
Semantic Web 0 (0) 1 1
IOS Press

REHABROBO-QUERY: Answering Natural
Language Queries about Rehabilitation
Robotics Ontology on the Cloud
Zeynep Dogmus and Esra Erdem and Volkan Patoglu
Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
E-mail: {zeynepdogmus,esraerdem,vpatoglu}@sabanciuniv.edu

Abstract We introduce a novel method to answer natural language queries about rehabilitation robotics, over the formal ontol-
ogy REHABROBO-ONTO. For that, (i) we design and develop a novel controlled natural language for rehabilitation robotics,
called REHABROBO-CNL; (ii) we introduce translations of queries in REHABROBO-CNL into SPARQL queries, utilizing a
novel concept of query description trees and description logics concepts; (iii) we use an automated reasoner to find answers to
SPARQL queries. To facilitate the use of our method by experts, we develop an intelligent, interactive query answering system,
called REHABROBO-QUERY, using Semantic Web technologies, and make it available on the cloud via Amazon web services.
REHABROBO-QUERY guides the users to express their queries in natural language and displays the answers to queries in a read-
able format, possibly with links to detailed information. Easy access to information on REHABROBO-ONTO through complex
queries in natural language may help engineers inspire new rehabilitation robot designs, while also guiding practitioners to make
more informed decisions on technology based rehabilitation.

Keywords: Ontology systems, query answering, rehabilitation robotics, intelligent user-interfaces, controlled natural languages

1. Introduction

We have earlier designed and developed the first for-
mal rehabilitation robotics ontology, called REHABROBO-
ONTO, in OWL (Web Ontology Language) [1,19], and
made it available on the cloud via Amazon Web Ser-
vices [8,9,11] (in particular, Amazon Elastic Com-
pute Cloud)1 so that every rehabilitation robotics re-
searcher can easily add information about his/her
robot to it, and modify this information. To facili-
tate such modifications of the rehabilitation robotics
ontology REHABROBO-ONTO, we have also devel-
oped a Web-based software (called REHABROBO-
QUERY)2 with an intelligent user-interface. In this
way, experts do not need to know the underlying
logic-based representation languages of ontologies,
like OWL, or Semantic Web technologies, for infor-

1http://aws.amazon.com/ec2/
2http://hmi.sabanciuniv.edu/?page_id=781

mation entry and modification. REHABROBO-QUERY
also utilizes Amazon Web Services for cloud comput-
ing. For further information about the design, devel-
opment and maintenance of REHABROBO-ONTO, and
how REHABROBO-QUERY facilitates modification of
REHABROBO-ONTO, we refer the reader to our earlier
article [11].

This article is concerned about reasoning about re-
habilitation robotics over REHABROBO-ONTO. Note
that a structured representation of information about
rehabilitation robotics as the ontology REHABROBO-
ONTO allows rehabilitation robotics researchers to
learn various properties of the existing robots and ac-
cess to the related publications to further improve the
state-of-the-art. Physical medicine experts also can
find information about rehabilitation robots and related
publications to better identify the right robot for a par-
ticular therapy or patient population. Such requested
information can be obtained from REHABROBO-
ONTO by expressing the requested information as a

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

formal query in a query language, such as SPARQL [28],
and then by computing answers to these queries by
using a state-of-the-art automated reasoner, such as
PELLET [29]. However, expressing the requested in-
formation as a formal query by means of formulas is
challenging for many users, including robot design-
ers and physical medicine experts. For that reason, we
particularly focus on the process of query answering
over REHABROBO-ONTO, and making it easier for the
users to express their queries in a natural language and
to obtain answers to their queries automatically.

Towards these goals, the main contributions of this
article can be summarized as follows. For express-
ing queries about rehabilitation robotics, we design
and develop a novel controlled natural language for
rehabilitation robots, called REHABROBO-CNL. For
automatically computing answers to natural language
queries, we introduce an algorithm that transforms nat-
ural language queries in REHABROBO-CNL into for-
mal queries in SPARQL. This transformation utilizes
two intermediate representations: a novel tree struc-
ture, called a Query Description Tree (QDT), and De-
scription Logics (DL) concepts. Once the natural lan-
guage query is transformed into a formal query, PEL-
LET is used to find relevant answers to the query.
The software system REHABROBO-QUERY is ex-
tended with an interactive, intelligent user interface to
guide the users to enter natural language queries in
REHABROBO-CNL about the existing robots, and to
present the answers in an understandable form, so that
the users do not have to know about the logical for-
malism of the ontology or the formalism to represent
queries, or the use of the technologies for computing
answers to their questions about rehabilitation robots.

The ontology system consisting of REHABROBO-
ONTO and REHABROBO-QUERY is of great value to
robot designers as well as physical therapists and med-
ical doctors. On the one hand, robot designers can ben-
efit from the system, for instance, to identify robotic
devices targeting similar therapeutic exercises or to de-
termine systems using a particular kind of actuation-
transmission pair to achieve a range of motion that
exceeds some threshold. Availability of such infor-
mation may help inspire new designs or may lead to
a better decision making process. The ontology can
also be utilized to group similar robots by quantifiable
characteristics and to establish benchmarks for system
comparisons. Overall, an ontology designed to specif-
ically meet the expectations of the overall rehabilita-
tion robotics effort has the potential to become an in-
dispensable tool that helps in the development, testing,

and certification of rehabilitation robots. On the other
hand, physical therapists and medical doctors can uti-
lize the ontology to compare rehabilitation robots and
to identify the ones that serve best to cover their needs,
or to evaluate the effects of various devices for tar-
geted joint exercises on patients with specific disor-
ders. This further paves the way for translational phys-
ical medicine (from bench-to-bed and back) and per-
sonalized physical medicine.

The rest of the article is organized as follows. We
present the controlled natural language REHABROBO-
CNL for expressing queries about rehabilitation robotics
(Section 3), and discuss the extension of REHABROBO-
QUERY to support querying in REHABROBO-CNL
via an interactive, intelligent user-interface (Section 4).
We present our transformation of a REHABROBO-
CNL query into a SPARQL query (Section 5) whose
answer can be computed using PELLET (Section 6).
After we summarize the related work about software
systems that support natural language queries over on-
tologies (Section 7), we conclude with a summary of
our contributions (Section 8).

This article extends our earlier paper [10], presented
at the International Conference on Knowledge Engi-
neering and Ontology Development (KEOD 2014),
by describing more details about the query answering
system integrated in REHABROBO-QUERY, the query
language REHABROBO-CNL, and the transformation
algorithm.

2. A Brief Review of REHABROBO-ONTO

REHABROBO-ONTO is the first formal rehabilita-
tion robotics ontology that represents knowledge about
rehabilitation robotics in a structured form, and allows
automated reasoning about this knowledge. It is de-
veloped in line with the efforts of European Network
on Robotics for Neurorehabilitation3, for standardiz-
ing terminology as well as assessment measures for re-
habilitation robots.

REHABROBO-ONTO has been designed by consid-
ering suggestions of various rehabilitation robotics re-
searchers and physical medicine experts, by first iden-
tifying the purpose, and then the basic concepts and
their thematic classes, and their relationships. The
main classes and their relationships are illustrated in
Figure 1.

