Undefined 0 (2016) 1
10S Press

Private Record Linkage

An analysis of the accuracy, efficiency, and security of selected techniques for name matching

Pawel Grzebala and Michelle Cheatham *

Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA

E-mail: {grzebala.2\michelle.cheatham}@wright.edu

Abstract. The rise of Big Data Analytics has shown the utility of analyzing all aspects of a problem by bringing together
disparate data sets. Efficient and accurate private record linkage algorithms are necessary to achieve this. However, records
are often linked based on personally identifiable information, and protecting the privacy of individuals is critical. This paper
contributes to this field by studying an important component of the private record linkage problem: linking based on names while
keeping those names encrypted, both on disk and in memory. We explore the applicability, accuracy, speed and security of three
different primary approaches to this problem (along with several variations) and compare the results to common name-matching
metrics on unprotected data. While these approaches are not new, this paper provides a thorough analysis on a range of datasets
containing systematically introduced flaws common to name-based data entry, such as typographical errors, optical character

recognition errors, and phonetic errors.

Keywords:,

1. Introduction and Motivation

Data silos, in which organizations keep their data
tightly isolated from other systems, are a major barrier
to the effective use of data analytics in many fields. Un-
fortunately, when the data in question involves infor-
mation about people, integrating it often necessitates
querying or joining based on personally identifiable in-
formation (PII) that could be used to explicitly identify
an individual. As recent security breaches at organiza-
tions ranging from Target to the United States Postal
Service have made clear, it is important to protect PII,
both while it is at rest on a system and when it is read
into memory. The goal of this effort is to explore the
applicability, accuracy, speed and security of existing
algorithms for querying and joining databases while
keeping the PII within those databases protected.

This work focuses particularly on the situation in
which a data provider maintains a database which au-
thorized subscribers are able to query. For instance,
consider a company that maintains a database contain-

*Corresponding author, E-mail: michelle.cheatham @ wright.edu

ing its customer data. The company wishes to allow
third party entities who have contracted with it to ac-
cess the information in this database.! At the same
time, the company wants to limit its vulnerability to
data breaches by keeping the data encrypted as much
as possible, including while it is stored in the database
and when it is loaded into memory to do query pro-
cessing. For instance, if an attacker gets access to the
system on which the database resides, he should not
be able to see the raw data values, either on disk or in
memory.

Even though this situation occurs frequently, re-
search on private record linkage tends to focus more
on a different use case, in which the data provider and
the data consumer do not fully trust one another. This
typically leads to solutions involving trusted third par-
ties or asymmetric cryptography that go beyond the re-
quirements of this ubiquitous application scenario, and
these additional, unneeded capabilities negatively im-

! A standard access control system to allow authorized consumers
to query the database while preventing unauthorized users from do-
ing so is assumed to be in place.

0000-0000/16/$00.00 (©) 2016 — IOS Press and the authors. All rights reserved

2 Grzebala and Cheatham /

pact performance. For instance, because access control
mechanisms are already in place, this work is not con-
cerned about the data consumer (who has paid to ac-
cess the information in the database) gaining knowl-
edge of any, or even all, of the records in the database.
Furthermore, this project is not concerned about the
data consumer preventing the data provider from gain-
ing knowledge about what queries are being made.
Rather, the present use case allows a system in which
the data consumer submits a query containing the raw
PII values, these values are encrypted using symmetric
key cryptography?, and the encrypted values are then
used to query the database.

This work focuses on supporting privacy-preserving
querying and merging on string attributes and does
not consider numeric data. While private record link-
age based on numeric fields of is course an impor-
tant capability to establish, the techniques involved for
this are distinctly different than for string-based link-
ing. Furthermore, string attributes, in particular person
names, are a particularly common linkage point be-
tween datasets. We therefore leave the challenge of nu-
meric attributes for future work and focus on name-
based linking here. The requirements of our target ap-
plication scenario require PRL methods that support
encryption and do not need to act directly on the raw
field values, so approaches that utilize the original
string values at any stage in the process are not suitable
in this case. Because names are frequently misspelled,
mispronounced, or mistyped, it is important for the
approach to support fuzzy (approximate) matching as
well as exact matching. This fuzzy matching should
be particularly tailored to support the types of lexi-
cal variations specific to names. No data should be de-
crypted, even in memory, until a match is ensured. In
this paper we analyze the accuracy and efficiency of
several metrics that meet these requirements and com-
pare those results to that of standard name-matching
methods employed on unencrypted data. The paper fo-
cuses entirely on technical considerations of the tar-
geted use case. Laws and regulations also have a bear-
ing on this application, but that aspect is not addressed
here due to wide variance between legal jurisdictions
and the authors’ lack of legal expertise.

Note that nothing in this application scenario places
any restrictions upon the infrastructure in which the
data records are stored. In particular, the results pre-

Note that this exposes the raw PII values in memory, though only
those in the query, not those in every database record.

sented here can be applied directly, with no modifica-
tion, to data stored as RDF triples in accordance with
the linked data principles. This work therefore joins a
growing body of literature regarding how linked data
can be secured while retaining its utility for those au-
thorized to access it [6,9].

This paper is an extension of our work presented in
[7]. That paper compared the selected name matching
techniques based on accuracy and efficiency. Here, we
add an analysis of the accuracy impact of varying the
value of ¢ in the g-grams method (Section 4.6), an in-
depth security analysis (Section 5), and an overall rec-
ommendation (in Section 6).

The main contributions of this paper are:

— An analysis of the accuracy of several name-
based similarity metrics as a function of threshold
value on a large dataset containing various types
of realistic errors.

— A comparison of the accuracy and computational
efficiency of privacy-preserving similarity met-
rics with those of standard string metrics on un-
protected data, which clarifies the price paid in
support of data privacy.

— A frequency analysis attack against the best-
performing private name matching technique,
which provides insight into the level of security
achieved through the approach.

The rest of this paper is organized as follows: In Sec-
tion 2 we provide an overview of some related work
and briefly discuss the challenges that make record
linkage on names difficult. Section 3 introduces the
metrics and algorithms used to perform record linkage
in this study. This includes the string similarity metrics
for unencrypted data which are used as a baseline for
comparison purposes and the metrics relevant to pri-
vate record linkage. Section 4 analyzes and evaluates
the performance of the algorithms mentioned in Sec-
tion 3 in terms of accuracy, computational efficiency,
and security. Finally, Section 6 concludes the paper by
summarizing the results and provides an outlook to fu-
ture work.

2. Background

There have been numerous approaches to solving
the problem of record linkage based on person names.
A comprehensive overview of several name match-
ing techniques was provided by Snae in [12]. Snae
describes four different types of name matching al-

Grzebala and Cheatham / 3

gorithms and compares them in terms of accuracy
and execution time: spelling analysis based algorithms
(Guth and Levenshtein), phonetic based algorithms
(Soundex, Metaphonez, and Phonex), composite al-
gorithms (a combination of sound and spelling based
methods, e.g. ISG), and hybrid algorithms (a com-
bination of phonetic and spelling based approaches,
e.g. LIG). The hybrid algorithms were recommended
for many name based record linkage applications be-
cause of their flexibility, which allows them to be eas-
ily tuned for specific use cases. However, the results
indicated that there is no single best method for name
matching. In the conclusion, the author suggests that
the choice of the name matching algorithm should de-
pend on the specific application needs. Moreover, this
work doesn’t take into consideration the important as-
pect of our study, which is linking records while keep-
ing them encrypted.

