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Abstract. The Semantic Sensor Web community has extensively discussed the concept of ‘observation’, providing ontologies
for it. ‘Observation collection’, however, have been comparatively less examined. Monitoring spatial and temporal variations of
phenomena is a task which requires observation collections (not just single observations) for their completion. This paper presents
an ontological analysis of observation collections. The analysis helps to identify five essential parameters for the characterization
of observation collections in the Sensor Web, namely: collector, observable, members, spatial ordering, and temporal ordering.
Changes in one of these parameters lead necessarily to a new observation collection. The article presents also an Ontology
Design Pattern for observation collections which implements some of the ideas introduced in the analysis. The design pattern
distinguishes three main types of observation collections: time series, trajectories, and coverage.
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1. Introduction

Observations are central to empirical science, and
the Sensor Web community has provided detailed dis-
cussions of the concept (see for instance [14,15]).
These discussions relate observations to other ele-
ments involved in their generation such as the sensor,
the feature of interest (and its particular property ob-
served), the sampling feature and the stimulus. Despite
a great amount of work discussing observation in the
context of the Sensor Web, there are still few discus-
sions specifically focusing on observation collections1.
It is true, observation collections can be aggregated to
produce a single observation, but this paper argues that
observation collections are sufficiently distinct from
single observations to deserve their own treatment in

1The detailed discussion of time series observation in [32] is one
exception.

observation ontologies. At least three reasons suggest
this:

– Monitoring requires at least two observations: for
instance, many applications of sensor networks
in smart cities listed in [31] (e.g., monitoring of
energy distribution infrastructures, pipeline mon-
itoring, water level monitoring, air quality moni-
toring, health monitoring, room occupancy mon-
itoring) rely on collections of observations, not
single observations;

– Spacing, spatial extent, sampling intensity - terms
commonly used in scientific discourse (e.g., [20,
18]) - can only be understood when talking about
collections of observations, not single observa-
tions;

– Ferreira et al. [22] suggested three basic data
types (i.e., time series, trajectory, and coverage)
from which one can derive more complex data
types such as objects and events. All these three
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types refer to collections of observations, not sin-
gle observations.

Though the concept of observation collection is rel-
evant to many application scenarios in the Sensor Web,
it seems to have been ignored within the field. It is oc-
casionally mentioned (e.g., as ‘observation offering’ in
[11] or as ‘time series observations’ in [32]), but the
field still needs a better understanding of the concept
itself on the one hand, and its relationship to the cog-
nate concept of single observation on the other hand.

This article provides an ontological analysis of ob-
servation collections. An ontological analysis is de-
fined in this context after Guarino as “the process of
eliciting and discovering relevant distinctions and re-
lationships bound to the very nature of the entities in-
volved in a certain domain, for the practical purpose of
disambiguating terms having different interpretations
in different contexts” [27]. Wood and Galton’s clas-
sification criteria for collectives [52] is used to per-
form the analysis in Section 2. A taxonomy of obser-
vation collections is introduced in Section 3. Section
4 presents an ontology design pattern for observation
collections as well as illustrative examples of its use.
Section 5 presents related work and Section 6 con-
cludes the paper.

2. An analysis of observation collections

An observation collection is a collection of single
observations (or ‘observations’ for short). Observation
collections and observations are social objects in the
sense of the DOLCE Ultra Light (DUL) upper ontol-
ogy2. There is however one important difference be-
tween the two which relates to their process of gen-
eration: an observation is generated by observing the
physical reality3; an observation collection is produced
by gathering other social objects (i.e., observations). In
terms of DUL, an observation collection can be viewed
as a DUL:Configuration (‘A collection whose mem-
bers are organized according to a certain schema that
can be represented by a Description’) while an obser-
vation may be regarded as a DUL:Situation (‘A rela-
tional context created by an observer on the basis of a
Description’).

2http://www.ontologydesignpatterns.org/
ont/dul/DUL.owl (last accessed: March 22, 2016). A
DUL:SocialObject is an object that is created in the process of
social communication.

3This idea can be found in [14,36,35,38,47].

Wood and Galton [52] presented a review of exist-
ing ontologies (including DOLCE and the Basic For-
mal Ontology) for the representation of collectives4,
and proposed a taxonomy allowing the classification
of around 1800 distinct types of collectives. Adapting
their reflections to the specific case of collections of
observations leads to the following statements:

– An observation collection is a concrete particu-
lar, not a type, nor an abstract entity;

– An observation collection is a continuant, that is,
it is to be thought of as enduring over a period
of time, existing as a whole at each moment dur-
ing that period, and possibly undergoing various
types of change over that period;

– An observation collection has multiple observa-
tions (and only observations) as members. In line
with [51], the member-collection relationship is a
more specific kind of part-of relation. Winston et
al. [51] also point out that membership in a col-
lection is determined based on one of two factors:
spatial proximity or social connection. As regards
observation collections, membership in an obser-
vation collection is determined based on social
connection (not spatial proximity). Social con-
nection, called ‘coherence’ by Wood and Galton
[52] is discussed below.

The next subsections provide a more detailed anal-
ysis of observation collections using the five distin-
guishing features for collectives proposed in [52]:
membership, coherence, spatial location, roles, and
depth. The terminology used for the analysis is consis-
tent with the SSN ontology [14]. The analysis draws
on ideas from [17].

2.1. Membership

According to [52], collectives can have a constant
membership (i.e., same members throughout their life-
time) or a variable membership (i.e., different mem-
bers at different times), constant or variable cardinal-
ity, and a cardinality which may be reduced to one, or
not.

