Semantic Web 0 (0) 1 1
10S Press

ServLog: A Unitying Logical Framework for
Service Modeling and Contracting

Dumitru Roman ® and Michael Kifer P

& SINTEF, Forskningsveien 1,0314 Oslo, Norway

E-mail: dumitru.roman@sintef.no

b Stony Brook University, Stony Brook, NY 11794-2424, U.S.A.
E-mail: kifer @cs.stonybrook.edu

Abstract.

Implementing semantics-aware services, which includes semantic Web services, requires novel techniques for modeling and
analysis. The problems include automated support for service discovery, selection, negotiation, and composition. In addition,
support for automated service contracting and contract execution is crucial for any large scale service environment where multiple
clients and service providers interact. Many problems in this area involve reasoning, and a number of logic-based methods to
handle these problems have emerged in the field of Semantic Web Services. In this paper, we lay down theoretical foundations
for service modeling, contracting, and reasoning, which we call ServLog, by developing novel techniques for modeling and
reasoning about service contracts with the help of Concurrent Transaction Logic. With this framework, we significantly extend
the modeling power of the previous work by allowing expressive data constraints and iterative processes in the specification of
services. This approach not only captures typical procedural constructs found in established business process languages, but also
greatly extends their functionality, enables declarative specification and reasoning about services, and opens a way for automatic
generation of executable business processes from service contracts.

Keywords: service modeling and contracting, service process, constraints, Semantic Web service, automated reasoning,
declarative modeling of processes.

1. Introduction

The move towards service-aware systems, starting with emergence of service-oriented architectures and service
computing [35], and newer approaches such as artifact-centric [28] and data-aware systems [12], microservices [34],
and not least the emerging field of service science [43], calls for the development of novel techniques to support
various service-related tasks such as service modeling and discovery, service process specification, automated con-
tracting for services, service enactment and monitoring. These issues have been partially addressed by a number
of pioneering projects in the area of Semantic Web Services, such as WSMF [19], OWL-S [31]," WSMO [37],2
SWSL,? DIP [46],* and SUPER [26,27],% and more recently [40]. Nevertheless, many core issues remained largely

1 http://www.daml.org/services/owl-s/
2http://www.wsmo.org/

3 http://www.w3.org/Submission/SWSF-SWSL/
4http://dip.semanlicweb.org/

E http://ip-super.org/

1570-0844/0-1900/$27.50 © 0 — IOS Press and the authors. All rights reserved

unsolved. The present paper builds on the previous efforts while primarily addressing the behavioral aspects of ser-
vices, including service contracting and service contract execution. It complements approaches such as OWL-S and
WSMO, which primary focused on semantic annotations for Web services, brings new insights, and points to new
directions for research in Semantic Web Services.

In a service-oriented environment, interaction is expected among large numbers of clients and service providers,
so making contracts through human interaction is not feasible. To enable automatic establishment of contracts, a
formal contract description language is needed, and a reasoning mechanism must verify that the contract terms are
fulfilled, as well as support the execution of the contract. A contract specification has to describe the functionality
of a service, values to be exchanged, procedures, and guarantees. A service contracting and contract execution
reasoning mechanism has to decide whether such a specification can actually satisfy the constraints of the parties
involved in the contract, and if so, support the execution of the contract in a way that the constraints are satisfied.
The present paper develops just such a unifying logical framework, called ServLog.

ServLog is based on Concurrent Transaction Logic (CTR) [11] and continues the line of research that employs
CTR as a unifying formalism for modeling, discovering, choreographing, contracting, and enactment of Web ser-
vices [16,42,17,38,39]. Transaction Logic has also been successfully used in a number of other domains ranging
from security verification policies to reasoning about actions and other service-related issues [6,36,23,7,21]. The
present work builds on the results reported in [38,39], but greatly extends that previous work through generalization
and addition of new modeling and reasoning techniques. All this is achieved while at the same time significantly
simplifying the technical machinery. The contributions with respect to our previous work are detailed in Section 6.
With ServLog we lay down the theoretical foundations for service contracting. Specifically, we extend the expres-
sive power of the constraint language used for specifying contracts, allow iterative processes, and allow to pass
arguments to processes. We also extend our reasoning techniques to deal with the new expressive variety of model-
ing primitives, making it possible to address an array of issues in service contracts, ranging from complex process
descriptions to temporal and data constraints. The inference procedure for CTR developed here also contributes to
the body of results about CTR itself — it covers CTR conjunctive formulas that enable execution of constrained
transactions, which previous CTR proof theory was not able to handle. We also develop a logical language for
specifying and enacting processes of great complexity.

While this paper aims to be self-contained and we went to great length to provide sufficient details on CTR, it is
clear that we must assume certain background from the reader. Specifically, the paper requires proficiency in basic
predicate calculus and Logic Programming.

The remainder of this paper is organized as follows. Section 2 informally describes the basic techniques from
service contract specification used in ServLog and introduces the problem of service contracting and service con-
tract execution. Section 3 gives a short introduction to CTR to keep the paper self-contained. Section 4 formally de-
fines modeling constructs. Section 5 describes the reasoning procedure of ServLog—the key component of service
contracting and contract execution in our framework. Section 6 discusses related works and contrasts them with
ServLog. Section 7 concludes the paper.

2. Service Modeling, Contracting, and Contract Execution

There is a number of modeling languages for capturing interactions between services and clients (or among inter-
nal tasks within the same service), some focusing on specific features and targeting different audiences (e.g. busi-
ness analysts, Web service developers, etc.). For example, the Business Process Model and Notation (BPMN)® is a
standard for business process modeling and provides a graphical notation for specifying business processes (BPMN
distinguishes between public and private processes, choreographies, and collaborations; it can provide different
views of internal and external interactions). Another approach to modeling service processes is the WSMO model of
choreography,” which is limited to server-side interactions. In contrast, the model of the W3C Choreography Group

6http://wwonmg.org/spec/BPMN/ZAO/
7http://www.wsmo.org/TR/d14/

includes both service-side interactions and client-side interactions.® At a higher level of abstraction, however, all
interactions can be represented through control and data dependencies between tasks. ServLog captures this level of
abstraction in a logic and enables powerful forms of automated reasoning about it. Figure 1 depicts the main aspects
of service behavior addressed by ServLog.

Service
provider
— = —
Service |
process
Service Reasoner | |
Client Contracting | |
\ Contract execution \ / | |
Contract |
requirements ‘
k |
TN
Service |
policy
.o

Fig. 1. Elements of the reasoning architecture for services in ServLog.

The service process is described through its control and data flows—a specification that tells how to interact
with the service and how data flows among tasks. A service process may also expose inner workings of the service
(interactions that are not between the service and the client but between internal tasks of the service or third parties)
for common situations in which the service allows the client to impose constraints on how the service process is to
be executed.

The service policy component in Figure 1 is a set of constraints on a service process and on its input. The contract
requirements included on the client side of the figure represent the contractual requirements of the user that go
beyond the basic functions of a service. (Examples of basic services are selling books and helping with travel
arrangements, while an example of a service requirement is the request that the amount should be charged only after
shipping.) In ServLog, service processes are described via control and data flow graphs, while service policy and
client contract requirements are described via constraints.

