
Semantic Web 1 (0) 1–5 1
IOS Press

Ontology-Driven Modeling Framework for
SOA Security Patterns
Editor(s): First Editor, University or Company name, Country; Second Editor, University or Company name, Country
Solicited review(s): First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company
name, Country
Open review(s): First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name, Country

Ashish Kumar Dwivedi a,*,** and Santanu Kumar Rath b

a Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha 769008
India
E-mail: shil2007@gmail.com
b Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha 769008
India
E-mail: skrath@nitrkl.ac.in

Abstract. Securing an application based on Service Oriented Architecture provides defenses against a number of threats arising
from exposing applications and data to the Internet. A good number of security guidelines are available to apply security in web
applications. But these guidelines are sometimes difficult to understand and generate inconsistencies. Security guidelines are
often represented as security patterns to build and test new security mechanism. These patterns are nothing but design guidelines,
but they have certain limitations in terms of consistency and usability. Hence, application of security patterns may be even inse-
cure. To resolve this problem, a suitable modeling and analysis technique need to be required. In study, an ontology-based mod-
eling and refinement framework is proposed for the web service security. In order to maximize comprehensibility, UML (Unified
Modeling Language) notations are used to represent structural and behavioral aspects of a SOA-based system. Subsequently, a
Web Ontology Language (OWL) is considered to model SOA security patterns. For analyzing security requirements, description
logic is used. The proposed approach is evaluated in the context of e-Health-Care system by applying the modeling framework
to provide the semantic infrastructure for SOA-based security critical system.

Keywords: Ontology-Driven Security Framework, SOA Security Patterns, Web Ontology Language, WS-Security, UML

1. Introduction

Service Oriented Architecture (SOA) is a special
form of distributed systems, sharing business logics,
data through a programmatic interface across the Inter-
net makes them vulnerable to different security threats.
Those security threats mostly arise as a result of poor
software analysis and design practices. Incorporating
security features in a SOA based system is a challeng-
ing task that can be achieved by considering a system-

*Corresponding author. E-mail: shil2007@gmail.com.
**Do not use capitals for the author’s surname.

atic and structured approach, combining principles of
software and security engineering. In the present-day
scenario, a good number of security standards for web
services are available, such as World Wide Web Con-
sortium (W3C), Advancing Open Standards for the In-
formation Society (OASIS), Internet Engineering Task
Force (IETF), etc., [1]. These standards are complex
and sometimes overlapping in nature. As a result they
are difficult to implement and prone to generate incon-
sistencies.

To overcome these problems, a good number of soft-
ware design solutions are available which may reuse
available security solutions by using security patterns.

1570-0844/0-1900/$35.00 c⃝ 0 – IOS Press and the authors. All rights reserved

2 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

Software patterns are reusable documents that incorpo-
rate expert knowledge, represent recurring structures,
activities, behavior, processes, or things during imple-
mentation phase [2]. Security standards can be repre-
sented as security patterns for making them easier to
understand, to discover inconsistencies, to build a se-
cure web application, and to abstract essential aspects
of security mechanism.

In the past two decades, a number of software pat-
terns have been proposed [3] [4] [5] [6] [7] [8]. These
system patterns facilitate the understandability and
construction of systems that provide predictable unin-
terrupted use of the services and resources for users.
Security patterns extend the concept of design patterns
to represent security mechanism as well as security
standard. In the modern era, web security is differ-
ent from end-to-end security requirements of an appli-
cation. To protect web service infrastructure security
policies need to be considered, which are mostly high
level guidelines to represent the states of a system in a
secure manner. Security patterns provide well proven
generic solution for the web services at different level
of abstraction ranging from architectural level patterns
involving high-level design of the system to implemen-
tation level patterns [7]. It also provide guidance how
to implement portion of functions in the system.

A good number of SOA security patterns have
been already proposed for different requirements,
such as SOA design patterns [9], access control pat-
tern [10], firewall pattern [11], WS-Policy pattern
[12], WS-Trust pattern [13], Misuse pattern [14],
WS-SecureConversation pattern [15], patterns for dis-
tributed system [16], patterns for cloud [17], etc. These
security patterns directly do not provide systematic
guidelines with respect to current heterogeneous web
application. They need to be verified and validated
by using a suitable modeling techniques. In a pattern
oriented software development, a number of patterns
are specified using informal and semi-formal (natural
languages and other graphical notations) approaches,
which lead to ambiguities and inconsistencies. Check-
ing the consistency and completeness of patterns and
their composition helps in detecting problems in early
stages of software development life cycle, mostly us-
ing the concept of formal modeling which is noth-
ing but a set of mathematical based techniques for the
specification, development and verification of software
and hardware systems. The main aim of formal meth-
ods are to describe the software requirements precisely
and unambiguously using certain tools and techniques
that can capture the abstract features of a system.

In this study a composition of WS-Policy pattern
[12], WS-Trust pattern [13], and WS-Federation pat-
tern [18] are presented at the higher level of abstrac-
tion. The composition of these patterns are specified
using UML class diagram and sequence diagram. In
order to semantically specify these SOA patterns, the
Web Ontology Language (OWL) [19] is used, which
is an axiom-based language to model the problem do-
main as well as solution domain. In this study an
Ontology Driven Security Framework (ODSF) is pre-
sented, which is an extension of traditional Model
Driven Security Framework (MDSF) by refining SOA
security patterns. The proposed modeling framework
is based on the concept of metamodels, which help
for mapping UML-based security notations into formal
representation. Subsequently, an ontology is presented
for the web service security patterns that is reusable
and extendable, as well as deployable in web server.
For the evaluation of this approach, a case study on e-
Health-Care system has been taken into consideration.
The ODSF offers a good number of rigorous modeling
services, which represented as follows.

– ODSF is an extension of traditional Model-
Driven Security (MDS) by supporting formal re-
finement of SOA security patterns.

– It enables the transformation process for UML-
based security patterns into a formal representa-
tion.

– It presents ontology of SOA security patterns that
helps to understand the semantic definition of pat-
terns.

– ODSF offers an automated reasoning process by
using an ontology editor that heps to perform an
automated formal verification of SOA security
patterns.

For analyzing security concepts, Model Driven Se-
curity (MDS) has been emerged in the early of 2000 as
a specialized Model Driven Engineering (MDE) tech-
nique for supporting the development of a secure sys-
tem [20]. Over the last decade, metamodels and on-
tologies are developed in parallel isolation. A meta-
model is also known as model of models having an
important role in standards community such as Ob-
ject management group (OMG) [21]. Ontologies sup-
port an explicit formal construction for domain formal-
ization by incorporating mathematical logics. A good
number of literatures are available, which link ontolo-
gies and metamodels [22] [23] [24] [25].

In this study, metamodels and ontologies are com-
bined to achieve semantic interoperability for to-

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 3

M3 Metametamodel

Level

 <<instanceof>> <<instanceof>>

M2 Metamodel export/import

Level

 <<extend>> <<describedby>>

M1 Model Level <<exchange >>

 <<describedby>> <<instanceof>>

M0 Data Level <<describedby>>
Domain Data: SOA_Security,

WS-SecureConversation

Domain Data: XMI, JSON

 Domain Model:

Formal ontology (A-Box)

 Domain Model:

XML-Schema, class hierarchy

 Ontology Difinition

Metamodel (ODM): (T-Box)

Metamodels (Languages,

Language concept): UML

Metametamodels : (MOF)

Fig. 1. Hierarchical organization of Metamodels

days complex systems. Developing a metamodel us-
ing Meta Object Facility (MOF) for a particular do-
main, such as SOA security pattern is a difficult task,
for defining syntax and semantics of the new entities.
To resolve this problem, UML abstraction has been
considered, where UML metamodel elements such as
class, attributes, relationship, etc. can be extended to
build domain specific metamodel. Figure 1 shows the
layered organization of OMG ODM approach, which
presents a multilevel ontology architecture. Accord-
ing to OMG, an object in level M0 is an instance of a
model in level M1; a model in level M1 is an instance
of a metamodel in level M2; a metamodel in M2 is
an instance of a metametamodel in level M3. ODM
and OMG can be differentiated as descriptive and pre-
scriptive models. The M1 level domain ontology can
be exchanged with M1 level domain model. The M2
level can be used to develop a domain model (M1)
that can be applied at level M0. Bridging the ontol-
ogy with metamodel means creating definitions of on-
tology modeling languages in terms of OMG’s MOF
model. MOF is a simplified version of UML meta-
meta-modeling, which helps to transform one model
into another.

2. Related Work

In the area of SOA, a good number of security pat-
terns have been proposed [1]. But these patterns are
modeled using semi-formal notation such as UML no-
tation. Formal modeling of the available SOA design
patterns need to be required. Some of the related secu-
rity modeling techniques are represented as follows.

A number of MDS approaches are available to han-
dle security requirements using UML. UMLsec [26]
is a UML profile extension for analyzing security-
based systems, where Jürjens added stereotypes and
tags in UML profile to model security requirements
in a system. UMLsec is applied to model web appli-
cations, distributed systems, and embedded systems.
SecureUML [27] is a modeling language based on
Role-Based Access Control (RBAC) for specifying au-
thorization constraints. SecureUML allows for weav-
ing system models with security concerns. Alam et
al. [28] presented an extensible model-driven security
framework for enabling the design and implementa-
tion of secure work flows for various domains such as
health, government, and education. Sánchez et al. [29]
presented a MDS approach i.e., ModelSec that sup-
ports a generative architecture for handling security re-
quirements. ModelSec is applied to model web appli-
cation for the management of medical patients. The
presented architecture automatically generates security

4 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

artifacts by using model transformation approach. De-
veci and Caglayan [30] proposed a model driven secu-
rity framework for the analysis, design, and evaluation
of security properties of an information system.

