
Semantic Web 0 (0) 1 1
IOS Press

Discovery of Emerging Design Patterns in
Ontologies Using Tree Mining
Agnieszka Lawrynowicz a,∗, Jedrzej Potoniec a,∗∗, Michal Robaczyk a, Tania Tudorache b

a Faculty of Computing, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
b Stanford Center for Biomedical Informatics Research, Stanford University, 1265 Welch Road, Stanford, CA
94305, USA

Abstract. The research goal of this work is to investigate modeling patterns that recur in ontologies. Such patterns may originate
from certain design solutions, and they may possibly indicate emerging ontology design patterns. We describe our tree-mining
method for identifying the emerging design patterns. The method works in two steps: (1) we transform the ontology axioms in a
tree shape in order to find axiom patterns; and then, (2) we use association analysis to mine co-occuring axiom patterns in order
to extract emerging design patterns. We conduct an experimental study on a set of 331 ontologies from the BioPortal repository.
We show that recurring axiom patterns appear across all individual ontologies, as well as across the whole set. In individual
ontologies, we find frequent and non-trivial patterns with and without variables. Some of the former patterns have more than
300,000 occurrences. The longest pattern without a variable discovered from the whole ontology set has size 12, and it appears
in 14 ontologies. To the best of our knowledge, this is the first method for automatic discovery of emerging design patterns in
ontologies. Finally, we demonstrate that we are able to automatically detect patterns, for which we have manually confirmed
that they are fragments of ontology design patterns described in the literature. Since our method is not specific to particular
ontologies, we conclude that we should be able to discover new, emerging design patterns for arbitrary ontology sets.

Keywords: ontology, ontology fragment, emerging design pattern, ODP, pattern mining, tree mining, ontology reuse, BioPortal

1. Design Patterns in Ontology Engineering

Today’s methodological guidelines in ontology en-
gineering (see, for instance, the NeON methodology
[9]) suggest to reuse existing ontologies, or their frag-
ments, while developing a new ontology. The solu-
tions to common modeling problems, such as, mod-
eling partonomies, are often documented as Ontology
Design Patterns (ODP) [29], and authors may choose
to reuse them in their ontologies.

ODPs have been proposed as a method analogous
to design patterns in software engineering [12,13,29]
that aim to provide good quality solutions to recur-
ring modeling problems. Blomqvist et al. [5] have
proposed various types of ODPs, e.g., content, struc-
tural or lexico–syntactic ones. Ontology patterns may

*Corresponding author. E-mail: alawrynowicz@cs.put.poznan.pl
**Corresponding author. E-mail: jpotoniec@cs.put.poznan.pl

also be specific for a certain domain, for example,
Aranguren et al. [11,3] developed ontology patterns
specific for biology. Many of the proposed patterns can
be found in two repositories, the ODP Portal,1 and the
Manchester ODP Catalog.2 Some ontology editing en-
vironments (e.g., Protégé [19] and the NeOn toolkit
[14]) offer functionalities to support the use of patterns
in the form of wizards that help users create values par-
titions, value sets, or lists [10] directly as part of the
ontology authoring process.

In the current practice, ontology authors create the
ontology patterns manually, and sometimes, they up-
load them to one of the ontology patterns repos-
itories. However, developing such patterns is very
laborious. Moreover, ODP repositories are not yet
comprehensive—not all recommended design solu-

1http://www.ontologydesingpatters.org/
2http://www.gong.manchester.ac.uk/odp/html/

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

2 /

tions are recorded in these repositories of patterns.
Even with the availability of such repositories, domain
experts still have difficulties to find and apply a suit-
able modeling pattern, when having to choose among
several, possibly abstract patterns.

In many cases, recurring patterns of axioms may
exist in ontologies, even if they have not been offi-
cially published as a part of a recommended design
pattern. We call such empirical patterns emerging de-
sign patterns since they are not full ODPs (yet). In
addition, a full ODP usually contains an accompa-
nying textual explanation, diagrams, usage examples,
and other components. The identification of emerging
design patterns may be the first step towards (semi-
)automatic creation of ODPs. Recently, Blomqvist et
al. [4] have identified the task of analyzing ontologies
to discover such “hidden” design patterns as useful, but
non-trivial, and requiring significant support.

For the purpose of this work, we will identify
three different types of patterns: Axiom Patterns with
Variables (APV), Axiom Patterns without Variables
(APNV), and Class Frame Patterns (CFP). Figure 1
shows examples for the three types of patterns with
the goal of introducing the terminology. We provide
the formal definitions of the three pattern types in Sec-
tion 3.2.

Our research objective in this work is to investigate
patterns that occur frequently in individual ontologies,
as well as in a group of ontologies, such as the ones
stored in an ontology repository. Our work is guided
by the following research questions:

– Do certain patterns recur in ontologies? Can
we generalize over such patterns to mine more
generic templates?

– Do such patterns appear within a group of ontolo-
gies?

– Do such patterns exist on the axiom level? Do
they exist on the level of sets of axioms?

– Are we able to automatically detect fragments of
documented ODPs?

The main contributions of our work are:

– We propose a method based on tree mining for
discovering frequent axiom patterns in ontolo-
gies. The method operates by transforming ontol-
ogy axioms into a tree form, then applying fre-
quent tree mining, and finally decoding the fre-
quent trees into axiom patterns.

– We propose an association–analysis method to
discover frequent class frame patterns in ontolo-

Fig. 1. Examples for the three types of patterns covered in this paper:
1. Axiom Pattern with Variables (APV), 2. Axiom Pattern without
Variables (APNV), and 3. Class Frame Pattern (CFP).

gies (i.e., frequent axiom pattern sets) on top of
the discovered axiom patterns. To the best of our
knowledge, this is the first method that is able to
automatically discover such type of (emerging)
design patterns in ontologies.

– We conduct an experimental analysis on BioPor-
tal ontologies with the goal to discover frequent
ontology patterns.

Our analysis reveals that: (i) We are able to iden-
tify recurring patterns in ontologies, both at the axiom
level, and at the level of sets of axioms; (ii) We are able
to automatically extract non-trivial, and significantly–
frequent patterns without variables; (iii) We are able
to discover patterns with variables; and (iv) We are
able to automatically mine fragments of already known
ODPs. All results obtained during the experiments are
available online at: http://semantic.cs.put.
poznan.pl/bioportal-patterns/.

The rest of this paper is structured as follows. Sec-
tion 2 summarizes the related work. Section 3 intro-
duces the problem of tree mining, and formally de-
fines the notions of ontology axiom and class frame
patterns. Section 4 describes the BioPortal dataset used
in this study, and the proposed methods. Section 5 de-
scribes the results of our experiments. We discuss our
results in Section 6, and conclude in Section 7.

/ 3

2. Related work

Prior research on the topic of extracting ontology
patterns has been quite scarce. Some previous works
dealt with studying the syntactic properties of OWL
ontologies on the Web. In their work, Wang et al. [39]
presented statistics on the occurrence frequency of
OWL language constructs, and the structure of ontol-
ogy class hierarchies, in a corpus of ontologies. Za-
mazal et al. [38] conducted a study on collections of
OWL ontologies with the aim of determining the fre-
quency of several combined name and graph patterns,
which potentially indicate underlying structural clus-
ters. These works mainly deal with lexical patterns,
and do not tackle mining recurring fragments in on-
tologies.

Mortensen et al. [24] studied the use of ODPs in
BioPortal ontologies. The authors encoded 68 ODPs
from two online pattern libraries (Manchester ODP
Catalog, and the ODP Portal) using the Ontology Pre-
Processor Language (OPPL).3 The goal of their work
was to determine how prevalent ODPs are in BioPortal
ontologies. This study only considered structural and
content ODPs, while omitting other types of patterns.
After filtering out patterns that were undetectable, triv-
ially supported, poorly reviewed, and whose properties
were not present in the ontologies, they found that only
14 patterns are reused in the BioPortal repository.

In our previous work [20], we presented a method,
Fr-ONT, for mining patterns in ontologies. However,
our data–driven method worked only on ontologies
with instances. The method iteratively constructed new
ontology classes, and checked their frequency in terms
of the number of instances rather than mining frequent
fragments in existing axioms, as we do in our current
work.

In their work, Khan and Blomqvist [18] detected
content ODPs in existing ontologies. Their method
works top-down, starting from existing ODPs and try-
ing to find their instantiations in an ontology. In our
method, we do not require an ODP as an input, and
we mine (possibly new) patterns bottom-up. Similarly,
Šváb-Zamazal et al. [37] considered the problem of de-
tecting (logical) patterns top-down, starting from a par-
ticular pattern. Thörn et al [35] studied potentials and
limits of graph-algorithms for discovering ontology
patterns based on a definition of what structures are
considered patterns. Their conclusion was that graph-

3http://oppl2.sourceforge.net

pattern algorithms appear inefficient for finding pat-
terns in ontologies. Tempich and Volz [34] performed
a statistical analysis of the DAML ontology library.
They mostly studied the language primitives with a
goal to establish a benchmark for Semantic Web rea-
soners.

The approach taken by Mikroyannidi et al. [22,23]
with the Regularities Inspector for Ontologies (RIO)
is the closest to our approach. The authors used clus-
tering to identify regularities in the usage of enti-
ties in axioms within an ontology. The authors de-
fined the distance based on the similarity of the struc-
ture of ontology axioms [22]. Thus, the process of
clustering groups axioms (more precisely, axiom tem-
plates) based on their similar structure. Our work dif-
fers from this approach in two important aspects. First,
the method that we use is different, and is based on
frequency- and association analyses. Second, we are
able to discover sets of axiom templates (class–frame
fragments), rather than only single–axiom templates,
due to the use of association analysis, which can group
axiom templates of very different structures.

3. Preliminaries

3.1. Tree mining

Tree mining is an area of data mining that deals with
the discovery of frequent subtrees in tree–shaped data
structures. Tree mining has been applied to several ar-
eas, such as, bioinformatics, web usage mining, and
mining XML files [42]. We use the SLEUTH algorithm
[42]—an extended version of the TreeMiner algorithm
[43]—to discover frequent patterns in ontologies.

In the following paragraphs, we will introduce some
basic definitions and terminology.

– A tree is a directed, connected, acyclic graph
(V,E), where V is a set of nodes, andE ⊂ V ×V
is a set of edges.

– A rooted tree is a tree with a distinguished root
node.

– A labeled tree is a triple (V,E, l), where (V,E)
is a tree and l : V → L is a labeling function
mapping every node to some label from the set L.

– A path is a sequence of nodes (n1, n2, . . . , nk)
such that (ni, ni+1) ∈ E for all i ∈ {1, 2 . . . , k−
1}.

– A forest is a set of rooted trees and a labeled forest
is a set of rooted, labeled trees.

4 /

A
T

B

C D

A
I

B

C

A
E

C D

Fig. 2. T is a labeled tree. I is an induced subtree of T , i.e. it contains
all edges between the nodes of I , which were present in T . E is an
embedded subtree of T , i.e. some paths between nodes of E, which
were present in T , are represented as edges.

– An induced subtree of a rooted labeled tree T =
(VT , ET , lT) is a labeled tree S = (VS , ES , lS),
such that VS ⊆ VT , ES = (VS × VS) ∩ ET , i.e.,
ES consists of all edges between the nodes of VS
in the tree T , and lS(n) = lT (n) for every node
n ∈ VS .

– An embedded subtree is a generalization of an in-
duced subtree, such that (w, v) ∈ ES , iff w is on
a path from the root of T to v. A sample induced
subtree and a sample embedded subtree are pre-
sented in Figure 2.

– A parent of a node n is a node m, such that
(n,m) ∈ E, and m immediately precedes n on a
path from the root to n; n is called a child of m.

In this work, we assume that all trees are rooted and
labeled, and that all forests are labeled.

By the support of a tree S over a forest F , we un-
derstand a value

σF (S) =
∑
T∈F

d(S, T) (1)

where d(S, T) = 1, if S is an induced subtree of T ,
and d(T, S) = 0 otherwise. The relative support of a
tree S over a forest F is σrF (S) =

σF (S)
|F | , which is the

support of S over F divided by the number of trees in
the forest F . A frequent subtree S of a given forest F
is a tree such that its support σF (S) is greater than a
given threshold.

The tree mining problem can be defined in many
different ways. For the purpose of this work, our aim
is to enumerate all frequent subtrees of a given for-
est. The interested reader is referred to the work of
Zaki [42] for different possible formulations of the
problem (e.g., mining of ordered trees or different sup-
port definitions).

3.2. Ontology patterns

Our research is concerned with identifying patterns
in ontologies represented in the Web Ontology Lan-
guage (OWL) [28]. In this subsection, we introduce
briefly OWL and the terminology used throughout this
paper.

An OWL ontology is a set of axioms. The axioms
are constructed from entities, and various constructors
(e.g., logical operators).

