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Abstract Quality is a complicated and multifarious topic in contemporary Linked Data research. The aspect of literal quality in
particular has not yet been rigorously studied. Nevertheless, analyzing and improving the quality of literals is important since
literals form a substantial (one in seven statements) and crucial part of the Semantic Web. Specifically, literals allow infinite
value spaces to be expressed and they provide the linguistic entry point to the LOD Cloud. We present a toolchain that builds
on the LOD Laundromat data cleaning and republishing infrastructure and that allows us to analyze the quality of literals on a
very large scale, using a collection of quality criteria we specify in a systematic way. We illustrate the viability of our approach
by lifting out two particular aspects in which the current LOD Cloud can be immediately improved by automated means: value
canonization and language tagging. Since not all quality aspects can be addressed algorithmically, we also give an overview of
other problems that can be used to guide future endeavors in tooling, training, and best practice formulation.

1. Introduction

In this article we investigate the quality of literals in
the Linked Open Data (LOD) Cloud. A lot of work
has focused on assessing and improving the quality
of Linked Data. However, the particular topic of lit-
eral quality has not yet been thoroughly addressed. The
quality of literals is particularly important because (1)
they provide a concise notation for large (and possibly
infinite) values spaces and (2) they allow text-based in-
formation to be integrated into the RDF data model.
Also, one in seven RDF statements contains a literal as
object term

Our approach consists of the following steps. First,
we create a toolchain that allows billions of literals

IStatistic derived from the LOD Laundromat data collection on
2016-05-18.

to be analyzed. The toolchain is made available as
Open Source code to the community. We show that the
toolchain is easy to integrate into existing approaches
and can be used in a sustainable manner: Firstly, im-
portant parts of the toolchain are integrated into the
ClioPatria triple store and RDF library. Secondly, im-
portant parts of the toolchain are integrated into the
LOD Laundromat infrastructure. Thirdly, the toolchain
is used by Luzzu: a state-of-the-art Linked Data qual-
ity framework. In addition to presenting, implementing
and integrating this toolchain, we also illustrate how it
may be used to perform analyses of the quality of liter-
als. Finally, based on the previous step, we present au-
tomated procedures and concrete suggestions for im-
proving the quality of literals in today’s Web of Data.
The automated procedures are implemented and eval-
uated in order to show that our approach and toolchain
are well-suited for running on a Web scale.
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This paper is structured as follows. Section[2]discusses
related efforts on quality assessment and improvement.
In Section [3] we give our motivation for performing
this work. In Section [ we define a set of quality cri-
teria for literals. The following Section describes the
toolchain and its role in supporting the defined quality
criteria. Section [6] reports our analysis in terms of the
quality criteria defined in the previous section. In Sec-
tion |7| we enumerate opportunities for improving the
quality of literals based on our observations in the pre-
vious section. We implement two of those opportuni-
ties and evaluate their precision and recall. Section
concludes the paper and discusses further opportuni-
ties for research on literals quality.

2. Related work

Quality assessment for Linked Data is a difficult and
multifarious topic. A taxonomy of problem categories
for data quality has been developed by [27]. Not all
categories are applicable to Linked Data quality. For
instance, due to a fluid schema and the Open World
assumption, the absence of an RDF property assertion
does not imply a missing value. Because RDF does not
enforce the Unique Names Assumption the problem
of value uniqueness does not arise. Other data qual-
ity categories however do apply to Linked Data and
RDF literals: syntax violations, domain violations and
the problem of having multiple representations for the
same value (what we will call ‘Non-canonicity’ in Sec-

tion[4.3)).

The large-scale aspects of Linked Data quality have
been quantified in the so-called ‘LOD Observatory’
studies: [19/20,14/2]. These studies have not included
anything but a cursory analysis of RDF literals. In
[21], Hogan et al. conduct an empirical study on
Linked Data conformance, assessing datasets against a
number of Linked Data best practices and principles.
They specifically cover (i) how resources are named,
(i) how data providers link their resources to exter-
nal sources, (iii) how resources are described, and (iv)
how resources are dereferenced. Debattista et al. [14]
have conducted an empirical study to analyze, quan-
tify, and understand the quality of how well data is rep-
resented on the Web of Data. For this study, the au-
thors assessed a number of datasets that are present in

the LOD Cloud E] against metrics classified under the
“Representational Category” in [33].

Various metadata descriptions for expressing Linked
Data quality have been proposed. In Assaf et al. [2],
the authors give insight into existing metadata descrip-
tions. This assessment checks the metadata of each
dataset for general information, access information,
ownership information and provenance information.
No vocabulary for expressing literal quality metadata
exists today. However, the taxonomy of literal quality
in Section may serve as a starting point for such a
vocabulary. There are already several data quality vo-
cabularies that can be extended, e.g. [13l17]]. A W3C
Working Group is currently developing a standard vo-
cabulary (DQV) for expressing Linked Data qualityﬂ

A number of tools have been developed for assessing
the quality of Linked Datasets [23I7I12l26]. The au-
thors in [23] present RDFUnit, a SPARQL based ap-
proach towards assessing the quality of Linked Data.
Their framework uses SPARQL query templates to ex-
press quality metrics. The benefit of this tool is that it
uses SPARQL as an extensibility framework for for-
mulating new quality criteria. The drawback of this
framework is that metrics that cannot be expressed
in SPARQL, such as checking the correctness of lan-
guage tags, cannot be assessed in RDFUnit. In [26],
the authors make use of metadata of named graphs to
assess data quality. Their framework, Sieve, allows for
custom quality metrics based on an XML configura-
tion. WIQA [7] is another quality assessment frame-
work that enables users to create policies on indicators
such as provenance. Luzzu [12] is an extensible and
scalable Linked Data quality assessment framework
that enables users to create their own quality metrics
either procedurally, through Java classes, or declara-
tively, through a quality metric DSL.

Some aspects of quality are highly subjective and can-
not be determined by automated means. In order to im-
prove these quality aspects a human data curator has
to edit the data. 1] present a crowd sourcing approach
that allows data quality to be improved. Quality is not
a static property of data but something that can change
over time as the data gets updated. The dynamic as-
pects of data quality are observed in [[24].

2http://lod-cloud.net
3Seehttp://www.w3.org/TR/vocab-dqv/
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The paper focus on only a relatively isolated and re-
stricted part of quality: the syntactic, semantic and lin-
guistic aspects of literal terms. As such, it does not
cover quality issues that may arise once more expres-
sive vocabularies such as OWL are interpreted as well.
Specifically, the problem of missing values may oc-
cur in this context, as may constraint violations, e.g.,
uniqueness constraints.

3. Motivation

Literals are an important syntactic and semantic com-
ponent of the Semantic Web’s data model. Their first
benefit is that they allow a concise notation for infi-
nite value spaces. One of the Linked Data principles is
“Use URIs as names for things” [6]. This principle is
carried through to the absurd in [31] where the authors
jokingly present the Linked Open Numbers dataset
in which IRIs are minted for natural numbers. The
Linked Open Numbers dataset shows that the Linked
Data principle of assigning names to everything does
not scale, and does not make much sense, for infinite
value spaces. In addition, relations between the val-
ues of infinite value spaces are better expressed inten-
sionally (by a limited number of functions) than exten-
sionally (by explicitly asserting an infinite number of
pairs). Literals allow an infinite number of values, and
relations between them, to be represented through in-
tensional definitions. For instance, floating point num-
bers, and the relations between them, are defined by
the IEEE floating standard [34] and are implemented
by operators in most programming languages.

