learnt from
a set of examples and governs the trade-off between
the rate of false positives and false negatives that the
algorithm will accept. To see why this is the case, let
us consider the example provided in Fig. 1. Assuming
that f is a meaningful confidence function, the proba-
bility density function of the values of f under the con-
dition that e1 = e2, i.e. P( f |e1 = e2), has a higher
mean and is located to the right, while P( f |e1 6= e2),
conditioned by e1 6= e2, is located to the left. Let also
N+ be the total number of positive pairs, i.e. matching
entities, and N− the total number of negative pairs, i.e.
non matching entities, in the data. In this graphical rep-
resentation, the linkage rule of Eq. 2 implies that the
area of P( f |e1 = e2) situated to the left of the vertical
line (in yellow) corresponds to the probability of clas-
sifying a true match as a non matching pair, i.e. to the
probability of producing false negatives:

p f n = P(Match = 0|e1 = e2) =
∫ t

0

P( f |e1 = e2)d f

(3)

. The number of false negatives FN is then given
by FN = p f nN+. On the other hand, the area of
P( f |e1 6= e2) situated to the right of the vertical line
(in orange) corresponds to the probability of classify-
ing a false match as a match, i.e. the probability of pro-
ducing false positives:

p f p = P(Match = 1|e1 6= e2) =
∫ 1

t
P( f |e1 6= e2)d f

(4)

Similarly to the previous case, we have that FP =
N−p f p. Finally, we also have that the grey area in the
graph is the probability of true positives:

ptp = P(Match = 1|e1 = e2) =
∫ 1

t
P( f |e1 = e2)d f

(5)

The number of true positives is then given by: T P =
N+ptp. From Fig. 1 we can see that p f n, and con-

Fig. 1. Graphical depiction of p f n, p f p and ptp under the linkage
rule Eq. 2. The vertical line represents the decision threshold t. The
shape of the probability distribution has illustrative purposes.

sequently FN, is increasing when the threshold t in-
creases, and at the same time p f p, and consequently
FP, is decreasing when the threshold t increases. ptp is
also decreasing, but at a slower pace. Now, if we recall
the definition of precision and recall [30]:

p =
T P

T P + FP
(6)

r =
T P

T P + FN
(7)

we can see that, when t increases, FP → 0 faster than
T P, and p increases. At the same time, FN is grow-
ing and r decreases. Conversely, when t decreases FP
grows and FN decreases, increasing r and decreasing
p. Thus, the threshold t introduces a trade-off between
the precision and the recall of the algorithm (we pro-
vide experimental evidence of this heuristic argument
in Sec. 6). Note that this trade-off is not limited to En-
tity Matching and is well known by the Information
Retrieval and Statistical Learning community, where
precision-recall curves obtained through variations of
the decision threshold are often used as a measure of
an overall algorithm’s performance [31,30,32].

4. Stacked Threshold-based Entity Matching

In this work, we show that stacking can break this
trade-off by raising both precision and recall at the
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same time through supervised learning. Stacking [6]
(also known as stacked generalization), is based on
the idea of creating an ensemble of base classifiers
and then combining them by means of a supervised
learner, which is trained on a set of labeled examples.
Let us call f̂ (e1, e2; t) a specific linkage rule, obtained
by the confidence function f (e1, e2) and the threshold
t. Now, the Stacking Threshold-based Entity Matching
approach (Fig. 2) works as follows:

– Start from a linkage rule f̂ (e1, e2; t)
– Create a gold standard G containing annotated en-

tity pairs
– Generate an ensemble of N linkage rules f̂ (e1, e2; ti)

where ti are linearly spaced values in the interval
[t − a

2 , t +
a
2 ]

– Use the predictions xi = f̂ (e1, e2; ti) as features
for a supervised learner F(x;w) where w are pa-
rameters that are determined by the learning algo-
rithm

– Train the supervised learner F(x;w) on the gold
standard G, determining the parameters ŵ

– Generate the final prediction F(e1, e2; ŵ)

Data1

Data2e1

e2

f(e1,e2; t)

f1(e1,e2; t1) f2(e1,e2; t2) f3(e1,e2; t3) f4(e1,e2; t3) f100(e1,e2; t100)

……….

…x1 x2 x3 x4 x100

F(x; t)

threshold perturbation

stacking

threshold-based classifier

Name Zip code Address

Lowry bank 56348 223 main st.

JP bank 19390 101 aven.

Hill fsb 10300 13 green st.

James bank 75800 front st.,  1

Bison bank 10200 broad st., 12

Name Zip code Address

JP fsb bank 56347 main st.

JPR bank 11390 1 aven.

JP state bank 10299 13 green st.

JP bancorp 75800 red st.,  1

JP bank inc. 10200 large st., 12

feature vector

blocking

    gold                  
standard

Fig. 2. Global architecture of the STEM framework.

We now provide the descriptions of the two threshold-
based entity matching systems that are used in this pa-
per.