Kobashi et al. [31] proposed an extended security
pattern, which include requirement and design level
patterns as well as a new model testing process. They
proposed a tool i.e., test-driven secure modeling tool,
which verifies as to whether the security patterns are
properly applied and security vulnerabilities are re-
solved or not. Katt et al. [32] proposed a security
framework that integrates pattern refinement to model
driven security approach. They added a security pat-
tern refinement layer, which supports the configuration
of one security service with other different patterns.
Uzunov et al. [16] presented a pattern-driven security
methodology for distributed systems. They have pre-
sented a pattern-based model and meta-model for en-
gineering a methodology of conceptual security frame-
work.

Delessy and Fernandez [33] presented two ap-
proaches to secure SOA applications, which are based
on model-driven development and the use of secu-
rity patterns. Kou et al. [34] presented a metamodel
called SoaML4Security, which introduces QoS con-
cepts into SoaML in order to support the modeling of
security aspect. Alam et al. [35] presented an inter-
face model for web services, which is based on model-
driven technique. They have performed by extending
object constraint language (OCL) to define access con-
trol policy. Memon et al. [36] proposed security pat-
terns refinement approach for model driven security.
Their approach relies on the UML notation for Secu-
rity modeling. Basin et al. [37] formalized the prop-
erties of security design models and their instances.
They have analyzed security properties by using OCL
queries and evaluated the queries on models or model
instances. OWL-S (Web Ontology Language for Ser-
vices) is mainly used to formally specify Web Services
[38]. OWL-S supports semantic description model for
the realization of invocation, interoperation, and com-
position of web services. But in OWL-S specification
layers are not precisely separated using MOF tech-
nique.

Most of the above OCL based approaches have
certain limitations for the properties that cannot be
specified by simply evaluating OCL notation over the
metamodel. Other MDA based approaches are not
based on Semantic Secure Service Oriented Architec-
ture (SSSOA), where an unambiguous (semantic or
formal) representation of essential properties of a sys-

tem required, which can be performed by automated
ontology-based reasoning. Some of the related works
are based on semantic representations of WS-Security
and WS-Policy.

Kim et al. [39] presented security ontology for mak-
ing security annotations. They have described how the
ontology can be applied to the web services in SOA
to present security requirements and capabilities. Gar-
cia and Toledo [40] presented an approach that com-
bines WS-BPEL, WS-Policy, and OWL for building
secure business processes. They have considered poli-
cies to model service security capabilities and security
requirements in business processes. Agostini et al. [41]
presented an approach based on the use of ontologies
to support the description of content of security certifi-
cates for services. Yu et al. [42] proposed a rule-based
scheme to check whether security capabilities match
security requirements. They have performed semantic
modeling of WS-Security and applied inference rules
for security capabilities. Brahim et al. [43] presented
a semantic approach for specifying and matching web
service security policies. They performed a transfor-
mation of WS-Security-Policy into an OWL-DL ontol-
ogy.

Dietrich and Elgar [44] proposed a novel approach
to the formal definition of design patterns. Authors for-
mally defined design patterns and some related con-
cepts such as pattern participant, pattern refinement,
and pattern instance using OWL. Boaro et al. [45] have
presented an integration of model checking and seman-
tic reasoning technologies. They have presented ser-
vices as state transition system and annotating them
by means of description logic assertions. Modica and
Tomarchio [46] presented a semantic framework capa-
ble of matchmaking in a smart way for security capa-
bilities of providers and security requirements of cus-
tomers and tested it on use-case scenario. Parreiras
and Staab [47] proposed TwoUse approach, which en-
ables UML modeling with semantic expressiveness of
OWL-DL. They presented bridges based on a meta-
model, library extensions and model transformations.

Katasonov [48] propsed an ontology based mod-
eling framework. He claimed that the framework is
to be implemented as a part of model driven engi-
neering tools to support software engineers. Hästbacka
and Kuikka [49] presented an application of OWL se-
mantics and reasoning to models for developing con-
trol applications. To demonstrate their scheme, OWL
based modeling method is considered, where models
are transformed and combined with other engineering
knowledge of a generic nature. Maged et al. [50] pre-

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 5

sented an approach i.e., Query/View/Transformation
(QVT) to find problems in domain specific model.
They have defined detection semantics and can be used
in any MOF-based model.

A good number of formalization techniques are also
available for analyzing SOA design patterns. But these
techniques do not cover security features of a system.
Tounsi et al. [51] presented a formal refinement-based
approach for the modeling of message oriented SOA
design patterns using SoaML (Service Oriented Ar-
chitecture Markup Language) and Event-B. Kim and
Carrington [52] formalized design patterns using for-
mal modeling language Object-Z. They developed a
role metamodel using an existing modeling frame-
work, Eclipse Modeling Framework (EMF) and trans-
formed the metamodel to Object-Z using model trans-
formation techniques. Brown and Capretz [53] pro-
posed the ODEP-DPS development process for the de-
velopment of Data Providing Services (DPS).

From the above literature it is clear that a very lim-
ited number of modeling techniques are available for
SOA security patterns. Few of them are not based on
ontology, which lack proper semantic notation, inter-
operability, and scalability. A good number of SOA se-
curity patterns are available, which require to analyze
the consistency of patterns composition. This study
provides the modeling of web service security pat-
terns using semantic notations. These notations within
SOA allow reasoning tools to automate tasks, resolve
data and process mismatches, and improves interop-
erability. Semantic SOA also helps automated discov-
ery, ranking, negotiation, contracting, and composition
of services [54]. Most of the existing ontology-based
techniques do not represent behavioral aspects of sys-
tem. Our modeling framework is helpful for both struc-
tural as well as behavioral aspect of SOA security pat-
terns.

3. Proposed Work

Securing web services requires a set of security so-
lutions to be applied during the web service commu-
nication life cycle. In the presence of different solu-
tions, security patterns are the most widely used ap-
proach for providing guidance and representative ar-
chitectural models for developers to use in order to re-
alize more specific security policies as well as security
capabilities. Web Service policies are considered to en-
hance communication mechanism by enabling quality
parameters and secure service capabilities are used for

making SOA-based business processes that satisfy user
security requirements. But the patterns directly do not
offer systematic guidelines to the system, instead it re-
quires proper analysis to apply them in a particular sce-
nario. This study does not provide a pattern composi-
tion approach, whereas it offers a SOA security pat-
tern modeling approach. In the following subsection,
the composition of web service security patterns is pre-
sented for a given context. Further it is analyzed by
using an ontology-based approach.

3.1. SOA Security Patterns

In order to conduct business processes, a number of
web services interact with each other. These interac-
tions occur by exchanging a large number of SOAP
(Simple Object Access Protocol) messages. In order to
protect these messages (stored messages or messages
in transit), a number of web service security standards
are available in the form of patterns. But these pat-
terns provide security mechanism in terms of their con-
text. For providing security mechanism to SOA, there
is a need to compose these patterns. In this study, a
composition of WS-Policy pattern, WS-Trust pattern,
and WS-Federation pattern is presented. The struc-
tural aspect of the composition of patterns is shown in
Figure 2. The composition of these web service pat-
terns is described by using four pattern template ele-
ments such as context, problem, solution, and forces.
Context describe on what situation the problem occur.
Problem describes when to apply patterns and describe
specific design problems. Solution represents the ele-
ments that prepare design, their relationships, respon-
sibilities, and collaborations. Forces are the results and
trade-offs of applying patterns. The following pattern
template elements describe about the composition of
patterns, WS-Policy, WS-trust, and WS-Federation in
terms of context, problem, solution, and forces.

Context: Web services communicate through the
Internet, which is an insecure medium. Web services
require to maintain secure and trusted relationships be-
tween them during communication process. They also
require to leverage identity management for enabling
cross-domain interactions between web services and
users.

Problem: During the communication process of
distributed applications, a number of malicious users
and services may try to access stored information or in-
formation in transit. Without using WS-Policies, web
services cannot preserve reliability, availability, and
security in their interactions. If trust relationships are

6 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

Fig. 2. Structural Aspect of SOA Security Patterns

not maintained between communicating parties, they
have no means to preserve security and interoperability
in their composition. In a cross-domain network, part-
ners, applications, and business processes separately
controls identity information about its users. Users
may have multiple identities for accessing various ac-
counts in different domains. They need to spare from
giving their identities many times within a federation.

Solution: A number of solutions are available for
the above defined problems occurred in a particular
context. In this context solution can be provided by
composing policy, trust, and federation patterns. Poli-
cies help to assure security, availability, and reliabil-
ity by applying security assertions, which represent a
capability and constraints of the behavior of web ser-
vices. But there is also a need of trust mechanism for
sharing information with each other. Trust mechanism
can be achieved by using security tokens which be-
come a proof to maintain a trust relationship between
them. The identity problem can be solved by sharing
an identity information i.e., federation metadata be-
tween the participants in a federation. An Identity in-
formation provides information about policies, feder-
ated services, and brokering of trust.

Forces: The above solutions are constrained by the
number of the following forces:

– Malicious users and services can modify and re-
move policy assertions.

– Policies includes security assertions that can be
used by trust mechanism to verify the policies.

– Each communication process should have time
limit that denotes the validity of trust mechanism.

– Identity management results a high cost in terms
of execution time, human resource, and adminis-
trative duties.

– A federation contains different participants hav-
ing different security policies and the participants
should not change their policies for accomplish-
ing their goals.

3.1.1. Structural Aspect of SOA Security Patterns
The structural aspect of the composition of SOA

security patterns is presented in Figure 2. The pre-
sented pattern is often based on WS-Policy, WS-Trust,
and WS-Federation to provide security mechanism to
SOA-based application. In this pattern, SecurityTo-
kenService plays an important role act as a Web ser-

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 7

Fig. 3. Dynamic Aspect of SOA Security Patterns

vice generates SecurityContextToken (SCT). A SCT is
a representation of a security context to develop an au-
thentication state by using security tokens. Requester
can consider security context tokens to encrypt a num-
ber of SOAP messages. SecurityTokenService is re-
sponsible for providing security token to insure mes-
sage originality, verification of authorized use of a se-
curity token, and modifying trust in a domain of ser-
vices. Each SecurityTokenService has a TrustEngine
to evaluate security related issues by verifying security
tokens and claims against security policies.