3http://www.rehabilitationrobotics.eu/

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 3

RehabRobots

JointMovements

targets
1..*

has_Name: String
has_Active_DOF: Integer
has_Passive_DOF: Integer
has_Control_Modes: {ADL, BCI, EMG, active, assistive,
bilateral, multilateral, passive, resistive}
has_Disorder_Level: {mild, moderate, severe}
has_Functionality: {clinic, home}
has_Interaction_Type: {endE�ector, exoskeleton,
mixed, suspension}
has_Intervention_Time: {acute, chronic, subacute}
has_Kinematic_Type: {fully-actuated, under-actuated,
redundant}
has_Mechanism_Type: {serial, parallel, hybrid, mobile}
has_Motion_Capability: {grounded, mobile}
has_Targeted_Population: {adult, pediatric}
has_Targeted_Disorder: {stroke, spineCordInjury}

has_ROM_Type: {active, passive}
has_ROM_Max: �oat
has_ROM_Min: �oat
has_Actuation: {electrical, electro-rheological, hydrolic,
pneumatic, series elastic, variable impedance, other}
has_Transmission: {belt drive, cable drive, capstan drive,
direct drive, gear train, harmonic drive, other}
has_Backdrivability: {backdrivable, non-backdrivable}
has_Backdrivability_Type: {active, passive}

1..*

References

has_Title: String
has_Authors: String
has_Clinical_Study: Boolean
has_Year: Integer
has_Published_At: String
has_URL: String

Owners

has_User_Name: String
has_Mail: String
has_Institution: String

Assessments

hasReference
1..* 1..*

1

1..*

ownedBy

hasAssessment

1..*

1..*

Figure 1. REHABROBO-ONTO with main classes [11, Fig. 1].

REHABROBO-ONTO has five main concepts (or the-
matic classes):

– RehabRobots (representing rehabilitation robots
and their properties),

– JointMovements (representing targeted joint
movements and their properties),

– Owners (representing robot designers who add/mo-
dify information in the ontology about their own
robots),

– References (representing publications related to
rehabilitation robots),

– Assessments (representing assessment measures
for rehabilitation robots).

The main classes RehabRobots, JointMovements
and Assessments have subclasses. Currently there are
147 classes represented in REHABROBO-ONTO.

The main concepts are related to each other by the
following relations:

– a rehabilitation robot targets joint movements,
– a rehabilitation robot is ownedBy a robot designer,

– a rehabilitation robot hasReferences to some

publications,

– a rehabilitation robot hasAssessment with re-

spect to some evaluation measure.

REHABROBO-ONTO is developed using the ontol-

ogy editor PROTÉGÉ [18], in the ontology language

OWL 2 DL, with OWL/XML syntax. It is open-source

and available on the cloud via Amazon Web Services.

Its maintenance (i.e., adding, deleting, modifying in-

formation about rehabilitation robots) can be done as

part of the ontology system REHABROBO-QUERY.

For further information about the design and devel-

opment of REHABROBO-ONTO, and how REHABROBO-

QUERY facilitates maintenance of REHABROBO-ONTO

on the cloud, we refer the reader to our earlier arti-

cle [11].

4 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

3. REHABROBO-CNL: A Controlled Natural
Language for Queries about Rehabilitation
Robotics

Reasoning over REHABROBO-ONTO can be done
by means of answering questions posed by the user in
a natural language. However, natural languages may
have ambiguities in their vocabularies and grammars.
To overcome ambiguities of a natural language, a sub-
set of it with a restricted vocabulary and grammar can
be considered for specific domains; such languages are
called Controlled Natural Languages (CNLs) [22]. Es-
sentially, with its restricted vocabulary and grammar,
a CNL is a formal language. Therefore, it is easier to
convert a CNL (compared to a more general natural
language) to a logic-based formalism. In that sense, a
CNL facilitates the use of automated reasoners to find
answers to queries expressed in a CNL. Due to these
reasons, first we have identified the sorts of queries
about rehabilitation robots, then we have designed and
developed a new CNL, called REHABROBO-CNL, to
express these queries in natural language.

3.1. Sorts of queries supported by
REHABROBO-CNL

The variety of queries is important since the users
may include not only rehabilitation robot designers
and developers, but also physical therapists and med-
ical doctors. Also, complex queries that not only re-
quire intelligent extraction of different sorts of knowl-
edge, but their integration via conjunctions, disjunc-
tions, negations, nested relative clauses, aggregates,
and quantifications are inevitable in rehabilitation
robotics, since robots, targeted movements, evaluation
metrics, etc. have many features that are of interest to
users. We have designed REHABROBO-CNL consid-
ering these aspects.

We have identified different sorts of complex queries
useful from the perspectives of rehabilitation robotics
and physical medicine. Some examples of these queries
are presented in the following, with respect to their
topics.

Queries about mechanical properties of rehabilitation
robots These are queries to extract information about
the rehabilitation robots whose information is avail-
able in REHABROBO-ONTO. Here are some examples:

– What are the robots that target shoulder move-
ments and that have at least 210◦ RoM for the
flexion/extension movements of the shoulder?

– What are the robots that target wrist movements
and that have at least 2 active degrees of freedom?

– What are the shoulder robots that target flex-
ion/extension movements and that do not target
elevation/depression movements?

– What are the robots with active degree of freedom
≥ ‘3’ and that target all pelvic girdle movements
with backdrivability type = ‘passive’?

– What are the ankle robots that target movements
with electrical actuation and with cable drive
transmission?

Queries about joint movements targeted by rehabili-
tation robots These are queries to extract informa-
tion about joint movements targeted by rehabilitation
robots in REHABROBO-ONTO. Here are some exam-
ples:

– What are the movements that are targeted by
some robots with (some intervention time or with
all targeted disorders)?

– What are the movements that are targeted by the
robot ‘AssistOn-Finger’ and with minimum range
of motion ≥ ‘20’?

– What are the movements that are not targeted by
any robots with kinematic type = ‘redundant’ and
with mechanism type 6= ‘parallel’?

According to REHABROBO-ONTO, for instance,
some part of the answer to the first question is as fol-
lows:

Index Finger DIPFlexion/Extension
Shoulder Scapular Elevation/Depression
Wrist Flexion/Extension

Queries about the evaluation metrics for rehabilitation
robots These are queries to extract information about
metrics used to evaluate rehabilitation robots. Here are
some examples:

– What are the effort metrics that are evaluated by
some robots with active degree of freedom ≥ 2?

– What are the movement quality metrics that are
evaluated by all robots with motion capability =
‘grounded’?

– What are the kinematic aspect metrics that are
evaluated by some robots that target all elbow
movements?

– What are the muscle strength metrics that are
evaluated by robots that target all wrist move-
ments with transmission = ‘direct drive’?

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 5

– What are the psychomotoric aspect metrics that
are evaluated by all robots with kinematic type =
’redundant’ and that target all ankle movements
with minimum range of motion ≥ ‘30’?

According to REHABROBO-ONTO, for instance,
some part of the answer to the first question is as fol-
lows:

Time To Initiate Movement
Amount Of Compensation
Biomechanical Work Energy Power

Some part of the answer to the second question is as
follows:

Visuomotor Coordination
Combined Task Coordination
Single Joint Coordination

Other queries These are queries to extract infor-
mation about publications about rehabilitation robots,
owners/institutes/laboratories of the robots. Here are
some examples:

– What are the publications with clinical study and
that do not reference any robots with active de-
gree of freedom ≥ 1?

– What are the publications without clinical study
or that reference some robots that do not evaluate
any movement quality metrics?