As regards membership, this work holds the view
that observation collections have a constant member-
ship, that is, they cannot contain different observations
at different times. The following example from [17]
presents the reason for this choice. Figure 1a depicts

4‘Collective’ from [52] is equivalent to ‘collection’ in this article.

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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the evolution of the temperature in a city during the
past three days, and suggests that ‘the temperature in
the city has been increasing over the last three days’.
In Figure 1b, a new observation (made say this morn-
ing) has become available, and is added to the previ-
ous three observations in the collection from Figure
1a. Figure 1b suggests a new trend for the temperature,
namely that ‘the temperature in the city has been in-
creasing over the past three days, but slightly decreas-
ing since this morning’.

The point of the example is that the addition of a sin-
gle observation to an observation collection potentially
leads to different assessments of a situation. A logical
consequence from this is that subtraction of a single
observation from an observation collection leads po-
tentially to different assessments of a situation. That
is, different observation collections are associated with
potentially different information contents. For that rea-
son, it is suggested that observation collections have
exactly the same members at any time. Addition of an
observation to (or subtraction of an observation from)
an existing observation collection produces new and
distinct observation collections.

Constant membership connotes constant cardinal-
ity, i.e., an observation collection has n members,
where n is a natural number. n must be greater than
one. An observation collection with only one observa-
tion is viewed in the current work as a single observa-
tion.

The standpoint on membership adopted here im-
plies that an entity is either a single observation or
an observation collection. It cannot be both. In addi-
tion, the previous paragraphs suggest that observation
collections are like mathematical sets because they are
identified through their members. However, and in line
with previous work (e.g., [5,10,28,52]), observation
collections are not seen as sets. The main difference
between the two lies in the fact that sets are abstract
entities, whereas collections are concrete entities. The
implications of this subsection for the Semantic Sensor
Web are as follows:

– I1: Two observation collections are identical if
and only if they have the same members;

– I1*: Two observation collections with different
size are not identical (I1* is a corollary of I1).

2.2. Coherence

According to [52], coherence refers to that in virtue
of which many observations taken together form an ob-

servation collection. Coherence is the reason why one
can regard an assemblage of observations as an obser-
vation collection. The coherence of an observation col-
lection lies in the fact that all observations belonging to
the collection are generated by observing the same ob-
served property. An observation collection is an exter-
nally caused collection because it results from the ac-
tion of a collector (i.e., someone who decides to group
different observations and form a whole out of them).
This implications of this subsection for knowledge rep-
resentation in the Semantic Sensor Web are twofold:

– I2: An observation collection in which (at least)
two observations are found to relate to different
observed properties is incoherent;

– I3: Since the collector is the one who decides
to group observations and generate a collection
based on them, there are multiple, and all equally
valid ways of generating observation collections
from a given set of observations {O1, O2, ..., On}.
In fact, k = 2n − n − 15 distinct observation col-
lections can be produced based on a given set of n
observations {O1, O2, ..., On}. [Do we then rep-
resent that original set?]

2.3. Spatial location

As [52] indicates, there are various possibilities re-
garding the characterization of the spatial location of
a collection. For example, the collection might be as-
signed a location (or not) and this location might be
fixed or variable. It is worth mentioning three points
regarding observations collections:

– an observation can have a spatial location, and
this location is fixed: the location of the observa-
tion is the location of the sensor6 which has pro-
duced that observation. A sensor cannot be at two
locations at the same time, therefore an observa-
tion always has a fixed (or unique) location. In
line with [4,6,7,13,25,26], spatial location is seen
as a relation between an entity (i.e., the observa-
tion) and a spatial region7.

5The number of all subsets of {O1, O2, ..., On} is 2n, from which
one needs to subtract the empty set (i.e., one element), and

(n
1

)
=n

subsets of size 1.
6This location might be georeferenced or not. Stasch et al. [47]

use the ability to produce an observation with georeferenced location
as a distinguishing criterion between sensors and geosensors. The
reason for modelling the location of an observation as the location
of the sensor was presented in [17].

7A ‘spatial region’ in this article is an identifiable portion of space,
and a ‘temporal region’ is an identifiable portion of time.
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Fig. 1. Temperature in a city - two examples of observation collections (from [17])

– an observation collection can be ascribed a spa-
tial location: this location is the spatial region oc-
cupied by the locations of each observation. This
spatial region is called ‘footprint’ (in line with
[23]), and methods for generating footprints for
sets of points were discussed in [23]8.

– an observation collection cannot move (i.e., change
its spatial location): this follows from the fact that
(i) observation collections always have the same
members, (ii) the location of these members is
fixed, and (iii) the location of the observation col-
lection is derived from the location of its mem-
bers.

There is one consequence of these features for
knowledge representation in the Semantic Sensor Web,
namely that:

– I4: Two distinct observation collections can have
the same location, but observation collections
with different locations are necessarily distinct.

2.4. Ordering and differentiation of roles

Ordering is important for observation collections
because different orderings of the same observations
lead potentially to different information contents for
the observation collection. Ordering is important for
all three types of observation collection. Consider for
example the observation collection mentioned in [22],
and obtained by gathering air pollution values pro-
duced by cars equipped with GPS devices and air pol-
lution sensors in a city. Different sequencings of air
pollution values entail different trends for air pollution
variation over time (time series); different sequencings

8[23] discussed also ‘extended footprints’, i.e., the case where one
would also like to represent the spatial region occupied by the points
themselves.

of car locations suggest different trends for car loca-
tion variation over time (trajectory); and different spa-
tial orderings (i.e., the associated locations to air pol-
lution values) imply different trends for air pollution
variation within the city limits.