We will now discuss these modeling aspects in more detail using a typical order placement scenario. This scenario
describes the flow of interaction between a client and a service, where the interaction starts with the user placing an
order, after which the service initiates a concurrent execution of processing the order items, handling shippers for
the items, and receipt of a payment. The order processing workflow ends once the above tasks all finish. Processing
the order items, handling shippers, and payment receipt are specified in further details, leaving the possibility for
the client and the service to make some choices during the interaction (for example, providing a full payment for
the order or paying per item). At the same time, the scenario shows how data (e.g. Order#) flows through the
workflow tasks as the interactions happen. In addition, the scenario includes a set of non-trivial constraints imposed
by the client and the service, which affect the execution. For example, the service has the policy (expressed as a
constraint) of booking a shipper only if there are at least seven items to be sent with the shipper. The description of
the scenario ends with the definition of the problems addressed in this paper, namely service contracting and service
contract execution.

8http://www.w3.org/T R/2006/WD-ws-cdl-10-primer-20060619/

Service process. Figure 2 shows the service process described earlier as a hierarchical control and data flow
graph, called a process graph. The control flow aspect of process graphs is typically used to specify local execution
dependencies among the interactions of the service; it is a good way to visualize the overall flow of control. Data
flow complements the control flow by specifying the data dependencies among the interactions.

With Figure 2 we are not attempting to suggest yet another notation for service processes; the purpose is to
introduce and explain our running example in a compact and focused way. Representing the same information, say,
in BPMN would have been much bulkier and would require inventing additional notation to compensate for features
(such as data flow) that BPMN lacks.

Control flow. The nodes in a service process graph represent interaction tasks, which can be thought of as functions
that take inputs and/or produce outputs. Some tasks are meant to be executed by the service and some by the client.
The distinction between service and client tasks is part of the service process description. In general there can be
several actors involved, some acting as clients in one context and services in another.

In Figure 2, tasks are represented as labeled rectangles. The label of a rectangle is the name of the task and the
graph inside the rectangle is the definition of that task. Such a task is called composite because it has nontrivial
internal structure. Tasks that do not have associated graphs are primitive. A service process graph can thus be viewed
as containing a hierarchy of tasks. The graph shown at the top is the root of the hierarchy. In our example, the
tasks of the top-level graph include process_order_items, handle_shippers, and handle_payment. These tasks
are composite and their rectangles are shown separately. The task place_order is an example of a primitive task.
Such tasks have grey background in the figure. Three such tasks, place_order, full_payment, and pay_one_item,
are client tasks. The rest are service tasks.

The top-level graph and each composite task has an initial and a final interaction task, the successor task(s) for
each interaction task, and a sign that tells whether all these successors must be executed concurrently (represented
by AND-split nodes), or whether only one of the alternative branches needs to be executed non-deterministically
(represented by OR-nodes).’ For instance, in the top-level graph, all successors of the initial interaction place_order
must be executed whereas in the definition of pay either full_payment or pay_per_item is to be executed.

Composite tasks may be marked with the suffix “*”, which means that these tasks may execute multiple times.
We call these tasks iferative and differentiate them from non-iterative tasks. Iteration is indicated through recursive
occurrences of the same tasks—by placing tasks inside their own definitions. Figure 2 shows two iterative tasks:
process_order_items and pay_per_item. For example, process_order_items is an iterative task where a sequence
of sub-tasks, select_item followed by process_item can be executed multiple times (for example for each item
in the purchase order). Iteration is indicated by an occurrence of a process_order_items box to the right of the
process_item box. Note that recursive occurrences of tasks may be followed by other tasks, which gives us a general
mechanism for capturing different kinds of iterations, including loops and nesting.

It should now be clear how the control flow aspect of the service process graph in Figure 2 represents the vir-
tual manufacturer scenario described earlier: first the order is placed (place_order), then the items in the pur-
chase order are processed (process_order_items), delivery is arranged (handle_shippers), and payment is settled
(handle_payment). These three tasks are executed in parallel. Once all of them complete, handling of the order
is finished (end_order). The other parts of the figure show how each of the above tasks is executed. The impor-
tant thing to observe here is that some tasks are complex and some primitive; some are to be executed in parallel
(the AND-nodes) and some in sequence; some tasks have non-deterministic choice (the OR-nodes) and some are
1terative.

Data flow. Interaction with a service typically involves passing data and the flow of that data is normally cap-
tured using data dependencies between tasks. Such dependencies complement the control flow and complete the
description of the service process graph.

Since tasks can be conceptualized as functions that take input and produce output, arguments are attached to
tasks to capture both input and output. In Figure 2, each task-label has one or more arguments. For example, han-
dle_payment has the arguments (Order#, Price), meaning that, to execute handle_payment, Order# and Price must

9This non-determinism has an XOR flavor.

process_order_items
(Order#)

handle_shippers

place_order end_order
(Order#,Price) (Order#)

(Order#)
handle_payment
(Order#,Price)
q = .
process_order_items*(Order#) process_item (Order#Item)
select_item process_item process_order_items™ _ ;
(Order#,Item) (Order#,Item) (Order#) contact_producer »| inform_client
OR 8 A (Order#,Producer,Item) (Order#,Producer,Item)

producer(Item,Producer)

/

[Order#, Item] — \ [Or@#, Itm]

handle_shippers (Ord#)

I e | book_shipper deliver
(handle_payment (Order#,Price) N\ (Ord#,Shipper,Itm) ©oran |
pay
(Order#)
OR %
ﬁ payment_guarantee }/
(Order#,Credit#) ” N
o J/ ﬂlform_cllent (Order#,Producer,Item) \
[a Order# \ g 5 Se 5
pay (Order#) full inform_availability confirm_producer
ull_payment (Order#,Producer,Item) (Order#,Producer)
(Order#) /v
OR . % itemAvailable(Order#,Producer,Item)
pay_per_item <
\ (Order#) / OR v
~itemAvailable(Order#,Producer,Item)
pay_per_item* (Order#) \ inform_unavailability
(Order#,Producer,Item)

pay_one_item | _|pay_per_item*|
~ (Order#) (Order#)
OR

Fig. 2. Service process example: A hierarchical control and data flow graph.

be provided.!? In our scenario, Order# and Price will be provided by the service’s task place_order, which will
generate an order number and compute the price based on the items selected by the client (and the pricing data
stored in the database). These data items will then be passed to other tasks, such as handle_payment.

Data-passing between tasks is captured via the shared argument names and through a shared data space (e.g.,
a database) of the workflow process.!! Data-passing through shared arguments is possible between a task and its
direct successors, or within the definition of the same composite task. The scope of arguments is relevant in this
case: argument names of a task are logical variables. When they are shared with the task’s direct successors, they
refer to the same data items (i.e. data is passed from tasks to their direct successors using shared arguments).
This aspect should be familiar from basic logic and Logic Programming. For example, data identified by Order#
in process_order_items(Order#) is the same as the data identified by Order# in place_order(Order# Price), i.e.
place_order passes Order# to process_order_items. In case of a composite task, the names of its arguments are
global to that task’s definition, meaning that if subtasks in its definition use the same argument names as the com-
posite task then they refer to the same data items. In this way, the composite task passes data to its subtasks. For
example, the composite task process_order_items passes Order# to its process_item subtask.