– What are the publications with place of publica-
tion ‘ICORR’ and that reference some robots that
are owned/maintained by some users with institu-
tion ‘Sabanci University’?

– What are the users that own/maintain some robots
that target all ankle movements?

3.2. Grammar of REHABROBO-CNL

The grammar of REHABROBO-CNL is shown in
Table 1. To eliminate the ambiguities in nesting of con-
junctions and disjunctions, REHABROBO-CNL pro-
vides two ways of constructing a query: A query in
REHABROBO-CNL should either be in Conjunctive
Normal Form (CNF), or in Disjunctive Normal Form
(DNF). In other words, REHABROBO-CNL supports
conjunctions of simple disjunctions, and disjunctions
of simple conjunctions. No further nesting of con-
junctions (resp., disjunctions) in a simple disjunction
(resp., conjunction) is allowed. A query can contain
any number of conjunctions and disjunctions on the
condition that they match to the rule above. An exam-
ple of a query in CNF is as follows.

What are the robots with mechanism type=’hybrid’
and (with motion capability =’grounded’ or with
functionality=’clinic’) and that target some wrist
movements?

The following query is in DNF:

What are the robots with no targeted disorder or
(with active degree of freedom>1 and with con-
trol modes=’{active,assistive}’ and with no disor-
der level)?

The functions (in italic font) in the grammar ex-
tract relevant information from REHABROBO-ONTO.
These ontology functions are described in Table 2. The
information extracted with the ontology functions are
coupled by their relevance. For instance, only the verb
“reference” can appear after the type Publications. By
such a matching of types with verbs, it is possible to
prevent semantically wrong queries like “What are the
publications that target some shoulder movements?”.
All of the matches between types and verbs in expres-
sions of the form “Type() that Verb()” are shown in
Table 3. Note that these matchings essentially come
from the structure of REHABROBO-ONTO, e.g., con-
cept names and relation names.

Similarly, it is necessary to match verbs with types
in expressions of the form “Verb() (some | all | any∗

| the) Type()”. Table 4 lists the available types that
can occur after a verb in the query (e.g., in a RELA-
TIVECLAUSE), and demonstrates what kinds of types
are extracted from the ontology according to the query.
If a quantifier such as “some” is used in a relative
clause, then the types which have some subclasses are
extracted. Here is an example query:

What are the robots that evaluate some wrist move-
ments?

Since wrist movements class have subclasses (e.g.,
wrist flexion/extension, wrist radial deviation/ulnar de-
viation) in REHABROBO-ONTO, this query will re-
trieve all robots that target at least one of these sub-
classes. If “the” keyword is used after the verb in a
query, then the leaf classes are extracted to select one
specific type. Here is an example query:

What are the robots that target the wrist radial de-
viation/ulnar deviation?

Wrist radial deviation/ulnar deviation is a leaf class. It
is also a subclass of wrist movements. This query will
retrieve the robots that target this specific wrist move-
ment. If there is a robot that targets some other wrist

6 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

Table 1
The Grammar of REHABROBO-CNL

QUERY→ WHATQUERY QUESTIONMARK

WHATQUERY→ What are the Type() GENERALRELATION

GENERALRELATION→ SIMPLERELATION NESTEDRELATION∗

SIMPLERELATION→ (that RELATIVECLAUSE)+
SIMPLERELATION→ that INSTANCERELATION

SIMPLERELATION→ WITHRELATION

NESTEDRELATION→ (and LP SIMPLEDISJUNCTION RP)∗

NESTEDRELATION→ (or LP SIMPLECONJUNCTION RP)∗

SIMPLEDISJUNCTION→ (SIMPLERELATION or)∗ SIMPLERELATION

SIMPLECONJUNCTION→ (SIMPLERELATION and)∗ SIMPLERELATION

RELATIVECLAUSE→ Verb() (some | all | the) Type()
RELATIVECLAUSE→ NEG Verb() any Type()

INSTANCERELATION→ NEG? Verb() the Type() Instance()
WITHRELATION→ with Noun() EQCHECK Value()+

WITHRELATION→ with QUANTIFIER Noun()
WITHRELATION→ (with | without) Noun()

EQCHECK→ = | ! = | ≤ | ≥
QUANTIFIER→ some | all | none
NEG→ Neg()
LP→ (
RP→)
QUESTIONMARK→ ?

Table 2
The Ontology Functions

Type() Returns the types that correspond to concept names. They are: Robots, movements, users, publica-
tions and metrics.

Instance() Returns robot names for robots and user names for users.
Verb() Returns the verbs that correspond to object properties between concepts. Returns both active and

passive forms of these verbs. Active forms of these verbs are: Target, evaluate, reference, own.
Noun() Returns the nouns that correspond to data properties. ex. targeted disorder, active degree of free-

dom.
Value() Returns the suitable values according to a given noun. Corresponds to the pre-defined ranges of

data properties.
Neg() Returns a suitable negation phrase. These phases are: do not, are not.

movements but wrist radial deviation/ulnar deviation,
then this robot will not be included in the answer to
this query.

In REHABROBO-CNL, the instances of the con-
cepts are represented by one of their distinctive proper-

ties. For robots, this distinctive property is its name; for
users, it is the user name. To illustrate, when the user
wants to query about AssistOn-Shoulder, s/he specifies
the instance using the name of the robot. For move-
ments and metrics, there is no such distinctive property

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 7

Table 3
Verbs that can occur after the nouns

Type() that Verb()
robots → target

robots → are owned/maintained
robots → evaluate

movements → are targeted by
users → own/maintain
publications → reference
effort metrics → are evaluated by
kinematic aspect metrics → are evaluated by
movement quality metrics → are evaluated by
muscle strength metrics → are evaluated by
psychomotoric aspect metrics → are evaluated by

Table 4
Types that can occur after the verbs

Verb() (some | all | any∗ | the) Type()
target (some | all | any) all movements except leaf classes
target the leaf classes of movements

evaluate (some | all | any) all metrics except leaf classes
evaluate the leaf classes of metrics

are targeted by (some | all | any) robots
are evaluated by (some | all | any) robots
reference (some | all | any) robots
own (some | all | any) robots
are owned by (some | all | any) users
∗ any is used after negative verbs.

Table 5
Instances that can occur after the types

Type() Instance()
robot → name of the robot
user → username of the user

because the concept names are sufficient to specify a
movement or metric. In fact, using RELATIVECLAUSE

is sufficient to query about them. To query about robots
or users, however, we use INSTANCERELATION to ex-
tract the instances. Table 5 demonstrates the relevant
properties of the instances that appear when a type is
selected.

In addition to types and verbs, types are matched
with the relevant nouns, as shown in Table 6. For
instance, control modes are matched with robots

whereas actuation is matched with movements. Note
that these matchings are due to properties of concepts
in REHABROBO-ONTO.

Further, the values for the nouns are extracted from
REHABROBO-ONTO to allow suitable entries from the
users. These values are listed in Table 7. The values
can be considered as ranges of the nouns, that the user
can choose from.