A SCT has a number of Security Tokens for ap-
plying signatures to tokens. Security Token is a set of
claims, which is a statement about a participant, ser-
vice, and resource. A Claim is available in the form of
assertions in terms of authentication. A SecurityCon-
textToken can be implemented by using Signed Secu-
rity Token and Proof-of-Possession. In order to verify
the claims, Trust Engine can consult with the Policy,

which is a set of policy alternatives. Policy Alternative
is a set of policy assertions which represent a capabil-
ity and a constraint. Policy Assertion helps to identify
the behavior of participants.

Identity management is an essential activity to
achieve the federation. Identity Provider is a special-
ization of SecurityTokenService. Service provider and
requester uses federation services to perform business
processes using web services. A domain is a set of Re-
sources which specifies a unit of security administra-
tion. The Identity Provider is a trusted body consid-
ered by the participants such as Service Requester and
Service Provider. A Federation is a set of domains that
have established business relationships. In the feder-
ation one domain can allow authorized access to its
resources on the basis of identity.

Figure 2 is an extension of Web Service Security
Standard patterns, where a number of security stan-
dards are mapped into the composition of security pat-

8 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

terns. The composition of patterns is specified in the
presence of misuse pattern. Misuse Pattern starts from
the goals of the malicious users and express the ideas
of the malicious users. Misuse patterns represents the
messages that malicious users transmits to various
components of an application architecture to accom-
plish its goals. In this study a misuse pattern is consid-
ered to evaluate the security of presented patterns com-
position. The dynamic aspect of patterns composition
is presented in the following subsection.

3.1.2. Dynamic Aspect of SOA Security Patterns
The dynamic aspect of presented patterns compo-

sition is specified by using UML sequence diagram
which is shown in Figure 3. It is presented for the
use case accessResource in the presence of Man-in-
the-Middle attack. This dynamic aspect have three
main actors, Requester, Initiator, and Attacker. Ac-
cording to the precondition of this specification, Se-
curityTokenService has Policy to verify the requester
request. In this scenario requester requests for the se-
curity token to initiator in terms of claims. The initia-
tor provides token to get Security Context Token. Re-
quester sends token to SecurityTokenService for prov-
ing the token that can be identified by the Attacker.
An attacker can send the copy of the claim to Securi-
tyTokenService. SecurityTokenService checks the re-
quest using Trust Engine. Trust Engine verifies claim
through the Policy. If policy approve the claim, it veri-
fies the attributes against the policy. Also it verifies to-
ken issuer through the policy. After verifying all the es-
sential elements trust engine approve the request. Sub-
sequently, SecurityTokenService creates Security Con-
text Token. It is generated by Security Context Token
which is taken by Attacker. Attacker sends modified
Security Context Token to Requester and Attacker can
access Resource by using original Security Context
Token. According to the post condition of this specifi-
cation, an Attacker has Security Context Token to ac-
cess a Resource. A number of sequence diagrams are
possible for the composition of patterns presented in
Figure 2 according to different use cases, such as cre-
ate new policy, access resource using identity token,
request a new service, etc.

3.2. Ontology-Driven Security Modeling and
Refinement Framework

Ontology-Driven Security Framework (ODSF) is
an extension of Model-Driven Security Framework
(MDSF) by applying security pattern modeling and re-

Table 1
Invariants for the token based authentication and resource access

context User::allAuthRequester(a:Action)
:Set(AuthenticationConstraint) body:
self.hasToken.allowSecurityToken().allAuthParticipant(a)

context TokenRequest
inv containsAction:

self.subordinatedactions=
self.resource.oclAsType(Token).hasattribute.action
− > select(a | a.ocllsTypeOf (GetToken))

context ResourceAccess
inv targetsAResource:

self.resource.oclIsTypeOf(Resource)
inv containsSubactions:

self.subordinatedactions = self.resource.action
− > select(a | a.ocllsTypeOf (ResourceModification))

− >union(self.resource.action
− > select(a | a.ocllsTypeOf (ResourceAccess)))

finement process. ODSF is an specialization of MDE
considering three layers of MDE process such as CIM,
PIM, and PSM as shown in Figure 4. In CIM layer,
SOA security requirements are considered to map into
analysis model. In this study, a number of SOA se-
curity requirements are considered such as security
requirements for the stored information, security re-
quirements for information in transmission, security
requirements for a single service, and security re-
quirements for the composition of service. An anal-
ysis modeling can be performed by using a use-case
diagram which is mapped into XMI (XML (Extensi-
ble Markup Language) Metadata Interchange) analy-
sis file. In Model Driven Security, requirement spec-
ification is generally performed by using OCL (Ob-
ject Constraint Language) expressions during the anal-
ysis phase. OCL is a formal language mainly used for
the verification and validation of UML analysis and
design diagrams. But in ODSF requirement validation
is performed by using OWL-DL (Web Ontology Lan-
guage Description Logic). ODSF offers additional op-
erations that are not easily expressible in OCL. Table 1
shows the OCL expression for the token-based authen-
tication and resource access. First expression denotes
whether all authenticated requesters are allowed for se-
curity token. Second expression denotes the context of
token request and third expression specifies about re-
source access where access can happen in the form of
resource modification and resource access.

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 9

 mapsTo

 CIM

 isPerformedBy

Export as XMI

 mapsTo

 use

 isPerformedBy

perform

PIM

 export as XMI isPerformedBy

 export as XMI

 mapsTo

 mapsTo

 mapsTo

PSM

 mapsTo

 perform

Use Case
Modeling

SOA Security

Requirements

XMI Analysis

File

Use Case
Diagram

Domain
Modeling

Security Patterns

UML Class
Diagram

Navigation
Modeling

Sequence
Diagram

OWL-DL Ontology

A-Box

Structural Aspect of
XMI Design Model

Dynamic Aspect of
XMI Design Model

DL-Safe rules

Verification Process
using Pellet

Fig. 4. Ontology-Driven Security Modeling Framework

10 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

At the PIM layer, the ODSF framework describes
a metamodel which is presented in the refinement of
pattern-based SOA security modeling. In PIM layer,
XMI analysis file is imported by design modeling
which can be performed by any UML-based tool such
as RSA (Rational Software Architecture). A design
modeling can be performed by using UML class dia-
gram which denotes the static aspect of a system. Se-
curity patterns are used during the domain modeling.
Security patterns provide solution to the security prob-
lems in a specific context. In this scenario authenti-
cation can be achieved by using trust mechanism in
a SOA-based application. During the design model-
ing process, each security requirement is mapped into
an abstract security pattern. From the abstract secu-
rity patterns concrete security patterns can be identi-
fied. For example Security Token can be implemented
by using X.25 certificate and Kerberos ticket. Secu-
rity patterns are specified using class diagram that
performs navigation modeling. A navigation model is
a specialization of conceptual model. It can be de-
fined as two step process; first to define navigational
space model and second to define navigational struc-
ture model. In this study navigation modeling is per-
formed by using UML sequence diagram which is a
common process in a web-based system. Finally in
PIM layer, UML class diagram and UML sequence di-
agram are exported into XMI model which helps for
model-to-model transformation.

The ODSF framework mainly used to minimize the
gap between PIMs and PSMs using pattern refinement
process which is presented in the following subsec-
tion. PIM resolves system functional requirement in
terms of problem space whereas PSM offers a solution
model that resolves both functional and non-functional
requirements of a system. Transformation of PIM into
PSM is a challenging task that is based on a number
of transformation rules. Transformation rules define as
to how one or more elements in the source model can
be transformed into a target model. In this framework
the structural aspect of a design model is mapped into
ontology A-Box which specifies the instances of con-
cepts at instance level. The dynamic aspect of a design
model is mapped into DL-Safe rules. Finally both the
constructs i.e., A-Box and DL-Safe rules are mapped
into OWL-DL ontology. For the verification process an
automated reasoning can be performed by an ontology
reasoner i.e., Pellet [55]. Pellet is an open source Java-
based OWL DL reasoner. The reasoner can be used
in conjunction with both Jena and OWL API library.
Ontologies are the subset of models and also they ac-

complish the criteria for being models along with extra
features.

The proposed modeling framework provides a se-
mantic description for a SOA-based security patterns.
In this study a MDD-based model2model transforma-
tion technique is presented. UML notation incorpo-
rated with security features are considered as source
model that is required to mapped into a target model
i.e., OWL-DL. The proposed technique is based on the
concept of metamodel which supports analysis and de-
sign of rules, constraints, and models helpful for the
modeling of predefined class of problems.

3.2.1. Ontology-Driven Transformation and
Refinement for SOA Security Patterns

An ontology-driven pattern refinement is presented
in Figure 5. In the process of pattern refinement, firstly,
SOA security requirements are mapped into abstract
SOA security patterns. Secondly, abstract security pat-
terns are mapped into corresponding concrete secu-
rity patterns. Thirdly, these concrete SOA security pat-
terns are formally refined and transformed into seman-
tic notations i.e., OWL-DL. The third step is a special
form of the third layer of traditional MDS technique,
which offers the platform specific models. In this step
a model2model (M2M) transformation process is per-
formed that is based on the concept of metamodel.