101n general, arguments can be in or out (and even in-out). In logic programming, this is typically specified via modes. In our description, the
mode should be clear from the context. We avoid specifying the modes explicitly in order to avoid unnecessary distraction.
1 ServLog is independent of the choice of such a shared space.

Note also that sharing via shared variables is bi-directional, as pure logic has no notion of explicit input and
output. However, for practical reasons, some logic programming systems accept mode specification and do mode-
inference, which allows the user to identify the producers of data.

Data-passing through shared data space is used when passing data is not possible through shared arguments due to
the difference in scope of the arguments. This often occurs when data needs to be shared between tasks that have no
control dependencies in the control flow part of the service process graph. For example, if select_item(Order#, Item)
needs to pass Order# and Item to book_shipper(Ord# Shipper,Itm), data-passing through shared argument names
is not an option, since these subtasks appear inside composite tasks that are not related via control dependencies.
To capture such data-passing, a shared database can be used as follows: select_item can store Order# and Item, and
book_shipper can read them later. This is depicted by the dashed arc going from select_item to book_shipper.
The label on the arc represents the data items that are being passed. In our case, Order# is being passed as Ord# and
Item as Itm.

Data items can be consumable or non-consumable. In case of data-passing through shared argument names, data
is non-consumable: data-producing tasks share data via all of their out-ports with the receiving tasks. The latter can
further share this data with their descendants, and so on. In our example, place_order produces Order#-items, and
that item is then shared with process_order_items, handle_shippers, and handle_payment. Note the emphasis
on sharing: all tasks involved work on the same copy of the data—the phenomenon that is familiar from basic
predicate logic and logic programming. In case of data-passing through a shared database, data can be consumable
or non-consumable. It is consumable when each query to the databases is followed by deletion of the queried data
item. It is non-consumable data if such deletion is not implied. In our example, all data items are consumable.

One other aspect of the service process graphs concerns transition conditions on arcs. Examples of such condi-
tions are producer(Item,Producer) in the definition of process_item and itemsAvailable(Order#, Producer,Item) or
itemsUnavailable(Order#, Producer,Item) in the definition of inform_client. Another example of transition condi-
tion is a test of the form Quantity > 3. A transition condition signifies that in order for the next interaction with the
service to take place, the condition must be satisfied. Transition conditions are Boolean tests attached to the arcs in
the service process graphs. These tests may also be queries to the underlying database. Only the arcs whose tran-
sition conditions evaluate to true can be followed at run time. For uniformity, ServLog treats transition conditions
formally as a separate type of task.

The final remark concerns the nature of primitive tasks. A primitive task is a black box that performs operations
in a way that is completely hidden from ServLog’s reasoning system. It does not mean that the work performed
by the task is trivial. For example, place_order may perform database updates to record the order number, price
and customer’s information, send an email notification to the customer, perform a credit check, and do many other
things. The point is that all these operations might not be of much interest to the service’s logic designer and she
might decide to abstract them away. If, however, the details of some formerly primitive task might become important
for the reasoning mechanism, the tasks may be elaborated upon and become composite. We will illustrate this idea
in a very concrete way in Figure 5 of Section 4.

Service Policies and Client Contract Requirements. Apart from the local dependencies represented directly in
control flow graphs, global constraints often arise as part of policy specification. Another case where global con-
straints arise is when a client has specific requirements to the interaction with the service. These requirements usu-
ally have little to do with the functionality of a service (e.g., handling orders); instead they represent guarantees that
the client wants before entering into a contract with the service. We call such constrains client contract requirements.
In Figure 3 we give an example of global constraints that represent service policies and client contract requirements
for our running example.

Constraints can be imposed on separate tasks (e.g., a task must or must not execute, may execute a certain number
of times) or it can involve several tasks (a task must execute in a certain relationship to another task, e.g., before,
after, between). Furthermore, constraints can be combined using Boolean connectives (e.g., a task must execute but
after its execution some other task must not execute or must execute some number of times).

Other constraints may involve data only. Examples of such constraints include service pre- and post-conditions.
For instance, the requirement that “a confirmation number must be available after the execution of the book_shipper
service” is a post-condition for that service, where the confirmation number is a data item in the constraint. Since data

Service policy
1. A shipper is booked only if the user accepts at least 7 items.
2. If pay-per-item is chosen by the user, then the payment must
happen immediately before each item delivery.
3. Payment guarantee must be given before a shipper is booked.

Client contract requirements
4. All items in the same order must be shipped at the same time.
5. If full payment is chosen by the client, then it must happen only
after all purchased items are delivered.
6. Before the client purchases items, the service must book a shipper.

Fig. 3. Global behavioral constraints on iterative processes.

in such constraints arise as a result of interactions, this kind of constraint can be seen as a special case of constraints
on interactions. Other types of constraints involve Quality of Services (QoS) and Service Level Agreements (SLAs).
For instance, “availability provided by the book_shipper service is always greater than the requested availability”
is a QoS requirement. ServLog can also model QoS constraints but the treatment of such specialized constraints is
outside the scope of this paper.

Service Contracting and Service Contract Execution. With a modeling mechanism in place, we define service
contracting and service contract execution in ServLog as follows:

— Service contracting: Given a service process (i.e., control and data flow) and a set of service policies and client
contract requirements (i.e., constraints), decide whether an execution of the service process that satisfies both
the service policies and the client contract requirements exists. Note that it does not matter in the end if this is
actually executed but the important aspect is that there is at least one and execution of the contract can proceed.

— Service contract execution: Execute tasks in the process in a way where client and service take turns as pre-
scribed by the control and data flows and the constraints. When a step is proposed, the logic’s proof system
verifies if acceptance of that step still leaves the possibility of a successful execution of the entire service pro-
cess that satisfies all the constraints. If so, the step is accepted and executed; it is rejected otherwise. A list of
possible allowed steps can also be suggested by the system at each turn.

To solve the above two problems, Section 4 formally defines service processes, service policies, and client contract
requirements using Concurrent Transaction Logic (CTR). Section 5 then extends the original proof theory of CTR
to make it possible to address the above reasoning tasks.

3. Overview of CTR

Concurrent Transaction Logic (CTR) [11] is an extension of classical predicate logic, which allows programming
and reasoning about state-changing processes. Here we summarize the relevant parts of CTR’s syntax and give an
informal account of its semantics. For details we refer the reader to [11].

Basic syntax. The atomic formulas of CTR are identical to those of classical logic, i.e., they are expressions
of the form p(ty, ..., t,), where p is a predicate symbol and the ¢;’s are terms constructed of constants, vari-
ables, and function symbols. Complex formulas are built with the help of connectives and quantifiers. Apart from
the classical v, A, -, V, and 3, CTR has two additional infix connectives, ® (serial conjunction) and | (concur-
rent conjunction), and a modal operator ® (isolated execution). For instance, ®(p(X) ® ¢(X)) | (VY (r(Y) v
s(X,Y))) is a well-formed formula in CTR. The following is an example well-formed formula that represents
the top-level composite task of Figure 2: place_order(Order#, Price) ® (process_order_items(Order#) |
handle_shippers(Order4) | handle_payment(Order#, Price)) ® end_order(Order#).