The second main benefit of literals is that they allow
linguistic or text-based information to be expressed in
addition to RDF’s graph-based data model. While IRIs
are (also) intended to be human-readable [15]], a literal
can contain natural language or textual content with-
out syntactic constraints. This allows literals to be used
in order to convey human-readable information about
resources. Also, in some datasets, IRIs are intention-
ally left opaque as the human-readability of universal
identifiers may negatively affect their permanence [5].
Since the Semantic Web is a universally shared knowl-
edge base, natural language specifiers are particularly
important in order to ease the human processability of
information in different languages.

Assessing the quality of literals for each dataset is an
important ingredient for assessing the overall quality
of a dataset. Specifically, indicators of literal quality
can be fed into Luzzu [12], a state-of-the-art quality
assessment framework. Secondly, a LOD Cloud-wide
overview indicates what are current problems for the
consumption of literals and can give informed infor-
mation about the areas where data publication prac-
tices can be improved. Specifically, quantified quality
indicators can be used in order to improve the cleaning
process of the LOD Laundromat [4], a price winning
data cleaning and republishing Web Service. We be-
lieve that it is best to base tomorrow’s tooling, training,
best practices and standards on an empirical overview
of today’s problems.

Improving the quality of literals has (at least) the
following concrete benefits for the consumption of
Linked Data:

Efficient computation

If a data consumer wants to check whether two literals
are identical she first has to interpret their values and
then compare them according to the comparator opera-
tors that are defined for that value space. For example,

2016-01-20T01-01-01and 2016-01-20T02-01-01Z-01:00

denote the same date-time value, but this cannot be
determined by checking for simple, i.e., character-for-
character, string equality. Most defined datatypes that
are used in RDF specify a canonical representation
for each value. Canonicity allows all values in a given
value space to be uniquely represented by exactly one
representation. If all values in a dataset are (known
to be) written in such a canonical way, then many
operations can be performed significantly faster. For
instance, a SPARQL query SELECT * WHERE { ?s
?p "2016-01-01T01-01-01zZ"~"xsd:dateTime }
can be very efficiently executed if we only need to
match the explicit object string. If values are not
canonically represented then we have to interpret (and
compare to) all date-time values that appear in the data.
For all datatypes the use of canonicity makes iden-
tity checking and matching more efficient. For many
datatypes the use of canonicity makes determining the
relative order between literals, i.e., ‘smaller than’ and
‘larger than’, more efficient as well.
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Data enrichment

The availability of reliable language tags that indicate
the language of a textual string is an enabler for data
enrichment. Language-informed parsing and compar-
ing of string literals is an important part of exist-
ing instance matching approaches [18]]. Having lan-
guages tags associated with string literals allows no-
tions of similarity to be defined that move beyond
(plain) string similarity. This includes within-language
similarity notions such as “is synonymous with” as
well as between-language similarity notations such as
“is translation of”’.

User eXperience

Knowing the language of user-oriented literals such as
rdfs:label or dc:description helps to improve
the User eXperience (UX) of Linked Data User Inter-
faces. Provided the language preference of the user is
known or can be dynamically assessed, an application
can prioritize language-compliant literals in the dis-
play of user-facing literals. Similar remarks apply to
the approach of “value labeling” [30]], in which natu-
ral language labels rather than IRIs are used to denote
resources. Finally, the canonicalization of literals can
result in more readable lexical forms overall (e.g., dec-
imal “01.0” is canonicalized to “1.0”). While the
data publisher may have intended to display literals in
a certain serialization format, the utility of intended
formats is application-specific and should therefore not
be considered a good approach in Linked Data, where
unanticipated reuse is a major goal.

Semantic Text Search

Tools for semantic text search over Linked Data such
as LOTUS [22] allow literals, and statements in which
they appear, to be retrieved based on relevance cri-
teria. To enable users to obtain relevant information
for their use case, these tools use retrieval metrics
that are calculated based on structured data and meta-
information. High-quality language-tagged literals al-
low more reliable relevance metrics to be calculated.
For instance, ‘die’ is a demonstrative pronoun in Dutch
but a verb in English. Searching for the Dutch pronoun
becomes significantly easier once occurrences of it in
literals are annotated with the language tag for Dutch
(nl). Besides language-tagged literals, high-quality
datatype information also significantly improves the

results of semantic search. For example, it allows the
weights of a bag of potatoes, "007"~~dt :kilo, to be
distinguished from the name of a fictional character,
"007""*"xsd:string.

The metadata on literal datatypes and language tags
can be thus exploited by search systems to improve
the effectiveness of their search and bring users closer
to their desired results. However, as almost no previ-
ous work has focused on analysis and improvement of
the quality of literals, contemporary semantic search
systems will not make use of this potentially useful
metadata. Certain text search tools allow queries to
be enriched with meta information about literals even
though the reliability of this information is not high,
which may lead to poor results. For instance, LOTUS
attempts to improve the precision of literal search by
looking up language tags, despite the fact that around
50% of the indexed literals in LOTUS have no lan-
guage tag assigned to them, which could lead to a de-
crease in recall for non-languagetagged literals. Being
able to assess whether a given dataset has sufficiently
high literal quality would allow Semantic Search sys-
tems to improve their precision and recall.

4. Specifying quality criteria for literals

This section presents a theoretic framework for literal
quality. It defines a taxonomy of quality categories in
terms of the syntax and semantics of literals according
to current standards. In addition to the taxonomy, dif-
ferent dimensions of measurement are described. The
quality categories and dimensions of measurement can
be used to formulate concrete quality metrics. Several
concrete quality metrics that are used in later sections
are specified at the end of this section.

4.1. Syntax of literals

We define the set of literal terms as L := (IRI X
LEX) U ({rdf:langString} x LEX x LTAG),
where IRI is the set of Internationalized Resource
Identifiers as per RFC 3987 [16], LEX is the set of
Unicode strings in Normal Form C [10], and LTAG
is the set of language tags as per RFC 5646 [29].
Literals that are triples are called language-tagged
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strings LTS. The first element of a literal is called its
datatype IRI, the second element is called its lexical
form, and the third element — if present — is called its
language tag.

According to the RDF 1.1 standard [9], language-
tagged strings are treated very differently from other

literals. Firstly, they have a datatype IRl rdf:langString

but no datatype. Secondly, because language tags can-
not be expressed as part of a literal’s lexical form,
language-tagged string have no such lexical form.
Language-tagged strings do have values: they are pairs
of strings and language tags. Thirdly, all and only
literals with datatype IRI rdf:langString have a
language tag. We use the term datatyped literal to
refer to a literal with a datatype IRI that may de-
note a datatype. Only literals whose datatype IRI is
rdf:langString are not datatyped literals.

RDF serialization formats such as Turtle allow literals
to be denoted by only a lexical form. These are abbre-
viated notations that allow very common datatype IRIs
to be inferred based on the lexical form. The datatype
IRI that is associated with such a lexical form is deter-
mined by the serialization format’s specification. For
instance, the string false in Turtle is an abbreviated
form of "false"~*xsd:boolean.

4.2. Semantics of literals

The meaning of an RDF name, whether IRI or literal,
is the resource it denotes. Its meaning is determined
by an interpretation function / that maps RDF names
to resources. The set of resources is denoted IR. Let
us call the subset of resources that are datatypes D.
A datatype IRI 7 and the datatype d it denotes are re-
lated by the interpretation function: I(i) = d. Follow-
ing the XML Schema Datatypes standard [28], all RDF
datatypes must define the following components:

1. The set of syntactically well-formed lexical forms
LEX,. This is called the lexical space of d.

2. The set of resources VA L, that can be denoted by
literals of that datatype. This is called the value
space of d.

3. A functional lexical-to-value mapping [2v, that
maps lexical forms to values. The resource that is
denoted by a literal [ is called its value or, sym-
bolically, I(1).