Entities are the basic building blocks of OWL on-
tologies, defining the vocabulary of an ontology. An
OWL vocabulary NO= (NC , NOP , NDP , NAP , NI ,
ND, NLIT) is a 7-tuple where NC is the set of class
names (atomic class expressions), NOP is the set of
object property names, NDP is the set of data property
names, NAP is the set of annotation property names,
NI is the set of individual names, ND is the set of
datatype names, and NLIT is the set of well-formed
literals.

OWL provides several constructors to combine en-
tities into more complex class expressions. The com-
plex class expressions are defined inductively using the
following grammar:4

C ← A | notC |C1 and . . . Cn |C1 or . . . Cn |
{a} | p someC | p onlyC | pminn | pmaxn |
pminnC | pmaxnC | p exactly n |
p exactly nC | p value a | t someD | t onlyD |
tminn | tmaxn | tminnD | tmaxnD |

t exactly n | t exactly nD | t value lit (2)

C stands for (possibly complex) class expression, A ∈
NC , a ∈ NI , p ∈ NOP , q ∈ NOP , t ∈ NDP , D ∈
ND, n is a non-negative integer, and lit ∈ NLIT is a
literal. ByNCC we denote the set of class constructors:
not, and, or, some, only, min, max, exactly, value.

For the analyses described in this paper, we consider
two classes of logical axioms, namely subclass axioms
C1 SubClassOf C2, and equivalent class axioms C1

EquivalentTo C2. We omit non-logical axioms (i.e.,
axioms that are not used by a reasoner for inference,
such as annotation axioms). Furthermore, we only con-
sider axioms having a named class on their left-hand
side (lhs), i.e., C1 ∈ NC in our case. This restric-

4We use the Manchester syntax [16] for OWL ontologies through-
out the paper

/ 5

Table 1
Simple ontology on anatomy serving for the illustration purposes.

No. Axiom

Ontology1

1 Heart SubClassOf hasTopology only Tubular
2 Heart SubClassOf (hasTopology some Tubular)

and InternalOrgan
3 Heart SubClassOf hasFeature some Tubular
4 Heart SubClassOf hasFeature some (not

Tubular)
5 Heart SubClassOf hasMass exactly 1 xsd:float

6 Tubular EquivalentTo Topology and (hasState
some TubularSt)

7 Tubular SubClassOf hasState some TubularSt

Ontology2

8 Kidney SubClassOf hasTopology some Solid
9 Kidney SubClassOf isServedBy some

RenalAnteriorSegmentalArtery

10 Liver SubClassOf hasTopology some Solid
11 Liver SubClassOf isServedBy some

HepaticVein

tion is motivated by a common ontology engineering
practice, in which one concentrates on modeling sets
of descriptions of entities, rather than sets of arbitrary
axioms. Most ontology editing environments, such as
Protégé, support this practice via an entity–centric in-
terface.

Following the terminology of Horridge et al. [17],
we define the class frame of a class A w.r.t. O as the
subset–maximal set of axioms CFA ⊆ O where each
axiom in CFA has one of the forms:

A SubClassOf C
A EquivalentTo C

In other words, a class frame CFA for class A in an
ontologyO contains all the subclass and equivalent ax-
ioms from that ontology, in which the class A appears
on the left-hand side of the axioms. The right-hand side
of the axiom may contain any arbitarily complex class
expression. Table 1 shows a simple anatomical ontol-
ogy describing internal organs (inspired by the medi-
cal ontology GALEN [30]), which contains eleven ax-
ioms in two ontologies. The example illustrates four
class frames, which are comprised from axioms 1-5,
6-7, 8-9 and 10-11, respectively.

As part of this work, we also identify patterns con-
taining variables. We define the following sets of sym-
bols (variable names) that are not in the vocabulary of
O,NO:X = (XCC ,XC ,XD,XOP ,XDP ,XI ,XLIT ,

Xn, Xf), where each variable ?classexpr ∈ XCC

may be bound only to an OWL class expression, each
variable ?c ∈ XC to a symbol from NC , each vari-
able ?datatype ∈ XD to a symbol from ND, each
variable ?op ∈ XOP to a symbol from NOP , each
variable ?dp ∈ XDP to a symbol from NDP , each
variable ?i ∈ XI to a symbol from NI , each variable
?literal ∈ XLIT to a symbol from NLIT , each vari-
able ?cardinality ∈ Xn to a non-negative integer,
and each variable ?facet ∈ Xf may be bound only to
a datatype restriction. Please note that when multiple
variables of the same type appear in a single pattern,
they would be extended with consecutive natural num-
bers (?classexpr1 etc.). Moreover, we denote a vari-
able appearing on the left-hand side of an axiom frag-
ment as ?lhs .

Definition 3.1 An axiom pattern with variables (APV)
of an OWL axiom α, Qα, with respect to ontologyO is
obtained by replacing n > 0 elements of α from NO
with elements from X .

A sample axiom pattern with variables (APV) cor-
responding to our illustrative example from Table 1 is:

?lhs SubClassOf hasTopology some ?c

Definition 3.2 An axiom pattern without variables
(APNV), a.k.a. axiom fragment, of an OWL axiom α,
Qα, with respect to ontology O is obtained by remov-
ing a part of α. In a special case, Qα may be equal to
α.

An example of an axiom pattern without variables
is the following (we replaced the entity ids with
their labels to improve readability. See details in Ap-
pendix 10):

nucleic acid extraction SubClassOf
has_specified_input some (organism or
cultured cell population or
sample from organism)

Definition 3.3 A class frame pattern (CFP) of an on-
tology classAw.r.t.O is the set of axiom patternsQCFA
where each pattern in QCFA has the left-hand side of
either of the form: a named class A or ?lhs.

A sample class frame pattern (CFP) with a variable
left-hand side is:

6 /

{?lhs SubClassOf hasTopology some ?c1,
?lhs SubClassOf isServedBy some ?c2}

Definition 3.4 An axiom pattern (AP) is either an ax-
iom pattern with variables (APV) or an axiom pattern
without variables (APNV).

Definition 3.5 An ontology pattern (OP) Q, or a pat-
tern for short, is either an axiom pattern (AP) or a
class frame pattern (CFA).

The examples for the different types of patterns are
also shown in Figure 1.

4. Material and methods

4.1. BioPortal ontologies

For the experimental evaluation, we downloaded on
July 25, 2015 a snapshot of all ontologies from the
BioPortal ontology repository5 [40], using the BioPor-
tal API. We obtained 442 ontology files, 34 of which
turned out to be empty (e.g., due to licence restric-
tions, like in the case of SNOMED CT, or due to er-
rors in the uploaded files, as in the case of AAO). As
these files came in different formats (e.g., RDF/XML,
OWL/XML, OBO), we used Robot6 from OntoDev7

to convert all ontologies to RDF/XML format. Further,
using the OWL API8 [15], we extracted axioms rele-
vant for this work, i.e. SubClassOf and EquivalentTo
axioms, and converted them to trees and forests, as de-
scribed in Section 4.2 (i.e., we converted each axiom
to a tree, and each ontology to a forest of trees). We
used only axioms defined in the ontologies themselves,
ignoring all owl:import statements.

4.2. Encoding of an ontology to a forest

Our aim is to find frequent patterns based on OWL
subclass and equivalent class axioms, such that their
left-hand side is a named class. We convert every ax-
iom to a single tree, which then is used as an input for
the SLEUTH algorithm (Section 4.3). We build the tree
by recursively processing the arguments of each con-
structor, starting with SubClassOf or EquivalentTo.
Each constructor, or named object corresponds to a

5http://bioportal.bioontology.org/
6https://github.com/ontodev/robot
7http://ontodev.com/
8http://owlapi.sourceforge.net/

SubClassOf

Heart and

exactly

1 hasMass xsd:float

some

hasTopology Tubular

Fig. 3. Tree representation of an axiom: Heart SubClassOf
(hasTopology some Tubular) and (hasMass exactly 1

xsd:float). Shapes correspond to the types of the nodes: class
constructor nodes have no outline and no background, an ellipse
stands for a named class and a double ellipse is for left-hand side,
a rectangle with no outline stands for a property, a rectangle with a
dashed outline is for a cardinality value and with a solid outline is
for a datatype.

node, and every node is labeled with a pair, defining
the type of the node, and its name. We define 10 types
of the nodes, which allow us to preserve the OWL se-
mantics of the names:

class constructor: OWL constructor concerning classes
or datatypes (e.g., intersection), corresponding to
NCC ;

class, datatype: named class, named datatype, corre-
sponding to NC and ND, respectively;

object property, datatype property: named object
or datatype properties, corresponding toNOP and
NDP , respectively;

individual, literal: named individual, literal value
(e.g., in hasValue restrictions), corresponding to
NI and NLIT , respectively;

cardinality: cardinality values in cardinality restric-
tions, corresponding to n;

facet: facet datatype restriction (e.g., in limiting range
of integers);

left-hand side: left-hand side of subclass axioms (al-
ways a named class);

As an example, let us consider the following axiom:

Heart SubClassOf (hasTopology some Tubular)
and (hasMass exactly 1 xsd:float)

The tree corresponding to the axiom is presented in
Figure 3.

Because SLEUTH operates only on numeric labels,
every distinct pair (type and name) is assigned an
unique integer value. These values are stored to decode
frequent trees back.

By applying this method to the BioPortal ontologies,
we obtained a set of 331 non-empty forests, the small-

/ 7

0–10
1

10
1 –10

2

10
2 –10

3

10
3 –10

4

10
4 –10

5

10
5 –10

6

10
6 –10

7

Forest size

0

20

40

60

80

100

120

140

160

N
um

be
ro

ff
or

es
ts

Fig. 4. Forests’ sizes histogram. The forests were obtained from 331
BioPortal ontologies, each converted to a forest of trees, where each
tree corresponds to a SubClassOf or EquivalentTo axiom.

est of which containing 4 trees, while the largest con-
taining 1,833,925 trees. The histogram of the forests’
sizes is presented in Figure 4. The median size of a for-
est was 629, while the average size was 25,308.4, with
the standard deviation of 147,725.3.

4.3. SLEUTH

In order to extend and apply SLEUTH [42]—an ef-
ficient algorithm for mining frequent, unordered, em-
bedded subtrees—to our use case, we needed to en-
code each tree into an efficient string representation,
as described in this work [43]. Precisely, a tree T is
traversed with a depth–first preorder manner, and the
labels of visited nodes are stored in the string. Every
time the backtracking is performed, we add a special
symbol to it, namely the dollar sign, ‘$’. An example
is presented in Figures 5a and 5b.

The SLEUTH algorithm is based on an observation
that every tree can be constructed by a sequence of op-
erations, each consisting of adding a new node as a
child of an existing one, in a such way that the new
node is the last node in the depth–first preorder label-
ing. Let k–subtree be a subtree containing exactly k
nodes. Given a frequent (k− 1)–subtree, SLEUTH al-
gorithm constructs all frequent k–subtrees, which dif-
fer from the original subtree only by the last node in the
depth–first preorder. To guide this construction, only
nodes that were used in the previous step are consid-
ered, i.e., nodes that were used to extend a (k − 2)–
subtree to a forest of (k−1)–subtrees. In order to make
the computations faster, a tree representation called

C1

T1

A2 D3

E4 B5

E6

A1

T2

C2

D3

Fig. 5a. A forest of two trees, T1 rooted in C and T2 rooted in A.
Numbers in the superscript represent an order of depth–first preorder
traversal of the trees.

T1: (C A $ D E $ B $ $ E $)
T2: (A C D $ $)

Fig. 5b. Depth–first preorder string encoding of the trees T1 and T2.
$ is the special symbol to indicate backtracking.

A B C D E
T1 [2, 2] T1 [5, 5] T1 [1, 6] T1 [3, 5] T1 [4, 4]
T2 [1, 3] T2 [2, 3] T2 [3, 3] T1 [6, 6]

Fig. 5c. Scope–list representation of the trees T1 and T2. [a, b] is
a node scope for a given node, where a is the position of the node
in the depth–first preorder traversal and b is the position of the last
descendant in the same traversal (or a if the node is a leaf).

(C D $) (C E $) (C E $ E $)
T1 (1) [3, 5] T1 (1) [4, 4] T1 (1, 4) [6, 6]
T2 (2) [3, 3] T1 (1) [6, 6]

Fig. 5d. Scope–list representations for some more complex subtrees.
Values in parentheses are match labels that is a proof made of nodes’
positions that given subtree (apart of the last node) indeed exists in
a particular tree. The node scopes are scopes for the last nodes.

scope–list is used. Using the scope–lists, we can verify
in constant time, if given a tree and a (k−1)–subtree in
this tree, whether the k–subtree also occurs in the tree.
An example of such representation is presented in Fig-
ures 5c, and 5d. Every frequent k–subtree found this
way is then recursively used to find frequent (k + 1)–
subtrees.