Informal semantics. Underlying the logic and its semantics is a set of database states and a collection of paths.
For this paper, the reader can think of states as just relational databases, but the logic is more general and can deal
with a wide variety of states. Formally, in this paper, a state is a pair consisting of a state identifier and a relational
database.

A path is a finite sequence of state identifiers (constants used to refer to the actual states). For instance, if
$1,82, ..., Sy, are state identifiers, then (s1), (s1,82), and (s, 8o, ..., s,) are paths of length 1, 2, and n, respectively.

As in classical logic, CTR formulas take truth values. However, unlike classical logic, the truth of CTR formulas
is determined over paths, nor at states. If a formula, ¢, is true over a path (s1, s, ..., 8,), it means that ¢ can execute
starting at state s;. During the execution, the current state will change to s, s3, ..., etc., and the execution terminates
at state s,,. In such a case we will also call the path (s, ..., s,)} an execution of ¢.

Although we are interested in execution of CTR formulas over paths, if a formula involves the concurrency
operator, the subformulas may be executed in an interleaved fashion, like database transactions. For instance, if
¢=(p®q®r)| (u®wv), the concurrency operator means that legal executions of ¢ consist of an execution of some
partof p®g®r, e.g., p, then of some execution of u®v, e.g., v then again of some part of p®¢®r, such as ¢ or even
q ® r, then the remaining part of © ® v, i.e., v, etc. The concurrency operator does not preclude the two parts of ¢
from executing one after another (in any order), but this type of non-interleaved execution is less interesting. In the
first, interleaved execution, the two parts of ¢ execute not on paths but on multi-paths, i.e., on sequences of paths.
Execution of one part of ¢ may be broken by executions of another part, so the intervening gaps in the execution of
p® q Q@ r are filled by executions of u ® v (and vice versa).

A multi-path (or an m-path) is a sequence (71, ..., 7) of paths. If u = (7, ...,m) and ' = (7], ..., 7)) are two
m-paths, their concatenation, y e p’, is the m-path (7q, ..., 7, 71, ..., 7,) and their interleaving, p|y’, is an m-path
of the form (x1, ..., Kg+n) such that it is a topological sort of the two sequences i and p’. For example, one in-
terleaving of ({s1,S2,83), (Se, 7)) and of ({s4,S5), (Ss,S9)) is ((S1,52,S3), (S4,S5), (Se,S7), (S8, S9)). Another inter-
leaving is ({s1,S2,83), (S4,S5), (Ss,89), (S, S7)). Yet another is ({s1,S2,83), (S¢,57)), (S4,S5), {Ss,S9)}), a degenerate
interleaving.

Finally, a path 7w = (s1, ..., 8,,) is a merge of an m-path (7q, ..., 7,) if there are integers 1 = ip < iy < is < ... <
in—l < Zn = m such that T = (Sioa ey 84y), Ty = <Si1 s ...,Si2>, ey -1 = <Sin_2, ceey Sin_1>’ Tp = (Sin—l y -~‘7Sin>~
Note that for the merge to be possible, the end-state of each path 7; in the m-path must be the start-state
of the subsequent path ;1 for each 1 < I < n. For instance, (si,S2,83,84,85,8¢) is a merge of the m-path

(<51,82>, (SZaS37S4>a <S4)’ <S4,S5,86>)-

A multi-path structure is a mapping that, for each multi-path p, tells which ground atomic formulas are true on (.
Informally, this can be understood as telling which ground atomic transactions can execute along p. Note that CTR
formulas hold truth values not over states, but over multi-paths.

First, we connect truth over path of length 1 to database states.

— If s is a state identifier and p is a fact that is true in the database associated with s then p is true over the path
(s) (and the m-path ({s))).

CTR connectives are used to construct composite formulas out of the atomic ones, and the statements below
define which composite formulas are true on which multi-paths.

— @ ®Y: execute ¢ then execute 1). Model-theoretically: ¢ ® ¢ is true over an m-path p in a multi-path structure
if ¢ is true over a prefix m-path of y, pq (in that same structure), and ¢ is true over the suffix m-path, po. That
is, if p = p1 ® po.

- ¢ | ¥: ¢ and ¢ execute concurrently, in an interleaved fashion. That is, ¢ | 1 is true over an m-path 4 in a
multi-path structure if ¢ is true over an m-path g7 (in that same structure), v is true over an m-path po, and p
is one of the interleavings pi1 | p2.

— ¢ AY: ¢ and 1) execute along the same path. That is, ¢ A 1 is true on an m-path g if both ¢ and 1) are true on
. In practice, this is best understood in terms of constraints on execution. For instance, ¢ can be thought of as
a non-deterministic transaction and 1 as a constraint on the execution of ¢. It is this feature of the logic that
lets us specify constraints as part of service contracts.

— ¢ Vv execute ¢ or execute 1 non-deterministically. That is, ¢ v 1 is true on an m-path p if either ¢ or 1) is
true on p.

— —¢: execute in any way provided that this will not be a valid execution of ¢. That is, —¢ is true on any m-path
on which ¢ is not true. Negation is an important ingredient in temporal constraint specifications.

— ©¢: execute ¢ in isolation, i.e., without interleaving with other concurrently running tasks. That is, ®¢ is true
on any singleton m-path (an m-path that contains just one path) where ¢ is true. Note: ®¢ is never true on an
m-path that consists of more than one path, so the execution of ®¢ cannot be broken by other executions. This
operator enables us to specify non-interleaved parts of service contacts.

When considering the entire service, we are interested in its executions over paths, not m-paths: executions over
m-paths are used only to represent concurrently running subtasks of the service. To complete the picture, we define
truth of CTR formulas over paths:

— ¢ is true over a path, 7, if it is true over an m-path, y, and 7 is a merge of .

CTR contains a special propositional constant, state, which is true only on paths of length 1, that is, on database
states. In service processes, state is often used as the exit condition for iterative tasks. Another propositional
constant that we will use to represent constraints is path, defined as state v ~state; this constant is true on every
path.

Concurrent-Horn subset of CTR. The implication p <— ¢ is defined as p v —q. The form and the purpose of
the implication in CTR is similar to that of Datalog: p can be thought of as the name of a procedure and ¢ as the
definition of that procedure. However, unlike Datalog, both p and ¢ take truth values over execution paths, not at
individual states.

More precisely, p <= ¢ means: if ¢ can execute along a path (s1, ..., s,), then so can p. If p is viewed as a task
name, then the meaning can be re-phrased as: one way to execute task p is to execute its definition, q.

To specify service processes we use concurrent-Horn goals and concurrent-Horn rules.