4.1. Linear Classifier

One of the simplest models for the confidence func-
tion of a pair of entities e1 and e2 is that obtained by
the linear combination of a set of property-wise confi-
dence scores. Given a set of properties j = 1..K and
their respective values v j(e1) and v j(e2) for both enti-
ties, property-wise similarities are functions that yield
a vector of similarity scores s j = s j(v j(e1), v j(e2)),
where typically s j ∈ [0, 1] with s j = 1 ⇐⇒
v j(e1) ≡ v j(e2). At this point, similarity scores si are
normally turned into property-wise confidence scores
ci = ci(si), which are then combined. This is the
case of Silk5 [23], which is a popular Link Discov-
ery framework, specifically built to generate RDF links
between data items within different Linked Data re-
sources. More specifically, Silk works with distances
di rather than with similarities si and different com-
parators can be selected to define the distances di, such
as Levehnstein, Jaro-Winkler, exact comparators, Jac-
card [33]. Then, distance scores di > 0 are turned into
confidence scores ci according to the rule6 (Fig. 3):

ci = c(di) =

{
− di

τi
+ 1 0 ≤ di < 2τi

−1 di ≥ 2τi

where τi are property-specific thresholds. Note that ci

is a monotone decreasing function, as it depends on
distances di rather than on similarities si values. In
this way, for each property used for the comparison, a
confidence score ci ∈ [−1, 1] is obtained. Silk allows
to combine these confidence scores in multiple ways,
among which the linear combination, which is the one
that has been utilized in this work:

Match ⇐⇒
K∑

i=1

wici > t (8)

which corresponds to the decision rule Eq. 20 with
f (e1, e2) =

∑K
i=1 wici. The final decision threshold t

corresponds to the parameter ‘minConfidence’ in Silk
configuration file. This parameter, together with all the
others such as property-wise thresholds or compara-
tors, can be manually set through a trial-and-error pro-
cess or they can be learnt through an active learning
algorithm that is based on the approach of letting users

5http://silkframework.org
6https://github.com/silk-framework/silk/

blob/master/doc/LinkageRules.md
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+1

-1

τi 2τi

ci

di

Fig. 3. Silk function to compute property-wise confidence scores
from distance values

annotate matches that produce the utmost information
gain [34].

4.2. Naive Bayes Classifier

Naive Bayes is a term used to describe a fam-
ily of classifiers that are based on the Bayes theo-
rem and on a particular assumption of independence
among the components of the evidence vector [7,35].
In this paper, we use the formulation of the Naive
Bayes classifier that has been popularized by Paul Gra-
ham’s Bayesian spam filter.7 We now want to show
that the Naive Bayes classifier can be considered as a
threshold-based classifier, obeying to the decision rule
of Eq. 2.
Given a set of classes Xi with i = 1..N and a set of
observations s j with j = 1..K, the Naive Bayes clas-
sifier aims to estimate the probability of a class given
a set of observed data P(Xi|s1, s2..sK) by applying the
Bayes theorem:

P(Xi|s1, s2..sK) =
P(s1, s2..sK |Xi)P(Xi)

P(s1, s2..sK)
(9)

and the conditional independence condition (from this
assumption comes the adjective ‘Naive’):

P(Xi|s1, s2..sK) =
P(Xi)

∏k
j=1 P(s j|Xi)

P(s1, s2..sK)
(10)

7http://www.paulgraham.com/spam.html

In our case, we have a binary classification problem,
where X1 = ‘Match’ and X2 = ‘No Match’. The obser-
vations are represented by the property-wise similarity
scores si. Eq. 10 thus becomes:

P(Match|s1, s2..sK) =

P(Match)
∏k

i=1 P(si|Match)
P(s1, s2..sK)

(11)

Since P(s1, s2..sK) = P(s1, s2..sK |Match)P(Match)+
P(s1, s2..sK |No Match)P(No Match) the denominator
can be rewritten as:

P(Match|s1, s2..sK) =

P(Match)
∏k

i=1 P(si|Match)
P(s1, s2..sK |Match)P(Match) + P(s1, s2..sK |No Match)P(No Match)

(12)

and then, using again the conditional independence hy-
pothesis, factorized as:

P(Match|s1, s2..sK) =

P(Match)
∏k

i=1 P(si|Match)

P(Match)
∏k

i=1 P(si|Match) + P(No Match)
∏k

i=1 P(si|No Match)

(13)

Now, by applying Bayes theorem P(si|Match) =
P(Match|si)

P(Match) P(si) and P(si|No Match) = P(No Match|si)
P(No Match) P(si),

denoting with x = P(Match) and 1−x = P(No Match),
we have:

P(Match|s1, s2..sK) =

1
xk−1

∏k
i=1 P(Match|si)

1
xk−1

∏k
i=1 P(Match|si) +

1
(1−x)k−1

∏k
i=1 P(No Match|si)

(14)

Finally, assuming that, a priori, P(Match) = P(No Match)
and thus x = 1− x, we can remove the coefficients and
by denoting with ci = P(Match|si) we obtain:

P(Match|s1, s2..sK) =

c1c2..ck

c1c2..ck + (1− c1)(1− c2)..(1− ck)

(15)

Details of the derivation can be found in [36]. Note that
ci = P(Match|si) exactly represents the confidence
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score derived from the similarity value si.
At this point, it is necessary to specify a decision rule,
that is a rule to turn the probability evaluation into a de-
cision. A common approach is the Maximum a Posteri-
ori (MAP) Estimation [37], namely selecting the class
that maximizes the posterior probability:

X = argmax
Xi

P(Xi|s1, s2..sK) (16)

which in our binary classification problem is equiva-
lent to:

Match ⇐⇒

P(Match|s1, s2..sK) > P(No Match|s1, s2..sK)
(17)

which can easily be rewritten as:

Match ⇐⇒ P(Match|s1, s2..sK)

P(No Match|s1, s2..sK)
> 1 (18)

Now, by adopting a decision-theoretic notion of cost,
we can turn Eq. 18 into [38]:

Match ⇐⇒ P(Match|s1, s2..sK)

P(No Match|s1, s2..sK)
> λ (19)

where λ is a value that indicates how many times
false positives are more costly than false negatives.
From Eq. 19, it is clear that if λ > 1, we re-
quire that P(Match|s1, s2..sK) is λ times greater than
P(No Match|s1, s2..sK) in order to consider the pair
to be a match, and thus we are more keen to ac-
cept false negatives than false positives. Vice versa, if
λ < 1, the algorithm will tend to have more false pos-
itives than false negatives. Finally, by considering that
P(No Match|s1, s2..sK) = 1 − P(Match|s1, s2..sK)
and by using Eq. 15 we obtain the decision rule:

Match ⇐⇒ c1c2..ck

c1c2..ck + (1− c1)(1− c2)..(1− ck)
> t

(20)

where t = λ
1+λ . It is now easy to see that the form of

Eq. 20 is the same of that of Eq. 2, where the combina-
tion of confidence scores ci has the role of the global
‘confidence function’ f (e1, e2). The Naive Bayes de-
cision rule has a very intuitive interpretation. A pair of
records is considered to be a match if the probability
that it is a match given the set of observed similarity
scores is above a certain threshold. As we have argued

in Sec. 3, the threshold t rules the trade-off between the
rate of false positives and false negatives that the algo-
rithm will accept. This is evident by its relation with
λ:

λ→∞⇒ t→ 1 (21)

λ→ 0⇒ t→ 0 (22)

Thus, the higher the value of t, the higher needs to be
the probability that the pair is a match for the algorithm
to consider it a match. Thus, we are less likely to have
false positives and more likely to have false negatives.

In the past years, Naive Bayes classifiers have been
utilized in a large number of fields, such as spam fil-
tering [8], document and text classification [39], infor-
mation retrieval [7], entity matching [40] and so on.
Duke8 is a popular open-source deduplication engine,
which implements Naive Bayes classification. Duke is
a flexible tool, which accepts different formats of input
data, and is easy to configure through a simple XML
file. For each field of each data source, the user can
choose a number of string cleaners, such as functions
that remove abbreviations or normalize lower/upper
cases. For each property, Duke allows to select a com-
parator among popular string similarity measures such
as Levensthein, Jaro-Winkler, exact comparators and
so on [33]. The comparators thus compute, for each
property, a normalized similarity score si. Then, in or-
der to turn similarity scores into a confidence score ci,
Duke uses the heuristic function:

ci = P(Match|si) =

{
lowi si ≤ 0.5
(highi − 0.5)s2i + 0.5 si ≥ 0.5

where lowi and highi are parameters that the user can
configure for each property. The rationale behind this
formula of P(Match|si) is that P(Match|0) = low and
P(Match|1) = high, and, as Duke’s users were finding
the algorithm to be too strict, a quadratic instead of a
linear trend has been chosen when si is larger than 0.5.
After that ci is computed for each property, the overall
P(Match|s1, s2..sK) is calculated through Eq. 15 and
the decision is taken through Eq. 20. Similarly to the
case of Silk, the final decision threshold t is a parame-
ter that can be configured in a XML file. Duke also in-
cludes a genetic algorithm that automatizes the config-

8https://github.com/larsga/Duke
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uration process and in general represents a valid alter-
native to the manual configuration. Through an active
learning approach, Duke asks to the user in an interac-
tive way if a pair of entities should be a match or not,
selecting the most informative pairs, i.e. the ones with
utmost disagreement among the population of config-
urations [5].

5. Experimental setup

As we have explained in Sec. 4, the STEM ap-
proach is general and can be utilized on top of any
threshold-based entity matching system. In this paper,
we have implemented it and evaluated through two dif-
ferent open source frameworks, Duke and Silk, which
are based respectively on a Naive Bayes and on a lin-
ear classifier. In Sec. 5.3 and in Sec. 5.4, we describe
the configuration process of these frameworks inside
STEM. The software implementation of STEM, the
configuration files and the data used for the experi-
ments are publicly available on github.9

5.1. Datasets

The main dataset utilized for the evaluation of the
proposed approach is that released by the organiz-
ers of the Financial Entity Identification and Informa-
tion Integration challenge of 2016 (FEIII2016).10 The
purpose of the challenge is that of creating a refer-
ence financial-entity identifier knowledge base linking
heterogeneous collections of entity identifiers. Three
datasets have been released:

– FFIEC: from the Federal Financial Institution Ex-
amination Council, provides information about
banks and other financial institutions that are reg-
ulated by agencies affiliated with the Council.

– LEI: contains Legal Entity Identifiers (LEI) for a
wide range of institutions.