4.4. FF-SLEUTH

Despite its feasibility, the SLEUTH algorithm has
two disadvantages, which renders it unsuitable for our
use case. The first disadvantage is concerned with the
embedded patterns which do not provide valuable in-
formation about axioms in an ontology. For example,
consider these two axioms:

8 /

(1) Heart SubClassOf: hasTopology only Tubular
(2) Heart SubClassOf: hasFeature some
not Tubular

SubClassOf

Heart only

hasTopology Tubular

SubClassOf

Heart some

hasFeature not

Tubular

Fig. 6. Trees for axioms [Heart SubClassOf hasTopology
only Tubular], and [Heart SubClassOf hasFeature some
not Tubular]. Bold symbols denote nodes occurring in both trees
and constituting an embedded subtree corresponding to the axiom
[Heart SubClassOf Tubular].

The trees corresponding to these axioms are pre-
sented in Figure 6. One of embedded patterns occur-
ring in the axioms is Heart SubClassOf Tubular,
yet such a pattern is not justified by the original ax-
ioms, as in both of the axioms Heart is related to
Tubular topology via some property.

The second disadvantage of the SLEUTH algorithm
is that it mines tree patterns in a single forest, which
is not sufficient. Indeed, a single ontology forms al-
ready a forest, and we are also interested in mining pat-
terns that occur in multiple ontologies. Thus, we need
a method to mine tree patterns in a family of forests.

To address these two disadvantages, we modified the
SLEUTH algorithm. To deal with the first issue (unin-
tended patterns), we keep and extend only the induced
subtrees. Other subtrees—those that are embedded, but
are not induced—are discarded. This change does not
affect the soundness of the algorithm, as all induced
subtrees of a frequent, induced subtree must also be
frequent, and are therefore constructed as well.

We addressed the second issue (mining in a family
of forests) by introducing a new measure of support.
Considering a family of forests F , we define the sup-
port of a subtree in a family of forests as the number of
forests containing at least one tree containing the given
subtree, i.e.,

σF (S) =
∑
F∈F

sgn

(∑
T∈F

d(S, T)

)
(3)

Figure 7 shows an example explaining how this new
support is computed. The support is also applied to the

A

T1

B C

A

T2

C

F1

A

T3

B

F2

Fig. 7. A family of two forests F = {F1, F2} consisting of three
trees: T1, T2, T3. Subtrees (A) and (A B $), using the string repre-
sentation, have support 2 as they occur in at least one tree in both
forests. Subtree (A C $) has support 1 even though it occurs in two
trees T1 and T2, because they both belong to the same forest F1.

axiom pattern corresponding to the tree after decoding
it. To better exemplify how the support is computed,
consider the two ontologies shown in Table 1 and the
axiom pattern with variables (APV):

?lhs SubClassOf hasTopology some ?c

This axiom patterns has support 1 in Ontology 1
(matches axiom #2), and support 2 in Ontology 2
(matches the axioms #8 and #10). The support of the
axiom in the family of trees (composed of Ontology 1
and 2) is 2, as it matches at least one axiom from each
of the ontologies.

As the original SLEUTH implementation9 is highly
optimized and complex, we decided to reimplement
SLEUTH in Java. We developed FF-SLEUTH (Fam-
ily of Forests SLEUTH), a Java implementation of the
SLEUTH algorithm with the above–mentioned modi-
fications, which is available in the Git repository:
https://bitbucket.org/leolod/jsleuth

4.5. Decoding a frequent subtree to a frequent axiom
pattern

Both SLEUTH and FF-SLEUTH compute the set of
all frequent induced subtrees. Obviously, not all of the
computed subtrees are useful for our purposes mainly
due to two reasons.

First, we are interested only in maximal frequent
subtrees—frequent subtrees for which none of their
proper supertrees is frequent. Consider the forest in
Figure 8: there are many frequent subtrees of these two
trees, such as, (SubClassOf) or (SubClassOf Heart
$), encoded in the string representation presented in

9Available at: http://www.cs.rpi.edu/~zaki/
www-new/pmwiki.php/Software/Software#toc15

/ 9

SubClassOf

Heart some

hasTopology Tubular

SubClassOf

Heart some

hasFeature Tubular

Fig. 8. There is one maximal frequent subtree of these two trees,
with nodes denoted by bold symbols. All subtrees of this maximal
tree are also frequent, but are not useful for our analysis.

SubClassOf

Tubular some

hasState TubularSt

EquivalentTo

Tubular some

hasState TubularSt

Fig. 9. During mining we also discover frequent subtrees that do not
contain SubClassOf or EquivalentTo, yet we discard them, as they
could lead us to wrong conclusions about axioms in mined ontology.

Section 4.3. Obviously, these are just subtrees of a
maximal subtree hidden there: (SubClassOf Heart
$ some Tubular $ $).

The second reason is that we aim to mine axiom pat-
terns with or without variables. Therefore, we will con-
sider only the frequent subtrees which contain Sub-
ClassOf or EquivalentTo nodes. The line of reason-
ing here is similar to the one against embedded sub-
trees, presented in the Section 4.4. Consider the for-
est in Figure 9. One of the maximal frequent sub-
trees is (some hasState $ TubularState $).
Yet, such a subtree does not constitute an axiom pat-
tern. Indeed, we cannot know, if a class expression
corresponding to this frequent subtree is one of the
operands of SubClassOf or EquivalentTo, or maybe
it is nested somewhere deeper, such as in an expression
not (hasState some TubularSt).

For the further processing, we will use only the
frequent subtrees which fulfill both of the above–
mentioned criteria—being frequent and having the
proper form. The next step in our analysis is to trans-
form the mined trees back into frequent axiom pat-
terns, which involves two steps. In the first step, we
decode labels back from their numerical form to the
pairs using the stored information (see Section 4.2). In
this way, we obtain a (possibly incomplete) tree repre-
sentations for some axioms. An example of such a tree
is presented in Figure 10. In the second step, the tree is
completed by inserting a minimal number of variables,

SubClassOf

Heart and

some

Tubular

Fig. 10. A frequent subtree with decoded labels that is an incom-
plete tree representation of some axiom and that (after completion)
will form a frequent axiom pattern Heart SubClassOf (?op some
Tubular) and ?classexpr.

such that the tree would correspond to a frequent ax-
iom pattern. For example, the tree in Figure 10 con-
tains a constructor some which requires a property,
and a class expression, or a datatype. There is a class
expression Tubular, so an object property is miss-
ing. Also, clearly the and expression is incomplete,
at least missing the second operand. It is not clear (in
general) how many operands we should add there, so
we add a minimal number, which is one.

After the completion, we obtain a frequent axiom
pattern: Heart SubClassOf (?op some Tubular)
and ?classexpr. We favor object properties and class
constructors over datatype properties and datatypes,
e.g., in rare cases, when there are no children for a node
labeled some, we add variables for an object prop-
erty, and a class constructor, instead of variables for a
datatype property and a datatype.

4.6. Mining class frame patterns

So far, we have described the methods for comput-
ing single axiom patterns. In this section, we describe
how to compute class frame patterns (CFP) based on
the discovered axiom patterns. In the simplest case,
there might be axiom patterns that have a named class
on their left–hand side (lhs). For this case, it is suf-
ficient to group the discovered axioms that share the
same lhs. However, there are cases in which the ax-
iom patterns have a variable on their lhs. For this latter
case, we propose to apply association analysis, namely,
frequent itemset mining [1] to identify the class frame
patterns.

In the classical formulation of the frequent itemset
mining task, the inputs are: (1) a set of items, and (2)
a set of transactions, and each transaction contains a
subset of items (an itemset). The task is to discover
which sets of items (itemsets) co-occur frequently in

10 /

Fig. 11. A three-phase process: mining frequent class frame patterns
on top of the discovered frequent axiom patterns with use of propo-
sitionalisation.

transactions. We reuse the classical frequent itemset
mining algorithms for mining frequent axiom pattern
sets. The rationale is to discover sets of axiom patterns,
which frequently appear together in the same ontology
class. Such patterns would constitute a class frame pat-
tern.

The process for mining frequent class frame patterns
has three phases and is illustrated in Figure 11.

In the first phase, we mine frequent axiom patterns
over an ontologyO using the method described in Sec-
tions 4.2–4.5.

In the second phase, we apply propositionalisation
to the mined axiom patterns. Propositionalisation is
a process that transforms a structured dataset into an
attribute-value (i.e., propositional) dataset. The dataset
has derived propositional features which describe the
structural properties of the examples. In our case,
the features are represented by frequent axiom pat-
terns, while the examples are represented by ontology
classes. In the itemset mining task, the proposition-
alisation produces a transaction set, where each fre-
quent axiom pattern Qα represents a transaction item,
and each named class A in the ontology O appearing
on the left-hand side of any SubClassOf or Equiva-
lentTo axiom has an associated transaction tA. Each
transaction ti is represented by the set of all frequent
axiom patterns (items) whose right-hand side matches
the SubClassOf or EquivalentTo ontology axioms
having A on the left-hand side. A sample, illustrative
result of a propositionalisation is presented in Table 2.

In the third phase, we apply an off-the-shelf frequent
itemset mining algorithm. The result of the algorithm
will be a set of itemsets, which correspond to class
frame patterns (CFA).

We define the support of a class frame pattern QCFA
over a set of transactions DT (where each DT corre-
sponds to a named class from NC appearing on the
left hand-side of any SubClassOf or EquivalentTo

Table 2
A propositional (attribute-value) representation where attributes
(features) are constituted by frequent axiom patterns and examples
are constituted by ontology classes.

?
lh
s

S
ub

C
la

ss
O

fh
a
s
T
o
p
o
l
o
g
y

so
m

e
?
c

?
lh
s

S
ub

C
la

ss
O

fi
s
S
e
r
v
e
d
B
y

so
m

e
?
c

?
lh
s

S
ub

C
la

ss
O

fh
a
s
F
e
a
t
u
r
e

so
m

e
?
c

Heart 1 0 1
Tubular 0 0 0
Kidney 1 1 0
Liver 1 1 0

axiom), as:

σCF (Q
CF
A) =

∣∣{t ∈ DT : QCFA ⊆ t}
∣∣ (4)

The relative support of a class frame pattern QCFA
over a set of transactions DT is the percentage of all
transactions that contain all elements of QCFA :

σrCF (Q
CF
A) =

|σCF (QCFA)|
|DT |

(5)

In the example from Table 2, the class frame pattern
QCFA = { ?lhs SubClassOf hasTopology some ?c,
?lhs SubClassOf isServedBy some ?c}
has support 2 as it is contained in two transactions.

5. Experiments and results

5.1. Frequent axiom patterns in single ontologies

To discover frequent axiom patterns in single on-
tologies, we encoded each ontology into a forest using
the method described in Section 4.2. We then used the
original SLEUTH implementation on these forests to
mine frequent induced subtrees with relative support
treshold of 1%. We filtered and decoded the results us-
ing the methods described in Section 4.5.

In order to present clearly the results, we divided
our ontologies into six groups, depending on the num-

/ 11

ber of SubClassOf and EquivalentTo axioms (ontol-
ogy size) that they contain: up to 100 (45 ontologies),
100–1000 axioms (148 ontologies), 1000–10,000 ax-
ioms (94 ontologies), 10,000–100,000 (30 ontologies),
100,000–250,000 (9 ontologies), and over 900,000 (5
ontologies). We started the last cluster at 900,000,
rather than 1,000,000, because there are no ontologies
in our dataset having between 250,000 and 900,000
axioms. Therefore, we decided that three ontologies
having over 900,000 are more similar to the ontolo-
gies having at least 1,000,000, so we clustered them
together.

The number, support, size and depth of mined axiom
patterns are presented in Figures 12a–12d. Each figure
contains a box plot for every ontology group showing:
the median m (horizontal line within the box); the first
and third quartile (bottom and top line of the box); low-
est value above m− 1.5 · IQR (short–horizontal line,
below the box), and highest value belowm+1.5·IQR
(short–horizontal line, above the box). IQR is the in-
terquartile range represented by the height of the box,
and the outliers are represented as points drawn below
and above of the short lines.

In Figure 12a, we present the number of mined fre-
quent axiom patterns for each ontology group from our
dataset. In Figure 12b, we present the supports for the
mined frequent axiom patterns. As we used relative
support threshold of 1% the lowest value of support for
a given cluster of ontologies in the figure can not be
lower than 1% of the size of the smallest ontology in
the cluster. The maximal value for the support is bound
by the size of the largest ontology.

Figure 12c shows the sizes of the frequent axiom
patterns that we mined. Interestingly, in larger ontolo-
gies, the median size increases, and IQR decreases. Fi-
nally, Figure 12d shows the depths of the frequent sub-
trees. Here, we can also observe that the median value
is higher for larger ontologies.

We discovered that 96% of the ontologies (320
out of 331) in the dataset reuse patterns contain-
ing vocabulary from domain namespaces (namespaces
other than owl, rdf, rdfs and xsd). For eleven of
the ontologies (ATC, CMO, CRISP, FLOPO, GCO,
HP, ICD10CM, ICD10PCS, ICD9CM, VT, VTO), we
could not identify any patterns besides ?lhs Sub-
ClassOf owl:Thing (for GCO) and ?lhs SubClas-
sOf ?c1 (for the rest of the listed ontologies). We man-
ually inspected these ontologies, and found that the
GCO ontology contains only four classes, however,
the other ten ontologies contain at least 2,000 classes.
These ten ontologies have a very low average and max-

imum number of children, compared to the number of
classes in the ontologies, which explains why there are
no patterns with a named class on the left-hand side.
We also noted that these ten ontologies do not contain
any complex class expressions.