4. A, not necessarily functional, value-to-lexical
mapping v2[; that maps values to lexical forms.

5. Optionally, a functional canonical value-to-lexical
mapping cy that maps each value to exactly one
lexical form.

Suppose we want to define a datatype for colors.
We may choose a lexical space LEXc, that in-
cludes color names like "red" and "yellow", to-
gether with decimal RGB codes like "255, 0, 0" and
"255,255,0". If we define our lexical space in this
way, then other strings such as "FF0000" do not be-
long to it (even tough this particular string is com-
monly used to denote the color red in hexadecimal rep-
resentation). The lexical to value mapping maps lexi-
cal forms to the color resources they represent. "red"
maps to the value of redness. "255,255, 0" maps
to the value of yellowness. "red" and "255,0,0"
map to the same value. For the canonical mapping we
have to decide which of these two lexical forms should
be used to canonically represent redness. Let us say
that the decimal RGB notation is canonical (canon-
icity is a mere convention after all). It follows that
c(l2v("red")) = "255,0,0", i.e., the color name
maps to the color resource, which maps to the decimal
RGB representation. The decimal RGB representation
maps to itself, i.e., first to the value of redness and then
to the decimal RDF representation.

The denotation of literal terms is determined by the
partial mapping IL : L — IR (definition [I). IL is
partial because a lexical form may not belong to the
datatype’s lexical space. Which resource is denoted by
which literal is determined by the combination of a
specific datatype IRI ¢ and a lexical form lex. Notice
that the use of /(4) is required in definition [I]in order
to consider cases in which ¢ denotes the same datatype
as rdf: langString but with a different IRI.

Definition 1 (Literal value).

lex if 1 = (lex)
IL(1) = (lex,lc(tag))  if Conda(1)
") 120(I(e))(lex) if Condp(l)
undefined otherwise
where

Conda(l) & | = (rdf:langString, lex, tag)
Condp(l) < 1 = (e, lex) A lex € LEXy ()
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A I(i) # I(rdf:1langString)

RDF processors are not required to recognize datatype
IRIs. Literals with unrecognized datatype IRIs are se-
mantically treated as unknown names. An RDF pro-
cessor that recognizes more datatypes is therefore not
‘more correct’ but it is able to distinguish and utilize
more subtleties of meaning.

4.3. A taxonomy of literal quality

The categories of literal quality are shown in Fig-
ure [T} Because of their fundamentally different syn-
tactic and semantic properties, the quality categories
of language-tagged strings a specified separately from
those of datatyped literals. The following quality cate-
gories are defined for datatyped literals (the categories
in Figure [T are described in the order of a depth-first
traversal):

Unsupported A datatyped literal is unsupported if it
is either undefined or unimplemented.

Undefined A datatyped literal is undefined if its
datatype IRI does not denote a datatype. For-
mally: I(i) ¢ D. Whether an IRI denotes a
datatype or not is not specified in the RDF stan-
dards. We therefore specify this ourselves in the
following way: an IRI is defined iff dereferenc-
ing of the IRI leads to either (i) a machine-
processable specification; (ii) a human-readable
formal specification; or (iii) a human-readable
informal description that can be unambiguously
turned into a formal specification. For instance,
the XSD datatype IRIs point to the XML Schema
1.1 Part 2: Datatypes specification [28]], which in-
cludes (i) and (ii). We require the specification to
include a lexical space, a value space and map-
pings between the two (Section .2). If a specifi-
cation is only missing a canonical value-to-lexical
mapping we include its literals under the ‘non-
canonical’ category (see below).

Unimplemented A datatyped literal is unimplemented
if its IRI denotes a defined datatype but is not
implemented by a specific RDF processor. Ex-
ample: many RDF processors do not implement
xsd:duration, probably because it does not oc-
cur that often and is also somewhat difficult to
implement.

Supported A supported datatyped literal has a datatype
IRI that denotes a defined and implemented
datatype. Formally: (i) € D. Example: al-
most every RDF processor supports datatype
xsd:boolean, probably because it occurs often
and is also very easy to implement.

Invalid A supported datatyped literal is invalid if its
lexical form cannot be mapped by to a legal value.
Formally: (2v,(lex) & Valy.

Type violation A supported datatyped literal has a
type violation if its lexical form cannot be parsed
according to the grammar associated with its
datatype. Formally: lex ¢ LEX,. Example:
"nineteen hundred" violates the grammar of
datatype xsd:gYear. However, "1900" does not
violate that grammar.

Domain violation A supported datatyped literal has
a domain violation if its lexical form can be
parsed according to the grammar associated with
its datatype, but the parsed value violates some
additional domain restriction. Formally: lex €

Lexg A 12vq(lex) € Valy. Example: "3000000000"

can be parsed according to the grammar for in-
teger representations, but its value violates the
maximum value restriction of datatype xsd:int.
However, the same value does belong to the do-
main of xsd:integer which does not have a
maximum value restriction.

Valid Supported datatyped literals whose lexical form
can be mapped to a value that satisfies all addi-
tional constraints are valid. Formally: [2v,4(lex) €
Valy. Valid literals are of higher quality than in-
valid or unsupported ones because they expose
more meaning, i.e., the RDF processor does not
treat them as unknown names.

Underspecified A valid datatyped literal is under-
specified if its datatype is too generic. Exam-
ple: the number of people in a group can be
correctly represented by a literal with datatype
xsd:integer. However, since a group cannot
contain a negative number of people, it is more

descriptive to use the datatype xsd:nonNegativeInteger

instead. A special form of underspecification oc-
curs when no explicit datatype is given and the
datatype XSD string is used, even though a more
descriptive datatype could have been chosen. An
example of thisis "2016"~"xsd:string. While
this is a correct literal, "2016"~~xsd:gYear is
more descriptive assuming 2016 denotes the Gre-
gorian year. Another instance of underspecifica-
tion occurs when natural language content ap-
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Literal
Datatyped literal Language-tagged string

I_____AI/ l r__l__,\rx____l
I Unsupported + P Supported I' Malformed :»: Well-formed |
| | ! |
.‘“‘K‘J‘" I__l__l I____I___

- | . I 1 o (Partially)

| Undefined : : Unimplemented | Invalid [ #»f Valid | unregistered
oo - = L = —

y_/ B I
CoT T T T N N T
| Type violation P! Domain violation | | Inconsistent ,—b Consistent
I ;o

|
Underspecified 9 Well-specified | Non-canonical Canonical

Figure 1. A taxonomy of RDF literal quality. The nodes show the categories a literal’s quality can be classified under. Vertical arrows must be
interpreted hierarchically. For instance, literals that are ‘Invalid’ are also ‘Supported’ and are ‘Datatyped literals’. Horizontal arrows denote the
possibilities for quality improvement. For instance, ‘Non-canonical’ datatyped literals can be made ‘Canonical’.

pears with datatype XSD string even though a supported either because every RDF processor must

specific language tag could have been used in- support language-tagged strings in order to be a com-

stead. Example: "semantics"~"xsd:string pliant RDF processor. Finally, their validity cannot be

can be more descriptively represented as "semant ics" @fefined in terms of a lexical-to-value mapping because

Another example is "color"@en which can be such a mapping does not exist for language-tagged

more descriptively represented as "color"en-US. strings. We can distinguish the following quality cate-
Non-canonical A non-canonical datatyped literal is a gories for language-tagged string:

valid datatyped literal for which (i) there are mul-

tiple ways in which the same value can be repre-

sented, and (ii) whose lexical form is not the one

that is conventionally identified as the canonical

one. Formally: ¢;4(12v4(lex)) # lex. Example:

"01"~~xsd:int and "1"~*xsd:int denote the Malformed A language-tagged string is malformed if

same value but the former is non-canonical. its language tag violates the grammar specified
in RFC 5646 [29]. Example: en-Us is a well-
formed language tag, but en: US is malformed.