4. User-Interface of REHABROBO-QUERY for
Query Answering: Intelligent and Interactive

The user interface of REHABROBO-QUERY can
guide the users to add/modify information in REHABROBO-
ONTO. We have extended it further so that it can guide
the users to ask questions in REHABROBO-CNL, and

8 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

Table 7
Values that can occur after the nouns

Noun() ∗ Value()
active DoF∗∗ → any integer value entered by the user
actuation → electrical, electro-rheological, hydrolic, pneumatic, series elastic, variable

impedance, other
authors → one of the authors that are added to the ontology up to now
backdrivability → backdrivable, non-backdrivable
backdrivability type → active, passive
control modes → ADL, BCI, EMG, active, assistive, bilateral, multilateral, passive, resistive
disorder level → mild, moderate, severe
functionality → clinic,home
institution → one of the institutions that are added to the ontology up to now
interaction type → exoskeleton, mixed, suspension, end effector
intervention time → acute, chronic, subacute
kinematic type → hybrid, parallel, serial
motion capability → grounded, mobile
name → one of the robot names that are added to the ontology up to now
passive DoF → any integer value entered by the user
place of publication → one of the places of publication that are added to the ontology up to now
maximum RoM∗∗∗ → any float value entered by the user
minimum RoM → any float value entered by the user
RoM type → active, passive
targeted disorder → stroke, spine cord injury
targeted population → adult, pediatric
title → one of the publication titles that are added to the ontology up to now
transmission → belt drive, cable drive, capstan drive, direct drive, gear train, harmonic drive, other
url → one of the urls that are added to the ontology up to now
username → one of the usernames that are added to the ontology up to now
year → any year (integer value) entered by the user
∗ (EQCHECK|QUANTIFIER) ∗∗ degree of freedom ∗∗∗ range of motion

present answers to these queries in an understandable
form.

While the user constructs questions, REHABROBO-
QUERY’s user interface can prevent nonsensical queries.
For instance, shoulder elevation/depression is not a
wrist movement. The user interface takes into account
such information, and guides the user intelligently to
construct his/her queries so that queries like

What are the wrist robots that target shoulder ele-
vation/depression?

are not possible. In that sense, the user interface is in-
telligent.

REHABROBO-QUERY’s user interface is also inter-
active: it shows the possible choices (for instance, the
sort of movements targeted by a shoulder robot) and
allows auto-completion (for instance, to obtain the full
name of a robotics device). To be able to identify the
choices (e.g., parameters and their values) relevant to
the query, REHABROBO-QUERY’s user interface uti-
lizes automated reasoning methods online. Indeed, as
the user enters his/her query, in the background the
user interface considers the part of the query con-
structed so far and asks REHABROBO-QUERY’s onto-
logical reasoning module to compute all possible val-
ues of parameters. Once the reasoning module returns
these choices, the user interface presents them, e.g.,

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 9

1

2

3

4

5

6

Figure 2. Construction of a query with the guidance of the intelligent interactive user interface of REHABROBO-QUERY.

within a pull-down menu. Figure 2 shows the construc-
tion of the following query with the guidance of the
user interface:

What are the robots that target some wrist move-
ments with actuation=’series elastic’?

Figure 3. An answer for the query constructed in Figure 2, presented
to the user.

Furthermore, REHABROBO-QUERY provides auto-
completion to help users enter values for nouns that
correspond to data properties of type string. If the

user should choose a concept among a hierarchy, then
REHABROBO-QUERY displays an accordion view and
enables the user to click on the option s/he wants. In
addition, REHABROBO-QUERY allows multiple selec-
tion of values for relational properties. For functional
properties, user is able to select multiple items for in-
equality. User can choose a number of options among
“less than or equal”, “more than or equal”, “equal” and
“not equal” while entering values for a data property
of type integer or float.

Once the query is constructed, REHABROBO-QUERY
asks the reasoning module to compute answers, and
presents answers to queries concisely, while also in-
cluding links to detailed information in case the user
wants further information. The answer to the query
constructed in Figure 2 is shown to the user as in Fig-
ure 3.

Note that how the results of a query is displayed to
user depends on the sort of the query. For instance, if
the query is about robots, then the user sees the names
of the retrieved robots. If the query is about movements

10 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

Table 6
Nouns that can occur after the types

Type() with Noun()
robots → active degree of freedom
robots → control modes
robots → disorder level
robots → functionality
robots → interaction type
robots → intervention time
robots → kinematic type
robots → motion capability
robots → name
robots → passive degree of freedom
robots → targeted disorder
robots → targeted population

movements → actuation
movements → backdrivability
movements → backdrivability type
movements → maximum range of motion
movements → minimum range of motion
movements → range of motion type
movements → transmission

publications → authors
publications → clinical study
publications → place of publication
publications → title
publications → url
publications → year

users → institution
users → mail
users → username

or metrics, then the user sees the concept names in-
stead of the instance URIs which would make no sense
to the user.

5. Transforming a Query in REHABROBO-CNL to
a SPARQL Query

The process of answering a query in REHABROBO-
CNL, illustrated in Figure 4, starts with a transforma-
tion of the query into a SPARQL query. We propose a
transformation with the following steps.

Query in RehabRobo-CNL

SPARQL Query Answer to Query

Transforming CNL to SPARQL

Intelligent Interactive User Interface

User

Ontological Reasoner

RehabRobo-ONTO

Figure 4. An overview of query construction in REHABROBO–
QUERY.

1. We parse the query and form a query description
tree.

2. We traverse the tree and obtain a DL concept de-
scription.

3. We transform the DL concept into a SPARQL con-
cept.

4. We form a SPARQL query.

5.1. Query Description Trees (QDT)

We introduce a rooted, directed tree, called query
description tree (QDT), to parse the REHABROBO-
CNL query entered by the user. In this tree, there are
five types of nodes:

– root-node: Represents the sort of the query.
– that-node: Represents a relative clause beginning

with “that”.
– with-node: Represents a relative clause beginning

with “with”.
– and-node: Represents a conjunction.
– or-node: Represents a disjunction.

Every root/that/with-node characterizes a phrase
and a type/instance. An and/or-node cannot be a leaf.

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 11

root-node

that-node

with-node

“What are the robots”

“that target some shoulder movements”

“with actuation=’electrical’ ”

and-node

or-node

with-node

“with transmission=’cable drive’ ”

with-node

“with transmission=’direct drive’ ”

Figure 5. Tree representation of the sample query.

For each path from the root node to a leaf node, there
can be at most one and-node and one or-node. With-
nodes are leaves only. That-node has one child only.

Consider, for instance, the QDT in Figure 5 for the
query:

What are the robots that target some shoulder
movements with actuation=’electrical’ and (with
transmission = ’cable drive’ or with transmis-
sion=’direct drive’)?

This tree is constructed online while the user ex-
presses the query by the help of the user interface.
The root denotes the beginning of the query “What are
the robots...”. According to the root, the answer to the
query will contain robot names only. Since the query is
about robots, the type contained in the root is “robot”.

The relative clause about these robots is the child
of the root, and since this relative clause starts with
“that”, it is a that-node. The type contained in this node
is “shoulder movement”.

The query continues with a conjunction of relative
clauses, including a simple disjunction. Clauses joined
with a conjunction (resp., disjunction) are character-
ized by an and-node (resp., or-node) as their parent.
Since these relative clauses start with “with”, they are
with-nodes. They include values of properties instead
of types.

5.2. From QDT to a DL concept

The tree representing the query, in fact, represents a
concept. While creating a query, we define a new con-
cept and search for its instances. Retrieved instances
that fit our description are the answers to our query.