In the 321 ontologies, we found patterns of size at
least 2; in 81 (24%) ontologies, we found patterns of
size at least 5; in 17 (5%) ontologies, we found patterns
of size at least 10; in 4 ontologies, patterns of size at
least 20; and in one ontology (NEMO), we found 2 pat-
terns of size 43. The biggest axiom patterns from some
of the most used ontologies available in BioPortal are
presented in the Appendix in Table 6.10 The patterns
with the highest support from a subset of most visited
BioPortal ontologies are also presented in Table 7. The
Appendix also contain breakdowns with respect to the
statistics for patterns discovered in various topical cat-
egories of ontologies (Figure 15 and Figure 16). More
breakdowns can be also found in the supplementary
material.

One of the patterns of size 43 in the NEMO ontol-
ogy (Table 8 of the Appendix) has resulted from re-
peating a substantial fragment of the class definition
in the subclasses of the class nemo:NEMO_0000093
(‘scalp recorded ERP component’). By investigating
this particular pattern, we found that alternative labels
for this class are: ‘ERP data’, ‘event-related potential
data’, and ‘ERP pattern’. Thus actually, our discovered
pattern represents a set of classes that represent pat-
terns of variation in electrical activity at the scalp sur-
face.

We discovered that 99.2% of all mined patterns con-
tain at least one variable. Out of these, 26.1% contain
a variable in the left-hand side and 89.6% contain a
variable in the right-hand side.

We have also investigated the frequency statis-
tics for namespaces occurring in axiom patterns. We
looked mainly at top–level and cross–domain ontolo-
gies. We found that most patterns appear in OBO11

ontologies, which is not surprising, given that most
OBO ontologies are built using a principled approach
prescribed by the OBO Foundry [32], which fo-
cuses on consistency and reuse. The http://purl.
obolibrary.org/obo/ namespace was found
3,006 times in 2,589 patterns, and 149 ontologies. This
namespace is prescribed for the entities of all OBO

10We display labels instead of IRIs, where possible.
11OBO stands for Open Biomedical Ontologies. The library of

OBO ontologies can be found at: http://www.obofoundry.
org/

12 /

0–10
2

10
2 –10

3

10
3 –10

4

10
4 –10

5

10
5 –3 · 10

5

9 · 10
5 –2 · 10

6

Ontology size

0

20

40

60

80

100

120

N
um

be
r

(a) Number of frequent axiom patterns.

0–10
2

10
2 –10

3

10
3 –10

4

10
4 –10

5

10
5 –3 · 10

5

9 · 10
5 –2 · 10

6

Ontology size

100

101

102

103

104

105

106

S
up

po
rt

(b) Support of frequent axiom patterns.

0–10
2

10
2 –10

3

10
3 –10

4

10
4 –10

5

10
5 –3 · 10

5

9 · 10
5 –2 · 10

6

Ontology size

0

5

10

15

20

25

30

35

40

45

S
iz

e

(c) Size of frequent axiom patterns.

0–10
2

10
2 –10

3

10
3 –10

4

10
4 –10

5

10
5 –3 · 10

5

9 · 10
5 –2 · 10

6

Ontology size

0

2

4

6

8

10

12

14

D
ep

th

(d) Depth of frequent axiom patterns.

Fig. 12. Various statistics for frequent axioms patterns computed for each single ontology from our BioPortal dataset (cf. Section 4.1). The
ontologies are clustered into 6 groups depending on their sizes.

Foundry compliant ontologies. The full table with the
frequency statistics can be found in the Appendix in
Table 9.

5.2. Frequent axiom patterns in a set of ontologies

To mine frequent patterns in the set of ontologies
from the BioPortal repository, we used FF-SLEUTH
with the support measure based on a set of forests (Sec-
tion 4.4). Precisely, every axiom was translated to a
tree (Section 4.2), and every ontology formed a single
forest. In this way we were able to discover frequent
patterns that occur in multiple ontologies independent
of the relative sizes of the ontologies. If we were to
combine all axioms to form a single, huge forest, then

patterns from large ontologies (such as, NCIT) would
dominate the results.

An experiment with a minimal support of 4 forests
(i.e., 1% of 331 non-empty forests) took about 89
hours of wall-time (around 1,700 hours of CPU time)
on a 2-CPU (16 threads each) server, and required
roughly 110GB of RAM. We discovered 1,935,735
frequent subtrees, out of which 640,075 (33%) were
maximal—i.e., none of their supertrees were frequent.
The size of the patterns (number of nodes) varies from
2 to 12, and their support is up to 29 forests (ontolo-
gies). We present the dependencies between support,
size and depth in Figures 13a and 13b.

Table 3 shows the top–identified patterns with the
biggest support. The top pattern with support 29 turned
out to be an artifact of the way the OWL API converts

/ 13

0 5 10 15 20 25 30
Support

100

101

102

103

104

105

106

Nu
m

be
r o

f p
at

te
rn

s

100 101 102 103 104 105 106

Number of patterns

0

2

4

6

8

10

12

Si
ze

0 5 10 15 20 25 30
Support

0

2

4

6

8

10

12

100

101

102

103

104

105

(a) Distribution of sizes and supports.

0 5 10 15 20 25 30
Support

100

101

102

103

104

105

106

Nu
m

be
r o

f p
at

te
rn

s

102 103 104 105 106

Number of patterns

0

1

2

3

4

5

De
pt

h

0 5 10 15 20 25 30
Support

0

1

2

3

4

5

100

101

102

103

104

105

(b) Distribution of depths and supports.

Fig. 13. Distributions of various statistics for patterns mined with minimal support 4. Top and right charts present histograms for one dimension
each, while the charts in the middle present 2D-histograms for both statistics combined using varying color intensity.

OBO to OWL. We found one pattern without variables
and three patterns with variables that appear in 27 on-
tologies.

The biggest subtree, which occurs in 14 ontologies,
represents a pattern without variables (or fragment),
and it is shown in Table 4. This pattern represents the
logical definition of the class ‘curation status specifi-
cation’ (obo:IAO_0000078), which is used by 14
ontologies for curation purposes.

We have also examined axiom patterns that have the
largest size. The sorted list is available in Table 10 in
the Appendix. The size of the patterns is presented in
the first column of the table and their total number of
occurrences (the number of ontologies where they oc-
cur) is shown in the second column. We can observe
that the largest patterns come from OBO ontologies
and that they include entities from upper-level ontolo-
gies (BFO, OBI, IAO, snap, span).

Similar to our investigation for single ontologies,
we have also examined which namespaces occur more
frequently in ontology patterns in the entire set with
a minimal support of 4. As in the previous cases, the
most frequently–occurring namespaces are the ones
from OBO. The full list is shown in Table 11 in the
Appendix.

5.3. Class frame patterns

We used the discovered axiom patterns to anal-
yse class frame patterns (CFPs) as described in Sec-
tion 3.2. To conduct the analysis, we used Orange3-

Associate12 to mine maximal frequent itemsets using
4 as the minimum support σCF threshold.

We have computed transactions for all ontologies
and all their classes matching at least one frequent ax-
iom pattern. Altogether, we have discovered 5,397 fre-
quent CFPs. 2,335 (43%) of these patterns are com-
posed of more than one axiom pattern. On average,
there are 16.3 CFPs per ontology (with median value
11.0), containing an average number of axiom patterns
equal to 2.7 (with median value 1.0), and with aver-
age support 233.8 (with median value 6.0). The biggest
CFP (in terms of the number of axiom patterns) that
we have discovered is composed of 17 axiom patterns,
and the most frequent CFP that we have discovered has
the support of 178,320.

In the following paragraphs, we discuss some sam-
ple CFPs from specific ontologies. The CFPs are doc-
umented in Table 5.

The Uber Anatomy Ontology (UBERON) [25] is
a multi–species anatomy ontology that represents
anatomical structures. In Table 5, we present a pat-
tern discovered for ‘mesoderm-derived structure’. Be-
sides this pattern, we have also discovered other pat-
terns that represent particular anatomical structures, in
particular ‘ectoderm-derived structure’ and ‘structure
with developmental contribution from neural crest’.

The Ontology of Core Data Mining Entities (On-
toDM) [27] represents data mining tasks, generaliza-
tions, data mining algorithms, and more. The pattern

12http://orange.biolab.si/download/

14 /

Table 3
Top ten axiom patterns found in the set of BioPortal ontologies,
sorted by descending support and size.

σF Size Axiom pattern

29 3 ?lhs SubClassOf obo:TEMP#part_of some ?classexpr

27 2 ?lhs SubClassOf snap:Role some ?classexpr

27 3 obo:IAO_0000027 SubClassOf obo:IAO_0000030
(’data item’ SubClassOf ‘information content entity’)

27 3 ?lhs SubClassOf ?op only (?classexpr1 or ?classexpr2 ...)
27 2 ?lhs SubClassOf ?op value ?classexpr

26 2 ?lhs SubClassOf (?op exactly 1 ?class)
21 2 ?lhs SubClassOf snap:Quality
20 3 sty:T110 SubClassOf sty:T119

(’Steroid’ SubClassOf ‘Lipid’)
20 3 sty:T028 SubClassOf sty:T021

(’Gene or Genome’ SubClassOf ‘Fully Formed Anatomical Structure’)
20 3 sty:T060 SubClassOf sty:T058

(’Diagnostic Procedure’ SubClassOf ‘Health Care Activity’)

Table 4
An axiom pattern without variables (or fragment) corresponding to the biggest subtree discovered in a set of ontologies. It has size 12, depth 3
and support 14.

’curation status specification’ EquivalentTo {’uncurated’, ’to be replaced with external ontology term’, ’pending final vetting’, ’ready for release’,
’metadata incomplete’, ’requires discussion’, ’metadata complete’, ’organizational term’, ’example to be eventually removed’}

presented in Table 5 describes the common features of
subclasses of a class that only has a numeric identi-
fier in the ontology, but no textual label. The class has
nine asserted subclasses, and it is a subclass of the OBI
class ‘planned process’. The pattern appears in five out
of these subclasses and, interestingly, it is the biggest
CFP discovered for this ontology.

The Cell Cycle Ontology (CCO) [2] is an ontol-
ogy used for representing cell cycle processes. The
main entities in CCO are proteins, genes, and protein–
protein interactions. Antezana et al. [2] discusses an
example of the local neighborhood of the protein
SWI4_YEAST using relationships (i.e., object proper-
ties) defined in CCO. The example uses relationships
such as ‘participates_in’, ‘derives_from’, ‘located_in’
or ‘transforms_into’. However, the pattern we have
mined does not contain the above–mentioned relations.
The mined pattern matches 561 classes out of 260,360
ones that match any frequent axiom pattern. The pat-
tern we have discovered might represent an emerging
design pattern, which was not documented in [2].

The VIVO ontology13 represents researchers in the
context of their experience, outputs, interests, accom-
plishments, and associated institutions, as well as net-

13http://www.vivoweb.org

works of researchers. We selected this pattern (Table 5)
because it shows an example of a datatype construct
in an axiom pattern, which is not present in any of the
other presented patterns.

The Protein Ontology (PR) [26] represents protein-
related entities. This CFP has a large support of
18,207, while having an above the average number of
frequent axiom patterns.

The Clusters of Orthologous Groups (COG) Anal-
ysis Ontology (CAO) [21] is designed for supporting
the COG enrichment study. The selected CFP contains
cardinality restrictions, which are a rare occurrence in
other mined patterns.

The GALEN ontology [30] represents concepts re-
lated to anatomy, drugs, diseases, signs and symptoms.
The presented CFP shows an example that is composed
of complex axiom patterns.

The Ontology for Biomedical Investigations (OBI)
[6] has resulted from a cross-community effort to pro-
vide a resource that represents biomedical investiga-
tions to facilitate interpretation of the experimental
process. We decided to present this CFP because it
contains a named class on the left-hand side.

/ 15

Table 5
Selected class frame patterns (CFP). First column displays the name of the ontology where the CFP was found. Second column contains the
relative support σr

CF and the support σCF values (in parantheses). Third column shows the CFP. E.g., the UBERON ontology contains a CFP
composed of four frequent axiom patterns. The variables on the right-hand side of the axiom patterns (?c, ?p, etc.) have been renamed to reflect
that they are local in scope to the each axiom pattern, and thus they may bind to different entities within the scope of a class frame.