The proposed transformation and refinement frame-
work is based on OMG’s Ontology Definition Meta-
model (ODM). During the mapping process, each
model element can be represented as a resource in the
RDF (Resource Description Framework) model. RDF
model has a type declaration denoting to the model
elements metaclas in the metamodel. The essential
constructs of a model such as properties and relation-
ships are specified by using RDF statements which
denotes the properties and relationships types in the
metamodel. UML diagrams incorporated with security
notations (stereotypes) support for specifying informa-
tion about different views of a security-critical appli-
cation such as static view and dynamic view. Since it
is difficult to assess all the views of a software into
a single model, hence a semantic approach is consid-
ered to present OWL descriptions at the metamodeling
level, which helps to disambiguate UML constructs
and support to analyze logical constraints. An UML-
based security design patterns associated with varia-
tion and delegation of concept in models may have a
question as to how the selection of a class could be per-
formed by using their description rather than by weav-
ing descriptions. ODSF offers decoupling class iden-

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 11

Is written in is written in

 Is written in

 M2
 confirmsTo M2-bridge uses describedBy

 M1

 UML Model

Pattern

Solution

Space

UML Metamodel

Pattern

Specification

Applying Rules:

Model to Formal

Ontology

Formal Ontology:

OWL-Model,

RDF-Model,

SPARQL-DLModel

Transformation

Rules

Ontology

Definition

Metamodel:

OWL, SPARQL-DL

 Knowledge

Base

TBox

OWL

ABox

OWL

Instance

Transformation

Definition Language

Meta Language

Fig. 5. Ontology-Driven UML-Based Pattern Refinement

tification from the definition of classes by considering
OWL-DL.

During refinement process, UML model is used to
describe pattern solution space that confirms to pat-
tern specification represented by UML metamodel. A
set of transformation rules are required in order to
transform pattern solution space into formal ontology
which can be described by Ontology Definition Meta-
model (ODM) as shown in Figure 5. A pattern-based
ODM can be represented by using T-Box (Terminol-
ogy Box) where pattern-level concepts such as classes,
attributes, and relationships are specified. Whereas, a
pattern-based model instances such as OWL model,
RDF model, SPARQL-DL model are described by us-
ing A-Box (Assertion Box). During the transformation
process, pattern specification is mapped into T-Box at
M2-level and pattern solution space is mapped into
A-Box at M1-level for providing semantic represen-
tation to the SOA security patterns. UML metamod-
els and ontology definition metamodels can be writ-
ten in Meta language such as OPRR (Object-Property-
Relationship-Role model). Transformation rules can
be written in transformation definition language such
as QVT (Query/View/Transformation).

During the refinement and transformation process,
description logic contains two basic elements such
as concepts and relationships in order to map secu-
rity concepts specified in UML notation into a seman-

tic notation. Concept formalizes UML classes and re-
lationship formalizes UML association. In Figure 5
knowledge base contains two boxes i.e. T-Box and A-
Box. T-Box is specified by using concepts and relation-
ships. A-Box is specified by using constraints which
initiate the concepts and relationships in the T-Box.
Generally, T-Box is used to specify a UML class model
and an A-Box is used to specify an instance model.

3.2.2. ODSF Metamodels for Secure SOA
The ODSF metamodels are extended from TwoUse

metamodels [47]. In this study, UML-based meta-
model is defined to specify secure SOA-based system.
Subsequently, OWL metamodel is presented to pro-
vide the semantic notation of a SOA-based system.
Finally, ODSF metamodel is represented to describe
ODSF approach. The UML-based metamodel defines
the elements and their relationships for the secure
SOA-based system, which enables a common under-
standing of modeling constructs. Figure 6 represents
a simplified version of secure UML-based SOA meta-
model that is associated with the web security require-
ments. These security requirements support evaluation
processes to maintain a level of confidence that the
security functionalities satisfy security requirements.
Security requirements are enforced by security policy
and satisfies security objectives. Security Policy also
realizes permission for action using action assignment.
An action can be performed on resource by using re-

12 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

Fig. 6. UML-Based Metamodel for Secure SOA

Fig. 7. OWL2 Metamodel for Secure SOA

source assignment. The presented metamodel specifies

a token-based access control policy for actions on pro-

tected resources. A common criteria denotes the pro-

tection of resources from the unwanted accesses i.e,

threat. The metamodel provides a subset of a UML

class model that has elements which includes type,

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 13

package, participant, etc. A type has three subclasses
i.e., property, class, and operation. A UML class can
be a abstract class or a subclass. A UML class con-
tains properties and operations which are represented
by class Property and class Operation respectively.

The concept of OWL metamodel has been bor-
rowed from the OMG ontology definition metamodel.
OWL2 is an axiom-based language fully compatible
with OWL-DL that helps to provide semantic repre-
sentation of properties of a SOA-Based security criti-
cal system. OWL metamodel offers a good number of
axioms, such as class axiom, property axiom, asser-
tions, etc., which are shown in Figure 7. OWL ontol-
ogy generally used to express sets of concepts which
specify domain knowledge as well as specify classes
by using logical notations. Axioms are used to support
a number of constructs to limit classes and properties.
Class constraints are available in different forms, union
of classes, disjoint classes, equivalent classes, enumer-
ated classes, etc. These class axioms are basic concepts
of OWL classes. OWL property axioms are available
in the form of object property and data property. OWL
classes have assertions to specify the properties of a
system.

The ODSF metamodel is presented in Figure 8.
It offers the abstract syntax for specifying classes
with semantic notations for SOA-based security crit-
ical system. The ODSF metamodel syntax allows an
abstraction for the various concrete syntaxes used in
ODSF modeling framework. ODSF metamodel com-
bines both UML metamodel and OWL metamodel to
represent model2model transformation process. The
UML metamodel specifies structural and behavioral
nature of classes whereas OWL metamodel specifies
classes with OWL expressiveness. In this metamodel
problem space and solution space are used by secu-
rity requirement and security policy respectively. The
problem space can be described by UML use case di-
agram and UML activity diagram. The solution space
can be specified by UML class diagram that is mapped
into OWL class. Here problem space and solution
space are treated as artifacts which play an important
role to describe software design patterns. The solution
space specified by class diagram is a set of security
patterns for a particular problem. The behavioral as-
pect of pattern-based solution can be represented by
using UML sequence diagram which also needs to be
semantically specified.

3.2.3. Transformation Rules
The proposed modeling framework is implemented

on the basis of transformation rules, which include
syntax, semantics, and pattern constraints transforma-
tion.

– In a pattern-oriented software development, a
number of participants such as class, attributes,
methods, instances may occur, which require
variable symbol declaration. For example, Signed
Security Token contains Kerberos Token as an in-
stance. These variables need to be mapped.

– A number of predicates are used that need to be
mapped. For example, each class can be declared
in the ontology having a predicate is such as is-
Class and isAbstract.

– OWL properties can be defined by using a binary
predicate. The name of a predicate represents the
name of property. For example, hasToken prop-
erty associates Security Context Token with Se-
curity Token.

– OWL relationship can be expressed with the help
of a number of predicates, such as isSubclassOf,
types, contains, etc. A model semantics involve a
set of logical sentences by introducing all inter-
pretations, which provide to its atomic elements,
whereas syntactic mapping uses declarative and
prescriptive representations.

– Pattern constraints can be transformed into OWL
notation by considering pattern semantics in
UML, which are specified as UML class. An
UML class contains methods, attributes, and rela-
tionship. For example, method can be represented
as isMethod (SecurityToken.addDigitalSignature).
Similarly, relationship e.g., generalization be-
tween two classes can be represented by us-
ing isSubclassOf predicate, for example Identi-
tyProvider is a sub-class of SecurityTokenSer-
vice in the security pattern presented in Fig-
ure 2, which can be declared as isSubClas-
sOf(IdentityProvider, SecurityTokenService).

According to transformation rules, a target model
can be generated from the source model. In this ODSF,
source model and target model confirms to correspond-
ing source metamodel and target metamodel as shown
in Figure 5.

3.2.4. Construction of TBox and ABox
In model driven software development, UML anal-

ysis and design support a stereotype set and the un-
derlying metamodels, which represent the relationship

14 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

Fig. 8. Metamodel for MDSF approach

Table 2
Transformation of Meta classes into DL T-Box

Stereotype Meta Class Meta Super Class T-Box Classes T-Box Generalization

Entity Element NIL T NIL

System component Class Entity Class class ⊑ Entity

Software component Class Entity Class class ⊑ Entity

Database Class Entity Class class ⊑ Entity

Role Actor Entity Actor Actor ⊑ Entity

Role ValueSpecification Element Value ValueSpecification ⊑ Entity

Asset Class Entity Class class ⊑ Entity

Condition Guard Constraint Guard Guard ⊑ Constraint

Condition Precondition Constraint Precondition Precondition ⊑ Constraint

Condition Postcondition Constraint Postcondition Postcondition ⊑ Constraint

Condition StateInvariant Constraint Invariant Stateinvariant ⊑ Constraint

OperationWith FormalBody Operation ValueSpecification Operation Operation ⊑ ValueSpecification

Authentication Exception Message ValueSpecification Message Message ⊑ ValueSpecification

Entity LifeLine Element LifeLine LifeLine ⊑ Element

Authentication Operation Operation ValueSpecification Value Operation ⊑ ValueSpecification

Anonymity Attribute Element Attribute Attribute ⊑ Element

AccessControl Model Class Package Class Class ⊑ Package

Software Component ProxyBasedFirewall Proxy Proxy ProxyBasedFirewall ⊑ Proxy

Software Component UDDI Protocol UDDI UDDI ⊑ Protocol

Design Pattern WS-Trust Pattern SecurityPattern Pattern WS − Trust ⊑ SecurityPattern

Design Pattern WS-Policy Pattern SecurityPattern Pattern WS − Policy ⊑ SecurityPattern

Design Pattern WS-Federation Pattern SecurityPattern Pattern WS − Federation ⊑ SecurityPattern

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 15

Table 3
Development of TBox

1. Initialize: TBox = {}
2. for all classes(Class) and superclass (SupClass) in metamodel

3. TBox = T − Box ∪ {Class ⊑ SupClass}
4. end for
5. for all classes(Class) and superclass (SupClass) in metamodel

6. if (class ̸= SupClass)&&(Class ⊑ SupClass /∈ TBox)