Language-tagged strings are sufficiently different from Well-formed A language-tagged string is well-formed
datatyped literals to receive their own quality cate- if it is not malformed.

gories. Specifically, language-tagged strings cannot be (Partially) unregistered A well-formed language-tagged
undefined because datatype IRI rdf:langString is string is unregistered if the subtags of which its

not supposed to denote a datatype. They cannot be un- language tag is composed are not registered in the
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TANA Language Subtag Registryﬂ If only some
subtags are not registered then the language-
tagged string is partially unregistered.
Registered A well-formed language-tagged string is
registered if it is not (partially) unregistered.
Inconsistent Since the values of language-tagged
strings are pairs of strings and language tags, it
is possible for the string to contain content that
is not (primarily) encoded in the natural language
denoted by the language tag. If this occurs then
the string and language tag are inconsistent. Ex-
ample: in language-tagged string "affe"@en the
string "affe" is correct and the language tag en
is well-formed and registered, but the word ‘affe’
belongs to the German language (denoted by de)
and not the English language (denoted by en).

4.4. Dimensions of measurement

In addition to the quality categories distinguished
above, the quality of literals can also be measured
across the following two dimensions:

Granularity dimension The granularity level at which
literal quality is quantified. We distinguish at least
the following three granularity levels:

1. Term level The quality of individual liter-
als.

2. Datatype level The quality of literals that
have the same datatype.

3. Document level The quality of literals that
appear in the same document.

Implementation dimension Since every empirical
measurement of literal quality much use a con-
crete RDF processor that interprets the input data
documents, every empirical measurement of lit-
eral quality is inherently relative to the proces-
sor that was used. Differences between RDF pro-
cessors include the set of datatypes that is imple-
mented as well as bugs and/or purposeful devia-
tions from the Linked Data standards.

All quality categories can be measures at each of the
three granularity levels. Category 3 (unimplemented)
is measured along the implementation dimension.

4See http://www.iana.org/
assignments/language-subtag-registry/
language-subtag-registry

4.5. Quality metrics

Quality metrics can be defined in terms of the qual-
ity categories (Section 4.3) and dimensions of mea-
surement (Section [4.4). Measurements on the literal
level are straightforward: every literal is assessed to
belong to one of the quality categories in Figure[I} For
some purposes the differentiation over quality cate-
gories provides too much detail. For instance, an appli-
cation may only be interested in whether a literal is suf-
ficiently compliant or not. In such cases the quality cat-
egories can be clustered. For instance, Luzzu considers
literals of sufficient quality when they are valid (cate-
gory ‘Valid’) and invalid otherwise. Measurements on
the datatype and document level can be performed by
calculating the ratio of literals in each of the respective
quality categories within the scope of a given datatype
or document.

Since Luzzu calculates the quality of data documents,
it quantifies literal quality on the document level as
well. By default, Luzzu includes two metrics for lit-
eral quality. (Since Luzzu is an extendable data quality
framework, a Luzzu user may define additional quality
metrics for literals as she sees fit.) For the first metric
Luzzu taken the total number of literals in a document
Tliterals together with the total number of valid liter-
als (category ‘Valid’) T'correctLiterals- LUZzu calculates
the defined literals quality metric (Qq;) as follows:

Deﬁnition 2. th — TcorrectLiterals

literals

For the second literal quality metric Luzzu takes
the number of string literals in a document |LT'Sp|
together with the total number of language-tagged
strings that have the correct language tag (category
‘Consistent’) assigned |LT'Sp correct|- Luzzu calcu-
lates the correct language tag quality metric (Qy;) as
follows:

. LT
Definition 3. Q; = li’%ggr”'

The here introduced literal quality metrics are used in
the two analyses performed in Section[6] The first anal-
ysis is conducted in LOD Laundromat and covers the
term and datatype levels. The second analysis is con-
ducted in Luzzu and covers the document level.


http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
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5. Implementation

In this section we describe the data and software that
are used for the analysis in Section[6]and the automatic
quality improvements in Section

5.1. Data

The analysis as well as the evaluation of the improve-
ment modules is conducted over the LOD Laundro-
mat [4] data collection, which currently consists of
about 650K data documents and 38 billion ground
statements. The data is collected from data catalogs
(e.g., Datahub) and contains datasets that users have
uploaded through the Web AP]E} The LOD Laundro-
mat collection contains approximately 12.4 billion lit-
erals.

Since the LOD Laundromat only includes syntactically
processable statements, it is missing all literals that are
part of syntactically malformed statements. The reason
for this is that whenever a statement is syntactically
malformed it is impossible to reliably locate whether
a literal term is present and, if so, where it occurs. For
example, the syntactically malformed line [0] inside a
Turtle-family document may be fixed to a triple [1], a
quadruple [2] or two triples [3]. The right fix cannot be
determined by automated means.

[0] <a> <b> "c, d>
[1] <a> <b> <c,d>
[2] <a> <b> "c," <d> .
[3] <a> <b> "c" , <d> .

The absence of well-formed literals that appear within
malformed statements does not influence the mean-
ing of an RDF graph or dataset. A statement must (at
least) be syntactically well-formed in order to be inter-
pretable. RDF semantics describes meaning in terms
of truth-conditions at the granularity of statements:
I((s,p,0)) =1 (I(s),I(0)) € IExt(I(p)), where
I is the interpretation function and IExt is the exten-
sion function mapping resources (called properties) to
pairs of resources. Even though a literal denotes a re-
source, that denotation alone does not express a basic

SSeehttp://lodlaundromat .org/basket

thought or proposition. Paraphrasing Frege, it is only
in the context of a (syntactically well-formed) triple
that a literal has meaning.

5.2. Tooling

While all LOD Laundromat data can also be accessed
through Open Web APIs, we have used the following
dedicated tools that have been developed to support
bulk processing and running large-scale experiments
over LOD Laundromat data. All tools are (of course)
published as Open Source software and/or as Web Ser-
vices to the community.

ClioPatriaﬂ [32] is a Prolog-based triple store and
RDF library implemented in SWI-Proloéﬂ We have
implemented datatype definitions according to the
standards-compliant specification in Section [{.2] for
datatype IRIs that commonly appear in the LOD Laun-
dromat data collection and for which such a specifica-
tion can be found.

We have compared the results of our datatype im-
plementation in ClioPatria with RDF4JE] [8], another
state-of-the-art triple store and RDF library. The com-
parison is carried out to the extent that both libraries
now give the same canonical lexical forms for almost
all standard XSD datatypes. ‘Almost’, since there is
still some deviation in the canonical forms of XSD
doubles and XSD floats. This deviation is allowed by
the XML Schema specification [28]. While we have
implemented several other often occurring datatypes
such as dct:W3CDTF and dct:RFC4646 as well, it
is not easy to check our implementation’s correct-
ness since very few other implementations of these
datatypes exist.

The LOD Laundromat Washing Machineﬂ 4] is
the Linked Data data cleaning mechanism that pow-
ers the LOD Laundromat ecosystem. The analysis of
datatyped literals (Section[6.1)) is directly implemented
into the LOD Laundromat Washing Machine. This
means that all literals published by the LOD Laundro-

6Seelhttps://github.com/ClioPatria/ClioPatria

7Seehttp://www.swi-prolog.org

8Seehttp://rdfdj.org/

9See https://github.com/LOD-Laundromat /
Washing-Machine


http://lodlaundromat.org/basket
https://github.com/ClioPatria/ClioPatria
http://www.swi-prolog.org
http://rdf4j.org/
https://github.com/LOD-Laundromat/Washing-Machine
https://github.com/LOD-Laundromat/Washing-Machine
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mat are now guaranteed to be valid and canonical (if a
canonical mapping exists).