Ontology σr
CF (σCF) Class frame pattern (CFP)

UBERON 0.08% (8)

?lhs SubClassOf: ’mesoderm-derived structure’
?lhs SubClassOf: (’part_of’ some ?c1)
?lhs SubClassOf: (’develops_from’ some ?c2)
?lhs SubClassOf: (’contributes to morphology of’ some ?c3)

OntoDM 1.85% (5)

?lhs SubClassOf: <http://kt.ijs.si/panovp/OntoDM#OntoDM_000290>
?lhs SubClassOf: (?p1 some (’ensemble of generalizations’ or ’single generalization’))
?lhs SubClassOf: (’has_specified_output’ some (?classexpr1 or ?classexpr2))
?lhs SubClassOf: (’has_specified_input’ some ?c1)
?lhs SubClassOf: (?p2 some ’DM-dataset’)
?lhs SubClassOf: (’realizes’ some (’is_concretization_of’ some ?c2))

CCO 0.21% (561)

?lhs SubClassOf: ’protein’
?lhs SubClassOf: (’enables’ some ?c1)
?lhs SubClassOf: (’inheres in’ some ’Homo sapiens’)
?lhs SubClassOf: (’part of’ some ?c2)
?lhs SubClassOf: (’involved in’ some ?c3)
?lhs SubClassOf: (’is orthologous to’ some ?c4)
?lhs SubClassOf: (’bearer of’ some ?c5)
?lhs SubClassOf: (’is paralogous to’ some ?c6)

VIVO 4.38% (5)
?lhs SubClassOf: (’date/time interval’ only ’Date/Time Interval’)
?lhs SubClassOf: (’description’ only rdfs:Literal)

PR 23.90% (18,207)

?lhs SubClassOf: ’Homo sapiens protein’
?lhs SubClassOf: (’only_in_taxon’ some ’Homo sapiens’)
?lhs SubClassOf: (’has_gene_template’ some ?c1)
?lhs EquivalentTo: ((’only_in_taxon’ some ’Homo sapiens’) and ?classexpr1)

CAO 15.09% (24)

?lhs SubClassOf: ’COG category protein’
?lhs SubClassOf: (’is_member_of’ some ?c1)
?lhs EquivalentTo: (’COG category protein’ and (’denoted_by’ min 1 ?c2))

GALEN 0.29% (26)

?lhs EquivalentTo: ((?p1 some ((?p2 some ((?p3 some ?c1) and ?classexpr1)) and
?classexpr2)) and ?classexpr3)
?lhs EquivalentTo: ((?p4 some ((?p5 some ?c2) and ?classexpr4)) and (?p6 some
?c3))
?lhs EquivalentTo: ((?p7 some ?c5) and galen:BodyStructure)

OBI 0.39% (5)

’assay’ SubClassOf: ?classexpr1
?lhs SubClassOf: (’has_specified_output’ some ((’is about’ some ?c1) and
?classexpr2))
?lhs SubClassOf: (’has_specified_input’ some ?c2)
?lhs SubClassOf: (’achieves_planned_objective’ some ?c3)

5.4. Mining documented class frame patterns

One of the research questions that we are trying to
answer is whether our methods are able to mine ax-
iom patterns of ODPs described in literature. Figure 14
shows the CFPs that we have automatically mined for
the Cell Line Ontology (CLO). After a manual in-
vestigation, we have subsequently established that the
mined patterns reflect the ‘Cell Line Cells’ design pat-

tern proposed by Sarntivijai et al. [31]. CLO is one
of the largest BioPortal ontologies from our dataset (it
contains 114,843 SubClassOf and EquivalentTo ax-
ioms). Some of the axiom patterns that we have mined
also have a high–absolute support, reaching the value
of 21,698. The CFPs shown in Figure 14 have sizes be-
tween 2 and 4, and the support value ranging from 9 to
728.

16 /

a)

?lhs SubClassOf: ’immortal cell line cell’

?lhs SubClassOf: (’is in cell line
repository’ value ’RIKEN cell bank’)

?lhs SubClassOf: (’derives from’ some
((’part_of’ some ((’part_of’ some ’Homo
sapiens’) and ’peripheral vein’)) and ’B
cell’))

?lhs SubClassOf: ’immortal human pe-
ripheral vein-derived B cell line cell’

?lhs SubClassOf: (’is model for’ some
’Parkinson’s disease’)

?lhs SubClassOf: (’has quality at some
time’ some ’male’)

?lhs SubClassOf: (’is_specified_input_of’
some ’adherent cell line culturing’)

?lhs SubClassOf: ’immortal human zone
of skin-derived cell line cell’

?lhs SubClassOf: (’derives from’ some
((’part_of’ some ((’part_of’ some ’Homo
sapiens’) and ’zone of skin’)) and ’cell’))

b)

Fig. 14. a) ’Cell Line Cells’ design pattern for the CLO ontology [31] (top). b) The selected corresponding class–frame fragments, which we
have automatically mined (middle and bottom part of the figure).

One surprising finding is the fact that we discov-
ered several CFPs, which contain a part that is not in-
cluded in the original ODP, namely: (‘has quality at
some time’ some ‘male’) (or (‘has quality at some
time’ some ‘female’)). This part is depicted in Fig-
ure 14 with a dashed line. This finding may indicate
a concept drift. In order to answer whether this part
is a plausible addition to the ODP, we would need to
run another study. Another finding that validates the
mined patterns comes from Sarntivijai et al. [31]. The
paper describes the addition of 1,622 new cell lines
from the Japan RIKEN Cell Bank to CLO, which is
evidenced in our discovered frequent axiom pattern:

SubClassOf ‘is in cell line repository’ value ‘RIKEN
Cell Bank’, with an absolute support of 1,622.

The Manchester ODP Catalog and Ontorat [41] are
two pattern repositories for biomedical ontologies that
document or refer to patterns from ontologies con-
tained in our dataset: CLO, OBI, OOEVV, BCGO, and
CCO. We investigated whether we were able to mine
the documented patterns. Our manual inspection con-
firmed that we were able to mine the patterns in CLO
(described above), as well as the ’Assay’ pattern from
OBI, and a pattern concerning the main classes of OO-
EVV [7].

/ 17

6. Discussion

6.1. Research questions

1. Do certain patterns recur in ontologies? Can we
generalize over such patterns to mine more generic
templates?

We found patterns in every ontology in the experi-
ment, with the exception of those that did not have any
SubClassOf or EquivalentTo axioms (Section 4.1).
In 320 out of 331 ontologies (97%) in the dataset,
we found patterns containing vocabulary from domain
namespaces (i.e., namespaces other than owl, rdf,
rdfs and xsd).

We also noted that most patterns contain vocabu-
lary from OBO ontologies (Table 9). This finding hints
at the fact that modeling patterns and reuse are more
prevalent in OBO ontologies than in the other ontolo-
gies in the dataset. This fact is not surprising as OBO
ontologies follow the principles set forth by the OBO
Foundry [32], which prescribe a strict set of rules for
reuse and orthogonality of ontologies.

We have also observed that the median fragment
size for smaller and larger ontologies (with less or
more than 1,000 axioms, respectively) is fairly simi-
lar, between 2 and 3 (see Figure 12c), although there
are variations in IQR. This finding may indicate that
most patterns are still fairly simple, rather than com-
plex expressions, and are usually of the size of two or
three. We discovered that the majority (99.2%) of all
mined axiom patterns contain at least one variable, out
of which 89.6% contain a variable in the right-hand
side of the axiom.

2. Do such patterns appear within a group of
ontologies?

We found that ontology patterns exist, not only in
single ontologies, but across the set of investigated on-
tologies. In the latter case, the longest patterns dis-
covered from the set of all ontologies (Table 10), are
patterns without variables. They represent fragments
from OBO ontologies, which have likely been copied
from other ontologies. For example, the ‘curation sta-
tus specification’ class (Table 4) is originally defined in
the file ontology-metadata.owl,14 but is copied
in fourteen of the ontologies in our dataset. This find-
ing hints that these 14 ontologies may have used the

14http://information-artifact-ontology.
googlecode.com/svn/trunk/src/ontology/
ontology-metadata.owl

MIREOT principles [8] to copy just parts of a source
ontology into the target ontology. MIREOT defines the
minimum information needed to reference external on-
tologies, and many OBO ontologies use it. The finding
also suggests that the 14 ontologies have been built us-
ing a similar development process (e.g., they all use the
same curation statuses). This kind of similarity in the
development processes is expected in a focused com-
munity, such as the OBO one.

We also noted that several of the rows in Table 10
are fragments (i.e., APNV) of upper ontologies—such
as BFO—or cross–domain ontologies—such as, OBI
or IAO. One question that arises is whether these frag-
ments may represent reusable ontology modules [33],
which would be valuable also outside of the OBO com-
munity. To facilitate their reuse, such modules could
be made available separately from the ontologies from
which they originate.

3. Do such patterns exist on the axiom level? Do they
exist on the level of sets of axioms?

We found patterns on both levels. We were able to
mine frequent patterns from every ontology that con-
tained SubClassOf or EquivalentTo axioms. In Sec-
tion 5.3, we presented a subset of the frequent class
frame patterns (CFP) that we mined. We have found
2,335 CFPs composed of more than one frequent ax-
iom pattern, with an average of 16.30 CFPs per ontol-
ogy.

This result is intriguing taking into account that
Mortensen et al. [24] found modest reuse of ODPs in
BioPortal ontologies. These results are, however, not
contradictory. The approach taken by Mortensen et al.
is top-down—they test the occurrence of a set of sev-
eral predefined patterns in the ontology dataset. This
study found that the ontologies in BioPortal contain
some of the structural patterns from Manchester ODP
Catalog, and a few high–level content patterns from
the ODP Portal.

In contrast, our approach mines patterns bottom–
up, and can also detect parts of specific content ODPs.
We call our mined patterns “emerging”, as they may
not comply to predefined ODPs in existing reposito-
ries. Yet, these patterns appear in the studied ontolo-
gies, likely because they are valuable to the ontology
authors and users.

4. Are we able to automatically detect fragments of
documented ODPs?

We were able to establish manually that some of the
patterns that we have automatically mined are frag-
ments of ODPs proposed in literature. We have de-

18 /

tected fragments of ODPs for CLO, OBI (the ‘Assay’
pattern), and OOEVV, which were documented in the
Manchester ODP Catalog and in the Ontorat repos-
itory. Our algorithm did not mine fragments of the
‘Device’ pattern for OBI from Ontorat, nor the docu-
mented pattern for CCO. Nevertheless, we mined an-
other pattern for CCO (Table 5), which might represent
an emerging design pattern. We also did not mine the
BCGO pattern (adding new mouse strains with anno-
tations using IAO properties), however, we were able
to mine different patterns in the BCGO ontology.

Besides the exact parts of the proposed ODPs, we
also found two other types of constructs:

1. Frequent patterns that are more specific than
parts of the proposed ODP. The more specific
patterns are exemplified in Figure 14. The mined
patterns show examples of a ‘cell line cell’,
‘cell’, ‘anatomical structure’, ‘organism’, ‘dis-
ease’, ‘cell line repository’, and ‘cell line mod-
ification’, which are frequently appearing in the
CLO ontology. The patterns describe particular
types of cell line cells (e.g., immortal human
zone of skin-derived cell line cell), cells (e.g., B
cell), anatomical structures (e.g., zone of skin),
etc., or even a cell line repository (RIKEN cell
bank).

2. A drift or a novelty. We found that many class
frame patterns mined in the CLO ontology con-
tain a part that is not included in the original ODP
(’has quality at some time’ some ’male’, shown
in Figure 14).

We note that BioPortal hosts a relatively well–described
set of ontologies. The ontologies are documented ei-
ther in scientific publications, and/or on the webpages
of the projects that developed them. Thus, it allowed
us to identify the patterns used in the ontologies’ con-
struction, and then to check whether our algorithm can
mine the documented patterns. We also note that our
approach is generic and it can be applied in other do-
mains and with other datasets.

6.2. Supported pattern types

The authors of [5,13] distinguish six types of on-
tology design patterns: content, structural, correspon-
dence, reasoning, presentation, and lexico-syntactic.
Our method is suited to mine three of the six types of
patterns: content, some structural (logical) and some
correspondence (alignment) ODPs. However, our ap-

proach is not suited for discovering reasoning, presen-
tation and lexico-syntactic ODPs.

The content ODPs are the main target of our
method. We have shown in Section 5.4 that we can au-
tomatically mine a part of the ’Cell Line Cells’ con-
tent ODP. We have also mined frequent CFPs which
contain specific domain vocabulary (Table 5). We have
also shown that we can mine patterns that contain
mostly variables—corresponding to a subtype of struc-
tural ODPs, namely logical ODPs.

There are two types of correspondence ODPs: re-
engineering and alignment ODPs. Our method cannot
mine re-engineering patterns, which represent trans-
formation rules to create a new ontology from ele-
ments of a source model. However, our method can
mine some of the alignment ODPs, in particular, those
that express class equivalence and class subsumption.
Our method can detect if an ontology reuses parts
of another ontology, which comes from a different
namespace.