– SEC: from the Securities and Exchange Commis-
sion and contains entity information for entities
registered with the SEC.

In this paper, we focus on the Entity Matching of enti-
ties of the FFIEC database and the SEC database, as it
proved to be the most challenging one. The gold stan-
dard, which can be seen as a benchmark for the evalu-
ation of the systems as well as a set of annotations to

9https://github.com/enricopal/STEM
10https://ir.nist.gov/dsfin/index.html

create a supervised system, has been created by a panel
of experts of the field. The gold standard contains 1428
entity pairs, with 496 positive and 932 negative exam-
ples. The dataset is available online.11

A second evaluation of the STEM approach is per-
formed on the dataset released by the DOREMUS
project12 in the context of the instance matching track
of the Ontology Alignment Evaluation Initiative 2016
(OAEI201613). The Instance Matching Track of the
OAEI 2016 aims at evaluating the performance of
matching tools when the goal is to detect the de-
gree of similarity between pairs of items/instances ex-
pressed in the form of OWL Aboxes. The DOREMUS
datasets contain real world data coming from two ma-
jor French cultural institutions: the French National Li-
brary (BnF) and the Philharmonie de Paris (PP). The
data is about classical music works and is described by
a number of properties such as the name of the com-
poser, the title(s) of the work, its genre and instruments
and the like. We focused our evaluation on two tasks:

– Nine heterogeneities: This task consists in align-
ing two small datasets, BnF-1 and PP-1, contain-
ing about 40 instances each, by discovering 1:1
equivalence relations between them. There are 9
types of heterogeneities that data manifest, that
have been identified by the music library experts,
such as multilingualism, differences in catalogs,
differences in spelling, different degrees of de-
scription.

– Four heterogeneities: This task consists in align-
ing two bigger datasets, BnF-2 and PP-2, contain-
ing about 200 instances each, by discovering 1:1
equivalence relations between the instances that
they contain. There are 4 types of heterogeneities
that these data manifest, that we have selected
from the nine in task 1 and that appear to be the
most problematic: 1) Orthographical differences,
2) Multilingual titles, 3) Missing properties, 4)
Missing titles.

Data is accessible online.14

11https://ir.nist.gov/dsfin/data/
feiii-data-2016-final.zip

12http://www.doremus.org/
13http://islab.di.unimi.it/im_oaei_2016/
14http://islab.di.unimi.it/im_oaei_2016/

data/Doremus.zip
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5.2. Scoring

To evaluate the performance of the algorithm we
have used the standard precision p, recall r and f mea-
sures [30]. These measures, if not specified otherwise,
have been evaluated through a 4-fold cross validation
score process. Given the ambiguity of the definition of
p, r and f when performing cross validation [41], we
hereby specify that we have used:

p =
1

4

4∑
i=1

pi (23)

r =
1

4

4∑
i=1

ri (24)

f =
1

4

4∑
i=1

fi (25)

(26)

where i = 1..4 are the four folds.

5.3. Duke

Entity format: Duke is able to handle different for-
mats for input data, such as .csv (comma separated
value) or .nt (n-triples). In the first case, an entity is
represented by a record in a table. In the second case,
an entity is a node in a Knowledge Base.

Blocking method: we reduce the search space for the
entity matching process from the space of all possi-
ble pairs of entities AxB using an inverted index, in
which property values are the indexes and the tuples
are the documents referred by the indexes. The lookup
of a tuple given a value has, therefore, a unitary cost.
We extend the search space to a small subset of the
most likely matching entity pairs that satisfy a given
Damerau-Levenshtein distance [42] for each value pair
of the tuples, and we considered the first m candi-
dates.15

Configuration: the first step of the implementation
consists in configuring Duke. Duke is built by de-
fault on top of a Lucene Database,16 which indexes the
records through an inverted index and does full-text
queries to find candidates, implementing the blocking

15We empirically set the distance to 2 and the number of poten-
tially retrievable candidates to 1,000,000 (conservative boundary).

16https://lucene.apache.org

strategy. The Lucene Database can be configured in
Duke by setting a number of parameters such as the
max-search-hits, that is the maximum number of can-
didate records to return or min-relevance, namely a
threshold for Lucene’s relevance ranking under which
candidates are not considered. Duke then allows to se-
lect a number of properties to be taken into account
to establish if a pair of entities match, such as name,
address, zip code. Duke requires to specify a map-
ping between the fields of the data sources and those
on which the comparison has to be performed, e.g.
“LegalName → NAME, LegalEntityAddress → AD-
DRESS, LegalEntityCode→ ZIPCODE”. In this case,
we have manually configured Duke during the partic-
ipation to the FEIII2016 challenge and the choice of
cleaners, comparators is reported in [43].

5.4. Silk

Entity format: Silk is specifically built to deal with
RDF formats, such as .ttl (turtle) or .nt (n-triples),
where entities are represented as nodes in a Knowl-
edge Graph. However, it allows to convert data from
a variety of formats, such as .csv (comma separated
values).

Blocking method: Silk implements a multidimen-
sional blocking system, called MultiBlock [44], which
is able to not lose recall performance. Differently from
most blocking system that operates on one dimension,
MultiBlock works by mapping entities into a multidi-
mensional index, preserving the distances between en-
tities.