As mentioned previously, many existing techniques
for private record linkage assume that the two parties
involved do not want to reveal their data to the other
party. One way this is commonly achieved is by de-
veloping algorithms that avoid directly comparing the
records to be linked. For example, in the two-party
protocol presented by Vatsalan and his colleagues in
[15], two database owners compute similarity values
between the records in their dataset and public refer-
ence values. Then, the similarity values are binned into
intervals and the bins are exchanged between the two
database owners. Based on the exchanged bins the pro-
tocol uses the reverse triangular inequality of a dis-
tance metric to compute the similarity values of two
records without revealing the records themselves. An-
other, somewhat similar, two-party protocol was pro-
posed by Yakout et al. in [17]. In this approach, each
database owner converts all of their records into vec-
tor representations that are later mapped to points in
a complex plane. The planes are then exchanged be-
tween the owners in order to identify pairs of points
that are in proximity of each other. To calculate sim-
ilarity values between the candidate vectors, the Eu-
clidean distance of two records is computed using a se-
cure distance computation. These two approaches are
typical of many existing PRL techniques and, like the
majority of those techniques, they implicitly assume
that the records to be linked are not encrypted. We now
turn our attention to examples of the few approaches
that do not make this assumption.

One important thing to note is that not all string sim-
ilarity metrics can be applied to the problem of name-
based private record linkage. In order for a metric to

be usable in this scenario, the metric must not require
access to individual characters within this string. This
is because any such metric would have to “encrypt”
a string character-by-character, which is essentially a
classical substitution cipher that is not at all secure.
This eliminates common metrics such as Levenshtein
and Monge Elkan from consideration.

Among the techniques that support approximate
matching for linking records are the Soundex and g-
gram string similarity metrics. The Soundex metric
was originally designed as a phonetic encoding algo-
rithm for indexing names by sound [2]. Soundex en-
codes a string representing a name into a code that
consists of the first letter of the name followed by
three digits, by applying a set of transformation rules
to the original name. When two Soundex encodings
are compared, the comparison is an exact match rather
than approximate comparison but common name mis-
pronunciations will not cause the algorithm to miss
a match®. To use Soundex for private record linkage,
both the name and the phonetic encoding are stored in
the database in encrypted form for each record, but the
encrypted phonetic encoding is the one used to respond
to queries. The comparison is still an exact rather than
fuzzy comparison, but because it is now being done
on a phonetic encoding, common misspellings or other
slight differences will not cause the algorithm to miss
matching records. This was the approach suggested in
[4].

Another of the string similarity metrics that can be
used is g-grams. A g-gram is created by splitting a
string into a set of substrings of length ¢g. An exam-
ple of a g-gram, given ¢g=2 and the input string Alice,
is {7Al”,71i,7ic”,”ce” }. As with the Soundex ap-
proach, in order to use g-grams for name-based private
record linkage additional information must be stored
with each record. In the case of g-grams, the person’s
name is divided into g-grams, each of the substrings
in the set of g-grams is encrypted, and those encrypted
substrings are also stored as part of the record. The
amount of similarity between two records is then com-
puted as the degree of overlap between these sets of en-

3In 1990 Lawrence Philips created a phoenetic algorithm called
Metaphone that improves upon Soundex by considering numerous
situations in which the pronunication of English words differs from
what would be anticipated based on their spelling [10]. Metaphone
was not considered for this effort because the extensions that it
makes beyond Soundex are primarily intended to improve the per-
formance on regular words rather than on names; however, the met-
ric does fit the requirements for use in this application, and will be
considered during our future work on this topic.

4 Grzebala and Cheatham /

crypted g-grams for each record. Each individual sub-
string is compared based on exact match. The degree
of overlap is computed using a traditional set similarity
metric such as Jaccard or Dice, which are calculated as
follows:

Jaccard = gramSeommon
gramsy + gramsg — gramscommon
Dice — 2 X gramsScommon

~ grams; + gramsp

, where gramsgommon coOrresponds to the number of g-
grams that are common to both strings, grams; to the
number of g-grams in the first string, and grams, to the
number of g-grams in the second string. The intuition
behind using g-grams to compare two names is that a
typo, misspelling, or other variation will only impact
a limited number of substrings and therefore similar
strings will still have a high degree of overlap and thus
a high similarity value. The downside is that the order
of the substrings is not considered, so it is possible for
two very different strings, such as “stop” and “post” to
have very high similarity according to this metric.

A more in-depth review of techniques proposed to
achieve private record linkage can be found in [3].

In this work, we have evaluated the performance of
the Soundex and g-gram algorithms for name-based
private record linkage in the scenario described in
the introduction. Because it is unrealistic to expect
a privacy-preserving record linkage algorithm to per-
form better than a linkage method that does not pro-
vide any protection for the data, we have compared
the performance of Soundex and g-gram to the perfor-
mance of some traditional string similarity metrics on
unencrypted data. Specifically, we have used Leven-
shtein and Jaro-Winkler, two of the most commonly
used string similarity metrics, as a baseline. Leven-
shtein is an edit distance metric. It simply counts the
number of edits (insertions, deletions, or substitutions)
that must be applied to one string in order to trans-
form it into another one. For example, the Levenshtein
distance between "Michelle" and "Micheal" is 2. Jaro-
Winkler is based on the Jaro metric, which counts the
number of “common” characters of two strings. Char-
acters are considered common when the difference be-
tween their indexes is no greater than half of the length
of the longer string. Jaro also takes into considera-
tion the number of character transpositions. The Jaro-
Winkler version of the algorithm increases the simi-
larity value returned by Jaro if the two strings begin

with the same sequence of characters and differences
appear only in the middle or at the end of string [3].

Name matching has been researched for many years
and numerous studies have proven that it is not an easy
task. This is because a name’s spelling can be mal-
formed in a wide variety of ways, including punctu-
ation, abbreviation, pronunciation, spelling, the order
of writing, use of prefixes, typos, or optical recogni-
tion errors to name a few. In addition, privacy con-
cerns have made it very difficult to find publicly avail-
able data that can be used for benchmark purposes,
particularly a collection of names that accurately re-
flects worldwide name distribution rather than being
US-centric. This lack of suitable benchmarks was a
considerable challenge during this study, leading to the
use of a newly-available name matching benchmark
generation system, described in Section 4.

3. Approach

We analyzed the performance of several string
similarity metrics for linking encrypted records. The
metrics considered were Soundex and several vari-
ations of the g-gram technique. This performance
was compared against those of Jaro and a normal-
ized version of Levenshtein on the unencrypted data.
The data and Java source code are available from

https://github.com/prl-dase-wsu/prl-technique-comparison.

We used two metrics based on g-grams. The first is
g-grams with g=2 (also called bigrams). Because stud-
ies have shown [8] that padding the input string with a
special character (one that never appears as part of any
string in the dataset) at the beginning and the end of
string can increase the accuracy when comparing two
different g-grams we also tried padded g-grams with
g=2. Both g-grams and padded g-grams were com-
pared using two different similarity coefficient meth-
ods, Jaccard and Dice.

The string metrics that were used on unencrypted
data, Jaro and Leveshtein, were introduced in Section
2. To formally define both algorithms, the similarity
value of two strings returned by the Jaro algorithm is
calculated as follows:

< < c-t
S1+SZ+C

3

Jaro =

, where ¢ is the number common characters in both
strings, s; is the length of the first string, s, is the length
of the second string, and ¢ is the number of transposi-

Grzebala and Cheatham / 5

tions (the number of common characters that are not in
sequence order, divided by 2). Since all of the metrics
used in this study return a value between 0.0 (when
strings are completely different) and 1.0 (when string
are the same) we modified the original Levenshtein al-
gorithm so that it returns a similarity value that falls in
the same range. The Normalized Levenshtein formula
is defined as follows:

Levenshtein

NormalizedLevenshtein = 1 —
max(s1,S2)

, where Levenshtein is the number of replacements
needed to transform the first string into the second
string, s; is the length of the first string, and s; is the
length of the second string.