Definition 3.1 (Concurrent-Horn goal) A concurrent-Horn goal is either an atomic formula or has the form ¢ ® v,
@ | ¥, ¢V, or ©p, where ¢ and 1) are concurrent-Horn goals.
When confusion does not arise, we will often talk about CTR goals, omitting the “concurrent-Horn” adjective. O

Concurrent-Horn goals occur in our setting in two places: as bodies of the rules that are used to define composite
tasks and as formulas that are formal embodiments of control flow graphs. In the latter case, we will be interested
in finding out whether a control flow graph can be enacted. Such a question corresponds to proving a statement of
the form 3X ¢, where ¢ is a CTR goal and X is the set of variables that occur in ¢.

Definition 3.2 (Concurrent-Horn rule) A concurrent-Horn rule is a CTR formula of the form
VX (head < body) @)

where head is an atomic formula, body is a concurrent-Horn goal, and X is the set of variables that occurs in head
and body. O

Since all variables in a rule are quantified the same way (universally outside of the rule), we will usually omit
explicit quantifiers—a common practice that simplifies the notation.

The concurrent-Horn fragment of CTR has an SLD-style proof procedure that proves concurrent-Horn formulas
and executes them at the same time [11]. The present paper significantly extends this proof theory to formulas that
contain the A connective thus enabling execution of constrained transactions, which are non-Horn. We also deal
with a much larger class of constraints than [16,38], including iterative processes.

Primitive updates. In CTR, primitive updates are ground (i.e., variable-free) atomic formulas that change the
underlying database state. Semantically they are represented by binary relations over state identifiers. For instance,

10

if (s1,s2) belongs to the relation corresponding to a primitive update w, it means that u can cause a transition from
state s; to state so. We will conveniently represent this kind of situation using the following notation:

S1 —> 89 2)

Usually the binary relations that represent primitive updates are defined outside of CTR. In that case, they are called
transition oracles [8,11,10,9]. Transition oracles can be defined using formal English or a number of other formal
languages. They can also be represented in CTR as partially defined actions [36]. In either case, the primitive
updates can be defined to perform any kind of transformation. For instance, they can add or delete single tuples or
sets of tuples, add and delete entire relations, and so on.

In the examples, we will be representing primitive updates using predicate symbols that have variables (e.g.,
place_order(Order#, Price)). It should be understood that such a predicate represents a family of related updates, one
for each instantiation of the variables. Clearly, place_order(12365409, $123)) and place_order(09865412, $321))
cause similar, but different state transitions.

Constraints. Because formulas are defined on paths, CTR can express a wide variety of constraints on the way
formulas may execute. One can place existential constraints on execution (these are based on serial conjunction), or
universal constraints, which are based on serial implication. To express the former, we use the propositional constant
path introduced above. For example, path ® 1) ® path is a constraint that is true on a path if ¢ is true somewhere
on that path. To express universal constraints, the binary connectives “<" and “=" are used, which are defined via

® and - as follows: ¢ < ¢ def (- ®¢)and ¢ = ¢ def -(1) ® =¢)). A moment’s reflection should convince the
reader that 1 <= ¢ means that whenever ¢ occurs then) must have occurred just before it and that) = ¢ means
that whenever v occurs then ¢ must occur right after it. Thus, path = 1 < path constrains executions to be such
that every subpath encountered in the course of the execution satisfies ¢ (including subpaths of the form (s), where
s is an arbitrary intermediate state).

Executional entailment. The notion of executional entailment is the key semantic concept in CTR that brings the
informal notion of execution into the logic. Let P be a set of CTR formulas, ¢ is a CTR formula and sg,s1, ... , S,
is a sequence of database states. Then the statement

P,sgsy ...s, E ¢ 3)

is true if and only if M, (sg, S1, ..., Sp) E ¢ (i.e., ¢ is true on the path (sg, s1, ..., s,) in M), for every
multi-structure M that satisfies P. Related to this is the statement

P,sp-—- £ ¢ “)
which are true iff (3) is true for some sequence of database states Sg,S1, ... , Sp.

The aforementioned proof theory for CTR assumes that P is a set of concurrent-Horn rules and it manipulates the

statements of the form P,s--- + ¢. It is sound and complete in the sense that there is a proof of P, sg --- + ¢ if and

only if P,sg--- E ¢ is true.

4. Formalizing Service Contracts in ServLog

This section formally defines the core modeling elements of ServLog. First we define service processes directly
in CTR. Section 4.2 then introduces service policies and contract requirements as constraints that can be expressed
in CTR. Section 4.3 then defines an important notion, which we call the service contract assumption.

4.1. Modeling Service Processes

Definition 4.1 (Task) A task is represented by a predicate. The name of the predicate is the name of that task and
the arity specifies the number of arguments that the predicate takes. For notational simplicity, we assume that each
predicate name has exactly one arity, so each task is uniquely defined by its name. O

In service contract specifications, the actual invocations of tasks are represented by task atoms.

Definition 4.2 (Task atom) A task atom is a statement of the form

p(tl,‘..,tn) (5)

where p is a task predicate of arity n (n > 0) and ¢4, ..., ¢, are terms (defined as in first-order logic) that represent
the arguments that p takes. The terms representing the arguments of the task are placeholders for data items that the
task manipulates (its inputs and outputs).

For brevity, we will often write task atoms as p(T'), p(U), etc., where T, U, ... stand for the tuples of arguments
that the task takes. O

When confusion does not arise, the term “task” will refer both to tasks and task atoms.

We distinguish between two main types of task predicates: composite and primitive. Composite task predicates
are the ones defined by rules (i.e., they are allowed in the rule heads) and primitive tasks are not allowed in the
rule heads. The primitive task predicates are further subdivided into update-tasks, query-tasks, and builtin test tasks.
The update task predicates are those used as the primitive updates of CTR, the query tasks are the ones whose
predicates are used to represent the facts stored in database states, and the builtin tests use predicates whose truth is
independent of the database state. These three categories of predicates are disjoint. The transition conditions on the
arcs of service process graphs, which were introduced in Section 2, are also treated in ServLog as tasks: specifically
as query tasks or builtin tests—whichever applies in each case.

In this paper, we will be using the builtins “=" (identity), “!=" (distinct values), “>”, “<”, and others, as needed.
The identity predicate a = b is true if and only if ¢ and b are the same ground (i.e., variable-free) term and a! = b
holds if a and b are distinct ground terms. Clearly, the truth of these predicates is independent of the database state
(or of a path) where the predicate is evaluated.

From now on, when talking about CTR goals and rules, we assume that the atomic formulas are task atoms only.
In addition, the predicates occurring in the rule heads must correspond to composite tasks only.

Definition 4.3 (Task occurrence) A task p occurs in a CTR goal (2 if Q contains a task atom p(T’) for some 7. O

Definition 4.4 (Immediate subtask) Let p and g be a pair of tasks and R be a set of rules. We say that p is an
immediate subtask of ¢ with respect to R if and only if R contains a rule of the form ¢(7") < € and p occurs in £2. O

Definition 4.5 (Subtasks) Let p and g be a pair of tasks and R be a set of rules. Then p is a subtask of g with respect
to R if and only if p is either an immediate subtask of ¢ or there is an immediate subtask r of ¢ such that p is a
subtask of . O

Definition 4.6 (Non-iterative rule) A rule in R is non-iterative if and only if it has the form
o(T) < Q (6)

where ¢ does not occur in 2 and none of the tasks that occur in 2 have ¢ as a subtask. O

Here is an example of a non-iterative rule (p and r are assumed to be primitive tasks here): ¢(?X) < p(?X,?Y) ®
r(?Y"). As seen in this example, variables in ServLog are represented as symbols prefixed with “?”.