The LOD Laundromat Washing Machine cleans the
data in a stream of tuples. This means that mem-
ory consumption is almost negligible. The grammars
of the implemented datatypes are all LL(1) gram-
mars: they process the input string from left to right
and return only the leftmost derivation. This implies
that the grammars are deterministic context-free gram-
mars: there are no choice points during parsing. This
means that the computational complexity of parsing all
lexical forms is linear in the length of the input string.

Frank [3] is a command-line tool that allows data from
the LOD Laundromat data collection to be streamed
at the level of singular triple pattern fragments. This
tool is used in the analysis of the quality of language-
tagged strings (Section [6.2)) and in the analysis of the
quality of data documents (Section [6.3). Frank is also
used in the automated improvement of language tags

(Section[7.2).

For the assessment and improvement of language-
tagged strings we use three existing state-of-the-art
Automatic Language Detection (ALD) libraries:

1. Apache Tika - We use a NodelS Wrappeﬂ for
the 1.10 version of Apache Tikﬂ Apache Tika
constructs a language profile of the text to de-
tect and compares it with the profile of the set of
known languages. The profiles of these languages
are collections of texts which should be represen-
tative for the usage of those languages in prac-
tice. Such language profile is called corpus. The
corpus accuracy depends on the profiling algo-
rithm chosen (word sets, character encoding, N-
gram similarity, etc.). Apache Tika uses 3-gram
similarity as such three-word groups are useful in
most practical situations. According to the docu-
mentation, this algorithm is expected to work ac-
curately with short texts. Tika can detect 18 lan-
guages (17 languages with European origin and
Thai language).

2. CLD (Compact Language Detection) - The
NodelJS CLD library{ﬂ which is built on top of

Ohttps://github.com/ICIJ/node-tika
Whttp://tika.apache.org/1.10/index.html
“https://github.com/dachev/node-cld

Google’s CLD2 library{]ﬂ The original library
recognizes text in 83 languages, while the NodeJS
wrapper detects text in over 160 languages. CLD
is programmed as a Naive Bayesian classifier
which chooses one of the following three algo-
rithms: based on unigrams, on quadrams or de-
fined by the script itself. Aiming to improve upon
its performance, this library makes use of hints
supplied by the user, on text encodings, expected
language or domain URL.

3. Language-detectiorm (abbreviated as LangDe-
tect or LD) is a library developed by Nakatani
Shuyo in Java. A commonly used plugin for lan-
guage detection in ElasticSearc is based on
this library. This library uses 3-gram similarity
metric and a Naive Bayesian filter. The language
profiles (corpora) used by the library have been
generated from Wikipedia abstracts. This library
supports 53 languages and reports a precision of
99.8%.

The chosen ALD libraries are reportedly widely used
(for e.g. in ElasticSearch) and characterized with re-
markable accuracy on the supported languages and text
sizes. Although the chosen set still remains — to some
extent — arbitrary, note that it is trivial to include more
libraries as one sees fit.

Luzuﬁ] [12] is a quality assessment framework for
Linked Data. The rationale of Luzzu is to provide
an integrated platform that: (1) assesses Linked Data
quality using a library of generic and user-provided do-
main specific quality metrics in a scalable manner; (2)
provides query-able quality metadata on the assessed
datasets; (3) assembles detailed quality reports on as-
sessed datasets. Furthermore, Luzzu aims to create an
infrastructure that:

— can easily be extended by users by defining cus-
tom, domain-specific metrics;

— implements quality-driven dataset ranking algo-
rithms facilitating use-case driven discovery and
retrieval.

Bhttps://github.com/CLD20wners/cld2

Yhttps://github.com/shuyo/
language-detection

Bhttps://github.com/jprante/
elasticsearch-langdetect

1Sources:  |https://github.com/EIS-Bonn/Luzzu;
Website: http://eis-bonn.github.io/Luzzu/


https://github.com/ICIJ/node-tika
http://tika.apache.org/1.10/index.html
https://github.com/dachev/node-cld
https://github.com/CLD2Owners/cld2
https://github.com/shuyo/language-detection
https://github.com/shuyo/language-detection
https://github.com/jprante/elasticsearch-langdetect
https://github.com/jprante/elasticsearch-langdetect
https://github.com/EIS-Bonn/Luzzu
http://eis-bonn.github.io/Luzzu/
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The following literal-specific quality metrics are im-
plemented within the Luzzu frameworkﬂ (i) to assess
the validity of a datatype against their lexical value;
and (ii) to assess the correctness of a string’s language
tag.

For calculating the correct language tag quality met-
ric) (Section .5) Luzzu uses natural language Web
Services. For single word literals it uses the Lexvo [11]
Web Service[ﬁ Lexvo is an enriched linguistics knowl-
edge base that interconnects entities to each other (for
example different meanings and translations of a word)
and also to entities on the Web of Data. Given a
string literal with its corresponding tag, a request to
the Lexvo API is made and a dereferenceable RDF re-
source is returned. This resource is then queried and
if a rdfs:seeAlso is found, then we deem a string
literal to have the correct tag.

For checking the correctness of the language tag of
muli-word literals, Luzzu uses the Xerox Language
Identiﬁeﬂ a Web Service that identifies the language
of natural language phrases and sentences. We exper-
imented with the service for its identification correct-
ness by providing various sentences in English, Italian
and German. The service always returned the correct
identification. On the other hand, this cannot be con-
sidered as a guarantee for all languages. In fact, the au-
thors in [25]] state that the service’s identification cor-
rectness is not guaranteed for certain languages. The
result of this metric is dependent of these two services,
therefore we consider this metric to give us an esti-
mate.

6. Analysis

This section present three analysis that are conducted
to explore the framework presented in the previous
section. The first analysis assesses multiple aspects
of the quality of datatyped literals on a large scale.
The second analysis assesses one quality aspect of
language-tagged string, also on a large scale. The third

17 All metric implementations are external to Luzzu, therefore the
results obtained are through the metrics imported to the framework.

18See http://lexvo.org

19Gee https://services.open.xerox.com/bus/op/
Languageldentifier/GetLanguageForString

analysis assesses quality aspects of datatyped literals
and language-tagged string within documents.

6.1. Analysis 1: The quality of datatyped literals

We analyze 1,457,568,017 datatyped literals from the
LOD Laundromat data collection for the following
datatyped literal quality categories defined in Sec-
tion 4.3} undefined, invalid, non-canonical. Overall we
find that the vast majority of literals are valid and a
modest majority of them are also canonical (Figure|[T).
However, 79% (or 1,108,813,673 occurrences) of liter-
als are of type XSD string. This is not surprising since
this is the datatype that enforces the least syntactic re-
strictions and is also the one that is chosen in many
serializations and applications as the default datatype.
For an XSD string literal to be invalid it must con-
tain non-visual characters such as the ASCII control
characters without escaping. Since this does not occur
very often, it is not surprising that the overall percent-
age of valid datatyped literals is also quite high. How-
ever, for the more complex datatypes that denote dates,
times and floating point numbers, the lexical forms are
stricter and must follow a very particular grammar. In
these cases we see that there is still a lot of room for
improvement (see the results below).

Undefined Most datatype IRIs do not dereference
to a proper definition of a datatype. Many datatypes
that have some form of human-readable informal de-
scription do not provide enough information in or-
der to properly implemented them. An example of
this is datatype IRI sysont:Markdown whose ‘def-
inition” is shown in Listing [} This informal speci-
fication is insufficient in order to define a datatype:
Firstly, the value space can either be defined as the set
of Markdown-formatted strings or in terms of a for-
mal abstraction of Markdown documents. For com-
parison, the value space for rdf:XMLLiteral is de-
fined in terms of the XML DOM model. Secondly,
the Markdown grammar that is pointed to by the
rdfs:seeAlso property is itself not formally speci-
fied. Finally, there does not yet exist a (generally ac-
cepted) canonical form for writing Markdown.