The fact that spatial and temporal orderings matter
to observation collections entails that all members of
an observation collection do not play the same role.
In particular, there is always an observation that plays
the role of first, and an observation that plays the role
of next9. The choice of the first observation and the
next of another one might be straightforward or in-
volve some arbitrariness, depending on whether time
or space is used as ordering scheme. Using time as or-
dering scheme for a time-series, the first observation
is the one that was produced first, and the next obser-
vation is the subsequent one. Conversely, while com-
puting the total spacing of a coverage data type (a task
that necessitates spatial ordering), one can take any lo-
cation (of the irregularly spaced set of locations) as the
first, and the next location as the closest one in terms
of distance10.

With reference to [52], an observation collection is
a partitioned collection, because (i) the first observa-
tion plays the role of ‘leader’, and (ii) there is a further
differentiation of roles within the rest of the collection.
Consider for example an observation collection {O1,
O2, ..., On} where n is a natural number greater than
2. Adding an explicit ordering means that O1 is the
‘leader’ of {O2, ..., On}, O2 is the leader of {O3,...,
On}, and so on11.

9There is no need to explicitly define the last observation of a
collection: the last observation is the one that has no next.

10While looking for the closest location in terms of distance, fur-
ther arbitrariness creeps into when more than one location can play
the role of ‘next’.

11[17] suggested to view observation collections as a hierarchi-
cally differentiated collection. However, doing so will only allow an
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In summary, ordering (spatial or temporal) should
always be made explicit while representing observa-
tion collections in the Semantic Sensor Web. That is,

– I5: List is the suitable abstract data type for the
specification of observation collections.

2.5. Depth

The depth of a collection refers to the fact that mem-
bers of a collection can themselves be collections or
not. Since most entities can be viewed as collectives
at some level of granularity, [52] suggested to define
base-level entities (i.e., entities which are not them-
selves considered as collectives in a certain context)
in order to avoid an infinite regress. The viewpoint
adopted here is that observations are the base-level en-
tities of an observation collection. An observation can-
not have other entities as members. This standpoint is
consistent with the point of view presented in Section
2.1, namely that an entity is either an observation or
an observation collection. The depth of an observation
collection is therefore 1. Consequently,

– I6: It is not a good modelling practice to have
an observation modelled as having other observa-
tions as members (e.g., an observation as a sub-
class of DUL:Configuration).

2.6. Summary of this analysis

This section has offered an analysis of modelling
choices regarding observation collections. It comple-
ments previous treatments of observation ontologies
in the literature which dealt only with single observa-
tions. The main points presented are:

– observation collections are concrete particulars,
not types, nor abstract entities;

– the coherence of observation collections lies in
the fact that they are gatherings of observations of
the same observed property;

– observation collections should be modelled as
having constant membership to reflect the fact
that the addition (or subtraction) of one observa-
tion to an existing observation collection may sig-
nificantly affect the information content of the ex-
isting observation collection;

ordering between the first observation (i.e., O1), and the rest of the
collection (i.e., {O2, ..., On}), missing the fact that there is also a
need for an explicit ordering of the elements within {O2, ..., On}.

– observations are the base-level entities of ob-
servation collections and observation collections
have a fixed spatial location;

– spatial and temporal orderings matter to obser-
vation collections, and should therefore be docu-
mented explicitly.

The analysis has extracted five essential parameters
for the characterization of observation collections in
the Semantic Sensor Web, namely: collector, observed
property, members, spatial ordering, and temporal or-
dering. Changes in one of these parameters lead nec-
essarily to a new observation collection.

3. A taxonomy of observation collections

As mentioned in Section 1, Ferreira et al. [22] sug-
gested three basic data types from which one can de-
rive more complex data types: time series, trajectory,
and coverage. Following [22], a time series represents
the variation of a property over time at a fixed location;
a trajectory represents how locations or boundaries of
an object evolve over time; and a coverage represents
the variation of a property within a spatial extent at
a time12. These data types are three different types of
observation collections.

3.1. Different types of time series

Henson et al. [32] suggest four distinct types of time
series: interval-based non-cumulative, interval-based
cumulative, event-based non-cumulative and event-
based cumulative. Interval-based non-cumulative time
series are a collection of interval-based non-cumulative
observations, i.e., independent observations of the
measured property which were generated at regular
time intervals. Interval-based cumulative time series
are a collection of interval-based cumulative observa-
tions, i.e., observations produced at regular time inter-
vals and which represent cumulative values of the mea-
sured property. Event-based non-cumulative time se-

12‘Coverage’ in [22] has a different connotation than ‘coverage’ in
vocabularies such as Dublin Core (http://dublincore.org/
documents/dces/) or DCAT (https://www.w3.org/TR/
2014/REC-vocab-dcat-20140116/). Coverage in [22] is
consistent with the use of coverage by the Open Geospatial Consor-
tium (OGC) to refer to the variation of a property over an area at
a specific time. It refers neither to the spatial or temporal topic of a
resource, nor to its spatial applicability, nor to the jurisdiction under
which a resource is relevant.

http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces/
https://www.w3.org/TR/2014/REC-vocab-dcat-20140116/
https://www.w3.org/TR/2014/REC-vocab-dcat-20140116/
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ries are a collection of event-based non-cumulative ob-
servations, i.e., independent observations of the mea-
sured property which were generated as a result of a
predefined event13. Event-based cumulative time se-
ries are a collection of event-based cumulative obser-
vations, i.e., observations which represent the cumula-
tive value of the measured property and were produced
as a result of a predefined event. The four types of time
series are depicted on Figure 2.