Configuration: Silk can easily be configured through
an XML file. To configure the blocking algorithm, it
is sufficient to specify the number of blocks, which
we have empirically set to 100. A set of properties
i = 1..K onto which the matching is based needs to
be specified and then, for each of them, the user can
select among a large number of ‘transformators’ (com-
parable to Duke’s cleaners) to pre-process and normal-
ize strings. The choice of transformators and compara-
tors has been based on the result obtained with Duke
in the participation to the FEIII challenge and a sim-
ilar configuration file has been produced for Silk. A
manual configuration to optimize the f score has been
used also for the DOREMUS data in the context of the
OAEI challenge [45].
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5.5. Stacking

Differently from the previous steps, which are
mainly based on low-level string similarity measures,
the supervised learner can implicitly learn semantic
similarities from the human annotations of the gold
standard. The stacking process is implemented through
a Python script that executes Duke or Silk a number
N of times, editing the threshold t through uniform
perturbations of amplitude a, automatically modify-
ing Duke’s or Silk’s configuration file. Then, the script
saves Duke’s or Silk’s outputs and turns them into a
training set for a supervised learner with id1, id2 pairs
on the rows and N features on the columns.
The user may choose different supervised learners for
the stacking layer. What we have experimentally found
to work better, given the small number of features, is
an SVM with a RBF kernel [17], which is the default.
In many cases, such as the default one, the learning
algorithm leaves a number of parameters (so-called
“hyper parameters”) to be determined. Let F(x; ŵ, θ)
be a supervised learner where θ is the vector of hyper
parameters (C and γ in the case of SVM with RBF
kernel). In order to optimize the performance of the
algorithm with respect to these hyper parameters, we
have trained the algorithm on an array of possible val-
ues of θ and selected θ̂ as the vector that optimized 4-
fold cross validation score (grid search cross validation
[46]).
For what concerns the number of features N, it is rea-
sonable to expect that higher values tend to increase
the performance of the algorithm up to a saturation
point, where no further predicting power is added by
an additional instance of the base classifier. Actually,
we observe that increasing the number of features can
also lead to performance decrease, as a typical overfit-
ting problem. This saturation point will typically de-
pend on the amplitude a of perturbation, as with small
intervals −a/2, a/2 we expect it to occur earlier. This
will also depend on the size of the datasets and its
complexity, so no one-fits-all solution has been indi-
viduated. As we will see in the experiments though,
a = 0.25 and N = 5 appears to be a good rule of
thumb.
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Fig. 4. Precision and recall curves as functions of the threshold t for
Duke on the FEIII dataset. It clearly shows the trade-off between
p(t) and r(t) introduced by the Naive Bayes classifier decision rule
Eq. 20

6. Results

6.1. STEM vs threshold-based classifiers

In this section, we first provide evidence of the
trade-off between precision and recall introduced by
the decision threshold and then we show that STEM is
able to increase the precision and the recall of the base
classifiers at the same time. In the following, we refer
to the STEM approach implemented on top of Duke as
STEM-NB and to that implemented on top of Silk as
STEM-LIN.
The premise of this work is that the threshold t in de-
cision rule Eq. 2 introduces a trade-off between preci-
sion and recall. In Sec. 3 we have provided a heuris-
tic argument of why this should be the case and now
we provide experimental results. In Fig. 4, we report
the precision and recall obtained by running Duke on
the FFIEC-SEC dataset for a set of 20 equally spaced
threshold values t ∈ [0.05, 0.9]. The graph clearly
shows the trade-off between precision and recall of the
algorithm ruled by the threshold t and that the trend
for both curves is non-linear, with moderate changes
in the central part and sudden variations at the sides.
The typical configuration process of a threshold-based
classifier would attempt to find a balance between the
two metrics, in order to maximize the F-score of the
algorithm. With STEM, both metrics can be increased
at the same time using stacking.
In Tab. 1, we report the results obtained by STEM-NB
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Base classifier N p r f δf
Duke n/a 0.88 0.77 0.82 0

STEM-NB 5 0.90 0.98 0.94 12%

STEM-NB 10 0.93 0.97 0.95 13%
STEM-NB 20 0.94 0.97 0.95 13%

Table 1
Results of STEM-NB vs Duke on the FFIEC-SEC dataset for a =

0.25 and different values of N.

Fig. 5. F1 score for different combinations of a and N on the
FFIEC-SEC dataset for STEM-NB

for different values of the number of features N, with
a fixed amplitude a = 0.25, with respect to the base-
line, corresponding to a single run of Duke. What we
can see is that, even with a small number of features
N = 5, stacking leads to a significant increase of the
f score of the algorithm (12%), obtained by increas-
ing both precision and recall at the same time. Increas-
ing the number of features N tends to increase the per-
formance, with a saturation effect as the number gets
larger. Indeed, going from N = 5 to N = 10 only
grants a 1% gain and no difference of performance is
observed from N = 10 to N = 20. The value of the
perturbation amplitude a has been fixed to a = 0.25
following the analysis reported in Fig. 5, which shows
that this value allows to reach f = 0.95 with only 10
configurations and limits the dependence on the value
of N. The plot also shows that the saturation effect
tends to occur sooner when a is small, as this corre-
sponds to a denser and therefore less informative sam-
pling of the interval.
To show that the increase of performance is not de-

pendent on the particular threshold-based classifier, we

Base classifier N p r f δf
Silk n/a 0.57 0.67 0.59 0

STEM-LIN 5 0.77 0.81 0.79 20%

STEM-LIN 10 0.78 0.83 0.80 21%

STEM-LIN 20 0.77 0.84 0.81 22%

Table 2
Results of STEM-LIN vs Silk on the FFIEC-SEC dataset for a =

0.25 and different values of N.