Definition 4.7 (Iterative rule) A rule q(T) < 2 in R is iterative if and only if ¢ either occurs in €2 directly or it is
a subtask of a task that occurs in €. O

12

Here are examples of iterative rules:

q(7X) < (p(?X,7Y) @ q(?Y) @ r(2Y,?Z)) v 5(?7Y)
q(?X) < p(?X,?Y)®q(?Y) ® qq(?Y,?Z)
qq(?X) < (pp(?X,?7Y) ® q(7Y)) v (7 X)

Note that here ¢ and gq are both iterative tasks that are mutually dependent on each other (are subtasks of each
other). In practice, however, the most common form of iterative tasks is a loop of the form

o(T) « 2® q(U)
q(T) < ¥

where ® and ¥ do not depend on gq.

Definition 4.8 (Service process) A service process is a pair (€2, R), where €2 is a CTR goal and R is a set of iterative
and non-iterative rules whose heads are task atoms of the tasks that occur in €) or are subtasks of these tasks. O

Recall that primitive tasks come in three guises: updates, queries, and builtins. Similarly, we classify composite
tasks based on the rules that define them. Namely, if a task is defined by at least one iterative rule (i.e. there exists
an iterative rule with the task as its head), we call the task iterative; if it is defined only by non-iterative rules then
the task is non-iterative.

Equipped with this mechanism for defining service processes in ServLog, one can capture a wide range of control
and data flow constructs that often appear in business process languages and notations. For example, the service
process introduced in Figure 2 is represented in ServLog as shown in Figure 4.

The top-level graph is specified as a CTR goal at the very beginning. The tasks appearing in that goal are defined
by the rules that follow. This service process illustrates data flow through variables as well as via a shared database.
For example, passing data from process_order_items to book_shipper is done via the underlying database by
having process_order_items insert selected_item(?Order#,?Item) and then querying this data item by the
task handle_shippers. To fully capture the dataflow, we introduce three additional database query predicates: pro-
ducer(?Item, ?Producer), which returns a producer for the given item, itemAvailable(?Order#, ? Producer; ?Item),
which is true if the given item is produced by the given producer and the item is in stock, and itemUnavail-
able(?Order#, ? Producer, ?Item), which is the negation of itemAvailable. While the set of available producers is
relatively static, the relation ifemAvailable can be modified by the task contact_producer(?Producer, ?Item). For
instance, after contacting the producer an item might become reserved.

Data flow types supported by ServLog are simple yet powerful: tasks can share data through shared variables
or through the underlying shared database — the former is standard in classical logic and in logic programming
languages, the latter is a feature of CTR. For instance, in the subprocess process_item in Figure 4, the same data
is passed through the shared variables ?Order# and ?Item to the query producer, and also other tasks (e.g.,
contact_producer). These data come from the task process_order_items and then are passed along to the top-level
invocation of process_item. Inside process_item, new data is obtained by the query producer and then is passed to
the subtasks contact_producer and inform_client through the shared variable ?Producer.

In Section 2, we explained the nature of primitive updates as “black boxes” whose inner workings are hidden from
ServLog’s reasoning mechanism. In Figure 4, for example, the tasks place_order, select_item, and some others are
said to be primitive CTR updates that correspond to primitive tasks in Figure 2 and their implementation is opaque
to the system. However, as explained there, ServLog lets the service logic designer to represent tasks at different
levels of abstraction and primitive tasks may be expanded into complex tasks, if desired. Figure 5 illustrates this
point using some earlier primitive tasks as an example.

4.2. Modeling Constraints

We now formalize service policies and contract requirements as constraints in ServLog. Note that constraints are
not defined directly as CTR formulas (unlike task definitions). The main reason for this is that constraints represent

Goal:
place_order(?Order#,?Price) ® /I primitive update
(process_order_items(?Order#) | /I composite tasks

handle_shippers(?Order#) |
handle_payment(?Order#,?Price)) ®

end_order(?Order#) /I primitive update
Rules:
process_order_items(7Order#) < /I composite task

select_item(?Order#, ?Item)®
insert.selected_item(?Order#,7Item) ® //primitive update that inserts selected_item(...) into database
process_item(?Order#,?[tem)®
process_order_items(?Order#)
process_order_items(?Order#) < state
process_item(?Order#, ?Item) < /I composite task
producer(?Item,? Producer)®
contact_producer(?Order#, ? Producer, T Item)®
inform_client(?Order#,? Producer, ? [tem)
handle_shippers(?Ord#) <
contact_shipper(?Ord+#,?Shipper)®
selected_item(?0rd#,7Itm) ® /I database query
book_shipper(?Ord+#,?Shipper, 7Itm)®
deliver (?Ord+#)
handle_payment(?Order#,?Price) < pay(?Order#)
handle_payment(?Order#,? Price) < payment_guarantee(?Order#, ?Credit#)
inform_client(?Order#, ? Producer, ?[tem) «
itemAvailable(?Order#, ? Producer, 7 Item) ® /I database query
inform_availability (?Order#, ? Producer, ?Item) ®
confirm_producer(?Order#, ? Producer)
inform_client(?Order#,? Producer, ?Item) «
itemUnavailable(?Order#, ? Producer, 7 Item) ® /| database query
inform_unavailability (?Order+#, ? Producer, 7 Ttem) /I primitive update
pay(?Order+#) « full_payment(?Order#) v pay_per_item(?Order#)
pay_per_item(?Order#) < pay_one_item(?Order#) ® pay_per_item(?Order#)
pay_per_item(?Order#t) < state

Fig. 4. ServLog representation of the service process from Figure 2.

patterns that executions of service processes must follow and specialized language constructs for such patterns make
specification of constraints easier to understand. Nevertheless, the constraints of ServLog can be expressed as CTR
formulas (see Appendix C), so CTR is indeed used here as a unifying formalism for both service task definition
and constraints. Recall that whereas CTR can represent constraints, they are not Concurrent Horn formulas and
are therefore not handled by the existing CTR proof theory — the extension of the CTR proof theory to handle
constraints is proposed in Section 5.2 and is an important contribution of this paper.

A constraint specifies the rules governing the occurrences of various tasks during the execution of a service.
Each occurrence of a task is represented by a pattern, which specifies the task name and various conditions on
the arguments with which that task can be invoked during the execution. These conditions can require that certain
arguments must be bound to specific values and they can also require that certain arguments must be shared within
a task occurrence or across the occurrences of different tasks.