3.2. Different types of trajectories

Following [2], trajectories may be divided into raw
trajectories (a.k.a. sample trajectories) and seman-
tic trajectories. The latter is derived from the former
through a processing step where geographic informa-
tion which characterizes important geographic places
of a trajectory is added. Simply said, a raw trajec-
tory is a set of temporally-indexed positions (a.k.a.
“fixes”) whereas a semantic trajectory aggregates the
geographic information that is necessary for the analy-
sis of the trajectory (see [9]). An ontology design pat-
tern for semantic trajectories was proposed in [34]. A
third type of trajectory is what Wang et al. [50] have
termed augmented trajectories ([48] calls them marked
trajectories). An augmented trajectory includes addi-
tional thematic information about the object. Exam-
ples of thematic information include the velocity (of a
car), the tiredness (of pedestrians), and the body tem-
perature (of tracked animals). It is worth mentioning
that the three subclasses of trajectories introduced in
this paragraph are not disjoint (e.g., a trajectory may
be both augmented and semantic). Figure 3 shows the
three types of trajectories14.

4. Illustrative examples

Figure 4 shows the taxonomy of observation col-
lections introduced in the previous section. This tax-

13An event is defined here after [39] as “anything that happens
or is observed as happening at an instant - or over an interval - of
time, and which is relevant for the observer”. Examples of events
include ‘high water level’ events or ‘flooding threshold exceeded’
events (see [39]), and bucket tip events (see [32]).

14There are alternative ways of classifying trajectories which
would be relevant for the Semantic Sensor Web. For instance trajec-
tories could be classified according to whether they represent con-
tinuous or discontinuous paths (see [19]), or according to transporta-
tion modes (e.g., bike, car, tram, bus, see [3]). This work has adopted
the trichotomy of raw, semantic, and augmented trajectory because
the concepts of raw and semantic trajectory are already well-known
to the Semantic Sensor Web community.

onomy has been implemented as a content ontology
design pattern [24] (ODP) for observation collections
in the Web Ontology Language [16,49] (OWL). Two
additional classes (not shown on Figure 4) are part
of the ODP: observation (which are components of
observation collections), and the collector (individual
or institution which has grouped observations to form
an observation collection). The ODP is available for
download at https://goo.gl/Rm6cfY. Though
some challenges need to be overcome to facilitate the
adoption of ODPs (for a recent summary, see [8]),
ODPs present some advantages such as increased re-
use and increased interoperability. Recent examples of
ODPs include the ODP for representing digital video
resources [40], the ODP for data integration in the li-
brary domain [41], a pattern for capturing the intents
underlying designs [46], and the ODP for life cycle as-
sessment data [37]. The competency questions of the
ODP for observation collection presented in this work
are:

– what are observations belonging to an observation
collection?

– what are available time series about a certain
phenomenon (e.g., GDP or temperature)? what
are available cumulative/non-cumulative time se-
ries about a certain phenomenon? what are avail-
able interval-based/event-based time series about
a certain phenomenon?

– what are available coverage datasets about a cer-
tain phenomenon (e.g., rainfall, unemployment)?

– what are available raw trajectories of an object?
what are available semantic trajectories of an ob-
ject? what are available augmented trajectories of
an object?

– what is the collector of an observation collec-
tion (this question refers to the publisher or au-
thor of an observation collection, and can be
answered using existing vocabularies such as
Dublin Core15)?

4.1. Time series

An example of time series data is the evolution
of the gross domestic product per capita of a coun-
try (e.g., Germany) over years. More specifically, the
evolution of the gross domestic product per capita of
a country years is an interval-based, non-cumulative

15http://dublincore.org/documents/
dcmi-terms/

https://goo.gl/Rm6cfY
 http://dublincore.org/documents/dcmi-terms/
 http://dublincore.org/documents/dcmi-terms/
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Fig. 2. Four types of time series (figures taken from [32]). The Y axes [not labeled on this figure] refer to measures of the amount of rainfall in
millimeters.

Fig. 3. Raw, semantic and augmented trajectories. (a) is a set of GPS tracks exported from Google Maps and anonymized; (b) aggregates some
of the GPS tracks spatially and provides information about places visited; (c) provides some more information about the purpose of the visits.

time series: interval-based because recorded at regular
interval (in this case a year), and non-cumulative be-
cause GDP values are estimated every year (indepen-
dently of previous years’ values). A concrete example
is the evolution of Germany’s GDP over the past years
(2010-2014)16. Listing 1 presents a possible annotation
of this dataset using the ODP previously introduced.

16The data about Germany’s GDP has been retrieved from
http://www.tradingeconomics.com/germany/
gdp-per-capita (last accessed: June 07, 2016).