Base classifier N p r f δf
Silk n/a 0.45 0.43 0.43 0

STEM-LIN 5 0.82 0.93 0.86 43%
STEM-LIN 10 0.75 0.66 0.69 28%

STEM-LIN 20 0.75 0.60 0.64 21%

Table 3
Results of STEM-LIN vs Silk on the DOREMUS 4-heterogeneities
dataset for a = 0.25 and different values of N.

Base classifier N p r f δf
Silk n/a 0.46 0.81 0.58 0

STEM-LIN 5 0.89 1.0 0.94 36%
STEM-LIN 10 0.89 1.0 0.94 36%

STEM-LIN 20 0.87 1.0 0.93 35%

Table 4
Results of STEM-LIN vs Silk on the DOREMUS 9-heterogeneities
dataset for a = 0.25 and different values of N.

have run the same experiments using STEM-LIN and
reported the results in Tab. 2. In this case, we can ob-
serve that, although absolute values are lower, the in-
crease in performance given by the stacking layer is
more important, achieving a +20% on the f score with
only N = 5. Also in this case, both precision and recall
are increased at the same time and a saturation effect
can be detected as N grows. Now, in order to general-
ize the claim to more than one dataset, we show the re-
sults of STEM-LIN on both the 4-heterogeneities and
9-heterogeneities DOREMUS datasets. In both cases,
we keep a = 0.25 and vary N. We can see that also in
this case both precision and recall are improved, with
significant improvements on the f scores. The satura-
tion effect occurs earlier, as with N = 5 we already
reach the peak performance. This is probably due to
the fact that DOREMUS datasets are smaller and thus
a model with too many features tend to overfit the data.



12 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

6.2. STEM vs supervised learning on similarity
values

In this section, we discuss the second claim of the
paper, namely the comparison of a hybrid approach
such as STEM with a system that performs machine
learning ‘from scratch’. More in detail, we have com-
pared STEM to a number of commonly used machine
learning algorithms, using similarity values si as fea-
tures. In addition to verifying whether STEM performs
better than the other systems in absolute, the intent is
also to see whether it is less dependent on the amount
of annotated training data. Indeed, given the quadratic
nature of the entity matching problem, in most real us-
age scenarios, annotating a comprehensive gold stan-
dard (such as those of FEIII and DOREMUS) is an
extremely time consuming endeavour and the user is
able to annotate just a small fraction of all possible en-
tity pairs. Therefore, it is interesting to see how an en-
tity matching system performs with a small amount of
annotated training pairs. To this end, we have studied
how STEM performs at the variation of the amount of
training data with respect to an SVM classifier with a
RBF kernel, a random forest and a logistic classifier.
In order to avoid possible size effects on the scores, we
have split the FEIII data in two halves, according to
the stratified sampling technique, i.e. keeping constant
the proportion of matching and non matching pairs in
the two parts. The first half is used as training data
and the second half is used as test data. Then, we ran-
domly extract a fraction z of training data from 0.1 to
0.9, train the systems and score them on the test set,
which remains the same. For each value of z, we re-
peat the extraction 50 times and we compute the aver-
age value. Using the FEIII datasets and the STEM-NB
implementation, values of si have been computed us-
ing the same comparators with the same configuration
of STEM-NB. The configuration procedure of the ma-
chine learning classifiers is the same as that described
in Sec. 5.5, namely a grid search hyper parameters op-
timization has been used to maximize 4-fold cross vali-
dation scores, setting C and γ for SVM, ‘n_estimators’
for the random forest and the regularization constant
C for logistic regression.17 The result of the experi-
ment is depicted in Fig. 6. We can see that STEM-
NB performs better than any other classifier in abso-
lute terms, reaching a peak of 0.931 when 90% of the
training data is used. Moreover, it shows little depen-

17http://scikit-learn.org/stable/user_guide.
html
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Fig. 6. F score at the variation of the percentage of training data used.
STEM-NB is compared to an SVM classifier, a Random Forest and
a logistic classifier