⇒ TBox = TBox ∪ {Class ∩ SupClass = ∅}
7. end if
8. end for
9. for all multiplicity condition between classes class1 and class2

10. if the value of condition is 0 to 1

⇒ TBox = TBox ∪ {class1 ⊑≤ 1.class2}
11. end if
12. if the value of condition is 1 to n

⇒ TBox = TBox ∪ {class1 ⊑≥ 1.class2}
13. end if
14. if the value of condition is 1

⇒ TBox = TBox ∪ {class1 ⊑≤ 1.class2, class1 ⊑≥ 1.class2}
15. end if
16. end for
16. return TBox

Table 4
Development of A-Box

1. Initialize: ABox = {}
2. for all m ∈ M and ob1, ob2 ∈ PO

3. ABox = ABox ∪ {Message(ob1, ob2)}
4. if (ob1 send a message m to ob2)

⇒ ABox = ABox ∪ {send(ob1, m) ⊓ recieve(ob2, m)}
5. end if
6. if (ob2 receive message m)

⇒ ABox = ABox ∪ {Operation(m) ⊓ Reply(ob1)}
7. end if
8. end for
9. for all (ob, val1, val2, m1, m2) ∈ SF

10. if (val1 = val2)

⇒ ABox = ABox ∪ {Precede(m1, m2)}
11. end if
12. end for
13. for all (l, c) ∈ AB

14. ABox = ABox ∪ {Instanceof (l, c)}
15. end for
16. return ABox

between these stereotypes, which are shown in Table
2. For description logic, an ontology can be repre-
sented as an assertion box (ABox) and a terminology-
box (TBox) [56]. The ABox analyzes the instances of

concepts at instance level, whereas the TBox analyzes
the concept at class level. The M1 level model can be
transformed into formal ontology by mapping meta-
model into TBox at M2 level and mapping M1 level

16 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

model into ABox. For the development of TBox and
ABox, two algorithms are specified in Table 3 and Ta-
ble 4 respectively. These algorithms consider classes
and metaclasses as input which are shown in Table 2.

Table 3 shows the development of a TBox that be-
comes helpful to map UML metamodel into a DL
TBox. In this algorithm all meta classes and super-
classes shown in Table 2 are mapped into a TBox. It
also includes the multiplicity constraints into a TBox.
In semantic analysis, behavioral model comprises both
the static semantics as well as the dynamic semantics.
Dynamic semantics may change during the execution
time whereas the static semantics are not changeable
until the model is built.

Table 4 shows the development of an ABox that be-
comes helpful to map UML model into a DL ABox. In
this study, a sequence diagram is considered to specify
using ABox. The formal semantics of a sequence dia-
gram can be specified by using a tuple SD={ PO, M,
AB, SF }, where PO is a set of participating objects, M
is a set of messages, AB is a set of activation bar, and
SF is a set of sequence fragments. Let us consider a
sequence diagram having a message sender i.e., object
ob1, and message receiver i.e., object ob2, activation
life l.

4. Case Study: e-Health-Care System

In this approach a case study i.e., e-Healthcare sys-
tem [57] is considered for the demonstration of ODSF
modeling framework. e-HealthCare system offers dig-
ital integration of health-care related information such
as patient-ID, BP monitoring report, ECG monitor-
ing report, update patient record, patient report gener-
ation, etc., which are scattered over a myriad of tradi-
tional databases. For this case study, an analysis and
design models are presented. Transformation of analy-
sis model into design model is out of the scope of this
approach.

4.1. Analyzing e-Health-Care system at the CIM and
PIM level

In order to construct an analysis model, use case di-
agram has been taken into consideration as shown in
Figure 9. A number of use cases are presented which
are associated with static and dynamic authentication
and authorization. In this diagram, four main actors
such as Patient, Doctor, Security Designer, and At-
tacker are presented for the sake of simplicity. Accord-

ing to this model, Patient can read the record whereas
Doctor can perform both the operations, read record
and write record. The role of Security Designer comes
into play during the deployment phase. Security De-
signer develops secure system by using security pat-
terns as well as by applying security policy rules. An
Attacker can assign threat to create vulnerability for
accessing records.

Figure 10 represents a class diagram for securing
confidential health-care data stored in databases using
security patterns. These data can be accessed by using
various web services such as request processing ser-
vice, BP monitoring service, ECG monitoring service,
etc. In this model, Authenticator and Authorizer pack-
ages are used which are instances of Authenticator pat-
tern and Authorizer pattern respectively. Authenticator
enables service controller to authenticate service con-
sumers as well as other interacting services. Autho-
rizer enforces access rights specified by policy rules.
When a consumer wants to access a health-care related
data through the Internet, e-HealthPortal forward con-
sumer’s request to trust-based security pattern. This
pattern contains Security Token Service to verify the
request. In this scenario, a trust-based security pat-
tern uses Authenticator and Authorizer packages. If
consumer’s request verified against policy rules, it ac-
cess resource through the service container package.
Service container contains services used to access e-
Health-Care database.

The behavioral aspect of a trust-based security pat-
terns is represented in Figure 11. This sequence dia-
gram is based on dynamic aspect of SOA security pat-
terns which is shown in Figure 3. The model repre-
sents the behavioral aspect of e-Health-Care system for
the use case accessBPReport. In this scenario, service
consumer requests e-HealthPortal for accessing blood-
pressure report. e-HealthPortal forwarded consumer’s
request to STS for verifying the request. STS verifies
request by using Trust Engine. STS creates a Security
Context Token (SCT) after verifying the request and
provide it to the service consumer. SCT may have a
security token in terms of claims, which are provided
to consumer. These claims ensure the right to access
the services. Consumer can check BP report using BP-
Monitoring service after receiving the SCT. BPMoni-
toring service fetches the report from the database and
provided to the consumer.

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 17

Fig. 9. Use case diagram for e-Health-Care system

4.2. e-Health-Care system at PSM layer

After applying security patterns in SOA-based se-
curity critical system at PIM layer, semantic web lan-
guages such as OWL, RDF, SPARQL (SPARQL Proto-
col and RDF Query Language), and SWRL (Semantic
Web Rule Language) are applied for analyzing pattern
notation. This study considers OWL associated with
description logics for specifying UML-based pattern
notation suffering from design inconsistency problem.
Often pattern-based solution faced a problem on the
decision of variation in the problem domain. In this sit-
uation, pattens fail to specify the selection of classes
for a particular problem. These problems can be solved
by performing OWL reasoning which infer class sub-
assumption and object classification.

4.2.1. Ontology for SOA Security Patterns
The ontology-based framework provides the con-

ceptualization for protecting web service communica-
tion process. It supports a high-level abstraction for the
web service interactions. Ontology-based modeling
extends the concept of URI (Uniform Resource Iden-
tifiers) for unique identification of resources. It pro-

vides the concept of namespaces for expressing con-
sistent information spaces. A good number of ontol-
ogy languages are presently available to provide a se-
mantic description of a system. Ontology-based mod-
eling differentiates facts about pattern templates, such
as fact about problem domain (Semantic Web Service
Security ontology), solution domain (Software Plat-
form Ontology), and application domain (WS-Security
Application Ontology). Figure 12 represents ontology
classes and their semantic relationships. For the sake of
simplicity all properties and assertions are not shown
in the SOA security patterns ontology.

This ontology presents a pattern i.e., WS-Security
pattern having various subpatterns, WS-Trust, WS-
Policy, WS-Federation. These patterns are represented
as classes. The relationships such as isAbstract, isSub-
ClassOf, isSubPatternOf are used to specify pattern-
based system. For example, WS-Policy pattern is a
subpattern of WS-Security pattern. WebService and
WS-SecurityPattern classes have isAbstact relation-
ship because both are abstract classes. The relation-
ships isSubPatternOf and isSubClassOf support tran-
sitive relation. In this ontology, SecurityTokenService

18 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

Fig. 10. Class diagram for e-Health-Care system

act as a main class related with WS-Security pat-
terns using hasAssurance property for describing as-
surance level from SecurityTokenService. SecurityTo-
kenService class has a number of other properties such
as hasTokenVerifier, hasDefenses, and hasSCT associ-
ated with TrustEngine, SecurityThreats, and Security-
ContextToken classes respectively for specifying secu-
rity objectives.

OWL supports two types of properties i.e., object
property and data property. Object property relates in-
stance of one class to instance of another class. For
example, The hasDefenses property can be specified
to have a domain of the class SecurityTokenService
and the range of the class SecurityThreats. Where an
instance such as Secure-Logger can defense against
Man-in-the-Middle attack. Data properties of OWL as-
sociate instances of a class to RDF (Resource Descrip-
tion Framework) literals or XML schema datatypes.
For example, hasClaims can be a datatype property
to determine whether the instance of SecurityToken
contains a claim or not. Similar to isSubClassOf and
isSubPatternOf relationships, properties can also be
defined as sub-properties of other properties. Con-
straints can also be applied on the properties and

sub-properties for controlling a number of instances
of a property and sub-property associated with those
classes.

Identity Provider class is associated with Security-
TokenService class using isSubClassOf relationship.
Identity Provider has a property hasAssociation to
specify the Domain class i.e., e-Health-Care. e-Health-
Care has an object property hasService to relate e-
health-Care services such as Request Processing ser-
vice, BP Monitoring service, and ECG Monitoring ser-
vice with the domain. These e-Health-Care services
are subclasses of Web Service. WS-Federation pat-
tern is associated with Identity Provider class using is-
BasedOn relationship. WS-Policy pattern is associated
with Policy class using isBasedOn relationship. Se-
curityContextToken has a property hasToken to spec-
ify SecurityToken. The SecurityToken class includes
two tokens type subclasses such as SignedSecurityTo-
ken and Proof-of-Possession token. Similarly Signed-
SecurityToken has two concrete tokens type subclasses
such as X.509Token and KerberosToken and Proof-of-
Possession include two tokens type SAMLToken and
IdentityToken. The SecurityToken class has two prop-

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 19

Fig. 11. Sequence diagram for e-Health-Care system for the use case access BP report

erties such as hasClaims and assignPermission to spec-
ify claim and e-Health-Care respectively.