6.3. Possible reasons for pattern occurrence

Throughout the paper, we mentioned possible rea-
sons for which patterns occur in ontologies, summa-
rized as follows:

– Copying a fragment from an ontology — exem-
plified by the ‘curation status specification’ pat-
tern in Table 4. This case likely occurs when de-
velopers in a community reuse a generic ontology
part that acts like an ontology module.

– Repeating a substantial fragment of the class defi-
nition in the subclasses of the class —exemplified
by the pattern found in the subclasses of ‘scalp
recorded ERP component’ class from the NEMO
ontology (Table 8 of the Appendix). This case
likely occurs because of implicit or explicit pat-
terns that occur in the development of specific
ontologies. In some cases, such patterns are en-
forced by the user interface, e.g., through the use
of templates [36].

– Reusing documented and recommended ontology
design patterns — exemplified by the mined frag-
ments of ‘Assay’ ODP (Table 5). This case likely
occurs because ontology developers have made
an explicit effort to either (1) reuse an existing
ODP, or (2) document after-the-fact a useful ODP
that emerged from their development in a scien-
tific publication or in an ontology repository.

/ 19

6.4. Possible uses

We envision several uses of the methods and find-
ings in this paper. First, our approach can be used
to extract frequent fragments (APNV) from sets of
ontologies—like the one shown in Table 4. These frag-
ments may form generic reusable modules that might
benefit the development of other ontologies. Second,
ontology authors may run the mining algorithm to dis-
cover implicit patterns in ontologies that are developed
collaboratively, and potentially adopt some of these
patterns as recommended practices. Third, the mined
patterns may be inspected manually, and then submit-
ted to one of the online pattern repositories to enable
their reuse. And fourth, the mined patterns can be used
to create custom user interfaces—for example, in the
form of templates—to enable their easier authoring
and error checking. For instance, a custom user inter-
face may allow only the entry of constructs that are
conforming to the pattern definition, and thus, possi-
bly, reducing authoring errors.

6.5. Our approach versus RIO

The RIO method developed by Mikroyannidi et
al. [22,23] computes clusters of ontology entities.
Then, for each cluster, it computes a set of axiom gen-
eralizations. Each generalization has an associated set
of one or more matching axioms, which contain an en-
tity from the cluster. A cluster aggregates axiom gen-
eralizations, which describe similar usages of subsets
of clustered entities in the axioms. In contrast to our
approach, generalizations within one cluster may in-
volve largely disjoint sets of clustered entities. An en-
tity may also appear in an axiom in various positions,
both on the left-hand side and the right-hand side of
the axiom.

We use the VIVO ontology to exemplify the differ-
ences between our approach and RIO’s. One of the
clusters generated by RIO for the VIVO ontology gath-
ers 9 entities. Five of these entities also match our class
frame pattern (CFP) shown in Table 5. The RIO clus-
ter is described by 43 axiom generalizations, which
also include 2 axiom generalizations that correspond to
the axiom patterns that we mined as a CFP for VIVO.
However, the axiom generalizations in RIO only char-
acterize subsets of the entities. Without further anal-
ysis, it is impossible to know what is the overlap be-
tween the generalizations. In this particular cluster,
most axiom generalizations (more than a half of them
– 22) cover only single axioms. One of the axiom gen-

eralizations from this cluster is ”?Event SubClassOf
?cluster10”, which matches 10 axioms. However, all
of the axioms match the same single entity from the
cluster, namely Event, which appears on the right-
hand side of each of these axioms. We conclude that
the axiom generalizations computed by RIO cannot be
combined together to form a description of the shared
attributes of all the entities from a cluster in the way
that our class frame patterns can describe a set of
classes forming emerging design patterns.

6.6. Limitations

Our approach has several limitations. One limita-
tion is that we can only discover patterns occurring
in the ontology itself. That is, we can only discover
what is frequently expressed through ontology axioms.
Please note that not everything, which is expressed vi-
sually in the ODPs from literature (e.g., using UML),
can be represented with the types of OWL axioms that
we consider in our approach. The reason is that these
OWL axioms have a tree–shaped, and variable–free
form. As a consequence, our mined class–frame pat-
terns also have a tree–shaped form. In addition, it is
important to notice that the ODPs proposed in the lit-
erature are just a recommendation, and the actual on-
tology modeling may not entirely conform to the rec-
ommended patterns.

Another limitation is also related to the tree–shaped
form of the OWL axioms, and the effect of our two–
step mining process of the class frame patterns. We
mine class frames on top of the already discovered
frequent axiom patterns. It might be the case that the
variables appearing in a class frame pattern (as part
of different axiom patterns) refer to the same entity.
However, we cannot say currently whether this is the
case. We can also not mine cyclic patterns. The moti-
vation for our two-step method is to make the mining
of class frames computationally feasible. Without this
constraint, the search space for data mining algorithms
becomes prohibitively large.

Although we are able to detect (emerging) design
patterns automatically, our method cannot confirm
whether a mined pattern is indeed a fragment of an
ODP, and this needs to be confirmed manually.

7. Conclusions

In this paper, we described a two-step approach for
automatically detecting axiom patterns in ontologies.

20 /

Our approach is able to detect three different types
of patterns: axiom patterns with variables, axiom pat-
terns without variables (a.k.a, ontology fragments),
and class frame patterns. We described the two meth-
ods used in our approach: (1) a tree mining method for
discovering frequently recurring ontology axiom pat-
terns; and (2) an association analysis method to dis-
cover frequent class frame patterns. We conducted an
experimental analysis on a corpus of 331 BioPortal
ontologies, and found that all ontologies in the cor-
pus contain at least one of the three types of patterns.
We also extracted ‘emerging’ design patterns (frequent
class frame patterns) from the ontology corpus. We
could confirm manually that some of these patterns are
fragments of ODPs documented in the literature. Our
approach is generic, and can be applied to ontologies
from any domain.

As future work, we would like to explore applica-
tion scenarios that would benefit from some form of
inference, for which we would extend our approach to
take such inference into account. We would also like
to further apply and test our methods on other ontol-
ogy repositories. We envisage that our data–driven ap-
proach for identifying ontology patterns will help ex-
pose emerging design patterns and potential ontology
modules, and it will ultimately lead to a better reuse
across ontologies in all domains.

Acknowledgements. This work was partially supported by the
PARENT-BRIDGE program of Foundation for Polish Science,
co-financed from European Union, Regional Development Fund
(Grant No POMOST/2013-7/8). Agnieszka Ławrynowicz acknowl-
edges the support from the National Science Center (Grant No
2014/13/D/ST6/02076). This work is also supported in part by grants
GM086587 and GM103316 from the US National Institutes of
Health.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms
for mining association rules in large databases. In VLDB’94,
Proceedings of 20th International Conference on Very Large
Data Bases, September 12-15, 1994, Santiago de Chile, Chile,
pages 487–499, 1994.

[2] Erick Antezana, Mikel E Aranguren, Ward Blondé, Aitzol Il-
larramendi, Iñaki Bilbao, Bernard De Baets, Robert Stevens,
Vladimir Mironov, and Martin Kuiper. The Cell Cycle On-
tology: an application ontology for the representation and in-
tegrated analysis of the cell cycle process. Genome Biology,
10(5), 2009.

[3] Mikel E Aranguren, Erick Antezana, Martin Kuiper, and
Robert Stevens. Ontology design patterns for bio-ontologies: a
case study on the Cell Cycle Ontology. BMC Bioinformatics,
9(5), 2008.

[4] Eva Blomqvist, Pascal Hitzler, Krzysztof Janowicz, Adila
Krisnadhi, Tom Narock, and Monika Solanki. Considerations
regarding ontology design patterns. Semantic Web, 7(1):1–7,
2016.

[5] Eva Blomqvist and Kurt Sandkuhl. Patterns in ontology en-
gineering: Classification of ontology patterns. In ICEIS 2005,
Proceedings of the Seventh International Conference on En-
terprise Information Systems, Miami, USA, May 25-28, 2005,
pages 413–416, 2005.

[6] Ryan R Brinkman, Mélanie Courtot, Dirk Derom, Jennifer M
Fostel, Yongqun He, Phillip Lord, James Malone, Helen
Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Rut-
tenberg, Susanna-Assunta Sansone, Larisa N Soldatova, Jr.
Stoeckert, Christian J, Jessica A Turner, and Jie Zheng. Mod-
eling biomedical experimental processes with OBI. Journal of
Biomedical Semantics, 1(Suppl 1), 2010.

[7] Gully A. P. C. Burns and Jessica A. Turner. Modeling func-
tional magnetic resonance imaging (fMRI) experimental vari-
ables in the ontology of experimental variables and values (Oo-
EVV). NeuroImage, 82:662–670, 2013.

[8] Melanie Courtot, Frank Gibson, Allyson L. Lister, James Mal-
one, Daniel Schober, Ryan R. Brinkman, and Alan Ruttenberg.
MIREOT: the minimum information to reference an external
ontology term. Applied Ontology, 6(1):23–33, 2011.

[9] María del Carmen Suárez-Figueroa, Asunción Gómez-Pérez,
and Mariano Fernández-López. The NeOn Methodology for
Ontology Engineering. In Ontology Engineering in a Net-
worked World, pages 9–34. 2012.

[10] Nick Drummond, Alan L. Rector, Robert Stevens, Georgina
Moulton, Matthew Horridge, Hai Wang, and Julian Seiden-
berg. Putting OWL in order: Patterns for sequences in OWL.
In Proceedings of the OWLED*06 Workshop on OWL: Experi-
ences and Directions, Athens, Georgia, USA, November 10-11,
2006, 2006.

[11] Mikel Egana, Alan Rector, Robert Stevens, and Erick An-
tezana. Applying ontology design patterns in bio-ontologies.
In Aldo Gangemi and Jérôme Euzenat, editors, Knowledge
Engineering: Practice and Patterns, volume 5268 of Lecture
Notes in Computer Science, pages 7–16. Springer Berlin Hei-
delberg, 2008.

[12] Aldo Gangemi. Ontology design patterns for semantic web
content. In The Semantic Web - ISWC 2005, 4th Interna-
tional Semantic Web Conference, ISWC 2005, Galway, Ireland,
November 6-10, 2005, Proceedings, pages 262–276, 2005.

[13] Aldo Gangemi and Valentina Presutti. Ontology design pat-
terns. In Handbook on Ontologies, pages 221–243. 2009.

[14] Peter Haase, Holger Lewen, Rudi Studer, Duc Thanh Tran,
Michael Erdmann, Mathieu d’Aquin, and Enrico Motta. The
NeOn ontology engineering toolkit. In WWW 2008 Developers
Track, April 2008.

[15] Matthew Horridge and Sean Bechhofer. The OWL API: A Java
API for OWL ontologies. Semant. web, 2(1):11–21, January
2011.

[16] Matthew Horridge and Peter Patel-Schneider. OWL
2 Web Ontology Language Manchester syntax (sec-
ond edition). W3C note, W3C, December 2012.
http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-
20121211/.

[17] Matthew Horridge, Tania Tudorache, Jennifer Vendetti,
Csongor I. Nyulas, Mark A. Musen, and Natalya F. Noy. Sim-
plified OWL ontology editing for the web: Is WebProtégé

/ 21

enough? In Harith Alani, Lalana Kagal, Achille Fokoue, Paul
Groth, Chris Biemann, Josiane Xavier Parreira, Lora Aroyo,
Natasha Noy, Chris Welty, and Krzysztof Janowicz, editors,
The Semantic Web – ISWC 2013, volume 8218 of Lecture Notes
in Computer Science, pages 200–215. Springer Berlin Heidel-
berg, 2013.

[18] Muhammad Tahir Khan and Eva Blomqvist. Ontology Design
Pattern Detection - Initial Method and Usage Scenarios. In
Proceedings of the 4th International Conference on Advances
in Semantic Processing, SEMAPRO, pages 19 – 24, Florence,
Italy, 2010.

[19] Holger Knublauch, Matthew Horridge, Mark A. Musen,
Alan L. Rector, Robert Stevens, Nick Drummond, Phillip W.
Lord, Natalya Fridman Noy, Julian Seidenberg, and Hai
Wang. The Protégé OWL experience. In Proceedings of the
OWLED*05 Workshop on OWL: Experiences and Directions,
Galway, Ireland, November 11-12, 2005, 2005.

[20] Agnieszka Lawrynowicz and Jedrzej Potoniec. Fr-ONT: An
algorithm for frequent concept mining with formal ontologies.
In Foundations of Intelligent Systems - 19th International Sym-
posium, ISMIS 2011, Warsaw, Poland, June 28-30, 2011. Pro-
ceedings, pages 428–437, 2011.

[21] Yu Lin, Zuoshuang Xiang, and Yongqun He. Towards a se-
mantic web application: Ontology-driven ortholog clustering
analysis. In Proceedings of the 2nd International Conference
on Biomedical Ontology, Buffalo, NY, USA, July 26-30, 2011,
2011.

[22] Eleni Mikroyannidi, Luigi Iannone, Robert Stevens, and
Alan L. Rector. Inspecting regularities in ontology design us-
ing clustering. In The Semantic Web - ISWC 2011 - 10th Inter-
national Semantic Web Conference, Bonn, Germany, October
23-27, 2011, Proceedings, Part I, pages 438–453, 2011.