Classifier min max m
STEM-NB 0.91 0.93 0.015± 0.008

SVM 0.74 0.84 0.09± 0.01

Random Forest 0.74 0.83 0.09± 0.01

Logistic 0.78 0.82 0.002± 0.006

Table 5
Dependency on the amount of training data. ‘Min’ and ‘Max’ repre-
sent respectively the minimum and maximum F score and ‘m’ repre-
sents the angular coefficient of a straight line interpolating the points
of Fig. 6

dency on the amount of training data, producing 0.914
with only 10% of the training data. SVM performs bet-
ter than the other pure machine learning approaches
when 90% of training data is used, but decreases fast
when annotated examples are reduced. In Tab. 5, we
report, for each classifier, the quantitative estimation
of the dependency of f from the fraction of training
data z, obtained through the statistical estimation of the
angular coefficient m of a linear fit of the points (i.e.
the straight lines of Fig. 6). What we can observe is
that more complex models such as SVM and Random
Forest tend to depend more on the amount of training
data, while a simple linear model such as logistic re-
gression is performing well even with a small amount
of training data. The logistic model is even less depen-
dent on the training data than a hybrid approach such
as STEM, but it is not comparable in terms of abso-
lute performance. STEM thus represents a model that
is complex enough to achieve good performance in ab-
solute terms and it is also able to maintain it with a
little amount of training data.
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7. 3cixty Knowledge Base Generation

In this section, we describe the implementation
of STEM in the generation of the 3cixty knowledge
bases, introducing first the key components of the
3cixty data chain.

OVERVIEW 3cixty is a semantic web platform that en-
ables to build real-world and comprehensive knowl-
edge bases in the domain of culture and tourism for
cities. The entire approach has been tested first for the
occasion of the Expo Milano 2015 [47], where a spe-
cific knowledge base for the city of Milan was de-
veloped, and is now refined with the development of
knowledge bases for the cities of Nice and London.
They contain descriptions of events, places (sights and
businesses), transportation facilities and social activ-
ities, collected from numerous static, near- and real-
time local and global data providers, including Expo
Milano 2015 official services in the case of Milan, and
numerous social media platforms. The generation of
the each city-driven 3cixty KB follows a strict data in-
tegration pipeline, that ranges from the definition of the
data model, the selection of the primary sources used
to populate the knowledge base, till the data reconcil-
iation used for generating the final stream of cleaned
data that is then presented to the users via multi-
platform user interfaces. The quality of the data is then
enforced through a continuous integration system that
verifies the integrity of the data semantics [49], thus
validating the knowledge base. In the remainder of
this section we introduce the data model and the data
sources used in 3cixty. We then detail the data recon-
ciliation process, which is performed using STEM, de-
scribing the experimental setup, gold standard, and re-
sults.

DATA MODEL The 3cixty ontology design principle
has focused on optimizing the coverage of the termi-
nology in the context of city exploration. For each en-
tity to model, we looked for existing knowledge re-
sources (keyword search) in LOV,18 Swoogle,19 Wat-
son,20 and the Smart City catalogue21 while the se-
lection criteria are the popularity of properties based
on usage data and favoring schema.org when suit-
able. We established a rigid search mechanism where

18http://lov.okfn.org/dataset/lov
19http://swoogle.umbc.edu
20http://watson.kmi.open.ac.uk/WatsonWUI
21http://smartcity.linkeddata.es

two domain experts analyzed the knowledge resources
that resulted from the search. Once consensus was
reached, ontologies were taken and added to the 3cixty
data model, which therefore consists in a constella-
tion of existing ontologies. We re-used some concepts
and properties from the following ontologies: dul,22

schema,23 dc,24 lode,25 geo,26 transit,27 and
topo.28 A few additional classes and properties have
been created to describe travel distances: we defined
origin, distance, travel time, the nearest metro station
and bike station. Details are available in [48].

DATA SOURCES The 3cixty KBs contain information
about events, artists, places, transportation, and user-
generated content such as media and reviews. The
KBs are built using three types of data sources: lo-
cal sources usually offered by city open portals, global
sources such as social media platforms, editorial data
generated by experts of the domain. The selection of
the sources follows a strict protocol that involves two
teams of investigators who analyze and rank the data
sources at disposal to decide which ones were impor-
tant to be selected for being included in the knowledge
base. The experts are asked to maximize a 3-objective
function: data semantics, instance coverage, and real-
time update. The output of such an investigation leads
to a survey, which has is cross-validated by two do-
main experts who decide by consensus and iterate in
checking existing and new data sources according to
the aforementioned objectives, updating the list con-
tinuously.

DATA RECONCILIATION The data reconciliation prob-
lem is addressed via both category reconciliation and
instance reconciliation. The rationale of having both
types of reconciliation is to improve the data consumer
perceived data quality by removing both category and
instance duplicates. In both cases, the reconciliation
processes have been applied to the two main topical
types of entities in the knowledge base: Events and
Places. Such a stage is at the core of the knowledge
base creation, since the consumption of the data from
the KB is highly polarized by a clean feed of data
where no duplicates or near-duplicates are shown.

22http://www.loa-cnr.it/ontologies/DUL.owl
23https://schema.org
24http://purl.org/dc/elements/1.1/
25http://linkedevents.org/ontology
26http://www.w3.org/2003/01/geo/wgs84\_pos
27http://vocab.org/transit/terms
28http://data.ign.fr/def/topo
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Reconciling categories has the objective to reduce
sparsity in the use of different labels for the same
category groups. We addressed the process by using
two category thesauri (implemented in skos) as piv-
ots: the Foursquare taxonomy29 for Places, and the
taxonomy used in [50] for Events. The alignment,
led by two experts of the domain, has established
a set of links from the gathered categories, using
skos:closeMatch and skos:broadMatch. An
automatic process is then used to identify links accord-
ing to the exact match of the found categories with the
alignment defined by the experts.