4.2. Trajectories

The GeoLife dataset [53] is a dataset from Microsoft
Research Asia, generated by 182 users and spanning
over five years (April 2007 - August 2012). According
to its publisher, a GPS trajectory of this dataset is rep-
resented by a sequence of time-stamped points, each of
which contains the information of latitude, longitude
and altitude. The GeoLife dataset is therefore a raw
trajectory dataset. Listing 2 presents a possible annota-

http://www.tradingeconomics.com/germany/gdp-per-capita
http://www.tradingeconomics.com/germany/gdp-per-capita
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Fig. 4. A taxonomy of observation collections.

tion of the first five entries of the “Data 000” (a portion
of this dataset) using the ODP.

4.3. Coverage

The unemployment dataset from Muenster in 2015
published recently by the Muenster City Council is
an example of coverage dataset: it represents the vari-
ation of a property (i.e., unemployment) over a cer-
tain region (i.e., Muenster) at a certain time (i.e.,
2015). The dataset is available for download at http:
//goo.gl/reBQA4 (last accessed: June 21, 2016).
The dataset shows that the city of Muenster (North-
Rhine-Westphalia, Germany) has six boroughs named
‘Mitte’, ‘West’, ‘Nord’, ‘Ost’, ‘Südost’, and ‘Hiltrup’
respectively. Listing 3 presents an example annotation
of this dataset using the ODP previously introduced.
The complete Well-Known-Text (WKT) geometries of
these six boroughs are available at https://git.
io/vo7Xd.

5. Related work

As mentioned at the outset of this article, fo-
cused discussions of observation collections have not
abounded in the Semantic Sensor Web community.
The community has, by and large, discussed single ob-
servations. A relevant work worth mentioning at this
point is [21]. Ferreira et al. [21] proposed to access

spatiotemporal observations from different kinds of
data sources using RDF framework and SPARQL lan-
guage. Their approach, which is at the moment a work
in progress, intends to rely on ‘observation’ from the
OGC Observation and Measurements specification,
the OGC GeoSPARQL schema, as well as the three
abstractions of time series, trajectories, and coverage.
However they seem (as is often the case) to conflate
single observations and observation collections under
the generic term of ‘observation’.

Ontological analyses relevant to the Semantic Sen-
sor Web have covered concepts as diverse as software
engineering metamodels [45], observations and mea-
surements [42,43], power types [29], community [1],
relationship [30], terrain data [44], collectives [10,28],
but not specifically addressed observation collections.
Likewise, the GeovoCamp [33] has produced a number
of useful ontology design patterns (e.g., [12,34,37]),
but not yet provided a simple ODP for observation col-
lections. The current work has proposed one generic
pattern for observation collections which can, as Sec-
tion 4 showed, be extended to fit more specific do-
mains (e.g., economics, demographics). One drawback
of the pattern proposed is that it is not community-
driven (patterns built by communities of scholars and
practitioners have greater chances for adoption), yet an
achievement of the work lies in the provision of some
greater conceptual clarity which can inform the design
of subsequent observation collections ontologies/tax-
onomies/vocabularies.

http://goo.gl/reBQA4
http://goo.gl/reBQA4
https://git.io/vo7Xd
https://git.io/vo7Xd
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Listing 1: Example annotation of Germany’s GDP dataset using the ODP for observation collections
@pref ix d c t e r m s : < h t t p : / / p u r l . o rg / dc / t e r m s / > .
@pref ix d b p e d i a : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / > .
@pref ix ex : < h t t p : / / example . o rg / > . # exempla ry name s p a c e
@pref ix d c a t : < h t t p : / / www. w3 . org / ns / d c a t #> .
@pref ix f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / > .
@pref ix geo : < h t t p s : / / www. w3 . org / 2 0 0 3 / 0 1 / geo / wgs84_pos > .
@pref ix geo f : < h t t p : / / www. o p e n g i s . n e t / o n t / g e o s p a r q l #> .
@pref ix org : < h t t p : / / www. w3 . org / ns / o rg #> .
@pref ix qb : < h t t p : / / p u r l . o rg / l i n k e d−d a t a / cube #> .
@pref ix obs : < h t t p s : / / g i t h u b . com / a u r i o l d e g b e l o / o b s e r v a t i o n c o l l e c t i o n s > . # namespace f o r t h e ODP of o b s e r v a t i o n c o l l e c t i o n s
@pref ix owl : < h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl#> .
@pref ix pav : < h t t p : / / p u r l . o rg / pav > .
@pref ix r d f : < h t t p : / / www. w3 . org /1999/02/22 − r d f−syn t ax−ns #> .
@pref ix r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#> .
@pref ix sdmx−a t t r i b u t e : < h t t p : / / p u r l . o rg / l i n k e d−d a t a / sdmx / 2 0 0 9 / a t t r i b u t e #> .
@pref ix sdmx−d imens ion : < h t t p : / / p u r l . o rg / l i n k e d−d a t a / sdmx / 2 0 0 9 / d imens ion #> .
@pref ix s f : < h t t p : / / www. o p e n g i s . n e t / o n t / s f #> .