[23] Eleni Mikroyannidi, Robert Stevens, Luigi Iannone, and
Alan L. Rector. Analysing syntactic regularities and irregular-
ities in SNOMED-CT. J. Biomedical Semantics, 3:8, 2012.

[24] Jonathan Mortensen, Matthew Horridge, Mark A. Musen, and
Natalya Fridman Noy. Modest use of ontology design patterns
in a repository of biomedical ontologies. In Proceedings of the
3rd Workshop on Ontology Patterns, Boston, USA, November
12, 2012, 2012.

[25] Christopher J Mungall, Carlo Torniai, Georgios V Gkoutos,
Suzanna E Lewis, and Melissa A Haendel. Uberon, an integra-
tive multi-species anatomy ontology. Genome Biology, 13(1),
2012.

[26] Darren A. Natale, Cecilia N. Arighi, Judith A. Blake, Carol J.
Bult, Karen R. Christie, Julie Cowart, Peter D’Eustachio,
Alexander D. Diehl, Harold J. Drabkin, Olivia Helfer,
Hongzhan Huang, Anna Maria Masci, Jia Ren, Natalia V.
Roberts, Karen Ross, Alan Ruttenberg, Veronica Shamovsky,
Barry Smith, Meher Shruti Yerramalla, Jian Zhang, Aisha Al-
Janahi, Irem Celen, Cynthia Gan, Mengxi Lv, Emily Schuster-
Lezell, and Cathy H. Wu. Protein ontology: a controlled struc-
tured network of protein entities. Nucleic Acids Research,
42(Database-Issue):415–421, 2014.

[27] Pance Panov, Larisa Soldatova, and Saso Dzeroski. Ontology
of core data mining entities. Data Mining and Knowledge Dis-
covery, 28(5-6):1222–1265, 2014.

[28] Bijan Parsia, Sebastian Rudolph, Markus Krötzsch, Peter
Patel-Schneider, and Pascal Hitzler. OWL 2 web ontology lan-
guage primer (second edition). Technical report, W3C, De-
cember 2012. http://www.w3.org/TR/2012/REC-owl2-primer-

20121211/.
[29] Valentina Presutti, Eva Blomqvist, Enrico Daga, and Aldo

Gangemi. Pattern-Based Ontology Design. In Ontology Engi-
neering in a Networked World, pages 35–64. 2012.

[30] Alan L. Rector, Jeremy Rogers, Pieter E. Zanstra, and Egbert J.
van der Haring. OpenGALEN: Open source medical termi-
nology and tools. In AMIA 2003, American Medical Infor-
matics Association Annual Symposium, Washington, DC, USA,
November 8-12, 2003, 2003.

[31] Sirarat Sarntivijai, Yu Lin, Zuoshuang Xiang, Terrence F Mee-
han, Alexander D Diehl, Uma D Vempati, Stephan C Schürer,
Chao Pang, James Malone, Helen Parkinson, Yue Liu, Terue
Takatsuki, Kaoru Saijo, Hiroshi Masuya, Yukio Nakamura,
Matthew H Brush, Melissa A Haendel, Jie Zheng, Christian J
Stoeckert, Bjoern Peters, Christopher J Mungall, Thomas E
Carey, David J States, Brian D Athey, and Yongqun He. CLO:
The cell line ontology. Journal of Biomedical Semantics, 5(1),
2014.

[32] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan
Bard, William Bug, Werner Ceusters, Louis J Goldberg,
Karen Eilbeck, Amelia Ireland, Christopher J Mungall, et al.
The OBO Foundry: coordinated evolution of ontologies to
support biomedical data integration. Nature biotechnology,
25(11):1251–1255, 2007.

[33] Heiner Stuckenschmidt, Christine Parent, and Stefano Spac-
capietra, editors. Modular Ontologies: Concepts, Theories and
Techniques for Knowledge Modularization, volume 5445 of
Lecture Notes in Computer Science. Springer, 2009.

[34] Christoph Tempich and Raphael Volz. Towards a benchmark
for semantic web reasoners - an analysis of the DAML ontol-
ogy library. In EON2003, Evaluation of Ontology-based Tools,
Proceedings of the 2nd International Workshop on Evaluation
of Ontology-based Tools held at the 2nd International Seman-
tic Web Conference ISWC 2003, 20th October 2003 (Workshop
day), Sundial Resort, Sanibel Island, Florida, USA, 2003.

[35] Christer Thörn, Orjan Eriksson, Eva Blomqvist, and Kurt
Sandkuhl. Potentials and limits of graph-algorithms for dis-
covering ontology patterns. In 2005 International Confer-
ence on Computational Intelligence for Modelling Control and
Automation (CIMCA 2005), International Conference on In-
telligent Agents, Web Technologies and Internet Commerce
(IAWTIC 2005), 28-30 November 2005, Vienna, Austria, pages
174–179, 2005.

[36] Tania Tudorache, Sean M. Falconer, Csongor Nyulas, Na-
talya Fridman Noy, and Mark A. Musen. Will semantic web
technologies work for the development of icd-11? In The Se-
mantic Web - ISWC 2010 - 9th International Semantic Web
Conference, ISWC 2010, Shanghai, China, November 7-11,
2010, Revised Selected Papers, Part II, pages 257–272, 2010.

[37] Ondřej Šváb Zamazal, François Scharffe, and Vojtech Svátek.
Preliminary results of logical ontology pattern detection using
SPARQL and lexical heuristics. In Proceedings of the 2009
International Conference on Ontology Patterns - Volume 516,
WOP’09, pages 139–146, Aachen, Germany, Germany, 2009.
CEUR-WS.org.

[38] Ondřej Šváb Zamazal and Vojtěch Svátek. Analysing ontolog-
ical structures through name pattern tracking. In Proceedings
of the 16th International Conference on Knowledge Engineer-
ing: Practice and Patterns, EKAW ’08, pages 213–228, Berlin,
Heidelberg, 2008. Springer-Verlag.

22 /

[39] Taowei David Wang, Bijan Parsia, and James A. Hendler. A
survey of the web ontology landscape. In ISWC, pages 682–
694, 2006.

[40] Patricia L. Whetzel, Natalya F. Noy, Nigam H. Shah, Paul R.
Alexander, Csongor Nyulas, Tania Tudorache, and Mark A.
Musen. BioPortal: enhanced functionality via new web ser-
vices from the national center for biomedical ontology to ac-
cess and use ontologies in software applications. Nucleic Acids
Research, 39(suppl 2):W541–W545, 2011.

[41] Zuoshuang Xiang, Jie Zheng, Yu Lin, and Yongqun He. On-
torat: automatic generation of new ontology terms, annota-
tions, and axioms based on ontology design patterns. J.
Biomedical Semantics, 6:4, 2015.

[42] Mohammed J. Zaki. Efficiently mining frequent embedded
unordered trees. Fundamenta Informaticae, 66(1-2):33–52,
Mar/Apr 2005. special issue on Advances in Mining Graphs,
Trees and Sequences.

[43] Mohammed J. Zaki. Efficiently mining frequent trees in
a forest: Algorithms and applications. IEEE Transactions
on Knowledge and Data Engineering, 17(8):1021–1035, Aug
2005. special issue on Mining Biological Data.

Appendix

/ 23

Table 6
The largest patterns from a subset of most visited ontologies in BioPortal.

Ontology Pattern Size

AERO ?lhs EquivalentTo: ((’has component’ min ?card ?classexpr) and (’has component’ max 1 ?classexpr)
and (’has component’ max 1 ?classexpr) and (’has component’ max 1 ?classexpr))

13

OBI ?lhs EquivalentTo: ((’has_specified_output’ some ((’is about’ some ?classexpr) and ?classexpr)) and
(’has_specified_input’ some ?classexpr) and (’has part’ some ?classexpr))

11

ORDO ?lhs SubClassOf: ((’has_birth_prevalence_average_value’ value ?literal) and (’present_in’ some
?classexpr) and (’has_prevalence_at_birth_range’ some ’1-9 / 100 000’))

9

ORDO ?lhs SubClassOf: ((’has_point_prevalence_average_value’ value ?literal) and (’present_in’ some
?classexpr) and (’has_point_prevalence_range’ some ’1-9 / 100 000’))

9

NCIT ?lhs EquivalentTo: ((?objprop1 some ?classexpr1) and (?objprop2 some ?classexpr2) and
(?objprop3 some ?classexpr3))

5

PR ?lhs EquivalentTo: ((’only_in_taxon’ some ’Escherichia coli K-12’) and ?classexpr) 5
PR ?lhs EquivalentTo: ((’only_in_taxon’ some ’Homo sapiens’) and ?classexpr) 5
PATO ?lhs EquivalentTo: ((’decreased_in_magnitude_relative_to’ some ’normal’) and ?classexpr) 5
PATO ?lhs EquivalentTo: ((’increased_in_magnitude_relative_to’ some ’normal’) and ?classexpr) 5
UBERON ?lhs EquivalentTo: ((’part_of’ some ?classexpr) and ?classexpr) 4
ZFA ?lhs SubClassOf: (’end stage’ some ’Adult’) 4
ZFA ?lhs SubClassOf: (’end stage’ some ’Hatching:Pec-fin’) 4
ZFA ?lhs SubClassOf: (’end stage’ some ’Unknown’) 4
ZFA ?lhs SubClassOf: (’start stage’ some ’Pharyngula:Prim-5’) 4
ZFA ?lhs SubClassOf: (’start stage’ some ’Segmentation:10-13 somites’) 4
ZFA ?lhs SubClassOf: (’start stage’ some ’Unknown’) 4
GO ?lhs SubClassOf: (’negatively regulates’ some ?classexpr) 3
GO ?lhs SubClassOf: (’positively regulates’some ?classexpr) 3
GO ?lhs SubClassOf: (’part of’ some ?classexpr) 3
GO ?lhs SubClassOf: (’regulates’ some ?classexpr) 3
EDAM ?lhs SubClassOf: (’is identifier of’ some ?classexpr) 3
EDAM ?lhs SubClassOf: (’has output’ some ?classexpr) 3
EDAM ?lhs SubClassOf: (’has topic’ some ?classexpr) 3
EDAM ?lhs SubClassOf: (’is format of’ some ?classexpr) 3
EDAM ?lhs SubClassOf: (’has input’ some ?classexpr) 3
NIFSUBCELL ?lhs SubClassOf: (’proper_part_of’ some ?classexpr) 3

24 /

0

20

40

60

80

100

120 Number

Al
l_O

rg
an

is
m

s
(1

7)
An

at
om

y
(4

1)
An

im
al

_D
ev

el
op

m
en

t (
4)

An
im

al
_G

ro
ss

_A
na

to
m

y
(1

8)
Ar

ab
ad

op
si

s
(2

)
Bi

ol
og

ic
al

_P
ro

ce
ss

 (3
2)

Bi
om

ed
ic

al
_R

es
ou

rc
es

 (3
3)

Ce
ll

(1
1)

Ce
llu

la
r_

an
at

om
y_

 (4
)

Ch
em

ic
al

 (1
7)

De
ve

lo
pm

en
t (

13
)

Dy
sf

un
ct

io
n

(8
)

Ex
pe

rim
en

ta
l_C

on
di

tio
ns

 (2
1)

Fi
sh

_A
na

to
m

y
(6

)
Ge

ne
_P

ro
du

ct
 (8

)
Ge

no
m

ic
_a

nd
_P

ro
te

om
ic

 (1
6)

Gr
os

s_
An

at
om

y
(2

2)
He

al
th

 (8
6)

Hu
m

an
 (4

6)
Hu

m
an

_D
ev

el
op

m
en

ta
l_A

na
to

m
y

(4
)

Im
ag

in
g

(1
2)

Im
m

un
ol

og
y

(4
)

M
ic

ro
bi

al
_A

na
to

m
y

(4
)

M
ol

ec
ul

e
(1

3)
M

ou
se

_A
na

to
m

y
(6

)
Ne

ur
ol

og
ic

_D
is

ea
se

 (8
)

Ne
ur

ol
og

ic
al

_D
is

or
de

r (
9)

Ot
he

r (
45

)
Ph

en
ot

yp
e

(3
5)

Ph
ys

ic
oc

he
m

ic
al

 (6
)

Pl
an

t (
13

)
Pl

an
t_

An
at

om
y

(5
)

Pl
an

t_
De

ve
lo

pm
en

t (
4)

Pr
ot

ei
n

(1
2)

Su
bc

el
lu

la
r (

7)
Su

bc
el

lu
la

r_
an

at
om

y
(3

)
Ta

xo
no

m
ic

_C
la

ss
ifi

ca
tio

n
(1

4)
Up

pe
r_

Le
ve

l_O
nt

ol
og

y
(4

)
Vo

ca
bu

la
rie

s
(2

7)
Ye

as
t (

2)

0

2

4

6

8

10

12

14 Depth

Fig. 15. Statistics for patterns discovered in various categories of ontologies with respect to the number of ontologies in a given topical category
and ontology depth.