The benchmark datasets used in this study were cre-
ated by using the advanced personal data generation
tool called “GeCo” and developed by K-N. Tran et al.
[13] The tool was created to address the issue of lack
of publicly available data that contains PII informa-
tion. GeCo has two main functionalities: data gener-
ation and data corruption. The data generation mod-
ule provides the user with an interface capable of pro-
ducing records with five different attribute generation
mechanisms. The first two can be used to generate in-
dividual attributes such as credit card number, social
security number, name, age, etc. The attribute values
are created by either user-defined functions or based
on frequency look-up files that specify the set of all
possible values of an attribute and their relative fre-
quencies. The other three types of attribute generation
mechanisms allow the user to produce compound at-
tributes where the attributes’ values depend on each
other. For example, a compound attribute with fields
such as: city, gender, and blood pressure can be cre-
ated, where the value of the blood pressure depends on
the previously generated city and gender values. The
second module of GeCo provides users with a sophis-
ticated interface allowing them to corrupt the gener-
ated data using six different corruption techniques that
simulate real-world errors that can occur during data
processing. Those techniques include introducing: (1)
missing values (one of the record’s fields gets lost),
(2) character edits (a random character of a string at-
tribute is inserted, deleted, substituted, or transposed),
(3) keyboard edits (simulates a human mistake during
typing), (4) optical character recognition (OCR) errors
(simulates OCR software mistakes), (5) phonetic ed-
its (replaces substrings with their corresponding pho-
netic variations), and (6) categorical value swapping

(replaces an attribute value with one of its possible
variations). The user can also specify numerous other
parameters such as: the number of records to corrupt,
the number of corruptions applied to a record or single
attribute, or the probability of corruption of a particular
attribute.

For benchmark purposes we generated a dataset of
10,000 records where each of the records had the fol-
lowing attributes: first name, last name and credit card
number. Then, we used the GeCo tool to introduce
various types of realistic corruption to the generated
dataset. The corrupted datasets produced by the GeCo
tool were categorized using three parameters: type
of applied corruption technique (Character Edit, Key-
board Edit, OCR Edit, Phonetic Edit, or mix of all), the
percentage of original record corruption (high - 10%,
medium - 5%. or low - 2%), and the number of corrup-
tions applied to either the first name, last name, or both
(1 or 2). This resulted in 30 variations of the dataset.
Once the datasets were corrupted we added additional
attributes to each of the records from all datasets to
be able to perform record linkage using encrypted g-
grams and Soundex encodings. Each g-gram array and
Soundex encoding were encrypted using 256-bit AES
password-based encryption.

To evaluate the performance of the string metrics,
the uncorrupted dataset was cross joined with each of
the corrupted datasets using each of the string metrics
discussed in the previous section. During the join oper-
ation only the pairs of records with the highest similar-
ity score that exceeded a threshold value were joined.
If the an individual pair of joined records corresponded
to the same individual we counted it as a "Correct"
join, otherwise the join was counted as a "False Posi-
tive". If none of the scores returned by a string metric
exceeded a threshold value we incremented the "False
Negative" count by one to indicate that a correspond-
ing record was not found in the other dataset. In a
special case, when more than one pair of records had
the same highest score, the pair of records that corre-
sponded to the same individual was marked as "Cor-
rect" and the rest of the pairs were counted as "False
Positive".

4. Evaluation and Analysis

Performing record linkage using each of the seven
string metrics (g-grams compared using Jaccard co-
efficient, g-grams compared using Dice coefficient,
padded g-grams compared using Jaccard coefficient,

6 Grzebala and Cheatham /

padded g-grams compared using Dice coefficient,
Soundex, Levenshtein, and Jaro) between the uncor-
rupted dataset and the 30 corrupted datasets resulted in
a massive amount of statistical data. Instead of present-
ing the outcome of every single cross join operation,
this section summarizes our key findings, with an em-
phasis on practical advice related to selecting a metric,
setting the threshold, and conveying the type of perfor-
mance that can be expected by someone attempting to
do name-based private record linkage.

4.1. Observation 1: Soundex is not viable, but
(padded) q-grams are

Figure 1 Shows the results of all of the string met-
rics on a version of the data in which 10 percent of the
names have had one (the solid lines) or two (the dot-
ten lines) characters edited. In the single edit case, all
versions of the g-gram metric are able to achieve the
same, nearly perfect, accuracy on the encrypted data
that Levenshtein and Jaro achieve on the encrypted
data. The performance of all metrics is lower for the
two character edit case, with a top accuracy of 90 per-
cent rather than the completely accurate results possi-
ble in the single edit situation. However, we again see
that the performance of at least the padded versions of
the g-gram approach on the ciphertext can match that
of Levenshtein and Jaro on the plaintext.

The results for the Soundex metric are not included
in Figure 1 because the results showed that compar-
ing names based on encrypted Soundex encodings is
not viable in most of the cases as a record linkage
technique. The only exception was noted when the
datasets containing records with the phonetic type of
record corruption were joined. Still, in the best case
scenario only 60.71% of corrupted data was success-
fully matched using this technique. Table 1 presents
the accuracy of record linkage on all types of corrupted
datasets using the Soundex technique.

Table 1
Performance of record linkage based on encrypted Soundex encod-
ings. The percentage values reflect the number of corrupted records
that were successfully matched with their uncorrupted versions.

. Number of corruptions per record
Corruption type

1 2
Character Edit 47.24% 24.06%
Keyboard Edit 48.06% 21.94%
OCR Edit 38.29% 13.71%
Phonetic Edit 60.71% 43.88%
Mix 50.82% 25.47%

4.2. Observation 2: Dice is preferable to Jaccard for
calculating q-gram similarity

Out of the four similarity metrics based on g-grams,
the ones using the Dice coefficient to measure the sim-
ilarity between the sets of encrypted g-grams were
more accurate. This was the case with g-grams as well
as padded g-grams. This can be explained by the fact
that Dice favors the occurrences of common g-grams
more than Jaccard. As a result, a pair of similar records
is likely to have a higher similarity score when calcu-
lated using Dice coefficient. To illustrate this, in Table
2 we provide a sample results from record linkage per-
formed against a dataset with the phonetic type of cor-
ruption, where 10% of original records had two pho-
netic errors introduced. Similar results were recorded
for datasets with other types of corruptions.

4.3. Observation 3: Lower thresholds are better for
q-grams

Figure 1 illustrates that the threshold value for the
Levenshtein and Jaro metrics can be set relatively high
without sacrificing accuracy when linking the unen-
crypted data, which was not the case when the g-gram
techniques were used to link the encrypted data. For
instance, to achieve an accuracy of 99.5% when per-
forming linkage against datasets where records con-
tain one corruption of any type, the threshold value ap-
plied to the Jaro or Levenshtein metric was set to 0.8
whereas the threshold value applied to g-grams based
metrics needs to be set to a value between 0.55 and
0.75 to achieve the same result, depending on the type
of corruption applied to the datasets.