# −− g e n e r a l i n f o r m a t i o n a b o u t t h e gdp d a t a s e t ( t h e gdp d a t a s e t i s a i n t e r v a l−based non c u m u l a t i v e t ime s e r i e s ) −− #
ex : d a t a s e t 1 a qb : Obse rva t ionGroup , d c a t : D a t a s e t , obs : O b s e r v a t i o n C o l l e c t i o n , obs : T imeSer i e s , obs : I n t e r v a l B a s e d N o n C u m u l a t i v e T S ;

r d f s : l a b e l " Germany GDP"@en ;
d c t e r m s : t i t l e " Germany GDP"@en ;
r d f s : comment " Per c a p i t a a n n u a l GDP f o r Germany between 2010 and 2014 "@en ;
d c t e r m s : d e s c r i p t i o n " Per c a p i t a a n n u a l GDP f o r Germany between 2010 and 2014 "@en ;
# L i s t a s a p p r o p r i a t e t y p e t o r e p r e s e n t t ime s e r i e s
obs : hasMember ( ex : obs1 , ex : obs2 , ex : obs3 , ex : obs4 , ex : obs5 ) ; # Note t h a t t h e r e i s , a t t h e moment o f t h i s w r i t i n g ,
# no p r e d i c a t e l i n k i n g an o b s e r v a t i o n c o l l e c t i o n t o a l i s t o f component o b s e r v a t i o n s i n t h e r d f d a t a cube v o c a b u l a r y )
d c t e r m s : p u b l i s h e r ex : o rga1 ;
r d f s : s e e A l s o " h t t p : / / www. t r a d i n g e c o n o m i c s . com / germany / gdp−per−c a p i t a " .

ex : obs1 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasGDPvalue 3 7 1 4 7 . 0 2 ;
sdmx−d imens ion : r e f A r e a " Germany " ;
sdmx−d imens ion : r e f P e r i o d "2010"^^ xsd : gYear ;
sdmx−a t t r i b u t e : u n i t M e a s u r e "USD " .

ex : obs2 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasGDPvalue 3 8 4 7 0 . 8 4 ;
sdmx−d imens ion : r e f A r e a " Germany " ;
sdmx−d imens ion : r e f P e r i o d "2011"^^ xsd : gYear ;
sdmx−a t t r i b u t e : u n i t M e a s u r e "USD " .

ex : obs3 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasGDPvalue 3 9 2 7 4 . 3 6 ;
sdmx−d imens ion : r e f A r e a " Germany " ;
sdmx−d imens ion : r e f P e r i o d "2012"^^ xsd : gYear ;
sdmx−a t t r i b u t e : u n i t M e a s u r e "USD " .

ex : obs4 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasGDPvalue 3 9 2 0 8 . 7 6 ;
sdmx−d imens ion : r e f A r e a " Germany " ;
sdmx−d imens ion : r e f P e r i o d "2013"^^ xsd : gYear ;
sdmx−a t t r i b u t e : u n i t M e a s u r e "USD " .

ex : obs5 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasGDPvalue 3 9 7 1 7 . 7 ;
sdmx−d imens ion : r e f A r e a " Germany " ;
sdmx−d imens ion : r e f P e r i o d "2014"^^ xsd : gYear ;
sdmx−a t t r i b u t e : u n i t M e a s u r e "USD " .

# p u b l i s h e r o f t h e gdp d a t a s e t ( t h e p u b l i s h e r i s t h e c o l l e c t o r )
ex : o rga1 a obs : C o l l e c t o r , o rg : O r g a n i z a t i o n , f o a f : Agent , d c t e r m s : Agent ;

r d f s : l a b e l " T r a d i n g Economics "@en .

6. Conclusion

Observations and observation collections are central
to the Semantic Sensor Web. Though the concept of
observation has benefited from extensive discussions,
observation collections seem to have been largely ig-
nored in the field. In fact, observation collections are
in many cases assimilated to single observations, and
referred to as ‘observation’. This article has brought

forward the argument that an observation collection
and a single observation are sufficiently distinct to de-
serve separate treatments in observation ontologies. In
addition, the article offered an ontological analysis of
observation collections, and a documentation of the
practical implications of the analysis for the Semantic
Sensor Web. Finally the work presented an ontology
design pattern for observation collections encoded in
OWL as well as examples of its use. It is the author’s
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Listing 2: Example annotation of the Geolife dataset using the ODP for observation collections
# −− g e n e r a l i n f o r m a t i o n a b o u t t h e G e o l i f e d a t a s e t ( t h e GeoLife d a t a s e t i s a raw t r a j e c t o r y ) −− #
ex : d a t a s e t 2 a qb : Obse rva t ionGroup , d c a t : D a t a s e t , obs : O b s e r v a t i o n C o l l e c t i o n , obs : T r a j e c t o r y , obs : R a w T r a j e c t o r y ;

r d f s : l a b e l " GeoLife GPS t r a j e c t o r i e s "@en ;
d c t e r m s : t i t l e " GeoLife GPS t r a j e c t o r i e s "@en ;
r d f s : comment " GeoLife GPS t r a j e c t o r i e s , f i r s t f i v e e n t r i e s o f t h e d a t a s e t number ’000 ’ "@en ;
d c t e r m s : d e s c r i p t i o n " GeoLife GPS t r a j e c t o r i e s , f i r s t f i v e e n t r i e s o f t h e d a t a s e t number ’000 ’ "@en ;
# L i s t a s a p p r o p r i a t e t y p e t o r e p r e s e n t t r a j e c t o r i e s
obs : hasMember ( ex : obs6 , ex : obs7 , ex : obs8 , ex : obs9 , ex : obs10 ) ; # There i s , a t t h e moment o f t h i s w r i t i n g ,
# no p r e d i c a t e l i n k i n g an o b s e r v a t i o n c o l l e c t i o n t o a l i s t o f component o b s e r v a t i o n s i n t h e r d f d a t a cube v o c a b u l a r y )
d c t e r m s : p u b l i s h e r ex : o rga2 ;
d c t e r m s : i s s u e d "2012−08−09"^^ xsd : d a t e ;
pav : v e r s i o n " 1 . 2 . 2 " ;
r d f s : s e e A l s o " h t t p : / / r e s e a r c h . m i c r o s o f t . com / en−us / downloads / b16d359d−d164−469e−9fd4−daa38f2b2e13 / " .