In this ontology SecurityTokenService can request
to a specific credential, such as password, keys, cer-
tificates, etc., using reqCredential property. It can
be improved by creating classes which are essential
for SOA-based security critical system. It classifies
credentials into SignedSecurityToken and Proof-of-
Possesion token using the statements ‘what you have’
and ‘what you are’ for authentication. Policy class
can be classified into Policy-Based Access Control
and Role-Based Access Control for providing autho-
rization security objective using statement ‘what you
want’. A number of credential requirements are also
available for acquiring different types of authentication
which can be represented by specifying credentials for
reqCredential property values. For example a security
requirement i.e., LoginSystem may has a credential i.e.,
X.509Certificate having value minLength=‘6’.

4.2.2. OWL notation for SOA Security Patterns profile
In the Table 5, OWL notation shows the WS-

Security patterns profile presented in Figure 12. For the
sake of simplicity, namespace declaration are omitted.
This code represents security token assertions where
X.509 certificate has a version three and serial num-
ber is one. The ‘id’ attribute specifies the local identifi-
cation of token. Security capability represents Autho-
rization Service capability using XML Firewall which
provides policy-based access control. In this ontology
‘wssc’ namespace represents web service security ca-
pability. In a security token requirement, two require-
ments are specified. First token requirement repre-
sents Login-Requirement where login requires creden-
tial in terms of password. The role of credential is more
prominent in web services for providing authentica-
tion. Credentials are available in various format such
as certificates, encrypted keys, fingerprint, smartcard,
etc. Second requirement contains an assertion e.g., Se-

20 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

 isAbstract

 isSubPatternOf

hasAssertion

isBasedOn

 hasAssurance isBasedOn
 hasPolicyRules
 isSubClassOf

 hasTokenVerifier hasAssociation

 isSubClassOf isAbstract

 hasDefenses hasSCT

 hasServices

 hasToken isSubClassOf

hasClaims

 assignPermission

WS-Policy

WS-SecurityPattern

SecurityTokenService

WebService

TrustEngine

Policy

SCT

SecurityAssertion

Identity Provider

e-Health-Care

Request
Processing

SecurityThreats

SecurityToken

Claim

X.509 Token

KerberosToken

Proof-of-Possession

SAMLToken

Signed
Security
Token

IdentityToken

WS-Fedration WS-Trust

BPMonitoring

ECGMonitoring

Fig. 12. Ontology for Security Pattern-Based e-Health-Care System

curityToken:TokenType, which specifies the type of a
token.

A SOA-based system e.g., e-Health-Care contains
number of security requirements at the consumer level
as well as provider level. The service consumer can ex-
press its policy in terms of security requirements. The
consumer can require authentication, access control,
and confidentiality for accessing a resource through
the Web. The service provider can represent their poli-
cies by specifying security requirements. The provider
may require consumer authentication, change in the
policy rules, a specific protocol for the consumer, etc.
Table 5 also represents security requirements for e-
Health-Care system such as access control requirement

and authorization requirement. In this ontology ‘wssr’
namespace is considered, which denotes web service
security requirements. In this requirement, access con-
trol provides assurance to e-Health-Care-Database by
using X.509 token. In the second requirement, autho-
rization can be achieved by using SAML (Security As-
sertion Markup Language).

4.2.3. DL notation for SOA Security Patterns profile
Description Logic (DL) formalizes various domains

with the help of concepts and relationships, which are
represented as classes and relations respectively. DL
is similar to first order logic (FOL) added with some
other notations. DL supports a number of mathemati-
cal operators, such as and (⊓), or (⊔), not (¬), subset-

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 21

Table 5
OWL notation for SOA Security Patterns profile

<!−− SecurityToken Description −−! >

< SecurityToken : Certificate rdf : ID = “X.509Certificate′′ >
< SecurityToken : version rdf : datatype = “&xsd; int′′ >

3 < /SecurityToken : version >
< SecurityToken : serialNumber rdf : datatype = & xsd;int >

1 < /SecurityToken : serialNumber >
< /SecurityToken : Certificate >

<!−− Security Capability −−! >

< wssc : AuthorizationService rdf : ID = “Capability1′′ >
< wssc : hasAssurance rdf : resource = “&assurance; XMLFirewall′′/ >

< /wssc : AuthorizationService >

<!−− SecurityToken Requirements −−! >
< SecurityToken : Login rdf : ID = “LoginRequirement′′ >

< SecurityToken : hasCredential rdf : resource = “&credential; Password′′/ >
< SecurityToken : isIntitialCredential = “false′′/ >

< /SecurityToken : Login >
< SecurityToken : TokenType rdf : ID = “Claim1′′ >

< SecurityToken : hasClaims rdf : resource = “&claims; identity′′/ >
< /SecurityToken : TokenType >

<!−− Security Requirements for e-Health-Care −−! >
< wssr : AccessControl rdf : ID = “Req1′′ >

< wssr : hasTarget rdf : resource = “&resource; e − Health − Care − Database′′/ >
< wssr : hasAssurance rdf : resource = “&SecurityToken; X.509Token′′/ >

< /wssr : AccessControl >
< wssr : Authorization rdf : ID = “Req2′′ >

< wssr : hasTarget rdf : resource = “&resource; e − Health − Care − Database′′/ >
< wssr : hasAssurance rdf : resource = “&PoP; SAML′′/ >

< /wssr : TokenType >

of (⊑), equivalent (≡), model (|=), greater-or-equal
(≥), less-or-equal (≤) etc., for analyzing the proper-
ties of a system requirements. It also supports existen-
tial quantifier (∃) and universal quantifiers (∀). DL sup-
ports two other operators, such as (⊤) and (⊥), which
denote the meaning, having all individuals and no in-
dividual respectively. These two notations are helpful
to model the constraints of UML-based patterns.

The proposed DL notations represent the formal re-
lation and sensitive axioms for the SOA-based security
critical system. The DL notations help to specify the
constructs of UML diagrams. Table 6 represents vari-
ous DL expressions for SOA security pattern. First ex-
pression denotes that WS-Security pattern is a subclass
of Security pattern. Third expression shows that Secu-
rityTokenService has a semantic relationship with WS-
Trust, WS-Policy, and WS-Federation using hasAs-
surance property. Thirteenth expression denotes that

Identity Provider is associated with e-Health-Care us-
ing hasAssociation property. Fifteenth expression de-
scribes about the access permission for e-Helath-Care
using security token. Nineteenth expression indicates
that all individual are subset of all hasPermission and
all allowAccess properties. Expressions twentieth and
twenty-first specify for exactly one access and exactly
one permission respectively. Twenty second expres-
sion says that Authorized-Consumer and Attacker can-
not be the same user. Twenty-sixth expression speci-
fies about allowAccess operation performed by Secu-
rityTokenService.

During the transformation process CRUD (create,
Read, Update, Delete) operations may be generated for
specifying pattern-based object-oriented properties.
These operations are automatically generated during
the SPARQL querying process. In this study, SPARQL
based patterns are considered for encoding seman-

22 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

Table 6
DL notation for SOA Security Patterns profile

S.No. DL Notation
1. (WS − SecurityPattern ⊑ SecurityPattern)
2. (WS − Policy ⊓ WS − Trust ⊓ WS − Federation ⊑ WS − SecurityPattern)
3. SecurityTokenService ≡ ∃ hasAssurance.(WS − Trust ⊓ WS − Policy ⊓ WS − Federation)
4. WS − Federation ≡ ∃ isBasedOn.IdentityProvider
5. WS − Policy ≡ ∃ isBasedOn.Policy
6. SecurityTokenService ≡ ∃ hasTokenVerifier.TrustEngine
7. SecurityTokenService ≡ ∃ hasDefenses.SecurityThreats
8. SecurityTokenService ≡ ∃ hasSCT .SCT

9.
(SecurityTokenService ⊓ RequestProcessingService ⊓ BPMonitoringService ⊓ ECGMonitoringService ⊑

WebService)
10. Policy ≡ ∃ hasAssertion.SecurityAssertion
11. TrustEngine ≡ ∃ hasPolicyRules.Policy
12. (IdentityProvide ⊑ SecurityTokenService)
13. IdentityProvider ≡ ∃ hasAssociation.e − Health − Care

14.
e − Health − Care ≡

∃ hasServices.(RequestProcessingService ⊓ BPMonitoringService) ⊓ ECGMonitoringService
15. SecurityToken ≡ ∃ assignPermission.e − Health − Care
16. (SignedSecurityToken ⊓ Proof − of − Possession ⊑ SecurityToken)
17. (KerberosToken ⊓ X.509Token ⊑ (SignedSecurityToken)
18. (SAMLToken ⊓ IdentityToken ⊑ (Proof − of − Possession)
19. (⊤ ⊑ ∀ hasPermission.Permission ⊓ allowAccess.Policy)
20. (Policy ⊑ (= 1 allowAccess.⊤))

21. (Permission ⊑ (= 1 hasPermission.⊤))

22. (AuthorizedConsumer ⊓ Attacker ≡ ⊥)

23. (⊤ ⊑ (ServiceConsumer ⊓ ServiceProvider))
24. (ServiceChoreography ⊓ ServiceOrchestration ⊓ ServiceComposition) ⊑ ServiceOrganization
25. ∃ hasToken.⊤ ⊑ ∀ hasToken.SecurityToken
26. ∃ operation.allowAccess ⊑ ∀ sts.SecurityTokenService