Table 2 makes the point that the padded versions
of the g-gram metric in particular have better perfor-
mance when the threshold value is kept low, which as
explained in the previous paragraph is the optimal ap-
proach. For threshold values up to 0.7 for the Jaccard
coefficient and 0.8 for the Dice coefficient, padding the
g-grams produces better results. For higher threshold
values, the unpadded version is slightly better. The rea-
son behind this is that similarity scores calculated us-
ing padded g-grams are higher when the differences
between the strings used to generate the g-grams ap-
pear in the middle of the strings. [3] When the differ-
ences appear at the beginning or at the end of strings
the similarity scores are lower because the number of
common g-grams is smaller. Statistically, the differ-
ences between strings appear more often in the mid-
dle, which explains why the padded g-grams can pro-

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

Accuracy

40.00%

30.00%

20.00%

10.00%

0.00%

Grzebala and Cheatham /

03 035

04 045

0.5

0.55

0.6 0.65
Threshold

0.7

0.75

—e—Jaro - 1 error

—e—Levenshtein - 1 error

—e—q-grams,non-padded,jaccard - 1 error
g-grams,non-padded,dice - 1 error
g-gram,padded,jaccard - 1error

—e—q-gram,padded,dice - 1 error

-<e-Jaro - 2 errors

-+e- Levenshtein - 2 errors

-+~ g-grams,non-padded,Jaccard - 2 errors

e g-grams,non-padded,Dice - 2 erros
-e- g-grams,padded,Jaccard - 2 errors

e- g-grams,padded,Dice - 2 errors

Fig. 1. Illustration of the decrease in accuracy of record linkage of selected string metrics. Solid lines correspond to accuracy when linkage was
performed on datasets corrupted with 1 Character Edit, dotted lines with 2 Character Edits.

ilarity metrics

unpadded g-grams

Table 2

Sample results of record linkage performed against phonetically cor-
rupted dataset showing the performance of g-grams based string sim-

padded g-grams

Jaccard Dice Jaccard Dice
Threshold | Correct FP FN | Correct FP FN | Correct FP FN Correct FP FN
0.30 9837 60 163 9837 60 163 9949 45 51 9949 45 51
0.35 9837 60 163 9837 60 163 9949 45 51 9949 45 51
0.40 9834 57 166 9837 60 163 9948 45 52 9949 45 51
0.45 9814 56 186 9837 60 163 9937 43 63 9949 45 51
0.50 9778 48 222 9837 60 163 9910 38 90 9949 45 51
0.55 9614 29 386 9834 57 166 9790 27 210 9949 45 51
0.60 9506 25 494 9826 57 174 9589 18 411 9946 45 54
0.65 9329 21 671 9778 48 222 9337 18 661 9910 38 90
0.70 9198 18 802 9637 32 363 9170 18 830 9792 27 208
0.75 9101 18 899 9467 22 532 9081 17 919 9538 18 462
0.80 9046 18 954 9264 19 736 9032 17 968 9233 18 767
0.85 9023 18 977 9125 18 875 9011 17 989 9097 17 903
0.90 9009 18 991 9036 18 964 9002 17 998 9021 17 979
0.95 9002 18 998 9009 18 991 9000 17 1000 9002 17 998

duce higher similarity scores for the majority of cor-

rupted data. This pattern occurred in all of the results

produced during this study.

4.4. Observation 4: Some types of errors are worse
than others

Out of all corrupted datasets the worst performance
in terms of accuracy and the number of false positives
found was “achieved” when the datasets with OCR Ed-
its were linked. This is most likely due to the fact that

8 Grzebala and Cheatham /

some of the mistakes that OCR Edits introduce are re-
placements of two characters in place of one charac-
ter, or vice versa. For instance, character “m” can be
replaced with “rn” and the string “cl” can be replaced
by the character “d”. Those kind of replacements can
have a significant negative impact on the string simi-
larity scores produced by all of the metrics. The best
performance results were recorded when the datasets
corrupted with Character Edits were linked, those are
presented in Figure 1. Figure 2 illustrates the accura-
cies of linking datasets corrupted with OCR Edits er-
rors. The accuracies of datasets corrupted with Key-
board Edits, Phonetic Edits, and a mix of all types of
edits fall in between the accuracies presented in Figure
1 and Figure 2.

Another pattern common for the results obtained
from linking all types of corrupted datasets was a sig-
nificant drop in accuracy when the corrupted records
contained more than one error of any type. For in-
stance, for Threshold=0.85 the accuracies of the Jaro,
Levenshtein, unpadded g-grams compared using the
Dice coefficient, and padded g-grams compared using
the Dice coefficient were 97.5%, 90.79%, 57.46%, and
73.37% respectively when there was only one error of
the Character Edit type per record. When the number
of errors per corrupted record increased to two, the ac-
curacies decreased to 88.39%, 39.54%, 13.31%, and
10.41%. Figure 1 presents a full overview of the accu-
racy degradation for datasets corrupted with Charac-
ter Edits where 10% of all original records were cor-
rupted.

4.5. Observation 5: The efficiency penalty for these
privacy-preserving string similarity metrics is
small

The Jaro, Levenshtein, and Jaccard and Dice vari-
ants of the g-grams metric all have a O(nm) time com-
plexity, where n and m are the lengths of the strings
to be compared. Because the Soundex metric is only
checking for equality of the Soundex representation of
the strings, its time complexity just O(n). When de-
termining whether a particular name is in the dataset,
the query name is compared against all of the names in
the dataset. It should be noted that the Soundex algo-
rithm, because it is an exact rather than fuzzy match,
could be made more efficient by indexing the database
on the Soundex representation of the name. Also, there
has been some work on eliminating the need to con-
sider all names in the dataset when querying using the
Jaro metric through the user of character and length-

based filters to quickly determine if it is possible for
a particular name to match the query within a speci-
fied threshold [5]. Neither of these optimizations were
considered in this work.

While most of the string metrics considered have the
same computational complexity, constant factors dif-
fer between the approaches. For example, because Jaro
only looks for matching characters within a window
that is half the length of the longer string, it is gener-
ally faster than Levenstein. To evaluate the computa-
tional efficiency of each of the string metrics in a prac-
tical setting, the time taken to perform the join oper-
ation between the original dataset and the corrupted
dataset was measured. We explored the impact on the
performance when the number of characters in names
increases. In this case, the datasets always consisted of
10,000 records but the number of characters in each
name was equal to 10, 15, or 20. These tests were done
on datasets with a record corruption of 10%, where the
records were corrupted using the Character Edit tech-
nique and contained one corruption per record. The re-
sults are shown in Figure 3. The timing results of link-
age performed on the other corrupted datasets were
very similar to the ones presented in this figure.

The results show that the g-grams approaches are
very slightly faster than Jaro in these tests, and signifi-
cantly faster than Levenshtein. The average time taken
to perform the join operation on the datasets using Lev-
enshtein was more than five times the magnitude of the
time taken by the other string metrics. Of course, the
best speed was observed when the datasets were linked
using the Soundex metric. In those cases the linkage
was performed almost instantly, averaging only about
one second.

Additionally, we have investigated the impact on the
performance when the number of records increases.
Three datasets of different volumes (10, 20, and 30
thousand records) were linked to conduct the tests. The
results shown in Figure 3 indicate that as the number of
records to be linked increases, the time required to link
all the records is again very similar for Jaro and the g-
grams techniques, significantly greater for Levenstein,
and very low for Soundex.