Definition 4.9 (Task Pattern) A task pattern has the form p(t1, ..., t,) where each ¢; is either a regular ground term
(of the kind that may occur in a task atom) or a placeholder. A placeholder is either a named logical variable (which

14

place_order(?Order#,?Price) «

generate_order_number(?Order#) ® // a builtin; instantiates ?Order#
get_item_list(?Itemlist) ® /I get items from the user; a builtin using a Web form
compute_price(?Itemlist,?Price) ® /I a builtin

get_private_info(?Name, ?Address) ® /I abuiltin

insert.status(?Order#,processing) ®

save_order_in_db(?Order#, ?ItemList,’Name, ?Address) ~ // primitive update; can be expanded further
end_order(?Order#) <

delete.status(?Order#,?) ®

insert.status(?Order#,complete)
select_item(?Order#, ?Item) «

order_items(?Order#, ?Itemlist) ® /l a query

select(?Item, ?Itemlist, ?ItemlistSansltem) ® // a builtin: picks ?Item from ?Itemlist & creates ?ItemlistSansitem,

/ as ?Itemlist with ?Item removed

delete.order_items(?Order#, ?Itemlist) ®

insert.order_items(?Order#, ?ItemlistSansltem) ®

decrement_stock_quantity(?/tem) // primitive update; can be expanded further

Fig. 5. Expansion of some primitive updates from Figure 4.

will be designated with the prefix ’_’, e.g., _Ord#) or a don’t care placeholder, denoted by ’ _’ . Each occurrence
of a don’t care placeholder represents a new logical variable that does not occur in other patterns. O

We will often need to perform two operations: matching and refinement. The former is the usual matching operator
of first-order logic: it is a substitution, 6 such that 8(pattern) = task_atom. Since task_atom is ground, 6 will
normally be a ground substitution. In this case we will say that the pattern and the ground task match. Note that
different occurrences of / _’ may be mapped by 6 to different constants, since such occurrences represent different
logical variables. Refinement is defined next.

Definition 4.10 (Refinement) The refinement operation takes a ground task atom and a pair of task patterns and
yields another task pattern as follows:

refine(out_pattern; in_ground_task, in_pattern) = refined_pattern

Here the arguments in_ground_task and in_pattern must have the same task name and in_ground_task must match
in_pattern. The task-pattern out_pattern may have a different task name. The result of the operation, refined_pattern,
is defined as follows: Let 6 be the substitution that matches in_pattern against in_ground_task. If out_pattern has
variables other than those in in_pattern, 6 can map them to anything (to some other variable or constant). Then

refined_pattern = 6(out_pattern)

O

One can verify by direct inspection that the task atom p (2, 1, abc, cde, 13, cde, 13, 5) matches the pattern
p(_,1,abc,_foo,_bar,_foo,_bar,_),thatrefine(p(_ff,5,_);p(1,2,3), p(_,_£ff,3)) =
p(2, 5,_), and that refine(g(_£f,5,_f,_,_h);p(1,2,2, 3),p(g9,_f,_£,3)) = g(2,5,2,
_,_h). The last example also illustrates the situation where in_pattern has named placeholders that do not occur
in out_pattern; the number of arguments in the input and output patterns can also differ.

Definition 4.11 (Constraints) In this definition, we will use ¢, u, etc., to represent tuples that include placeholders
as some of the arguments in task patterns. The uppercase symbols T, U, etc., will denote tuples of arguments in
task atoms (i.e., they do not contain placeholders). The task names p, ¢, r, and the task patterns mentioned in the
constraints, below, do not need to be distinct.

15

The set ConsTr of constraints supported by ServLog is formally defined as follows. For each constraint we first
give its syntax followed by a brief informal explanation and then provide a formal semantic definition. Appendix C
provides alternative representation of these constraints as CTR formulas.

1. Existence constraints:
- atleast,(p(t)): task p must execute at least n times (n > 1).
Formally, an execution (s, ..., s,,,) satisfies this constraint if and only if there are ground task atoms p(7T7),
e . p(T1) p(Tn) -
..., p(T,) that executed at some states s;,, ..., S;, (i.e., S;, — S; 41, ..., S;, — S;, +1) such that p(t)
matches p(T1), p(T2), ... p(T,).12
- absence(p(t)): task p must not execute.

Formally, an execution (81, ..., S,) satisfies this constraint if and only if there is no state s; in that execution

T _ _
such that s; na) s;+1 and p(t) matches p(T).

- exactly,(p(t)): task p must execute exactly n times (n > I).
An execution (s1,...,S,,) satisfies this constraint if and only if it satisfies atleast, (p(¢)) but not
atleasty1(p(t)).

2. Serial constraints:

- after(p(t) -> q(w)): whenever p executes, q must execute after it. Task q is not required to execute
immediately after p, and several other instances of p might execute before ¢ actually does.
Formally, an execution (s1, ..., ,,) satisfies this constraint if and only if whenever there is a state s; in this

T _ _
execution, such that s; ZLQ s;+1 and p(t) matches p(T"), there must be a state s; in that same execution
U _ _ _

such that j >i+1, s; 1) sj+1, and refine(q(w);p(T"),p(t)) matches ¢(U).

For instance, if the above constraint has the form after(p(_foo,_) -> ¢(_,_f00)) then the sequence
p(a,1),q(2,a) is a valid execution, but p(a, 1), q(2,b) is not.

- before(p(t) <- q(u)): whenever q executes, it must be preceded by an execution of p. Task p does not
have to execute immediately prior to q.

An execution (S, ...,S,,) is said to satisfy this constraint if and only if whenever there is a state s; in this

. q(U) _ — . .
execution such that s; — ;.1 and ¢(@) matches ¢(U), there must be a state s; in that same execution

suchthat j <¢ -1, s; 1) sj+1, and refine(p(t);q(U),q(u)) matches p(T).

For instance, if the constraint is before(p(_foo,) <- q(_,_foo)) then the sequence p(a,1),q(2,a) is
a valid execution, but p(a, 1), ¢(2,b) is not.

— blocks(p(t) /> q(u)): if task p executes then task q cannot execute in the future.
Formally, an execution (s1, ...,S,,) satisfies this constraint if and only if whenever there is a state s; in this
. (T - = . . .
execution such that s; 1) si+1 and p(t) matches p(T"), there is no state s; in that execution such that

U . —
Jj>1i,8; «) s;j+1, and refine(g(w);p(T),p(t)) matches g(U).

12The notation s — s’ was introduced in (2) in Section 3. Recall that since p(T}), ..., p(Tr) cause state transitions, they are primitive
update tasks.

- between(p(t) -> q(u) <- 7(v)): task q must execute between any two executions of p and r. That is,
after an execution of p, any subsequent execution of has to wait until ¢ is executed.

An execution (s, ...,S,,) satisfies this constraint if and only if whenever there are states s;, s (kK > @ + 1)

T r(V - — —
such that s; o) Si+1> Sk) Sk+1, p(t) matches p(T'), and r(v) matches r(V'), then there must be a state

U - —
sj such thati < j < k, s; «) S;+1, and both refine(q(w);p(T),p(t)) and refine(q(uw);r(V),r(v))
match q(U).

- not_between(p(t) /> q(u) </~ r(v)): task q must not execute between any pair of executions of p
and r. Thus, if g executes after p, no future execution of r is possible.

An execution (sq, ..., S,) satisfies this constraint if and only if whenever there are states s;, s; (k > + 1)
p(T) (V) - = _ = .
such that s; — s;.1, Sx — Sg+1, p(t) matches p(T'), and r(v) matches r(V'), then there is no state

s; such that i < j < k, s; «) sj+1, and both refine(q(u);p(T),p(t)) and refine(q(w);r(V),r(v))
match q(U).