Table 7
OWL description using SPARQL pattern

Condition OWL notation SPARQL Description

Attribute SubPatternOf : name
SELECT ?this WHERE{?this : name ?name

FILTER regex(?this, ^PatternOf)}
Each pattern and sub-pattern

should have name

Relationship
SubPatternOf :

ExtendEdge
SELECT ?this WHERE{?this : ExtendEdge ?edge} A sub-pattern has an extend control

edge with a corresponding pattern

Access Specifier
class : Access

hasType[private, public,
protected]

SELECT ?this WHERE{?this : Access ?a
FILTER(?a =′ private′ || ?a =′ public′ || ?a =′

protected′)}

Access specifier is applicable for
each class and attribute

Cardinality of relationship class : relEdge
SELECT ?this WHERE { ?this :relEdge ?edge} GROUP

By ?this HAVING(count(?edge) >= 2)
Each relationship has a cardinality

value

One use-case includes
other use-case

usecase : relEdge
hasType[extend, include]

SELECT ?this WHERE { ?this :relEdge ?edge} type
(ActivityNode and outgoing some (ControlFlow and Target

some decision))

One use-case that include some
other use-case

tic knowledge, because all OWL features can be ex-
pressed in SPARQL and it support semantic search in
model repository. OWL2 supports a number of data
properties, such as SubDataPropertyOf, Equivalent-
DataProperties, DisjointDataProperties, etc. as well as
object properties, such as SubObjectProperty, Objec-
tHasValue, InverseObjectProperties, ReflexiveObject-
Property, SymetricObjectProperty, TransitiveObject-
Property, etc. For example a query Type(?a, Objec-
tHasValue(securitypattern, WS-Trust)) returns all in-
dividuals that have the individual WS-Trust as value

of the property securitypattern. Table 7 represents
SPARQL patterns for the different types of conditions
occur in UML model that can be mapped into OWL
model. A resource belongs to design pattern repre-
sented using SPARQL patterns if it generates a result
for the defined variable i.e., this. One of the advantage
of SPARQL is that it is optimized for execution. It does
not require a separate reasoner, the RDF storage can
support querying process. Some features of SPARQL
(query of access specifier in Table 7) are more promi-
nent that are not possible using OWL. In this ODSF,

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 23

SPARQL and DL are combined to achieve the benefits
of both. For the design patterns, classes are define in
terms of common DL operations such as composition,
union, intersection, etc.

4.2.4. Transformable elements between UML
notation and OWL notation

Table 8 represents the constructs of UML notation
which are mapped into OWL notation. A number of
UML elements are available which have similar mean-
ing with the OWL constructs. These elements become
helpful during the transformation process. For exam-
ple, OWL supports the instance concept by using OWL
individual. UML association can be specified by using
OWL properties. UML navigation concept is handled
by OWL domain and range. OCL plays an important
role to analyze system properties that can also be per-
formed by using description logic.

5. Evaluation of ODSF

ODSF is analyzed by considering a case study i.e.,
e-HealthCare system. The main aim of this approach
is to reduce the gap between PIM and PSM layers
for providing semantic representation to UML-based
security critical system. In this study, it is analyzed
that how ODSF features reflect design-oriented non-
functional requirements such as reusability, extend-
ability, and security. ODSF allows developer to reuse
existing ontologies, semantic annotations, and algo-
rithm for the reusability. Extendability can be achieved
by adding new assertions in the developed ontology.
Developer can update the ontology if the UML model
is not changed. Security analysis can be performed by
using description logic.

ODSF is applied at high-level abstraction to offer a
formal representation for security patterns. The evalu-
ation of this approach is based on the fact as to how
it represents the relevant concepts of a system, how it
controls security threats during communication time,
how precise it is, and how it can be applied to security
critical system. The proposed methodology is based on
sound theory and extensible for other models as well
as other inconsistency problem. ODSF is also helpful
for analyzing the dynamic aspect of SOA security pat-
terns.

ODSF is compared with existing MDS approaches
which is shown in Table 9. In this table, columns rep-
resent security modeling approaches, whereas rows
represent attributes related to modeling approaches.

The attributes taxonomy is taken from [20]. Four
MDS approaches such as UMLsec [26], SecureUML
[27], SECTET [28], and ModelSec [29] are consid-
ered to compare with the ODSF. Comparison between
these modeling approaches are based on the param-
eters, such as security objective, modeling language,
paradigm, problem domain, model2model transforma-
tion, verification, tool support, model as a web content.
Most of the MDS techniques are developed for en-
suring about security properties, CIA (confidentiality,
Integrity, and Authentication). But SecureUML only
concentrates on access control and others are helpful
for different types of security properties, such as avail-
ability, non-repudiation, freshness, fair-exchange, au-
diting, etc. UMLsec, SecureUML, and SECTET use
an UML language whereas ModelSec uses a non-
UML-based language. ODSF uses OWL to model
security-critical system. All the modeling techniques
presented in Table 9 consider model-driven architec-
ture (MDA) and domain-specific modeling paradigm
except UMLsec. It uses multi-paradigm modeling plat-
form. Most of the approaches are applicable for the
web-based applications. UMLsec and SecureUML
do not support model2model transformation process,
whereas others support this process. SECTET and
ModelSec do not offer explicit information for veri-
fying security properties. UMLsec uses AICALL the-
orem prover, SecureUML uses SecureMova model
checker, and ODSF uses Pellet for analyzing security
properties specified in description logic. All the MDS
approaches support automated tools except ODSF. The
main advantage of ODSF is to model web security re-
quirements as web contents.

6. Conclusion

Security design patterns reuse effective software de-
sign experience on solving critical security related
problems. Patterns, those have good error detection
and correction ability, lower data redundancy, and
easy implementation, are useful for the system. In
this study, an attempt has been made to systemati-
cally present a modeling approach to analyze SOA se-
curity design patterns. The presented study captures
both structural and behavioral aspects of SOA-based
security critical system that specifies variants using
a semantic representation i.e., OWL. An ontology-
based modeling and refinement framework is proposed
for the web service security. During the refinement
process, a DL-based approach is presented for the

24 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

Table 8
Mapping between UML-Based Pattern notation into OWL notation

S.No. UML-Based Element OWL-Based Element
1. UML Package Ontology

2. UML Class OWL Class

3. UML Instances OWL Individuals

4. UML Attribute Values OWL Data Values

5. UMLAssociation.DataProperty OWL DataProperty

6. UMLAssociation.ObjectProperty OWL ObjectProperty

7. UML Datatypes OWL Datatypes

8. UML Generalization Relationship OWL SubClass Relationship

9. UML Navigation and Non-Navigation OWL Domain and Range

10. UML Enumeration OWL Enumeration

11. UML Multiplicity OWL Cardinality

12. OCL Expression DL Expression

Table 9
Comparison of ODSF with Existing MDS Approaches

aaaaaaaaaaaa
Attributes

Modeling Approaches
UMLsec SecureUML SECTET ModelSec ODSF

Security Objective

Confidentiality,
Integrity,

Authentication,
Authorization,

Non-Repudiation,
Freshness,

Fair-Exchange

Access Control

Integrity,
Confidentiality,

Non-
Repudiation,

Access Control

Integrity,
Confidentiality,

Privacy,
Authentication,

Availability,
Non-

Repudiation,
Auditing,

Access Control

Authentication,
Authorization,
Fair-Exchange,
Access Control

Modeling Language UML UML UML SecML OWL

Paradigm MPM
MDA and

DSM
MDA and

DSM
MDA and

DSM
MDA and DSM

Domain
Web Application,

Embbeded System,
Distributed System

Web
Application

e-government,
e-health,

e-education

Web
Application,
Databases

Web Applications

M2M No No Yes Yes Yes
Verification Yes yes No No Yes

Tool Support Yes Yes Yes Yes No
Model as a Web-Content No No No No Yes

lightweight analysis of a trust and policy-based SOA
security mechanism. A DL-based approach is consid-
ered to overcome the limitations of OCL notations.
It can not be proved for its general properties using
OCL expression, for example, executing OCL invari-
ants over instance models. But it can be possible by us-
ing DL notations. Combination of OCL and DL makes
an interesting analysis mechanism. In the process of
model checking, analysis is a form of constraint solv-
ing. Analysis can disclose subtle flaws that software ar-
chitect might not have discovered until much later. The

presented guidelines are useful to check the inconsis-
tencies and ambiguities among other security patterns.

In a current distributed and heterogeneous envi-
ronment, modeling artifacts such as model, meta-
model, modeling language, transformation language,
etc., need to be linked, adapted, and formalized to
accomplish the information requirements of various
stakeholders. The proposed study helps for linking,
mapping, and querying MOF based modeling lan-
guages on the web of data. Another advantage of this
approach lies for simple demonstration of security re-

Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns 25

quirements, semantic specification of those security re-
quirements, and evaluation of security properties along
with selected software security patterns.

References

[1] Fernandez EB, Ajaj O, Buckley I, Delessy-Gassant N,
Hashizume K, Larrondo-Petrie MM. A survey of patterns for
web services security and reliability standards. Future Internet
2012; 4(2):430–450.

[2] Kobashi T, Yoshioka N, Okubo T, Kaiya H, Washizaki H,
Fukazawa Y. Validating security design patterns application us-
ing model testing. Availability, Reliability and Security (ARES),
2013 Eighth International Conference on, IEEE, 2013; 62–71.

[3] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[4] Deepak Alur, Dan Malks, John Crupi, Grady Booch, and Martin
Fowler. Core J2EE Patterns (Core Design Series): Best Prac-
tices and Design Strategies. Prentice Hall, 2nd edition, 2003.

[5] Martin Fowler. Patterns of enterprise application architecture.
Addison-Wesley, Boston, USA, 2002.