4.6. Observation 6: As q increases, record linkage
quality degrades.

We also have studied the effects of the value of g on
the accuracy of the g-grams approach. As g increases,
fewer g-grams are needed to encode a string. This
implies that every difference between two strings en-

Grzebala and Cheatham / 9

Fig. 2. Accuracy of string metrics used to perform record linkage on dataset with 10% of the records corrupted using OCR Edits with 1 corruption

per record.
100.00% — ; .
90.00%
—e—Jaro
80.00%
\
\
70.00% \ —e—Levenshtein
\

60.00% \
§ ‘% —e—q-grams,non-padded,jaccard
5 50.00% ’ "
8
<

40.00% \

\ g-grams,non-padded,dice

30.00%

20.00% g-gram,padded,jaccard

10.00%

—e—q-gram,padded,dice
0.00%
03 035 04 045 05 055 06 065 07 075 0.8 0.85 09 0.95
Threshold

Fig. 3. The average time of record linkage using selected string met-
ric techniques.
5000

8 4500
c

g 4000
9 3500
£

@ 3000
i 2500

10k records
20k records

30k records

10k records, 10 characters per name
m 10k records, 15 characters per name

B 10k records, 20 characters per name

S 2000
-3
@ 1500
]
g 1000
X 500

=)
1
|
1
1
-
|
I

Soundex

String metric

q-grams, padded, Jaccard q-grams, padded, Dice

coded using g-grams and compared using the Dice or
Jaccard coefficient will be penalized more and more as
q increases. It is therefore expected that performance
will drop as g increases. Our goal was to investigate
the magnitude of this drop. We therefore studied the
accuracy of the g-grams approach for g equals 2, 3 and
4.

As expected, bi-grams (g=2) yielded the best results
for all types of datasets. Figure 4 presents the accu-
racy of record linkage of datasets containing keyboard
errors (10% of records were corrupted with one ran-
dom insertion, deletion, substitution, or transposition
of a character). The records were linked based on Dice
and Jaccard coefficient scores. The solid lines repre-
sent the results of linking records using unpadded g-
grams, the dotted lines indicate that the g-grams were

padded. All versions of g-grams demonstrated a very
similar degradation pattern in linkage quality. For ex-
ample, when the records containing unpadded g-grams
were linked based on Dice coefficient scores with a
threshold value set to 0.65 the percentages of success-
fully linked records (that contained the aforementioned
corruption) for g=2, 3, and 4 were equal to 99%, 84%,
and 57% respectively. This pattern holds for all types
of dataset corruptions (character, keyboard, OCR, or
phonetic errors). When the number of corruptions per
record increases to two, the record linkage quality suf-
fers even more. Figure 5 illustrates the accuracy of
record linkage of datasets where 10% of records were
corrupted with two random keyboard errors (Figures 4
and 5 were created using the same color-coded series
representing the linkage performed using the same g-
gram, padding, and g-gram similarity coefficient com-
bination to allow easy comparison between the re-
sults). For low threshold values, the record linkage us-
ing g-grams with g=4 resulted in correct linkage of
only about 15% of corrupted records, and even the us-
age of padded versions of g-grams didn’t significantly
improve the results. The linkage utilizing tri-grams and
bi-grams performed 3 to 6 times better depending on
the particular combination of ¢ value, padding, and g-
gram similarity coefficient. As before, the same link-
age quality degradation pattern was reported for all
types of data corruption.

10 Grzebala and Cheatham /

Fig. 4. Illustration of accuracy of record linkage based on different types of g-grams. Linkage was performed on datasets corrupted with 1

Keyboard Edit.
100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

Accuracy

40.00%

30.00%

20.00%

10.00%

0.00%
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Threshold

—e—(q=2,unpadded,Dice
—e—q=2,unpadded,Jaccard
—e—q=3,unpadded,Dice
q=3,unpadded,Jaccard

—e—qg=4,unpadded,Dice
—e—q=4,unpadded,Jaccard
-e- =2,padded,Dice
-e- g=2,padded,Jacccard
-+~ gq=3,padded,Dice

e~ q=3,padded,Jaccard
~e- g=4,padded,Dice

-e- g=4,padded,Jaccard

Fig. 5. Tllustration of accuracy of record linkage based on different types of g-grams. Linkage was performed on datasets corrupted with 2

Keyboard Edits.
100.00%

L e LT

90.00%

80.00%

70.00%

60.00%

50.00%

Accuracy

40.00%
30.00%
20.00%
10.00%

0.00%
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Threshold

5. Evaluation of the Privacy Level of g-grams

An important measure of any PRL technique, in ad-
dition to its performance and scalability, is the level
of privacy. In general, the PRL privacy requirements
assume that once the record linkage is complete only

0.7

—e—q=2,unpadded,Dice
—e—q=2,unpadded,Jaccard
—e—q=3,unpadded,Dice
g=3,unpadded,Jaccard
—e—q=4,unpadded,Dice
—e—q=4,unpadded,Jaccard
-e- q=2,padded,Dice
-e- q=2,padded,Jaccard
-e- q=3,padded,Dice
e~ g=3,padded,Jaccard
-e- gq=4,padded,Dice

-e- q=4,padded,Jaccard

075 08 085 09 095

a limited amount of information will be shared be-
tween the interested parties [16]. The “limited amount”
term usually means revealing data such as the num-
ber of linked records, explicit identifiers of the linked
records, or linked records along with their selected

Grzebala and Cheatham / 11

attributes. The work presented here assumes that the
querying entity can discover as much information
about the records in the database as it wishes. Here,
the emphasis is instead on making sure the records
(more specifically the PII attributes) are always en-
crypted in order to protect the identities of persons as-
sociated with the records in the event of a data breach.
For the g-grams based techniques, each of the g-grams
was encrypted with an AES password-based encryp-
tion algorithm. A brute force attack (i.e. dictionary at-
tack) on this kind of encryption algorithm has proven
to be infeasible [1]. However, as other researchers have
noted, g-gram based techniques are prone to a fre-
quency based attack. [11,4] A frequency attack can
be mounted by comparing the frequency of each en-
crypted g-gram with its relative frequency derived
from data that is likely to have a similar distribution
of g-gram occurrences. In the case of first and last
names, such data can be very easily found online. For
example, a dataset that contains more than 5,000 first
names and nearly 90,000 last names was published
by the U.S. Census Bureau in 1990 [14]. To evaluate
the privacy level of g-gram based techniques we want
to answer the following question: What percentage of
records can be discovered by conducting a frequency
based attack on first and last names? This section de-
scribes an overview of the approach taken to prepare
the attack and presents our findings and observations.

5.1. Frequency Attack Approach

The ultimate goal of the attack is to decrypt as many
first and last names that are stored in the form of en-
crypted g-grams as possible. When designing the at-
tack the following assumptions were made:

— The attacker managed to obtain access to all en-
crypted records from the database, along with all
attributes of each record, but he/she doesn’t have
access to their unencrytped version.

— The attributes corresponding to first and last
names can be identified by the attacker. In other
words, the attacker knows the schema of the
record and can identify which g-grams corre-
spond to first name or last name. Additionally, the
g number used to form g-grams is also known.

— To fully explore the vulnerabilities of g-gram
based techniques none of the names (first or last)
in the attacker’s dataset was corrupted since ran-
dom errors in the dataset could influence the re-
sults of the attack.

— Since the attacker can distinguish between g-
grams corresponding to first name or last name,
the attack will be conducted on first and last
names separately.

— The lists of first and last names published by the
U.S. Census Bureau will be used by the attacker
to calculate relative frequencies of g-grams.