Algorithm 1: transform
Input : A tree T representing the concept that

the user described
Output: A DL concept description Q that

represents the concept in T
// n.class denote associated class of a node n
// n.children denote children of a node n
Q← /0;
n← first (root) node in T ;
if n is a root-node then

Q← Qun.class;
foreach child node c ∈ n.children do

Q← Qu trans f orm(c);

else if n is a that-node then
Q← Qu trans f ormT hatNode(n);

else if n is a with-node then
Q← Qu trans f ormWithNode(n);

else if n is an and-node OR n is an or-node then
tempQ← /0;
foreach child node c ∈ n.children do

if n is an and-node then
tempQ← tempQu trans f orm(c);

else
tempQ← tempQt trans f orm(c);

Q← Qu (tempQ);
return Q

By a depth-first traversal of a QDT, we represent the
corresponding concept in Description Logics (DL) as

12 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

Algorithm 2: transformThatNode
Input : A that-node n
Output: A DL concept description Q that

represents the concept in n
// n.class denote associated class of a node n
// n.verb denote associated verb of a node n
// n.negative denote the negativity of a node n
// n.quanti f ier denote the quantifier of a node n
// n.instance denote the instance of a node n, if
exists
// n.child denote child of a node n
// n.class.identi f ierNoun denote the noun that
identifies n.class
Q← /0;
childQ← /0;
if n.child is not empty then

childQ← trans f orm(n.child);

else if n includes an instance then
childQ←
∃(n.class.identi f ierNoun).{n.instance};

if n.quanti f ier = ALL then
if n.verb is passive then

Q← Qu∀(n.verb)−.((n.class)u childQ);

else
Q← Qu∀(n.verb).((n.class)u childQ);

else
// If there is no quantifier or the quantifier is
SOME
if n.verb is passive then

Q← Qu∃(n.verb)−.((n.class)u childQ);

else
Q← Qu∃(n.verb).((n.class)u childQ);

if n.negative = True then
Q←¬Q;

return Q

presented in Algorithm 1. Algorithm 2 demonstrates
the transformation for a that-node and Algorithm 3
demonstrates the transformation for a with-node.

As the algorithm traverses a QDT, according to
the types of nodes, it generates parts of the DL con-
cept. For instance, let us explain Algorithm 1 by an
example. Suppose that the input is the tree in Fig-
ure 5. It starts from the root node and enters the first
if condition. Since the associated class of the node
is “robot”, our concept description starts with Robot.
Then, the algorithm calls trans f orm recursively for

Algorithm 3: transformWithNode
Input : A with-node n
Output: A DL concept description Q that

represents the concept in n
// n.noun denote associated noun of a node n
// n.values denote the list of values of a node n
// n.quanti f ier denote the quantifier of a node n
// n.aggregator denote the aggregator of a node n
// n.datatype denote datatype of the noun in a
node n
Q← /0;
if n.noun is functional then

if n.datatype = boolean then
Q← Qu∃(n.noun).{′n.values′0^^xsd :
boolean};

else
if n.aggregator =′≥′ or
n.aggregator =′≤′ then

Q←
Qu∃(n.noun).(n.aggregator)n.values0 ;

else if n.aggregator =′=′ then
Q← Qu∃(n.noun).{n.values0};

else if n.aggregator =′! =′ then
foreach value v ∈ n.values do

Q← Qu¬∃(n.noun).{v};

else
if n.quanti f ier = NO then

Q← Qu¬∃(n.noun).xsd : (n.datatype);

else if n.quanti f ier = ALL then
Q← Qu∀(n.noun).xsd : (n.datatype);

else if n.quanti f ier = SOME then
Q← Qu∃(n.noun).xsd : (n.datatype);

else
if n.aggregator =′=′ then

foreach value v ∈ n.values do
Q← Qu∃(n.noun).{v};

else if n.aggregator =′! =′ then
foreach value v ∈ n.values do

Q← Qu¬∃(n.noun).{v};

return Q

each child of the root node. In the first recursive
call, since the current node is a that-node, the al-
gorithm calls trans f ormT hatNode (Algorithm 2) and

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 13

passes that-node as an input. Since it has a child
node, the first condition of having children is satis-
fied. Next, the algorithm calls trans f orm for its child
node, and-node, whose children are conjoined after
each transformation. The first child of and-node is
transformed into an existential restriction by calling
trans f ormWithNode (Algorithm 3). The second child
of and-node contains a simple disjunction. The al-
gorithm transforms the information in the children of
or-node into existential restrictions and disjoins them.
Finally, the algorithm finishes recursions and returns to
that-node, covers the transformation of its children
with brackets, and transforms that-node into an ex-
istential restriction. The resulting DL concept that is
returned from the algorithm is as follows.

Robotu∃targets.(ShoulderMovementsu
(∃actuation.{electrical}u
(∃transmission.{cabledrive}t
∃transmission.{directdrive})))

5.3. From a DL concept to a SPARQL concept

To obtain a SPARQL concept from a DL concept,
we utilize some of the existing translations in related
publications, such as [27] and [14]. We also introduce
some novel transformations that are not covered by
other work. Some transformation examples are shown
in Table 8. The transformations without a citation are
novel.

Novel transformations include the transformation of
inverse roles. Consider the inverse role example in Ta-
ble 8. DL representation of this concept corresponds to
the following first-order formula:

∃x.targets(x,y)∧Robot(x).

In this formula, we state that “there exists a robot x that
targets a movement y”. Our transformation to SPARQL

includes two triples, having a common variable x. The
variable x should satisfy two conditions: it must be a
robot and it must target a movement y. According to
the semantics of AND operator, the result contains the
mappings of x and y to the nodes in the ontology, that
agree on the nodes that correspond to x. This corre-
sponds to the existential restriction in the first-order
formula, that should satisfy two conditions combined
with a conjunction. Therefore, evaluation of the DL
concept and the SPARQL concept will return the same
result.

Consider the complement example in Table 8. DL
representation of this concept contains a negated ex-
istential quantifier. SPARQL transformation contains a
triple covered with FILTER NOT EXISTS. The triple
searches for a mapping of variable x to a node, that
is related to another node AssistOn with an edge that
characterizes has_Name relation. This corresponds to
an existential restriction. However, we do not want
such mappings of x. Therefore, according to the se-
mantics of NOT EXISTS in a filter expression, FILTER
NOT EXISTS {C} is satisfied if the mapping of C is an
empty set. Therefore, there should not be any mapping
of the variables in C to a node in the ontology. The
result that is returned from our SPARQL concept will
not contain any node that satisfies the condition in the
triple, and that corresponds to a negated existential re-
striction: all x must not have name AssistOn. There-
fore, evaluation of the DL concept and the SPARQL
concept will return the same result.

Finally, consider the universal restriction example in
Table 8. DL description of this concept represents the
publications that reference all robots, and for that, it
contains a universal quantifier. To represent this con-
cept with SPARQL, we need to describe such publica-
tions by making sure that there is no robot in the on-
tology that is not referenced by that publication. To
describe such publications in SPARQL, we use an ex-
pression constructed with two FILTER NOT EXISTS.
Since a universal restriction such as ∀xA(x) corre-
sponds to a negated existential restriction ¬∃x¬A(x),
each FILTER NOT EXISTS operator in the SPARQL
query corresponds to a negation.

We first use two triples to represent a publication
that references a robot. Then, we refer to that publi-
cation with its variable, x. We also use these triples to
make sure that the query does not return an answer if
there is no robot in the ontology. In such a case, even
though the remaining FILTER expression is satisfied,
the set of mappings for x will be an empty set because
none of the publications in the ontology could refer-
ence a robot.