Listing 1: Informal description of Markdown datatype.

sysont:Markdown a rdfs:Datatype ;
rdfs:comment "A string literal formated using


http://lexvo.org
https://services.open.xerox.com/bus/op/LanguageIdentifier/GetLanguageForString
https://services.open.xerox.com/bus/op/LanguageIdentifier/GetLanguageForString
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Datatype IRI Occurrences
dt:second 2,326,298
dt :minute 682,790

dt:squareKilometre | 643,493
dt:centimetre 382,281

dt:kilogram 356,321
Table 1

The most often occurring undefined datatyped literals.

markdown syntax." ;
rdfs:label "Markdown formated string" ;
rdfs:seeAlso "http://daringfireball.net/

projects/markdown/syntax"

We notice that there is currently not a strong practice
of defining datatypes in terms of XML Schema. In fact,
we did not find such a definition outside of the orig-
inal XSD specification. Also, while there is no inher-
ent reason why an informally specified datatype should
be ambiguous or incomplete, in practice we have not
found a single informal descriptions that is unambigu-
ous and complete. Table [T] shows the most often oc-
curring undefined datatypes. The vast majority of these
are DBpedia datatype IRIs (namespace dt). For in-
stance, it is unclear whether dt :second should be
able to denote partial seconds (floating point versus in-
teger number) or whether it should be able to represent
a negative number of seconds.

Some datatypes are defined but do not include the
optional canonical mapping. Literals that use these
datatypes can therefore never end up in the canonical
quality category. An example of such a datatype IRI
is dct :W3CDTF, which allows multiple lexical forms
to denote the same value. For instance, the same time
zone can be represented in multiple ways: as +01:00
or as -23:00. We note that a canonical mapping is
sometimes hard to specify and may sometimes not be
very useful. An example of this is rdf:HTML which
does not specify a canonical mapping, which would
have to map an arbitrary HTML DOM tree to a canoni-
cal HTML serialization (including whitespace use, en-
coding decisions, canonization of non-HTML content
like CSS or JavaScript, etc).

Invalid Table2shows the datatypes that have the high-
est number of invalid literals. Overall, only 0.11% of
all literals are invalid. However, as was mentioned be-
fore, 79% of all literals are strings for which almost
every lexical form is valid. As soon as the data gets

’ Datatype IRI Occurrences
xsd:int 511,741
xsd:decimal 122,738
xsd:dateTime 98,505
xsd:gYearMonth 16,469
xsd:gYear 11,957

Table 2

The datatype IRIs with the highest number of invalid literals.

Datatype IRI Occurrences
xsd:float 30,152,304
xsd:double 17,783,414
xsd:decimal 2,127,133

rdf:XMLLiteral | 245457
224,994

xsd:dateTime
Table 3

The datatype IRIs with the highest number of non-canonical literals.

more complicated, the percentage of invalid occur-
rences goes up.

Non-canonical Table 3]shows the eight datatypes with
the highest number of non-canonical literals. Over-
all, 3.5% of all literals are non-canonical. Again, sim-
ple strings are canonical by definition, since they map
onto themselves. On the other hand, the majority of
the floating-point numbers (either xsd:double or
xsd: float) are non-canonical. The reason for this is
that their canonical format is quite specific: it must al-
ways be written in scientific notation with exponent
sign ‘E’. For instance, the floating point number 1.0
must be canonically written as 1. 0EQ.

6.2. Analysis 2: The quality of language-tagged
strings

We analyze language tags for 569,422 documents from
the LOD Laundromat data collection. This set con-
tains 3.54 billion literals whose lexical form con-
tains natural language expressions. 2.26 billion liter-
als (63.83%) are language-tagged strings that have a
language tag specified by the original data creator.
This means that 36.17% of the LOD Laundromat nat-
ural language literals do not have a language tag. The
distribution of language tags is given in Table 4] By
far the most language-tagged literals are English, fol-
lowed by German, French, Italian and Spanish. This
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Language tag Occurrences
en 878,132,881
de 145,868,558
fr 129,738,855
it 104,115,063
es 82,492,537

ru 77,856,452

nl 75,226,900

pl 59,537,848

pt 56,426,484

sV 47,903,859
other 607,012,252
no tag 1,281,785,207
text literals 3,544,028,391
number of datasets | 569,422

Table 4

The distribution of language tags in the LOD Laundromat data
collection.

shows that Linked Data contains a strong representa-
tion bias towards languages of European origin, with
the 10 most frequent language tags representing Eu-
ropean languages. 73.26% of all language-tagged lit-
eral belong to one of the 10 most frequently occurring
languages.

6.3. Analysis 3: The quality of LOD documents

In order to illustrate that the here presented toolchain
integrates well with existing quality frameworks, we
run initial experiments of the Luzzu framework receiv-
ing data and metadata through the Frank tool. Luzzu
quantifies the quality of Linked Data documents, in-
cluding the quality of literals. We used Luzzu in or-
der to process 470 data document from the LOD Laun-
dromat collection. For each of these documents Luzzu
calculated the compatible datatype metric and the cor-
rect language tag usage metric (Section4.3)). For these
specific documents Luzzu determined that, on average,
70% of the RDF string literals in LOD Laundromat
have a correct language tag. On the other hand, only
39% of RDF literals have a compatible datatype.

We inspected a sample of documents whose quality
value was less than 40% for quality aspects that cannot
be automatically calculated. We observe the following
low-level quality problems with the incorrect literals:

— A literal contains linguistic content but lacks a
language tag.

— A literal partially contains linguistic content but
also contains non-alphabetic characters. Exam-
ple: "related_software"@en.

— A literal has linguistic content but also contains

syntax errors. Example: "flow cytometer sorter"@en.

— A literal has an unrecognized language tag. Ex-
ample: "article"@en-US.

The majority of problematic triples fall into the first
category. The third and fourth categories are the most
interesting. The former category deals with literals that
were identified incorrect by the metric’s external ser-
vice due to some language syntactic flaw. For exam-
ple,in "flow cytometer sorter"@en the term cy-
tometer should have been written as cytometry. The fi-
nal category deals with the actual syntax expected of
the language tag. Although the tag en-Us is correctly
defined as per the BCP47 standard [29], our metric ex-
pects two/three letter language tag as defined by the
Linked Languages ResourcesFﬂ

7. Improvement

In this section we show that the quality of literals can
be significantly improved by using the processing and
analysis framework presented in Sections[5|and[6] The
possible quality improvements are defined in the literal
quality taxonomy in Section[4] as indicated by the hor-
izontal lines in Figure [T} Based on the analysis in the
previous section we are informed about some of areas
where literal quality can be improved.

We note that not all aspects of literal quality can be im-
proved by automated means. For instance, the quality
improvement from ‘underspecified’ to ‘well-specified’
in Figure[I]cannot be based on the available data alone
but needs an interpretative decision from the original
data publisher. Even though these quality issues cannot
be fixed automatically, the current framework can still
be used to automatically detect such problems. In gen-
eral, suggestions for quality improvement can now be
based on empirical observation rather than intuition.

208eelhttp://linkedvocabs.org/lingvoj/
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In order to show that our toolchain indeed provides the
required scale to fix quality issues in the LOD Cloud,
we choose two quality aspects that can be automated.
These two quality aspects also support two use cases
in Section [3] The first one is the efficient computation
for equivalence tests by automatically converting non-
canonical datatyped literals to canonical ones. The sec-
ond one is improved natural language processing by
automatically assigning language tags to textual liter-
als that did not have language tags before.

7.1. Improving datatyped literals

Undefined The analysis in Section[6]gives an overview
of the size of the quality issue of undefined datatypes.
Based on this overview we can see that defining the
DBpedia datatype IRI would solve the vast majority
undefined datatype IRIs, thereby significantly increas-
ing the quality of literals in the LOD Cloud.