The simplest and most intuitive approach to con-
duct the frequency analysis attack would be as follows.
The attacker creates a list of encrypted g-grams con-
taining the frequency of occurrences of each of the g¢-
grams. Using publicly available sources of first and last
names, the attacker can prepare similar lists with unen-
crypted versions of the g-grams. Finally, the two lists
can be ordered by the g-gram frequencies and merged
together in order to substitute the encrypted g-grams
with their unencrypted equivalents in all records from
the database. However, such a naive approach will not
work. Since the attacker has no knowledge about the
name distribution in the encrypted database, the two
lists of g-gram frequencies are not likely to provide
enough correctly guessed g-gram decryptions to de-
crypt a significant number of names. Table 3 presents
a selected part of the two lists created by analyzing
g-gram frequencies of first names, where the ¢ num-
ber used to form the g-grams was equal to 2. Out of
323 encrypted g-grams there were only eight matches
where the n*" g-gram from the encrypted dataset had
the exact same frequency rank as the g-gram derived
from the public dataset. A brute force solution to sub-
stitute every single possible decryption for each of the
encrypted g-grams is not feasible. Such an attempt
will result in creating 323° variations of g-gram de-
cryptions. Evaluating each of the variations would re-
quire too many computational resources. Therefore, it
is clear that a more sophisticated approach is needed.

To conduct the frequency attack in an efficient man-
ner we decided to take an advantage of the fact that
the frequencies of g-grams derived from the public
dataset are usually not too far off from the frequen-
cies of the encrypted g-grams. For example, the en-
crypted g-gram “ar” in Table 3 was classified as the 6"
most frequent in the encrypted database and as the 2%
most frequent among g-grams derived from the public
dataset of names. This information can significantly re-
duce the number of possible decryption variations for
the encrypted g-grams. To reduce it even further, we
propose the following technique that analyzes each of
the encrypted records and identifies the most probable
g-gram translation.

12 Grzebala and Cheatham /

Table 3

Top 10 most commonly occurring g-grams in encrypted and public datasets of first names where g=2.

encrypted dataset

public dataset

g-gram decrypted version frequency | g-gram frequency
1 BMN;jNIgaU6MYKOY S7jEbcQ== an 1769 an 819
2 WNA7LpS8QCIZQbxTISCWnQ== el 1086 ar 646
3 iWCuQ5xviCTYO6B+LGBLDA== li 1002 el 639
4 LuzDuWRKbEwWZK8xmRqA49A== le 972 ri 530
5 tJJS5UyZTKCiw3XkEYQMg== ia 942 na 498
6 TEdzDzIf+TzuFA4+wrJ3og== ar 924 le 494
7 9pHgQ2qQC1XGJ4u8SKZDmQ== la 838 in 491
8 Tbm4IHyAi7hwjB2sZAL6ag== na 799 ne 488
9 TvNEdMt1kMGkccoSPJzeMA== ha 764 en 473
10 +Sbh5wWED8+a/IMhao3C6GQ== en 744 er 467

Once a table similar to the one present in Table 3
is obtained, the attacker iterates through each of the
encrypted records. Based on the assumption that the
g number is known to the attacker, the length of the
encrypted name can be deduced using the formula:
L = n+ q— 1, where L is the length of the name,
n is the number of g-grams used to form the name
and ¢ is the ¢ number. The length of the name is used
to pull all instances of names from the publicly avail-
able dataset of the same length. Those names will serve
as guesses of the encrypted name. It is likely that the
number of names of length L will be in the hundreds
or even thousands. To reduce this number, in the next
step the attacker prepares another table with the num-
ber of rows equal to the number of encrypted g-grams
in the record. Each row contains an encrypted g-gram
and a list of potential translations of this g-gram ob-
tained from a table such as Table 3. The list is popu-
lated with the g-gram translation that matches the fre-
quency rank of the encrypted g-gram as well as ad-
ditional g-gram translations that are within a speci-
fied range (later on referred to as the "Guessing Off-
set") above and below the frequency matching g-gram.
An example of such a table is presented in Table 5,
where each possible g-gram translation includes the
information about the offset between a translation it-
self and the translation that matches the frequency of
the encrypted g-gram. The offset represents how close
the frequency rank of a potential g-gram translation
is to that of the frequency of the encrypted g-gram.
For example, the second encrypted g-gram in Table
5 “TEdzDzlf+TzuFA4+wrJ30g=="includes possible
translations such as “le:0”. “le” is the translation that
matches the frequency rank of the encrypted g-gram
(see Table 3), so there is no offset. Another possible
translation “ar:4” indicates that the g-gram “ar” has an

offset of 4 between “ar” and the g-gram that matches
the frequency rank of the encrypted g-gram (“le”). This
table is used to eliminate the guesses of the encrypted
name that are not valid due to the fact that they can-
not be formed given the lists of possible g-gram trans-
lations for each of the encrypted g-grams. For exam-
ple, in Table 5, the possible g-gram translation “ri”” can
be eliminated from the second row because none of
the possibilities in the first row end with “r”. The cor-
responding list of possible guesses for the encrypted
name can then be further reduced.

In the final step, each of the names in the guesses
list is assigned a penalty score. The score is the sum of
the offsets that had to be taken to include all g-grams
used to form the name. Based on Table 5, the name
“tere” would receive the penalty score of 1 (“te:17) +
4 (“er:4”) + 2 (“re:2”) = 7. The name with the lowest
score is identified as the best possible guess for the en-
crypted name. The g-grams used to form this guess are
stored in a separate table (called the Translation Table)
that contains the encrypted g-grams and their corre-
sponding translations obtained from the name with the
lowest penalty score. When the attacker is done iter-
ating through all of the encrypted records, the transla-
tion for an encrypted g-gram is identified by taking its
most common translation from the Translation Table.
The attacker can now substitute the encrypted g-grams
with their unencrypted versions in all encrypted names
in the dataset.

5.2. Sample Frequency Attack Step

We now provide an example iteration of the fre-
quency attack approach described above. Table 4 il-
lustrates one of the encrypted records that the attacker
obtained from the database during the security breach.

Grzebala and Cheatham / 13

The attribute called "First Name’ represents a set of en-
crypted g-grams separated by commas that were used
to encrypt the name “sara”.

Table 4
An example of an encrypted record.
Record Id | First Name Last Name
uSpcZZ71KiNrD8AvV/FS3cA==,
rec-1081 TEdzDzIf+TzuFA4+wrJ30g==,

2gP9iD8Zg5ugC6YTQg3UMQ==

The attacker can infer the length of the name behind
the encrypted g-grams by applying the following for-
mula: length = 3+ (2 — 1) = 4 since he knows that
the ¢ number is equal to 2. From a publicly available
dataset of names, he or she can obtain the list of all
names of length 4: john, hera, sara, carl, tera, tere, etc.
to serve as the guesses list. To trim the list, Table 5 is
prepared where each of the encrypted g-grams has a
list of its potential decryptions obtained from a table
similar to Table 3. Assume that the maximum “guess-
ing offset” is equal to 5 (i.e. each g-gram translation no
further than 5 places up or down the list is considered
similar).

Table 5
Lists of possible translations for encrypted g-grams used to encrypt
the name “sara”

encrypted q-gram possible translations

(g-gram:offset)

uSpcZZ71KiNrD8AvV/FS3cA== nd:5,il:4,de:3,ro:2,te:1,he:0,

mi:1,sa:2,th:3,st:4,tt:5

TEdzDzIf+TzuFA4+wrJ30g== an:5,ar:4,el:3,ri:2,na:1,le:0,

in:1,ne:2,en:3,er:4,1a:5

2gP9jD8Zg5ugC6YTQg3UMQ== | li:5,ie:4,ma:3,ha:2,0n:1,ra:0,

ia:1,re:2,da:3,ta:4,al:5

Based on Table 5 the attacker can eliminate most
of the names from the guesses list. For example, the
name “john” is not a valid option because there is no
“jo” g-gram as a possible translation for the first en-
crypted g-gram. The only names that are left are: tera,
tere, hera, and sara. Each of the names is assigned a
penalty score that is the sum of the offset associated
with each g-gram required to form a particular name in
the list of possible translations. For example, the name
tera (te:1, er:4, ra:0) will be assigned a score of 5. The
name with the lowest score, which in this example is
hera (score of 4), will be considered the correct trans-
lation of the encrypted name. The attacker will keep

Table 6

List of encrypted g-gram translations after one iteration

encrypted g-gram possible translation
(g-gram:occurrences)
uSpcZZ71KiNrD8Av/FS3cA== he: 1
TEdzDzIf+TzuFA4+wrJ3og== er: 1

2gP9jD8Zg5ugC6YTQg3UMQ== | ra:l

the corresponding g-gram translations in the separate
table (see Table 6).