The first FILTER NOT EXISTS expression contains
another FILTER NOT EXISTS expression, which con-
tains a triple that represents the robots y2 referenced by
the previously described publication x. There is a triple
in the first expression as well, that states y2 is a robot.
Since both expressions contain the same variable, the
mappings should agree on the robot y2. In addition, the
set of mappings for y2 must be an empty set to satisfy
the inner FILTER NOT EXISTS expression. The outer
FILTER NOT EXISTS expression then contains the in-

14 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

Table 8
DL to SPARQL Transformation Examples

Constructor DL SPARQL

Concept [14] Robot ?x rdf:type ns:RehabRobots.

Role [27] targets ?x ns:targets ?y.

Complement ¬∃name.{AssistOn}
FILTER NOT EXISTS {
?x ns:has_Name ’AssistOn’.
}

Inverse Role ∃targets−.Robot ?x ns:targets ?y.
?x rdf:type ns:RehabRobots.

Existential Restriction [27] ∃targets.ShoulderMovements ?x ns:targets ?y.
?y rdf:type ns:ShoulderMovements.

hasValue Restriction [27] ∃name.{AssistOn} ?x ns:has_Name ’AssistOn’.

Universal Restriction ∀reference.Robot

?x rr:reference ?y.
?y rdf:type rr:RehabRobots.
FILTER NOT EXISTS {
FILTER NOT EXISTS {
?x rr:reference ?y2.}
?y2 rdf:type rr:RehabRobots.}

Intersection [14] Robotu ∃functionality.{clinic} ?x rdf:type ns:RehabRobots.
?x ns:has_Functionality ’clinic’.

Union [14]
∃functionality.{clinic}t
∃motionCapability.{grounded}

{?x ns:has_Functionality ’clinic’.}
UNION
{?x ns:has_Motion_Capability ’grounded’.}

stances of the robots (mappings for y2) that are not ref-
erenced by the publication x. The set of such instances
must be empty to satisfy this expression. Otherwise,
the query does not return an answer. Therefore, we rep-
resent a universal restriction as a negated existential
restriction in SPARQL using its operators.

Let us explain the transformation of a DL concept to
a SPARQL concept by explaining it over our DL con-
cept. The following DL concept is the concept descrip-
tion that we obtained from our example query.

Robotu∃targets.(ShoulderMovementsu
(∃actuation.{electrical}u
(∃transmission.{cabledrive}t
∃transmission.{directdrive})))

First, we transform the concept Robot. For that,
we assign a variable for robot, and specify its type,
RehabRobots:

?robot1 rdf:type rr:RehabRobots.

Second, we transform the existential restriction

∃targets.(ShoulderMovements).

The transformation of an existential restriction results
in two triples. The first triple is about the relation,
and the second triple is about the type of the sec-
ond variable in the relation. With the following triple,
we say that our robot targets a movement of type
ShoulderMovements.

?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:ShoulderMovements.

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 15

Then, the concept description contains a hasValue re-
striction, which is transformed into one triple. The
triple specifying that the targeted movement has an
electrical actuation is as follows.

?movement1 rr:has_Actuation ’electrical’.

Finally, we transform the simple disjunction that con-
tains two hasValue restrictions as follows. We combine
the triples with UNION, a keyword that SPARQL pro-
vides for disjunctions.

{?movement1 rr:has_Transmission ’cable drive’.}
UNION
{?movement1 rr:has_Transmission ’direct drive’.}

The resulting SPARQL concept:

?robot1 rdf:type rr:RehabRobots.
?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:ShoulderMovements.
?movement1 rr:has_Actuation ’electrical’.
{?movement1 rr:has_Transmission ’cable drive’.}
UNION
{?movement1 rr:has_Transmission ’direct drive’.}

Then, we can construct a SPARQL query as fol-
lows. We start with a PREFIX part and we declare the
namespace (the location of an ontology on the Web)
of REHABROBO-ONTO. Next, we continue with a SE-
LECT clause. The instances of type Robot, by them-
selves, are not meaningful to the users. Thus, we want
to display the names of the instances to the users. We
specify it with an additional triple in the beginning of
the WHERE clause, and continue the clause with the
transformed SPARQL concept:

PREFIX rdf: <http://www.w3.org/...>
PREFIX rr: <http://www.semanticweb.org/...>

SELECT DISTINCT ?name
WHERE {
?robot1 rr:has_Name ?name.
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:ShoulderMovements.
?movement1 rr:has_Actuation ’electrical’.
{?movement1 rr:has_Transmission

’cable drive’.}
UNION
{?movement1 rr:has_Transmission

’direct drive’.}
}

5.4. Some more examples

For a better understanding of the sequence of trans-
formations above, that takes a REHABROBO-CNL and
turns it into a SPARQL query, two more examples are
provided in Figures 6 and 7.

6. Answering Queries Using Pellet

We use the DL reasoner PELLET to find answers to
queries, through the Jena framework. Consider, for in-
stance, the query

What are the robots that target some wrist move-
ments with actuation=’series elastic’?

whose SPARQL representation is as follows.

SELECT DISTINCT ?name
WHERE {
?robot1 rr:has_Name ?name.
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:WristMovements.
?movement1 rr:has_Actuation

’series elastic’.
}

After loading REHABROBO-ONTO into PELLET, we
present this SPARQL query to PELLET, and get the fol-
lowing answer:

(?name = "AssistOn-Mobile")

Consider, for instance, another query:

What are the publications with place of publication
’ICORR’ and that reference some robots that are
owned/maintained by some users with institution
’Sabanci University’ ?

SPARQL representation of this query is as follows.

SELECT DISTINCT ?name
WHERE {
?publication1 rr:has_Title ?name.
?publication1 rdf:type rr:References.
?publication1 rr:has_PublishedAt ’ICORR’.
?robot1 rr:hasReference ?publication1.
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:ownedBy ?user1.
?user1 rdf:type rr:Owners.
?user1 rr:has_Institution

’Sabanci University’.
}

16 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

Q11. What are the robots with no targeted disorder or (with intervention time!=’chronic’
and with motion capability=’grounded’) or with no disorder level?

Q11 in Query Description Tree:

root-node “What are the robots”

or-node

and-nodewith-node

“with no targeted disorder”

with-node

“with no disorder level”

with-node

“with intervention time != ‘chronic’ ”

with-node

“with motion capability = ‘grounded’ ”

Q11 in Description Logics (DL):
Robotu (¬∃targetedDisorder.(xsd : string)t
(¬∃interventionTime.{chronic}u∃motionCapability.{grounded})t
¬∃disorderLevel.(xsd : string))

Q11 in SPARQL:
SELECT DISTINCT ?name
WHERE {
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Name ?name.
{FILTER NOT EXISTS {
?robot1 rr:has_Targeted_Disorder ?val1.

}} UNION
{FILTER NOT EXISTS {
?robot1 rr:has_Intervention_Time ’chronic’.

}
?robot1 rr:has_Motion_Capability ’grounded’.
} UNION
{FILTER NOT EXISTS {
?robot1 rr:has_Disorder_Level ?val2.

}}
}

Figure 6. Transformation of a query, Q11, from REHABROBO-CNL to a SPARQL.

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 17

Q12. What are the robots with interaction type = ’exoskeleton’ and that target some finger
movements (with actuation = ’electrical’ or with actuation = ’hydrolic’ or with actuation = ’series
elastic’) ?