ex : obs6 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
geo : l a t 3 9 . 9 8 4 7 0 2 ;
geo : l ong 1 1 6 . 3 1 8 4 1 7 ;
geo : a l t 149 ,9616 ; # t h e o r i g i n a l v a l u e (492 f e e t ) has been c o n v e r t e d t o m e t e r s ( f a c t o r : 0 . 3 0 4 8 )
# t o be c o n s i s t e n t w i th t h e geo v o c a b u l a r y
sdmx−d imens ion : r e f P e r i o d "2008−10−23T02 : 5 3 : 0 4 " ^ ^ xsd : d a t e t i m e .

ex : obs7 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
geo : l a t 3 9 . 9 8 4 6 8 3 ;
geo : l ong 1 1 6 . 3 1 8 4 5 ;
geo : a l t 149 ,9616 ; # t h e o r i g i n a l v a l u e (492 f e e t ) has been c o n v e r t e d t o m e t e r s ( f a c t o r : 0 . 3 0 4 8 )
# t o be c o n s i s t e n t w i th t h e geo v o c a b u l a r y
sdmx−d imens ion : r e f P e r i o d "2008−10−23T02 : 5 3 : 1 0 " ^ ^ xsd : d a t e t i m e .

ex : obs8 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
geo : l a t 3 9 . 9 8 4 6 8 6 ;
geo : l ong 1 1 6 . 3 1 8 4 1 7 ;
geo : a l t 149 ,9616 ; # t h e o r i g i n a l v a l u e (492 f e e t ) has been c o n v e r t e d t o m e t e r s ( f a c t o r : 0 . 3 0 4 8 )
# t o be c o n s i s t e n t w i th t h e geo v o c a b u l a r y
sdmx−d imens ion : r e f P e r i o d "2008−10−23T02 : 5 3 : 1 5 " ^ ^ xsd : d a t e t i m e .

ex : obs9 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
geo : l a t 3 9 . 9 8 4 6 8 8 ;
geo : l ong 1 1 6 . 3 1 8 3 8 5 ;
geo : a l t 149 ,9616 ; # t h e o r i g i n a l v a l u e (492 f e e t ) has been c o n v e r t e d t o m e t e r s ( f a c t o r : 0 . 3 0 4 8 )
# t o be c o n s i s t e n t w i th t h e geo v o c a b u l a r y
sdmx−d imens ion : r e f P e r i o d "2008−10−23T02 : 5 3 : 2 0 " ^ ^ xsd : d a t e t i m e .

ex : obs10 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
geo : l a t 3 9 . 9 8 4 6 5 5 ;
geo : l ong 1 1 6 . 3 1 8 2 6 3 ;
geo : a l t 149 ,9616 ; # t h e o r i g i n a l v a l u e (492 f e e t ) has been c o n v e r t e d t o m e t e r s ( f a c t o r : 0 . 3 0 4 8 )
# t o be c o n s i s t e n t w i th t h e geo v o c a b u l a r y
sdmx−d imens ion : r e f P e r i o d "2008−10−23T02 : 5 3 : 2 5 " ^ ^ xsd : d a t e t i m e .

# p u b l i s h e r o f t h e GeoLife d a t a s e t ( t h e p u b l i s h e r i s t h e c o l l e c t o r )
ex : o rga2 a obs : C o l l e c t o r , o rg : O r g a n i z a t i o n , f o a f : Agent , d c t e r m s : Agent ;

r d f s : l a b e l " M i c r o s o f t R e s e a r c h Asia "@en .

hope that the discussion provided will serve as a basis
for the design of ontology design patterns for the nu-
merous scenarios in the Semantic Sensor Web where
more than single observations are required.
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Listing 3: Example annotation of the Muenster Unemployment dataset using the ODP for observation collections
# −− g e n e r a l i n f o r m a t i o n a b o u t a c o v e r a g e d a t a s e t : t h e Muens te r Unemployment d a t a s e t −− #
ex : d a t a s e t 3 a qb : Obse rva t ionGroup , d c a t : D a t a s e t , obs : O b s e r v a t i o n C o l l e c t i o n , obs : Coverage ;

d c t e r m s : t i t l e " A r b e i t s l o s e i n Muens te r und den S t a d t b e z i r k e n "@de
r d f s : l a b e l " Unemployed i n Muens te r and Boroughs "@en ;
d c t e r m s : t i t l e " Unemployed i n Muens te r and Boroughs "@en ;
r d f s : comment " S t a t i s t i c s a b o u t unemployment i n t h e c i t y o f Muens te r and i t s bo roughs i n 2015"@en ;
d c t e r m s : d e s c r i p t i o n " S t a t i s t i c s a b o u t unemployment i n t h e c i t y o f Muens te r and i t s bo roughs i n 2015"@en ;
# L i s t a s a p p r o p r i a t e t y p e t o r e p r e s e n t c o v e r a g e
obs : hasMember ( ex : obs11 , ex : obs12 , ex : obs13 , ex : obs14 , ex : obs15 , ex : obs16 ) ;
d c t e r m s : p u b l i s h e r ex : o rga3 ;
d c t e r m s : i s s u e d "2016−05"^^ xsd : gYearMonth ;
r d f s : s e e A l s o " h t t p : / / goo . g l / reBQA4 " .

ex : obs11 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasUnemploymentValue 3259 ;
sdmx−d imens ion : r e f A r e a _ : M u e n s t e r M i t t e ;
sdmx−d imens ion : r e f P e r i o d "2015−12−15"^^ xsd : d a t e .