Once all records have been processed by the at-
tacker, the translation for an encrypted g-gram will be
selected from Table 6. If there is more than one option
for the translation, the one with the higher number of
occurrences will be considered the correct one.

5.3. Frequency Attack Analysis

The frequency attack was conducted on a dataset
containing 10,000 records. Each record included two
sets of encrypted g-grams: one set corresponding to the
g-grams that represented a first name and another one
corresponding to a last name. To study the effective-
ness of the attack on different type of g-grams, four
variations of the dataset were generated, each using a
different value for ¢, from 1 to 4. The attack was car-
ried out on first and last names separately. This section
provides an overview of our most important findings.

5.3.1. Observation 7: Security increases as q
increases (with one exception)

To convey the results of the frequency analysis at-
tack, we present three figures that illustrate the key
statistics. Figure 6 shows the percentage of names that
were fully decrypted. In the case in which the dataset
of first names were encoded with unigrams (i.e. g-
grams with g equal to 1) we were able to correctly de-
crypt 66% (about 550 names) of all first names in the
database (blue solid line). When first names are en-
crypted with g equal to 2 (the solid orange line), only
about 14% of names were successfully decrypted. For
q equal to 3 and 4, the percentage of decrytped names
drops near zero. The pattern for last names is similar,
with the exception of when ¢ equals 1, which will be
discussed shortly. When g equals 2, 28% of last names
were fully decrypted, but when g equals 3 or 4, this
value never reaches 2%.

The performance degradation can be explained by
looking at the number of unique g-grams in the dataset
as g increases. Table 7 provides detailed information
regarding the exact number of unique g-grams in each

14 Grzebala and Cheatham /

dataset. For instance, with g equal to 2 there are 323
unique g-grams in the case of first names, and 644 in
the case of last names. When ¢ is equal to 4 the num-
ber of unique g-grams increases to 1757 and 15146 re-
spectively. With higher values of g the chance of iden-
tifying a correct translation for an encrypted g-gram is
smaller, and the potential attacker would likely have
to conduct a brute force attack to decrypt a significant
number of names.

The reason the frequency analysis attack was unsuc-
cessful when g equaled 3 or 4 is because our bench-
mark dataset of 10,000 records didn’t contain enough
samples of many g-gram to decrypt them. Some of the
g-grams occurred only a few times across all of the
records, making the g-gram distribution very uniform.
The proper way to attack a dataset with this kind of
distribution is a brute force attack (i.e. substituting ev-
ery single possible g-gram translation for each of the
encrypted g-grams). Such an attack would require a
very high amount of computational resources. For in-
stance, the number of unique g-grams for our dataset
of last names when g=4 is equal to 15,146. This re-
sults in more than 230 million possible combinations
of g-gram substitutions.

Table 7

Number of unique g-grams in datasets of first and last names.

number of unique g-grams in dataset of

qnumber | firstnames | last names
1 28 29

2 323 644

3 1256 5378

4 1757 15146

Fully decrypted names are not the only ones the at-
tacker might be interested in. A name that is partially
decrypted, for example where eight out of ten g-grams
were correctly decrypted, might also have a high value
to the attacker. Figure 7 presents the average rate of de-
cryption of first and last names. We define the rate of
decryption as the percentage of correctly decrypted g-
grams in a name. In the aforementioned example, cor-
rect decryption of eight out of ten g-grams equates to
an 80% rate of decryption. By looking at the series in
Figure 7, one can see that the average rates of decryp-
tion for both first and last names are similar for corre-
sponding g values. The maximum average rates of de-
cryption for first and last names are very high for g=1
and g=2: 93% and 63% for first names, and 62% and
77% for last names. Partially decrypted names might
be easy to guess and can provide a huge aid in discov-

ering decrypted values of encrypted g-grams, which
may consequently lead to discovering the identity of
all entities in the encrypted database.

5.3.2. Observation 8: The Guessing Offset must be
increased as q increases, making the attack
more expensive

Figure 8 shows the percentage of correctly de-
crypted g-grams out of all of the g-grams used to form
first or last names as a function of the Guessing Off-
set. With g=1 the decryption percentage increases very
quickly even for low ranges of the Guessing Offset.

It is worth noting that in the case of g=1 and Guess-

ing Offset greater than 20, the g-gram decryption per-

centage is at its highest (63% and 83% for first and
last names respectively). The reason it never reaches

100% is because of the nature of the frequency anal-

ysis attack we took. Some of the g-grams occur so

rarely (or very evenly when compared to others) that
their potential translations result in too many possible
options and they are never identified correctly. This
could possibly be improved by using a different source

of names (i.e. other than ones coming from the U.S.

Census Bureau). The series for g=2 reach their max-

imum with the Guessing Offset greater than 160 (not

shown on the graph). Presumably, the series that cor-
respond to g equal to 3 and 4 would eventually also
reached their maximum, though at an impractically
high Guessing Offset. Another interesting observation
that can be made by analyzing the data in Figure 8 is
that the g-gram decryption ratio is not consistent with
the percentage of fully or partially decrypted names.

For example, with the g-gram decryption rate between

30% and 40% for g=1, we were able to fully decrypt

only 2% of last and 1% of first names, and achieve

a 36% and 56% average rate of decryption. For the

same g-gram decryption rate for g=2, the numbers in-

crease to 23%, 9%, 75%, and 56% respectively. As the

g number increases from 1 to 2 the distribution of the

g-grams becomes less uniform, which makes it eas-

ier to identify g-grams required to decrypt (or partially
decrypt) a significant number of names.

5.3.3. Observation 9: Some name collections are
more vulnerable than others

The exception mentioned in section 5.3.1 occurs
when the g-gram approach with g equal to one is used
to protect the collection of last names. In this case the
dataset is surprisingly resilient to a frequency analysis
attack. Based on Figures 6, 7, and 8 the percentage of
decrypted last names should be relatively close to the
percentage of decrypted first names. The percentages

Grzebala and Cheatham / 15

Fig. 6. The percentage of decrypted first and last names for different values of g.

70

-
o

v
o

Percentage of uniqgly decrypted names
o w 5
o o o

i
S)

first names, gq=1

first names, q=2
first names, q=3
first names, q=4
----- last names, q=1
————— last names, q=2
----- last names, q=3

----- last names, q=4

1 2 3 4 5 6 7 8 9 10

Guessing Offset

20

Fig. 7. The average rate of decryption of first and last names for different values of g.