Underspecified — well-specified An underspecified
literal cannot be changed into a well-specified one
based on the observed lexical forms alone. For in-
stance, the fact that the values “0001”, “0203”, “9009”
appear in the data does not tell us whether the datatype
should be defined in terms of xsd:positiveInteger
or in terms of xsd:nonNegativeInteger. Deciding
on the most general primitive datatype, xsd:decimal
in this case, also does not suffice since, for this par-
ticular example, xsd:gYear would apply just as well.
The problem becomes even more complex when non-
standard datatypes are considered, which could map
lexical form “0001” to the Mount Everest and “0203”
to afternoon sunsets. (While this example may seem
extreme, there are library standards where 3- or 4-digit
numbers are used to denote concepts and topics.)

Unimplemented — implemented Unimplemented
literals can only be improved upon by adding support
for them in a particular RDF processor. At the moment,
only few datatypes beyond the XSD primitive types
are implemented by any processor. Section [6] shows
that it is not easy to implement most datatypes since
many of them are underspecified. This may point to a
lacuna in today’s RDF standards: the issue of datatype
definition is ‘outsourced’ to the XML Schema speci-
fications. However, the current generation of Seman-
tic Web practitioners may have less experience with
XML Schema. Also, after more than a decade most

RDF tooling has not implemented means of interpret-
ing datatypes defined in XML Schema. In order to
improving the current situation, assistance in defining
RDF datatypes must be significantly improved. Also,
while implementing the XSD datatypes in ClioPatria,
we discovered that it helps to cross-validate against
another library (in our case RDF4]J). In a similar way,
we hope that the availability of ClioPatria will make it
easier for others to add support for more datatypes in
their RDF processors.

Invalid — valid Invalid literals can only be improved
upon by the original data publisher. We cannot auto-
mate this task since it requires us to choose between
changing the datatype IRI to match the lexical form,
changing the lexical form to match the datatype IRI, or
changing both. We can however give a list of mistakes
that occur most often. Based on our empirical observa-
tions these are the top 5 mistakes, along with sugges-
tions of how to avoid them:

1. xsd:int is not the same as xsd:integer. The
former is a short integer and cannot be used to
express integers smaller than -2,147,483,648 or
larger than 2,147,483,647.

2. RDF IRIs are case sensitive [9]. Specifically
xsd:datetime is not the same as xsd:dateTime.
The former is not defined by the XSD standard
and occurrences of it are probably typos.

3. xsd:date must not include a temporal specifier.
xsd:dateTime is used for this instead.

4. Many datatype IRIs are not proper HTTP(S) IRIs.
Since RDF serializations are very admissive when
it comes to IRI syntax, many things that are
parsed as literals contain datatype IRIs that do
not parse according to the IRI specification [16].
Most of these improper datatype IRIs are due to
undeclared prefixes appearing in the source doc-
ument. Most of these can probably be expanded
according to list of common RDF prefixes, but the
original data publisher should check whether this
is indeed the case.

Non-canonical — canonical Canonical literals pro-
vide a significant computational benefit over non-
canonical valid literals for several use cases. For in-
stance, checking whether two terms or statements are
identical or not no longer requires parsing and gener-
ating, i.e., string similarity suffices where one would
have to calculate v2¢(12v(l)) = v2¢(12v(l)) oth-
erwise. The improvement of non-canonical literals is
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conditional on other quality improvements. Firstly, the
datatype has to specify a canonical mapping. Secondly,
there has to be a tool that implements this mapping.
Only when these two preconditions are met is it pos-
sible to algorithmically generate canonical out of non-
canonical literals. ClioPatria now fully automates the
canonicalization of RDF literals: all literals are stored
in canonical form upon statement assertion.

7.2. Improving language-tagged strings

No language tag — language tag We attempt to as-
sign a language tag to textual literals without one. For
this purpose, we test language detection improvements
on textual lexical form from the documents of the LOD
Laundromat data collection. We define a textual lexi-
cal form as a lexical form of datatype xsd:string or
xsd:langString which has at least two consecutive
Unicode letters.

In an attempt to improve the language tags coverage of
LOD Laundromat, we apply three language detection
libraries (Section[5.2)). We are interested in the follow-
ing aspects. How often does the automatically detected
language tag coincide with the user-assigned tag? How
accurate are the language detection libraries? Does the
accuracy of detection differ per primary language or
for various string sizes? Are certain languages or string
sizes easier for language detection? How often do the
libraries refrain from assigning a language tag? Can we
combine the libraries and thus improve the accuracy of
language detection?

In our experiments, we primarily focus on the set of
tagged literals. These contain a “golden” language tag,
which allows us to easily evaluate the accuracy of our
solutions. For the set of tagged literals, we report the
precision, recall and F1-value of each of the language
detection libraries. We assume that the accuracy of the
language detection on the language-tagged strings is
comparable to the accuracy on textual lexical forms
with no user-defined language tag.

The language tag assigned by the users and by the au-
tomatic detection libraries can be of arbitrary length or
complexity. Since our language detection tools provide
an ISO 639-2 two-character language code in most of
the cases, we focus our comparison on the initial two
characters of each language-tagged string. This gran-

ularity of comparison is satisfactory for most cases,
although in exceptional situations the secondary lan-
guage tag can also describe the language. This is the
case for Chinese languages where zh-cn denotes a
different language than zn-tw.

We present the time needed to annotate the non-tagged
language expressions from the LOD Laundromat col-
lection for each of the library in Table [5] According
to this Table, the process of tagging every non-tagged
lexical forms lasts around 8 days. Most of this elapsed
time (around 90% of the total time) is an overhead ac-
counted to the library algorithm itself. Considering that
such an improvement procedure is to be executed once
and not necessarily in real time, we believe that the pe-
riod needed to improve the coverage of language tags
in the LOD Cloud is reasonable.

We measure the accuracy of each ALD library and ob-
serve that the highest precision (75.42%) is achieved
by the CLD library, which covers highest number
of languages (160). It is notable that this library of-
ten gives no language suggestion, especially when it
comes to short strings. We further investigate to which
extent the accuracy of the libraries is dependent on
specific language tags or string sizes. The outcome of
this analysis for the most frequently occurring 10 lan-
guages is shown in Table [6] Each of the cells in the
Table represents an intersection of a primary language
tag and a string size bucketEr] Each cell contains three
values that show the Fl-accuracy of each of the three
libraries: Tika, CLD and LangDetect, correspondingly.
While CLD has highest accuracy in the majority of the
cells, there are notable exceptions. For instance, the
LangDetect library is mostly better than the CLD li-
brary in detecting English literals or short Portuguese
literals.

Figure [2]shows the aggregated accuracy per bucket for
each of the libraries. Note that there is hardly any inter-
section of the plotted lines: for any bucket of text size
(except 0), CLD has the highest F1-value, while Tika
has the lowest. However, the text size does correlate
with the general success of language detection (by any
library). Concretely, short strings which contain only
one word (bucket 0) or two words (bucket 1) are much

21'We measure the string size N in terms of number of words that
constitute the string. A string size bucket B contains a range of string
sizes whose logarithmic value shares the same natural number: B =|
log2(N) |
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Library Duration Library Overhead
No library || 21.5 hours /
CLD 182.5 hours | 161 hours
LD 203 hours 181.5 hours
Tika 206 hours 184.5 hours
Table 5

Running time for each of the three ALD libraries

harder to detect correctly than longer strings. On the
other hand, expressions from bucket 8 (between 129
and 256 words) can be detected with almost perfect
accuracy.

This tendency is confirmed for the most frequent 10
languages (Figure [3). Every data point represents an
average Fl-value over the three libraries for a given
language and bucket. Libraries can successfully detect
the language of sufficiently long literals (bucket 3 liter-
als already have an F-measure of around 75%, growing
to around 85-90% for bucket 4). Almost all languages,
except from Portuguese, closely follow this distribu-
tion.