_ : M u e n s t e r M i t t e a d b p e d i a : Borough ;
r d f s : l a b e l " M i t t e "@en , " M i t t e "@de ;
geo f : hasGeometry [ a s f : M u l t i P o l y g o n ;
geo f : asWKT "MULTIPOLYGON ( ( ( 7 . 6 0 1 8 0 9 8 51 .9652058 , . . . , 7 .6018098 5 1 . 9 6 5 2 0 5 8 ) ) ) " ^ ^ geo f : w k t L i t e r a l

] .

ex : obs12 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasUnemploymentValue 1442 ;
sdmx−d imens ion : r e f A r e a _ : MuensterWest ;
sdmx−d imens ion : r e f P e r i o d "2015−12−15"^^ xsd : d a t e .

_ : MuensterWest a d b p e d i a : Borough ;
r d f s : l a b e l " West "@en , " West "@de ;
geo f : hasGeometry [ a s f : M u l t i P o l y g o n ;

geo f : asWKT "MULTIPOLYGON ( ( ( 7 . 5 6 0 3 7 8 5 51 .9154652 , . . . , 7 .5603785 5 1 . 9 1 5 4 6 5 2 ) ) ) " ^ ^ geo f : w k t L i t e r a l
] .

ex : obs13 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasUnemploymentValue 1591 ;
sdmx−d imens ion : r e f A r e a _ : MuensterNord ;
sdmx−d imens ion : r e f P e r i o d "2015−12−15"^^ xsd : d a t e .

_ : MuensterNord a d b p e d i a : Borough ;
r d f s : l a b e l " Nord "@en , " Nord "@de ;
geo f : hasGeometry [ a s f : M u l t i P o l y g o n ;

geo f : asWKT "MULTIPOLYGON ( ( ( 7 . 6 6 0 4 2 5 8 51 .9867668 , . . . , 7 .6604258 5 1 . 9 8 6 7 6 6 8 ) ) ) " ^ ^ geo f : w k t L i t e r a l
] .

ex : obs14 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasUnemploymentValue 528 ;
sdmx−d imens ion : r e f A r e a _ : Muens te rOs t ;
sdmx−d imens ion : r e f P e r i o d "2015−12−15"^^ xsd : d a t e .

_ : Muens te rOs t a d b p e d i a : Borough ;
r d f s : l a b e l " Ost "@en , " Ost "@de ;

geo f : hasGeometry [ a s f : M u l t i P o l y g o n ;
geo f : asWKT "MULTIPOLYGON ( ( ( 7 . 6 6 1 7 3 9 2 51 .9801364 , . . . , 7 .6617392 5 1 . 9 8 0 1 3 6 4 ) ) ) " ^ ^ geo f : w k t L i t e r a l

] .

ex : obs15 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasUnemploymentValue 934 ;
sdmx−d imens ion : r e f A r e a _ : M u e n s t e r S u e d o s t ;
sdmx−d imens ion : r e f P e r i o d "2015−12−15"^^ xsd : d a t e .

_ : M u e n s t e r S u e d o s t a d b p e d i a : Borough ;
r d f s : l a b e l " S u e d o s t "@en , " S u e d o s t "@de ;

geo f : hasGeometry [ a s f : M u l t i P o l y g o n ;
geo f : asWKT "MULTIPOLYGON ( ( ( 7 . 6 8 8 0 7 1 51 .9460114 , . . . , 7 .688071 5 1 . 9 4 6 0 1 1 4 ) ) ) " ^ ^ geo f : w k t L i t e r a l

] .

ex : obs16 a qb : O b s e r v a t i o n , obs : O b s e r v a t i o n ;
ex : hasUnemploymentValue 1219 ;
sdmx−d imens ion : r e f A r e a _ : M u e n s t e r H i l t r u p ;
sdmx−d imens ion : r e f P e r i o d "2015−12−15"^^ xsd : d a t e .

_ : M u e n s t e r H i l t r u p a d b p e d i a : Borough ;
r d f s : l a b e l " H i l t r u p "@en , " H i l t r u p "@de ;

geo f : hasGeometry [ a s f : M u l t i P o l y g o n ;
geo f : asWKT "MULTIPOLYGON ( ( ( 7 . 6 5 0 8 9 2 6 51 .8784304 , . . . , 7 .6508926 5 1 . 8 7 8 4 3 0 4 ) ) ) " ^ ^ geo f : w k t L i t e r a l

] .

# p u b l i s h e r o f t h e Unemployment d a t a s e t o f Muens te r ( t h e p u b l i s h e r i s t h e c o l l e c t o r )
ex : o rga3 a obs : C o l l e c t o r , o rg : O r g a n i z a t i o n , f o a f : Agent , d c t e r m s : Agent ;

r d f s : l a b e l " S t a d t Muens te r − Amt f u e r S t a d t e n t w i c k l u n g , S t a d t p l a n u n g und V e r k e h r s p l a n u n g "@de ;
r d f s : l a b e l " Muens te r C i t y C o u n c i l − O f f i c e f o r c i t y development , c i t y p l a n n i n g and t r a n s p o r t a t i o n p l a n n i n g "@en .
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