/ 25

100

101

102

103

104

105

106 Support (log)

Al
l_O

rg
an

is
m

s
(1

7)
An

at
om

y
(4

1)
An

im
al

_D
ev

el
op

m
en

t (
4)

An
im

al
_G

ro
ss

_A
na

to
m

y
(1

8)
Ar

ab
ad

op
si

s
(2

)
Bi

ol
og

ic
al

_P
ro

ce
ss

 (3
2)

Bi
om

ed
ic

al
_R

es
ou

rc
es

 (3
3)

Ce
ll

(1
1)

Ce
llu

la
r_

an
at

om
y_

 (4
)

Ch
em

ic
al

 (1
7)

De
ve

lo
pm

en
t (

13
)

Dy
sf

un
ct

io
n

(8
)

Ex
pe

rim
en

ta
l_C

on
di

tio
ns

 (2
1)

Fi
sh

_A
na

to
m

y
(6

)
Ge

ne
_P

ro
du

ct
 (8

)
Ge

no
m

ic
_a

nd
_P

ro
te

om
ic

 (1
6)

Gr
os

s_
An

at
om

y
(2

2)
He

al
th

 (8
6)

Hu
m

an
 (4

6)
Hu

m
an

_D
ev

el
op

m
en

ta
l_A

na
to

m
y

(4
)

Im
ag

in
g

(1
2)

Im
m

un
ol

og
y

(4
)

M
ic

ro
bi

al
_A

na
to

m
y

(4
)

M
ol

ec
ul

e
(1

3)
M

ou
se

_A
na

to
m

y
(6

)
Ne

ur
ol

og
ic

_D
is

ea
se

 (8
)

Ne
ur

ol
og

ic
al

_D
is

or
de

r (
9)

Ot
he

r (
45

)
Ph

en
ot

yp
e

(3
5)

Ph
ys

ic
oc

he
m

ic
al

 (6
)

Pl
an

t (
13

)
Pl

an
t_

An
at

om
y

(5
)

Pl
an

t_
De

ve
lo

pm
en

t (
4)

Pr
ot

ei
n

(1
2)

Su
bc

el
lu

la
r (

7)
Su

bc
el

lu
la

r_
an

at
om

y
(3

)
Ta

xo
no

m
ic

_C
la

ss
ifi

ca
tio

n
(1

4)
Up

pe
r_

Le
ve

l_O
nt

ol
og

y
(4

)
Vo

ca
bu

la
rie

s
(2

7)
Ye

as
t (

2)

0

5

10

15

20

25

30

35

40

45 Size

Fig. 16. Statistics for patterns discovered in various categories of ontologies with respect to the support and size of ontologies in a given category.

26 /

Table 7
The patterns with the highest support from a subset of most visited ontologies in BioPortal.

Ontology Pattern σF

PR ?lhs SubClassOf: (’only_in_taxon’ some ’Homo sapiens’) 37854
ORDO ?lhs SubClassOf: (’part_of’ some ?classexpr) 12519
NCIT ?lhs SubClassOf: (’Chemotherapy_Regimen_Has_Component’ some ?classexpr) 10817
UBERON ?lhs SubClassOf: (’part of’ some ?classexpr) 10716
GO ?lhs SubClassOf: (’part of’ some ?classexpr) 6762
ZFA ?lhs SubClassOf: (’end stage’ some ’Adult’) 2131
MA ?lhs SubClassOf: (’part of’ some ?classexpr) 1975
GALEN galen:NAMEDActiveDrugIngredient SubClassOf: ?classexpr 1492
EDAM oboInOwl:ObsoleteClass SubClassOf: ?classexpr 904
RADLEX <http://www.owl-ontologies.com/Ontology1415135201.owl#RID29023> SubClas-

sOf: ?classexpr
712

OBI ?lhs SubClassOf: (’is quality measured as’ some ?classexpr) 266
NIFCELL ’Neuron’ SubClassOf: ?classexpr 206
PATO ?lhs EquivalentTo: ((’increased_in_magnitude_relative_to’ some ’normal’) and ?classexpr) 100
AERO ’clinical finding’ SubClassOf: ?classexpr 50
NIFDYS ’Nervous system disease’ SubClassOf: ?classexpr 17
NIFSUBCELL ’Cellular Inclusion’ SubClassOf: ?classexpr 16

Table 8
One of the two the longest patterns discovered in a single ontology. Both longest patterns were discovered in the NEMO ontology, and have a
size of 43. The presented pattern has support 27 and depth 13. The other longest pattern is nearly identical to the presented one.

?lhs equivalentTo: ((?op some ?classexpr1) and ((’proper_part_of’ some ((’is about’ some ((’occurs_in_response_to’ some ((’has_object’
some ((’has_role’ some ’stimulus_role’) and ?classexpr2)) and ’onset_stimulus_presentation’)) and ’scalp_recorded_ERP’)) and ’av-
eraged_EEG_data_set’)) and (’has_proper_part’ some ((’is_quality_measurement_of’ some ((’inheres_in’ some ((’unfolds_in’ some
?classexpr3) and ’scalp_recorded_ERP’)) and ’intensity’)) and (’has_numeric_value’ some xsd:decimal[>= "−.4"^^xsd:decimal])
and ’intensity_measurement_datum’))) and ’scalp_recorded_ERP_component’)

Table 9
Frequency statistics for namespaces corresponding to upper-level and cross-domain ontologies. The second column is the number of times a
given namespace occurred in all patterns (multiple occurrences in a single pattern are possible). The third column shows the number of patterns
containing the namespace. The fourth column shows the number of ontologies that contain at least one of these patterns.

Namespace Overall frequency Number of patterns Number of ontologies

http://purl.obolibrary.org/obo/ 3006 2589 149
http://www.obofoundry.org/ro/ro.owl# 85 73 19
http://www.ifomis.org/bfo/1.1/snap# 37 37 15
http://www.ifomis.org/bfo/1.1/span# 14 14 8
http://www.ifomis.org/bfo/1.1# 2 2 2
http://purl.obolibrary.org/obo/bspo# 41 29 1
http://purl.obolibrary.org/obo/CARO# 1 1 1

/ 27

Table 10
Selected top patterns discovered on the set of BioPortal ontologies, sorted by descending size and support σF

Size σF Fragment (URIs and labels) Ontologies

12 14 obo:IAO_0000078 EquivalentTo {obo:IAO_0000124, obo:IAO_0000423,
obo:IAO_0000125, obo:IAO_0000122, obo:IAO_0000123,
obo:IAO_0000428, obo:IAO_0000120, obo:IAO_0000121,
obo:IAO_0000002}

BCO, ERO, IAO,
OBCS, OBI_BCGO,
OBIB, OBI, OBIWS,
ODNAE, OGSF,
OPL, PCO, SDO,
STATO

’curation status specification’ EquivalentTo {’uncurated’, ’to be replaced with external ontol-
ogy term’, ’pending final vetting’, ’ready for release’, ’metadata incomplete’, ’requires discus-
sion’, ’metadata complete’, ’organizational term’, ’example to be eventually removed’}

9 4 obo:OBI_0600047 SubClassOf obo:OBI_0000293 some ((obo:CHEBI_16991 or
obo:CHEBI_33697 or obo:PR_000000001) and ?classexpr)

BCO, OBI_BCGO,
OBI, STATO

’sequencing assay’ SubClassOf ’has_specified_input’ some ((’deoxyribonucleic acid’ or ’ri-
bonucleic acid’ or ’protein’) and ?classexpr)

8 9 obo:IAO_0000225 EquivalentTo {obo:IAO_0000227, obo:IAO_0000228,
obo:IAO_0000226, obo:IAO_0000103, obo:IAO_0000229}

BCO, ERO, IAO,
OBCS, OBIB, OBI,
OPL, PCO, SDO’obsolescence reason specification’ EquivalentTo {’terms merged’, ’term imported’, ’place-

holder removed’, ’failed exploratory term’, ’term split’}

8 9 span:ProcessualEntity EquivalentTo {span:Process or
span:FiatProcessPart or span:ProcessAggregate or
span:ProcessBoundary or span:ProcessualContext or
span:ProcessualEntity}

ADAR, ADO,
BFO, CAO,
ERO, HUPSON,
OPL, PCO, SDO

’processual_entity’ EquivalentTo ’process’ or ’fiat_process_part’ or ’process_aggregate’ or
’process_boundary’ or ’processual_context’ or ’processual_entity’

8 5 obo:IAO_0000007 SubClassOf BFO_0000051 only (not (obo:IAO_0000005 or
obo:IAO_0000104))

BCO, OBCS,
OBI_BCGO, OBIB,
STATO’action specification’ SubClassOf ’has part’ only (not (’objective specification’ or ’plan

specification’))

8 4 obo:OBI_0666667 SubClassOf obo:OBI_0000293 some (obo:OBI_0100026 or
obo:OBI_0100060 or obo:OBI_0000671)

OBI_BCGO, OBIB,
OBI, STATO

’nucleic acid extraction’ SubClassOf ’has_specified_input’ some (’organism’ or ’cultured
cell population’ or ’sample from organism’)

7 9 snap:SpatialRegion EquivalentTo (snap:OneDimensionalRegion or
snap:ThreeDimensionalRegion or snap:TwoDimensionalRegion or
snap:ZeroDimensionalRegion)

ADAR, ADO,
BFO, CAO,
ERO, HUPSON,
OPL, PCO, SDO’spatial_region’ EquivalentTo (’one_dimensional_region’ or ’three_dimensional_region’ or

’two_dimensional_region’ or ’zero_dimensional_region’)

7 6 obo:OBI_0000659 EquivalentTo ((obo:OBI_0000417 some obo:OBI_0000684)
and obo:OBI_0000011)

BCO, OBCS,
OBI_BCGO, OBIB,
OBI, STATO’specimen collection process’ EquivalentTo ((’achieves_planned_objective’ some ’specimen

collection objective’) and ’planned process’)

7 6 obo:OBI_0100026 EquivalentTo (obo:NCBITaxon_10239 or
obo:NCBITaxon_2759 or obo:NCBITaxon_2 or obo:NCBITaxon_2157)

OBCS, OBI_BCGO,
OBIB, OBI, OBIWS,
STATO’organism’ EquivalentTo (’Viruses’ or ’Eukaryota’ or ’Bacteria’ or ’Archaea’)

7 5 obo:OBI_0000453 SubClassOf obo:BFO_0000054 only (obo:OBI_0000299
some obo:IAO_0000109)

OBCS, OBI_BCGO,
OBIB, OBI, STATO

’measure function’ SubClassOf ’realized in’ only (’ has_specified_output’ some ’measure-
ment datum’)

7 5 obo:OBI_0000973 SubClassOf (obo:IAO_0000136 some obo:SO_0000001 and
obo:IAO_0000109)

OBCS, OBI_BCGO,
OBI, OBIWS,
STATO’sequence data’ SubClassOf ((’is about’ some ’region’) and ’measurement datum’)

7 5 obo:OBI_0000047 EquivalentTo ((obo:OBI_0000312 some obo:OBI_0000094)
and obo:BFO_0000040)

OBCS, OBI_BCGO,
OBIB, OBI, STATO

’processed material’ EquivalentTo ((’is_specified_output_of’ some ’material processing’)
and ’material entity’)

7 4 obo:CL_0000151 EquivalentTo ((obo:RO_0002215 some obo:GO_0032940 and
obo:CL_0000003)

CL, OBI_BCGO,
TAO, VSAO

’secretory cell’ EquivalentTo ((’capable_of’ some ’material processing’) and ’native cell’)

7 4 obo:IAO_0000015 EquivalentTo (obo:BFO_0000059 some obo:IAO_0000030
and obo:BFO_0000019)

OBCS, OBI_BCGO,
OBIB, STATO

’information carrier’ EquivalentTo ((’concretizes’ some ’information content entity’) and
’quality’)

28 /

Table 11
Namespaces occurring in frequent patterns mined with minimal support 4.

Namespace Overall frequency Number of patterns

http://purl.obolibrary.org/obo/ 1,794,328 639,676
http://purl.obolibrary.org/obo/SSB# 1,555 1,555
http://edamontology.org/ 461 243
http://purl.bioontology.org/ontology/STY/ 262 131
http://www.ifomis.org/bfo/1.1/snap# 76 39
http://www.ifomis.org/bfo/1.1/span# 58 26
http://www.obofoundry.org/ro/ro.owl# 12 12
http://www.geneontology.org/formats/oboInOwl# 8 8
http://www.ifomis.org/bfo/1.1# 5 5
http://purl.org/obo/owl/GO# 4 3
http://purl.org/biotop/biotop.owl# 3 3
http://purl.org/obo/owl/PATO# 3 3
http://purl.obolibrary.org/obo/TEMP# 2 2
http://purl.obolibrary.org/obo/OBO_REL# 1 1
http://purl.org/obo/owl/OBO_REL# 1 1