,_.
o
S

first names, q=1

;\? 90
£
o &
IS
©
c 70
©
G

60 ymmmmmmmmssmmmeeeo=oTT
5 /
R /
i
Q 50 7
= K
[} ’,
S a0 o
s

//

8 30 s/
© ’
& /
o S/
a0 20
©
o
2
< 10

0

1 2 3 4 5 6 7 8

Guessing Offset

of decrypted q-grams occuring in first and last names
when g=1 were equal to 83% and 63% respectively,
and the average rates of first and last name decryption
were equal to 93% ad 62%. Yet, only 4% of last names
were fully decrypted, compared to 66% of first names.
The surprisingly low percentage of fully decrypted
last names can be explained by two properties of the
datasets of first and last names that were used to con-
duct the frequency analysis attack. Firstly, the average
length of a first name is shorter by 1.5054 characters
than the average length of a last name. Shorter length

first names, q=2
first names, q=3
first names, q=4
----- last names, g=1
----- last names, q=2
————— last names, g=3

----- last names, q=4

means that fewer g-grams are required to fully decrypt
a name. Additionally, Figure 9 shows that more than
40% of all last names are longer than eight characters,
while 40% of all first names contain fewer than six
characters.

Another property that makes the last names harder
to decrypt is a more uniform unigram distribution
across all of the records. The distributions are shown in
Figure 10. The less uniformly g-grams are distributed,
the easier it is to guess their correct decryption. In the
case of first names, the two most frequent unigrams

16 Grzebala and Cheatham /

Fig. 8. The rate of g-gram decryption for first and last names encoded with different values of g.

90

N w » v @ ~)
o o S o o =} S

Number of decrypted g-grams (in %)

=
15}

first names, g=1

first names, q=2
first names, q=3
first names, q=4
----- last names, g=1
————— last names, q=2
----- last names, q=3

----- last names, q=4

Guessing Offset

Fig. 9. First and last name distribution based on the length of the
name.

W First Names

H Last Names.

500

s00
- II ‘I |‘ ‘ “ I‘ I| _I l l | =
; . s s s 0 w0 . » i "

2

Number of names

Length of name

can be clearly identified ("a’ and ’e’). In case of last
names, 'a’ and ’e’ have almost identical frequency.
Moreover, the second most frequent unigram in last
names is also hard to select because unigrams ’'i’, ’l’,
'n’,’0’, ’r’, and ’s’ have very similar frequency of oc-
currence. These two properties have a strong influence
on the number of successfully decrypted g-grams.

6. Conclusions and Future Work

In this work we evaluated the accuracy, speed and
security of selected string metrics that support approx-
imate matching for querying and joining databases
based on encrypted names. An advanced benchmark
generation tool, “GeCo”, was used to produce sam-
ple datasets with records containing common mistakes
in name spelling such as typographical errors, opti-
cal recognition errors, and phonetic errors. The perfor-
mance of several string metrics that support approx-

imate matching on encrypted data (four variations of
g-grams based techniques and one technique based on
encodings produced by the Soundex algorithm), was
compared against commonly used string metrics, such
as Jaro and Levenshtein, employed on unencrypted
data.

Joining databases based on Soundex encodings did
not prove to be a feasible option since it failed to find
a correct match for more than 50% of records when
the name in a corrupted record contained one error,
and for almost 75% when corrupted records could con-
tain two errors in a single name. Q-grams based tech-
niques seem to be viable option for joining databases
on encrypted names. While their performance in terms
of precision is slightly worse than the performance of
metrics such as Jaro or Levenshtein on unencrypted
data, this can be easily dealt with by adjusting the
threshold value that determines when two g-grams are
likely to correspond to the same name. In order to
achieve acceptable privacy while maintaining an rea-
sonable level of performance, g should be set to at least
three.

In future work we plan to extend the range of at-
tribute types that can be used to perform record link-
age. In this study we focused on linking records based
only on an individual’s first and last name. However
other types of attributes, such as numeric or categori-
cal ones, can also carry PII. We want to be able to in-
tegrate those kind of attributes into private record link-
age queries.

Number of occurences

Grzebala and Cheatham / 17

Fig. 10. First and last names distribution based on the length of the name.

12000

10000

8000

6000

4000

2000

b c d f g h

a e i

I |‘
ik

M First Names

M Last Names

‘| “ I‘ lI II m_ ‘I lI
st u v ow x y z

m n o p q r

unigram (a character)

References

[1] Abdullah Al Hasib and Abul Ahsan Md Mahmudul Haque. A

[2

3

[4

[5

[6

[7

[8

[9

—

—

]

—_

[}

—

—

[

comparative study of the performance and security issues of
aes and rsa cryptography. In Convergence and Hybrid Infor-
mation Technology, 2008. ICCIT’08. Third International Con-
ference on, volume 2, pages 505-510. IEEE, 2008.

Peter Christen. A comparison of personal name matching:
Techniques and practical issues. In Proceedings of the Sixth
International Conference on Data Mining Workshops, pages
290-294. IEEE, 2006.

Peter Christen. Data matching: concepts and techniques
for record linkage, entity resolution, and duplicate detection.
Springer Science & Business Media, 2012.

Tim Churches and Peter Christen. Some methods for blind-
folded record linkage. BMC Medical Informatics and Decision
Making, 4(1):9, 2004.

Kevin Drefiler and Axel-Cyrille Ngonga Ngomo. Time-
efficient execution of bounded jaro-winkler distances. In Pro-
ceedings of the 9th International Conference on Ontology
Matching, volume 1317, pages 37-48. CEUR-WS.org, 2014.
Mark Giereth. On partial encryption of rdf-graphs. In Pro-
ceedings of the International Semantic Web Conference, pages
308-322. Springer, 2005.

Pawel Grzebala and Michelle Cheatham. Private record link-
age: A comparison of selected techniques for name matching
(in press). In Proceedings of the 13th European Semantic Web
Conference, 2016.

Heikki Keskustalo, Ari Pirkola, Kari Visala, Erkka Leppénen,
and Kalervo Jérvelin. Non-adjacent digrams improve matching
of cross-lingual spelling variants. In String Processing and
Information Retrieval, pages 252-265. Springer, 2003.

Juan C Muiloz, Gabriel Tamura, Norha M Villegas, and
Hausi A Miiller. Surprise: user-controlled granular privacy and

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

security for personal data in smartercontext. In Proceedings

of the 2012 Conference of the Center for Advanced Studies
on Collaborative Research, pages 131-145. IBM Corporation,
2012.

Lawrence Philips. Hanging on the metaphone. Computer Lan-
guage, 7(12), 1990.

Rainer Schnell, Tobias Bachteler, and Jorg Reiher. Privacy-
preserving record linkage using bloom filters. BMC medical
informatics and decision making, 9(1):41, 2009.

Chakkrit Snae. A comparison and analysis of name matching
algorithms. International Journal of Applied Science, Engi-
neering and Technology, 4(1):252-257, 2007.

Khoi-Nguyen Tran, Dinusha Vatsalan, and Peter Christen.
Geco: an online personal data generator and corruptor. In Pro-
ceedings of the 22nd ACM international conference on Confer-
ence on information & knowledge management, pages 2473—
2476. ACM, 2013.

U.S. Census Bureau. Frequently occurring surnames from
census 1990 - names files. http://www.census.gov/
topics/population/genealogy/data/1990_
census/1990_census_namefiles.html. Accessed:
2016-03-18.

Dinusha Vatsalan, Peter Christen, and Vassilios S Verykios. An
efficient two-party protocol for approximate matching in pri-
vate record linkage. In Proceedings of the Ninth Australasian
Data Mining Conference-Volume 121, pages 125-136. Aus-
tralian Computer Society, Inc., 2011.

Dinusha Vatsalan, Peter Christen, and Vassilios S Verykios. A
taxonomy of privacy-preserving record linkage techniques. In-
Sformation Systems, 38(6):946-969, 2013.

Mohamed Yakout, Mikhail J Atallah, and Ahmed Elmagarmid.
Efficient private record linkage. In Proceedings of the 25th
International Conference on Data Engineering, pages 1283—
1286. IEEE, 2009.