Given two data sources, namely A and B, an in-
stance reconciliation process looks at identifying data
instances that are similar according to their semantics
and thus linking them with sameAs links. In 3cixty, we
have implemented the instance reconciliation task us-
ing STEM. To do so, we have first generated a gold
standard for training the STEM stacked machine learn-
ing (Sec. 7.1), and then validated its performance (Sec.
7.2).

Using the findings reported in [50] we have listed
the instance fields used for the entity matching pro-
cess, in detail: for Place-type instances the set P =
(label, geo, address), where label is the place name,
geo are the geographic coordinates according to a fixed
bounding box, and address in plain text. For Event-
type instances the set E = (label, geo, time), where
label is the place name, geo are the geographic coor-
dinates according to a fixed bounding box, and time
when the event starts and ends.

7.1. Gold Standard Creation

Given the generality of the STEM approach and the
data model of the different 3cixty knowledge bases,
we have generated a gold standard from the 3cixty
Nice KB, i.e. the knowledge base built for the Nice
area, to be used to benchmarking the performance of
STEM and to be utilized as training set for the other
city knowledge bases.

The gold standard has gone through a process of
identifying, with a random sampling, a small portion
of Place-type pairs30 to match, totaling 756 pairs. This
accounts to a tiny fraction of the entire set of possible
pairs (order of 109 possible pairs); then, two human

29https://developer.foursquare.com/
categorytree

30For the sake of brevity we report the entity matching process of
the Place-type entities

experts rated each as a match or as no-match. The an-
notation process was divided in two steps: i) individual
annotation, i.e. each expert performed annotations sep-
arately; ii) adjudication phase, i.e. the two experts
compared the annotations and resolved eventual con-
flicts.

This has prompted the creation of a gold standard
that accounts 228 match and 528 no-match pairs.31

7.2. Experimental Results

Similarly to what has been done in Sec. 6.1, we
compared STEM with Duke. In order to put Duke in
the best conditions, we let it learning the best configu-
rations using the active learning built-in function, just
giving as input the instance fields to be utilized in the
matching task and the gold standard created by the two
experts.

The built-in active learning function works as fol-
lows: it iterates multiple times changing the config-
urations of the comparators aiming to minimize the
matching error rate. Such a process prompts the cre-
ation of a configuration file summarizing the best Duke
settings for the dataset used.

Having observed that it performs better than STEM-
LIN (Sec. 6), we have then deployed STEM-NB using
Duke configured as above and we conducted a 4-fold
cross validation. Table 6 shows the results of the ex-
periments. We can observe how STEM with five clas-
sifiers holds better results than a single run of Duke
with a δf of 20%. We can also observe how the boost
STEM introduces is slightly reduced with an increas-
ing number of Duke instances N, similarly to what
observed for DOREMUS data. As we mentioned ear-
lier in the paper, this is the typical overfitting problem,
where introducing additional complexity in the model
does not provide better learning. As a general sugges-
tion, N = 5 seems to be enough to obtain a consistent
increment of performance with respect to the baseline
without overfitting the data.

8. Conclusion

In this paper, we have proposed a framework for
stacking threshold-based entity matching algorithms.
We have argued and then shown empirically that the
final decision threshold, which converts the confidence

31We aim to share the Gold Standard once the paper is published
to foster the reuse and experimental reproducibility.
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Base classifier N p r f δf
Duke n/a 0.76 0.65 0.70 0

STEM-NB 5 0.90 0.92 0.90 20%
STEM-NB 10 0.76 0.81 0.78 8%

STEM-NB 20 0.79 0.81 0.79 9%

Table 6
Results of STEM-NB vs Duke on the 3cixty Nice dataset for a =

0.25 and different values of N.

score of a matching algorithm into a decision, intro-
duces a trade-off between the precision and the re-
call of the algorithm. Using stacking, we have demon-
strated that this trade-off can be broken, as the combi-
nation of the predictions of an ensemble of classifiers
with different threshold values can raise both metrics
at the same time, resulting in a significant enhance-
ment of the matching process. This enhancement is
not bound to the type of classifier nor to the dataset
used, as we observe consistent results for both a linear
and a Naive Bayes classifier on three different datasets.
Generally, using five classifiers is enough to obtain a
consistent increase in performance and increasing the
number of classifiers N can easily lead to overfitting,
providing small improvements or even decreasing the
accuracy of the predictions.
STEM is independent from the configuration pro-
cess of the threshold-based classifier. Indeed, we have
provided three experimental evaluations and in two
of them we have manually configured the system,
whereas in the third we have used an active learning
approach. A further advantage of the STEM approach
is the little dependency on the amount of training data,
as we have shown that it can reach high levels of per-
formance even with a small fraction of annotated data.
STEM has allowed to greatly improve the data recon-
ciliation process of the generation of the 3cixty knowl-
edge base, proving to be accurate, reliable and scal-
able. As a future work, we plan to extend the ensem-
bling process to other relevant parameters and to other
threshold-based entity matching systems, as well as to
improve the computing time of the software using par-
allel and distributed computing to allow the simultane-
ous execution of processes.
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