Q12 in Query Description Tree:

root-node “What are the robots”

and-node

with-node

“with interaction type = ‘exoskeleton’ ”

that-node

or-node

with-node

“that target some
�nger movements”

“with actuation = ‘hydrolic’ ”

with-node

“with actuation = ‘electrical’ ”

with-node

“with actuation = ‘series elastic’ ”

Q12 in Description Logics (DL):
Robotu∃interactionType.{exoskeleton}u
∃target.(FingerMovementu (∃actuation.{electrical} t

∃actuation.{hydrolic} t
∃actuation.{series elastic}))

Q12 in SPARQL:

SELECT DISTINCT ?name
WHERE {

?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Name ?name.
?robot1 rr:has_Interaction_Type ’exoskeleton’.
?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:FingerMovements.
{ ?movement1 rr:has_Actuation ’electrical’. } UNION
{ ?movement1 rr:has_Actuation ’hydrolic’. } UNION
{ ?movement1 rr:has_Actuation ’series elastic’. }

}

Figure 7. Transformation of a query, Q11, from REHABROBO-CNL to a SPARQL.

18 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

We get the following answers from PELLET to this
query:

(?name = "Brain Computer Interface
based Robotic Rehabilitation with
Online Modification of Task Speed")

(?name = "Passive Velocity Field
Control of a Forearm-Wrist
Rehabilitation Robot")

(?name = "Design of a reconfigurable
ankle rehabilitation robot and its
use for the estimation of the ankle
impedance")

7. Related Work

The most related work involves ontology systems
and tools that support natural language queries over
ontologies.

Development of natural language interfaces that
provide query answering over ontologies has been
subject of research for many years. For this reason,
many systems [2,3,4,16,20,21,23,25,30,32,33] have
been developed that propose various approaches over
some common challenges, such as processing of the
natural language input (balancing ambiguity and ex-
pressiveness) and support for broad or narrow domains
(portability).

The most recently developed systems include BIOQUERY-
ASP [12], which is a software system that answers
natural language queries over biomedical databases
and ontologies. It utilizes Answer Set Programming
(ASP) [24] to query such knowledge resources. It al-
lows the users to enter queries in a controlled natu-
ral language from its user interface, and then answers
the queries by transforming the query in a controlled
natural language into an ASP program. To enable in-
teroperability over multiple biomedical ontologies and
databases, it integrates ontologies via a rule layer in
ASP. To answer queries, it utilizes ASP solvers such
as CLASP [17] and CLASP-NK, and it also provides
explanations to the queries.

Ferrández et al. [15] introduce QACID, which cov-
ers a movie ontology. The idea is to train the system
using many queries and keep the resulting set of clus-
ters (mostly asked questions) in a database. Then, man-
ually, each query type is associated with a SPARQL

query. Finally, the queries are answered by a query en-
gine that is implemented in QACID and proposed as a
new entailment-based engine.

FREYA [6] is developed by the creators of and
as a development upon QUESTIO [30]. In order to
support natural language queries, it uses Stanford
Parser [7] to generate a parse tree. Then, using GATE
libraries [5], it tries to find some ontology concepts
that can be mapped to the query terms. Then, it gen-
erates a SPARQL query and executes the query using
the inference engine in BIGOWLIM, that supports
SPARQL, on the top of Sesame. It relies on clarification
dialogues with users in the cases of ambiguity or in
the cases where the system cannot find an answer to
a query. Over time, the system learns to ask the cor-
rect questions to the users by placing correct sugges-
tions on top of similar queries. The system is tested on
one dataset, and it is stated that FREYA failed to an-
swer some questions (e.g., queries including negation)
correctly. These questions could not be mapped to a
SPARQL query in spite of clarification dialogues and
learning mechanism.

Lopez et al. [26] introduce PowerAqua, which is
evolved from AquaLog [25]. It provides natural lan-
guage querying over multiple ontologies; thus, sup-
ports high scalability and portability. It uses GATE li-
braries and WordNet [13] to process natural language
queries. It transforms the queries to triples and answers
them with its own query engine. To limit the search
space, it uses filtering and ranking heuristics. Since it
does not contain any linguistic knowledge in the back-
ground, it has a limited linguistic coverage. It is good
at answering simple questions yet it fails on questions
that contain comparisons and quantifiers.

Valencia-García et al. [31] introduce OWLPath,
which gets user queries in a controlled natural lan-
guage, transforms it into a SPARQL query and executes
the query over an ontology via Jena framework and
using the DL reasoner PELLET. The statements in its
CNL start with “View any...” and follow English gram-
mar. However, they are not full and valid English sen-
tences. Although it is stated that OWLPath provides
a Web interface through AJAX, it is not available on-
line. For each condition in the query, OWLPath adds
a FILTER statement in the SPARQL query. Therefore,
the transformation of the query into SPARQL is not,
in fact, a transformation to triples but a set of FIL-
TER statements. Evaluations are done on ontologies in
OWL DL.

8. Conclusion

In this article, we have introduced methods for rep-
resenting queries about rehabilitation robotics in a con-

Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots 19

trolled natural language, transforming them into for-
mal queries, and computing answers to them using
automated reasoners over the first formal rehabilita-
tion robotics ontology REHABROBO-ONTO. We have
also introduced an interactive intelligent user-interface
as part of the software system REHABROBO-QUERY,
that guides the users during this whole process in such
a way that the users do not have to know about the un-
derlying logical formalism of the ontology or the for-
malism to represent queries;, and they do not have to
know about the use of the technologies for computing
answers to their questions.

By means of answering sophisticated queries over
REHABROBO-ONTO, right rehabilitation robots for a
particular patient or a physical therapy can be found or
designed; this further paves the way for translational
physical medicine (from bench-to-bed and back) and
personalized physical medicine. Also, REHABROBO-
QUERY aids exchange of information across rehabil-
itation robots researchers over the world, and thus
to improve the state-of-the-art; it allows to identify
“gaps” in functionality of rehabilitation robots, that
can further improve research efforts.

Having a structured formal representation of knowl-
edge about rehabilitation robotics as an ontology, al-
lows answering complex queries that requires inte-
gration with other knowledge resources (e.g., patient
databases, disease ontologies). Along this research di-
rection, integration of REHABROBO-ONTO with ex-
isting anatomy, disease and patient ontologies can be
achieved by providing a rule layer between these on-
tologies and REHABROBO-ONTO, for integration of
the related concepts. In addition, some extensions in
the grammar of REHABROBO-CNL, the algorithms
and the user interface of REHABROBO-QUERY are
needed to be able to answer complex queries about
therapies, diseases and anatomy. These studies con-
cerning interoperability of REHABROBO-ONTO is
part of our ongoing work.

Acknowledgment

We would like to thank Muhammed Kilinc and Sibel
A. Yildirim (Hacettepe University, School of Physi-
cal Therapy and Rehabilitation) for their feedbacks on
the sorts of queries from the perspectives of physi-
cal medicine, and Agis Papantoniou (Cognizone) for
his help with the design of REHABROBO-QUERY. We
would like to thank Ahmetcan Erdogan (Rehabilita-
tion Institute of Chicago), Mustafa Yalcin, Murat Isik
and Ata Otaran (Human-Machine Interaction Lab, Sa-

banci University), and Ezgi Demirel (Knowledge Rep-
resenattion and Reasoning Group, Sabanci University)
for their helps with testing REHABROBO-QUERY. We
also would like to thank members of European Net-
work on Robotics for NeuroRehabilitation for useful
discussions.