[6] Steel, C., Nagappan, R., and Lai, R. Core Security Patterns: Best
Practices and Strategies for J2EE, Web Services, and Identity
Management. Prentice Hall PTR, 2005.

[7] Schumacher M, Fernandez-Buglioni E, Hybertson D,
Buschmann F, Sommerlad P. Security Patterns: Integrating
security and systems engineering. Wiley: Hoboken, NJ, USA,
2006.

[8] Yoder J, Barcalow J. Architectural patterns for enabling appli-
cation security. In proceeding of the 4th Conference on Patterns
Language of Programming (PLoP’97), 1997.

[9] Erl T. SOA design patterns. Prentice Hall: Upper Saddle River,
NJ, USA, 2009.

[10] Delessy N, Fernandez EB, Larrondo-Petrie MM, Wu J. Pat-
terns for access control in distributed systems. Proceedings
of the 14th Conference on Pattern Languages of Programs
(PLoP2007), Monticello, IL, USA, ACM, 2007; 5–8.

[11] Delessy-Gassant N, Fernandez EB, Rajput S, Larrondo-Petrie
MM. Patterns for application firewalls. Proceedings of the Pat-
tern Languages of Programs Conference (PLoP2004), 2004; 8–
12.

[12] Ajaj O, Fernandez EB. A pattern for the WS-Policy standard.
Proceedings of the 8th Latin American Conference on Pattern
Languages of Programs (SugarLoafPLoP 2010), 2010; 23–26.

[13] Ajaj O, Fernandez EB. A pattern for the WS-Trust standard
for web services. Proceedings of the 1st Asian Conference on
Pattern Languages of Programs, ACM, 2010; 1.

[14] Muñoz-Arteaga J, Fernandez EB, Caudel-García H. Misuse
pattern: spoofing web services. Proceedings of the 2nd Asian
Conference on Pattern Languages of Programs, ACM, 2011; 11.

[15] Ajaj O, Fernandez EB. A pattern for the WS-
SecureConversation standard for web services. Proceedings of
the Pattern Languages of Programs, 2012; 11.

[16] Uzunov AV, Fernandez EB, Falkner K. ASE: A comprehen-
sive pattern-driven security methodology for distributed sys-
tems. Computer Standards & Interfaces 2015; 41:112–137.

[17] Fernandez EB, Monge R, Hashizume K. Building a security
reference architecture for cloud systems. Requirements Engi-
neering 2015; :1–25.

[18] Ajaj O, Fernandez EB. A pattern for the WS-Federation stan-
dard for web services. Proceedings of the Pattern Languages of
Programs, 2013; 16.

[19] Mike Dean and Guus Schreiber. Web Ontology Language.
http://www.w3.org/TR/owl-ref/, 2004.

[20] Lucio L, Zhang Q, Nguyen PH, Amrani M, Klein J,
Vangheluwe H, Le Traon Y. Advances in model-driven security.
Advances in Computers 2014; 93:103–152.

[21] Object Management Group. http://www.omg.org/ 1989.
[22] Cranefield S, Pan J. Bridging the gap between the model-driven

architecture and ontology engineering. International Journal of
Human-Computer Studies 2007; 65(7):595–609.

[23] Staab S, Walter T, Gröner G, Parreiras FS. Model driven engi-
neering with ontology technologies. Reasoning Web. Semantic
Technologies for Software Engineering. Springer, 2010; 62–98.

[24] Henderson-Sellers B. Bridging metamodels and ontologies in
software engineering. Journal of Systems and Software 2011;
84(2):301–313.

[25] Dermeval D, Vilela J, Bittencourt II, Castro J, Isotani S, Brito P,
Silva A. Applications of ontologies in requirements engineering:
a systematic review of the literature. Requirements Engineering
2015; :1–33.

[26] Jürjens J. UMLsec: Extending UML for secure systems de-
velopment. ń UMLż 2002ŮThe Unified Modeling Language.
Springer, 2002; 412–425.

[27] Lodderstedt T, Basin D, Doser J. Secureuml: A UML-
based modeling language for model-driven security. ń UMLż
2002ŮThe Unified Modeling Language. Springer, 2002; 426–
441.

[28] Alam M, Breu R, Hafner M. Model-driven security engineer-
ing for trust management in SECTET. Journal of Software 2007;
2(1):47–59.

[29] Sánchez Ó, Molina F, García-Molina J, Toval A. ModelSec:
a generative architecture for model-driven security. Journal of
Universal Computer Science 2009; 15(15):2957–2980.

[30] Deveci E, Caglayan MU. Model driven security framework for
software design and verification. Security and Communication
Networks 2015; .

[31] Kobashi T, Yoshizawa M, Washizaki H, Fukazawa Y, Yoshioka
N, Okubo T, Kaiya H. TESEM: A tool for verifying security
design pattern applications by model testing. Software Testing,
Verification and Validation (ICST), 2015 IEEE 8th International
Conference on, IEEE, 2015; 1–8.

[32] Katt B, Gander M, Breu R, Felderer M. Enhancing model
driven security through pattern refinement techniques. Formal
Methods for Components and Objects, Springer, 2013; 169–183.

[33] Delessy NA, Fernandez EB. A pattern-driven security pro-
cess for SOA applications. Availability, Reliability and Security,
2008. ARES 08. Third International Conference on, IEEE, 2008;
416–421.

[34] Kou S, Babar MA, Sangroya A. Modeling security for service
oriented applications. Proceedings of the Fourth European Con-
ference on Software Architecture: Companion Volume, ACM,
2010; 294–301.

[35] Alam M, Breu R, Breu M. Model driven security for web ser-
vices (MDS4WS). Multitopic Conference, 2004. Proceedings of
INMIC 2004. 8th International, IEEE, 2004; 498–505.

[36] Memon M, Menghwar GD, Depar MH, Jalbani AA, Mashwani
WM. Security modeling for service-oriented systems using se-
curity pattern refinement approach. Software & Systems Model-
ing 2014; 13(2):549–572.

26 Dwivedi et al. / Ontology-Driven Modeling Framework for SOA Security Patterns

[37] Basin D, Clavel M, Doser J, Egea M. Automated analysis of
security-design models. Information and Software Technology
2009; 51(5):815–831.

[38] Martin D, Burstein M, Hobbs J, Lassila O, McDermott D,
McIlraith S, Narayanan S, Paolucci M, Parsia B, Payne T, et al..
OWL-S: Semantic markup for web services. W3C member sub-
mission 2004; 22:2007–04.

[39] Kim A, Luo J, Kang M. Security ontology to facilitate web
service description and discovery. Journal on data semantics IX.
Springer, 2007; 167–195.

[40] Garcia DZG, De Toledo MBF. Ontology-based security poli-
cies for supporting the management of web service business pro-
cesses. Semantic Computing, 2008 IEEE International Confer-
ence on, IEEE, 2008; 331–338.

[41] D’Agostini S, Di Giacomo V, Pandolfo C, Presenza D. An on-
tology for run-time verification of security certificates for SOA.
Availability, Reliability and Security (ARES), 2012 Seventh In-
ternational Conference on, IEEE, 2012; 525–533.

[42] Yu B, Yang L, Wang Y, Zhang B, Cao Y, Ma L, Luo X. Rule-
based security capabilities matching for web services. Wireless
personal communications 2013; 73(4):1349–1367.

[43] Ben Brahim M, Chaari T, Ben Jemaa M, Jmaiel M. Semantic
matching of web services security policies. Risk and Security of
Internet and Systems (CRiSIS), 2012 7th International Confer-
ence on, IEEE, 2012; 1–8.

[44] Dietrich J, Elgar C. Towards a web of patterns. Web Seman-
tics: Science, Services and Agents on the World Wide Web 2007;
5(2):108–116.

[45] Boaro L, Glorio E, Pagliarecci F, Spalazzi L. Semantic model
checking security requirements for web services. High Perfor-
mance Computing and Simulation (HPCS), 2010 International
Conference on, IEEE, 2010; 283–290.

[46] Di Modica G, Tomarchio O. Matchmaking semantic security
policies in heterogeneous clouds. Future Generation Computer

Systems 2015; .
[47] Parreiras FS, Staab S. Using ontologies with UML class-based

modeling: The TwoUse approach. Data & Knowledge Engineer-
ing 2010; 69(11):1194–1207.

[48] Katasonov A. Ontology-driven software engineering: Beyond
model checking and transformations. International Journal of
Semantic Computing 2012; 6(02):205–242.

[49] Hästbacka D, Kuikka S. Semantics enhanced engineering and
model reasoning for control application development. Multime-
dia tools and applications 2013; 65(1):47–62.

[50] Elaasar M, Briand L, Labiche Y. Domain-specific model ver-
ification with QVT. Modelling Foundations and Applications.
Springer, 2011; 282–298.

[51] Tounsi I, Hadj Kacem M, Hadj Kacem A, Drira K. A
refinement-based approach for building valid SOA design pat-
terns. International Journal of Cloud Computing 2 2015;
4(1):78–104.

[52] Kim SK, Carrington D. A formalism to describe design pat-
terns based on role concepts. Formal aspects of computing 2009;
21(5):397–420.

[53] Brown KP, Capretz MA. ODEP-DPS: Ontology-driven engi-
neering process for the collaborative development of semantic
data providing services. Information and Software Technology
2013; 55(9):1563–1579.

[54] OASIS. Reference ontology for semantic service oriented
architectures version 1.0. http://docs.oasis-open.org/semantic-
ex/ro-soa/v1.0/pr01/see-rosoa-v1.0-pr01.html November 2008.

[55] Clark & Parsia L. Pellet. http://semanticweb.org/wiki/Pellet
August 2011.

[56] Baader F. The description logic handbook: theory, implemen-
tation, and applications. Cambridge university press, 2003.

[57] Hafner M, Breu R. Security engineering for service-oriented
architectures. Springer Science & Business Media, 2008.