Guided by these insights, we combine the libraries by
applying the library with the highest F1-score for each
pair of language tag and bucket size. By following this
approach, we obtain an F1-value of 50.24%. This score
is far below the reported accuracy of the employed li-
braries, which is an artifact of the averaging over all
strings in the LOD cloud, irrespective of their length
and language. As the Figures 2] and [3|demonstrate, the
accuracy of the ALD libraries for strings of moderate
and long size is very high, whereas the language de-
tection on short strings and non-supported languages
has a much lower accuracy. Hence, to guarantee very
high precision and recall of language detection, the im-
provement of language tags should focus on strings
with sufficient length, i.e. avoid to detect the language
of short strings.

8. Conclusions

We have presented a toolchain for the large-scale anal-
ysis and improvement of the quality of RDF liter-
als. The toolchain is build on top of the LOD Laun-
dromat data cleaning and republishing architecture.
The toolchain has not only be used for the here pre-

sented experiment, but has also been consolidated in
the ClioPatria triple store. It has also been reused by
the Luzzu quality framework. Literal quality indicators
have been fully integrated into the LOD Laundromat
and metadata about each literal quality violation is now
recorded next to other cleaning metadata.

We have focused on the quality of literals, an area of
Linked Data quality that has not been thoroughly in-
vestigated before. We have systematically specified a
taxonomy of quality criteria that are specific to RDF
literals. We have shown that quality metrics can be de-
fined in terms of this taxonomy. Our toolchain is able
to implement such quality metrics, allowing data qual-
ity to be systematically analyzed. Two analyses were
conducted on a very large scale and a third analysis has
shown that out toolchain can be used by existing qual-
ity assessment frameworks as part of assessing overall
Linked Data quality.

We have also illustrated a new way for the Semantic
Web and Linked Data communities to discover those
areas where literal quality would be most effectively
improved, because it is now possible to quantify the
impact of data cleaning, and other quality improve-
ment attempts.

Finally, we have shown that it is possible to improve
the quality of millions of literals (and thereby state-
ments) very quickly, by algorithmic means. This does
of course not apply to every quality criterion, e.g., it
does not apply to subjective criteria or ones that require
the original data publisher to edit the data. We have
shown that, when given state-of-the-art algorithms in
— for instance — natural language identification, our
toolchain is able to improve the overall quality of the
LOD Cloud. This means that quality criteria that can
be automatically improved in theory can now also be
automatically improved in practice.
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0 1 2 3 4 5 6 7 8 9 10 11 12
en| 2.08 5.72 13.84 | 38.24 | 76.29| 94.7 98.77| 98.77| 98.06| 9528 | 63.75| 86.76 | 83.01
12.5 26.46 | 42.19| 70.17| 92.44| 98.44 | 99.6 994 98.94 | 97.78 | 83.56 | 95.35| 92.34
9.29 4398 | 77.57| 91.32| 96.54 | 99.18 | 99.7 99.48 | 99.04| 97.95| 89.5 94.14 | 93.73
de | 5.26 1544 | 47.56 | 86.94 | 93.03| 94.99| 97.25| 98.18 | 97.75| 94.77 | 64.75| 43.7 59.26
53.17| 464 86.66 | 98.57| 98.94| 98.79| 99.35| 99.36| 99.41 | 98.53 | 84.89 | 90.76 | 92.59
52.57| 34.6 71.19| 97.23| 97.49| 97.73| 98.65| 98.81 | 98.66| 97.59 | 83.46| 85.59 | 92.59
fr | 8.65 15.03 | 39.04 | 82.44| 90.85| 95.24| 98.54| 98.98 | 98.79 | 94.36 | 76.71 | 70.72 | 58.73
2045 33.5 77.99 | 9495| 98.11| 98.42| 99.09| 99.22 | 99.14 | 95.88 | 82.98 | 77.17| 71.43
8.18 22.07| 71.41| 88.52| 96.07| 96.81| 98.6 99.02 | 98.97 | 95.67 | 81.55| 72.77| 67.21
it 14.03 ] 19.63| 6899 | 71.76| 90.19 | 89.42| 93.63 | 91.81| 98.25| 96.79 | 94.73 | 96.65 | 87.42
28.57 | 30.48 | 73.25| 76.17| 91.17| 89.41| 95.0 92.44 | 98.44| 96.65 | 94.1 94.06 | 83.65
5.38 8.1 36.31 | 58.67| 79.84| 85.86| 92.06| 92.76 | 96.86| 94.99 | 75.26 | 78.57 | 81.58
es | 2.51 7.55 21.72 | 37.72| 53.04| 75.89| 86.31| 94.72| 97.11| 96.66 | 85.57 | 86.69 | 100.0
32.87| 35.09| 50.77| 70.58 | 91.94| 98.37| 99.41| 99.46| 99.74 | 99.26 | 89.98 | 88.54 | 100.0
13.64 | 27.43| 31.78 | 54.19| 68.25| 9091 | 9597 | 98.27| 99.09 | 98.97| 91.87| 92.06 | 100.0
rua | 26.04| 39.99| 71.39| 64.34| 88.56| 97.4 97.81 | 98.43| 96.9 8591 | 15.69| 73.76 | 83.72
28.56 | 47.0 3495 71.02| 93.07| 98.92| 99.2 99.2 98.41| 94.67 | 79.75| 91.96 | 93.02
9.2 28.95| 21.35| 53.92| 77.53| 90.81| 94.87| 97.56| 97.38 | 90.1 38.25| 85.36| 75.36
nl | 3.02 | 4.32 22.52| 63.35| 96.11| 96.9 98.61 | 98.58 | 97.78| 90.79 | 59.21 | 43.86| 45.45
11.69 | 12.34 | 41.2 71.7 96.31| 97.35| 98.71| 98.75| 98.22 | 93.31| 72.67| 66.01 | 50.0
7.7 9.9 38.96 | 63.25| 93.34| 94.57| 97.43| 98.66| 98.73 | 95.33 | 80.96| 79.68 | 83.33
pl | 17.91| 35.31| 50.51| 66.62| 95.16| 99.1 99.19| 98.74| 98.61| 97.58 | 92.19| 71.0 37.5
30.3 3491 | 57.55| 73.98| 96.55| 99.19| 99.13| 98.66 | 98.58 | 97.52| 92.09 | 73.0 37.5
19.3 38.5 47.8 75.61 | 96.3 99.25| 99.31| 98.97| 9893 | 97.78 | 94.5 72.13 | 40.0
pt | 345 5.34 8.52 59.83 | 20.3 3399 | 394 53.72| 61.22| 67.33| 69.42| 70.51 | 85.29
10.2 14.88 | 70.93 | 81.92| 84.35| 94.67| 98.29 | 98.79 | 99.1 98.57 | 96.87 | 89.74 | 100.0
1323 | 16.95| 76.43 | 84.58 | 83.17| 95.13| 98.22| 99.19| 99.45| 99.14 | 98.47 | 96.0 100.0
sv| 1.3 2.64 14.87 | 4494 | 76.84 | 87.54| 93.68 | 96.41| 93.21| 90.2 64.84 | 4524 | 10.0
10.22 | 11.34 | 28.27 | 66.67 | 92.79| 96.33 | 98.28 | 98.23 | 94.61 | 94.24 | 80.66 | 57.14 | 50.0
4.47 10.87 | 2491 | 60.71 | 90.25| 94.24| 96.67 | 98.36| 98.36| 96.75| 84.97 | 67.65| 52.63
Table 6

F1-value accuracy of the libraries per bucket size and language. Library results are given in the following order: Tika, CLD, LangDetect. The
language tags are ordered by frequency, with the most frequent languages on the top of the Table.
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