References

[1] G. Antoniou and F. V. Harmelen. Web ontology
language: Owl. In Handbook on Ontologies in In-
formation Systems, pages 67–92. Springer, 2003.

[2] A. D. L. Battista, N. Villanueva-Rosales,
M. Palenychka, and M. Dumontier. SMART:
A web-based, ontology-driven, semantic web
query answering application. In Semantic Web
Challenge, volume 295, 2007.

[3] A. Bernstein and E. Kaufmann. GINO - a guided
input natural language ontology editor. In Pro-
ceedings of the 5th international conference on
The Semantic Web, pages 144–157, 2006.

[4] P. Cimiano, P. Haase, J. Heizmann, M. Mantel,
and R. Studer. Towards portable natural language
interfaces to knowledge bases - the case of the
ORAKEL system. Data Knowl. Eng., 65(2):325–
354, 2008.

[5] H. Cunningham, D. Maynard, K. Bontcheva,
V. Tablan, N. Aswani, I. Roberts, G. Gorrell,
A. Funk, A. Roberts, D. Damljanovic, T. Heitz,
M. A. Greenwood, H. Saggion, J. Petrak, Y. Li,
and W. Peters. Text Processing with GATE (Ver-
sion 6). 2011.

[6] D. Damljanovic, M. Agatonovic, and H. Cunning-
ham. FREyA: an interactive way of querying
linked data using natural language. In Proceed-
ings of the 8th international conference on The
Semantic Web, ESWC’11, pages 125–138, 2012.

[7] M.-C. de Marneffe, B. MacCartney, and C. D. Man-
ning. Generating typed dependency parses from
phrase structure trees. In LREC, 2006.

[8] Z. Dogmus, G. Gezici, V. Patoglu, and E. Erdem.
Developing and maintaining an ontology for re-
habilitation robotics. In Proc. of KEOD, pages
389–395, 2012.

[9] Z. Dogmus, A. Papantoniou, M. Kilinc, S. A.
Yildirim, E. Erdem, and V. Patoglu. Rehabilita-
tion robotics ontology on the cloud. In Proc. of
ICORR, 2013.

[10] Z. Dogmus, V. Patoglu, and E. Erdem. An-
swering natural language queries about rehabili-
tation robotics ontology on the cloud. In Proc. of
KEOD, pages 75–83, 2014. .

20 Z. Dogmus et al. / REHABROBO-QUERY: Answering Queries about Rehabilitation Robots

[11] Z. Dogmus, E. Erdem, and V. Patoglu.
Rehabrobo-onto: Design, development and main-
tenance of a rehabilitation robotics ontology on
the cloud. Robotics and Computer-Integrated
Manufacturing, 33:100–109, 2015.

[12] E. Erdem, H. Erdogan, and U. Oztok.
BIOQUERY-ASP: Querying biomedical ontolo-
gies using answer set programming. In Proc. of
RuleML2011@BRF Challenge, 2011.

[13] C. Fellbaum. WordNet: An Electronic Lexical
Database. Language, Speech and Communica-
tion. Mit Press, 1998.

[14] D. Y. S. Fernandes. Using Semantics to Enhance
Query Reformulation in Dynamic Distributed En-
vironments. PhD thesis, Federal University of
Pernambuco, 2009.

[15] O. Ferrández, R. Izquierdo, S. Ferrández, and J. L.
Vicedo. Addressing ontology-based question an-
swering with collections of user queries. Infor-
mation Processing and Management, 45(2):175 –
188, 2009.

[16] A. Frank, H.-U. Krieger, F. Xu, H. Uszkoreit,
B. Crysmann, B. Jörg, and U. Schäfer. Question
answering from structured knowledge sources.
Journal of Applied Logic, 5(1):20 – 48, 2007.

[17] M. Gebser, B. Kaufmann, A. Neumann, and
T. Schaub. clasp: A conflict-driven answer set
solver. In Logic Programming and Nonmonotonic
Reasoning, pages 260–265. Springer, 2007.

[18] J. H. Gennari, M. A. Musen, R. W. Fergerson,
W. E. Grosso, M. Crubézy, H. Eriksson, N. F.
Noy, and S. W. Tu. The evolution of Protégé: an
environment for knowledge-based systems devel-
opment. Int. J. Hum.-Comput. Stud., 58(1):89–
123, 2003.

[19] I. Horrocks, P. F. Patel-Schneider, and F. V.
Harmelen. From shiq and rdf to owl: The mak-
ing of a web ontology language. Journal of Web
Semantics, 1:2003, 2003.

[20] E. Kaufmann, A. Bernstein, and R. Zumstein.
Querix: A natural language interface to query on-
tologies based on clarification dialogs. In 5th
ISWC, pages 980–981. Springer, 2006.

[21] E. Kaufmann, A. Bernstein, and L. Fischer. NLP-
Reduce: A naive but domain-independent natural
language interface for querying ontologies. In 4th
European Semantic Web Conference, 2007.

[22] T. Kuhn. A survey and classification of controlled
natural languages. Comput. Linguist., 40(1):121–
170, 2014. .

[23] Y. Lei, V. Uren, and E. Motta. SemSearch: A
search engine for the semantic web. In Proc.
5th International Conference on Knowledge En-
gineering and Knowledge Management Manag-
ing Knowledge in a World of Networks, Lect.
Notes in Comp. Sci., pages 238–245. Springer-
Verlag, 2006.

[24] V. Lifschitz. What is answer set programming?.
In AAAI, volume 8, pages 1594–1597, 2008.

[25] V. Lopez, V. Uren, E. Motta, and M. Pasin. Aqua-
Log: An ontology-driven question answering sys-
tem for organizational semantic intranets. Web
Semantics: Science, Services and Agents on the
World Wide Web, 5(2):72–105, 2007.

[26] V. Lopez, M. Fernández, E. Motta, and N. Stieler.
PowerAqua: Supporting users in querying and ex-
ploring the semantic web. Semantic Web, 3(3):
249–265, 2012.

[27] G. Orsi. Context Based Querying of Dynamic and
Heterogeneous Information Sources. PhD thesis,
Politecnico di Milano, 2011.

[28] E. Prud’Hommeaux, A. Seaborne, et al. Sparql
query language for rdf. W3C recommendation,
15, 2008.

[29] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical owl-dl reasoner. Web
Semantics: Science, Services and Agents on the
World Wide Web, 5(2):51 – 53, 2007.

[30] V. Tablan, D. Damljanovic, and K. Bontcheva. A
natural language query interface to structured in-
formation. In Proceedings of the 5th European
semantic web conference on The semantic web:
research and applications, ESWC’08, pages 361–
375, 2008.

[31] R. Valencia-García, F. García-Sánchez,
D. Castellanos-Nieves, and J. Fernández-Breis.
OWLPath: An OWL ontology-guided query
editor. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, 41
(1):121–136, 2011.

[32] C. Wang, M. Xiong, Q. Zhou, and Y. Yu. PANTO:
A portable natural language interface to ontolo-
gies. In Proceedings of the 4th European confer-
ence on The Semantic Web: Research and Appli-
cations, ESWC ’07, pages 473–487, 2007.

[33] Q. Zhou, C. Wang, M. Xiong, H. Wang, and
Y. Yu. SPARK: adapting keyword query to se-
mantic search. In Proceedings of the 6th in-
ternational The semantic web and 2nd Asian
conference on Asian semantic web conference,
ISWC’07/ASWC’07, pages 694–707, 2007.