3. Immediate serial constraints:

- right_after(p(t) - q(w)): whenever p executes, q must execute immediately after it.
Formally, an execution (si,...,S,,) satisfies this constraint if and only if whenever there is a state s;

T _ — U
in this execution such that s; o) si+1_and p(t) matches p(T), then ;1 o) S;+2 must hold and
refine(q(w);p(T),p(t)) must match q(U).

- right_before(p(t) < q(u)): whenever q executes, p must have been executed immediately before it.

Formally, an execution (si,...,S,,) satisfies this constraint if and only if whenever there is a state s;

U — T
in this execution such that s; (& si+1 and g(w) matches ¢(U), then s;_1 M s; must hold and

refine(p(t):q(U),q(w)) must match p(T).

- not_right_after(p(t) » q(u)): whenever p and q execute, q must not execute immediately after p.
That is, after p there must be an execution of a task other than ¢ before ¢ is allowed again.

An execution (Sg,...,S,,) is said to satisfy this constraint if and only if whenever there is a state s; in

. . p(T) - = r(U) =
this execution such that s; — s;,1, where p(t) matches p(T), and s;;1 — $;42 for some 7(U), then
refine(q(w),p(T),p(t)) must nor match (U).

4. Composite constraints: If C;, C5 € ConsTr then so are C; A C5 (a conjunctive constraint) and Cy v Cs (a
disjunctive constraint).

Nothing else is in ConsTr.]

Note the use of different arrows between the arguments in some of the constraints. The convention here is that
the task at the tail of the arrow represents the condition of the constraint (if or whenever the task executes) and the
task at the head of the arrow indicates the effect of the constraint (the task must or must not execute in a given
relationship to the task at the tail of the arrow). We use strong arrows to indicate immediacy (execution must take
place right before or after) and dashed arrows indicate that immediacy is not required. Slashed arrows indicate
negative relationships (e.g., the task in the head must not execute). Note also that the negation of right_before
can be defined as follows:

not_right_before(p(t) <+ q(u)) =not_right_after(p(t) » q(n)).

The following is an example of a legal constraint in Cox's7TRr:

atleasts(p(_X,1,_X))rnexactlys(q(_,_,_))

A right_after(p(_X,_,_) > r(_,_X)) @

The constraint at leasta(p(_X,1,_X)) requires that p executes at least twice and arguments 1 and 3 have
the same value in each execution, while the second argument is the integer 1. In right_after(p(_X,_,_) —
r(_,_X)), the placeholder _X is shared between p and r. This means that whenever p is executed, r must follow
immediately and r’s second argument must be the same as the first argument in p.

We can now show how the constraints from Figure 3 can be represented in ServLog:

1

NS

. (atmoste(accept(_,_)) A absence(book_shipper(_,_,_)))

v (atleastr(accept(_,_))
A after(accept(_Ord#,_) -* book_shipper(_Ord# _,_))
where atmostn(p) is a shorthand for
absence(p) Vexactly;(p) vexactlyy(p)V...vexactly,(p)

. absence(pay_per_item(_))

v right_before(pay_one_item(_Ord#) < deliver(_Ord#))
.before(payment_guarantee(_Ord#_) <- book_shipper(_Ord#_,_))
.exactly;(deliver(_))

. absence(full_payment(_)) v
(before(deliver(_Ord#) <- full_payment(_Ord#))
A blocks(full_payment(_Ord#) -/> deliver(_Ord#)))
.before(pay(_Ord#) <- book_shipper(_Ord#_,_))

Many other types of constraints can be naturally expressed in CoxsTr, as shown below:

atmost,(p(_,1)) — task p can execute at most n times and each time the second argument must be 1. This
constraint was defined in item 1 above.
absence(p(_,4)) vatleasti(q(2,_,3)) — if pisexecuted with its second argument 4, then ¢ must also

execute (before or after p) and its first and last arguments must be 2 and 3 respectively.
(absence(p())vatleasti(q()))A(absence(q())vatleasti(p())) — ifpisexecuted, then ¢ must
also be executed, and vice versa.

after(p(_X) -* ¢(_X)) Abefore(p(_X) <- q¢(_X)) — every occurrence of task p must be followed
by an occurrence of task ¢ with the same argument and there must be an occurrence of p before every occurrence
of ¢ and their arguments must be the same.

absence(p(_))vbetween(p(_X) -> q(_X) <- p(_)) — iftask p is executed then ¢ must execute after
it, with the same argument, and before that ¢ there can be no other p.

absence(q(_))Vv(before(p(_) <- ¢(_))Abetween(q(_) -> p(_) <- q(_))) — iftask g is executed,
it has to be preceded by an occurrence of p. The next instance of g can execute only after another occurrence p.
between(p(_X) -> q(_X) <- p(_X))rbetween(q(_X) -> p(_X) <- ¢(_X)) — tasks p and ¢ must
alternate when they execute with the same argument.

right_after(p(_) = ¢(_)) Aright_before(p(_) < ¢(_)) — executions of p and ¢ must be next to
each other with no intervening tasks in-between.

absence(p(_)) vabsence(q(_)) — itis not possible for p and ¢ to execute in the same service process
run.

not_between(p(_X) /> q(_) </~ p(_X))Anot_between(q(_X) /> p(_) </~ q(_X)) — g mustnot
execute between any two executions of p with the same arguments, and p must not execute between any two
executions of g with the same arguments.

18

4.3. The Service Contract Assumption

We now introduce modeling assumptions, which tighten the form of the constraints and tasks that are allowed in
service processes. These assumptions do not limit the modeling power of the language in the sense that any service
process can be represented by another process that satisfies these assumptions. However, these assumptions greatly
simplify the reasoning system of Section 5.

Definition 4.12 (Service Contract Assumption) A service process G and a set of constraints C satisfy the service
contract assumption if and only if the set of constraints C is based on primitive update tasks and the primitive update
tasks of G satisfy the independence assumption. O

The last two notions in this definition are spelled out in Definitions 4.13 and 4.14 below. Also recall that a primitive
task is one that is not defined by a rule and a primitive update task is just a primitive CTR update.

Definition 4.13 (Constraints based on primitive update tasks) A set of constraints is based on primitive update
tasks if and only if all tasks appearing in the constraints are primitive update tasks. O

This restriction does not limit the modeling power of the language, since one can always instrument composite
tasks in such a way that the resulting set of constraints will be based on primitive update tasks. More specifically,
one can insert “bounding” primitive update tasks at various locations in the definition of composite tasks, and then
transform constraints on composite tasks into constraints on those bounding primitive update tasks. These bounding
tasks are defined as no-ops and their only purpose is to capture the various stages in the life cycle of a task. Examples
include the beginning and end of a task, the beginning and end of an iteration, and so on.

The rationale behind restricting constraints to primitive update tasks is that specifying constraints directly over
composite tasks can be highly ambiguous. For instance, what should the sentence “task b must start after task a”
mean exactly? Should b start after a begins or after a ends? Similar ambiguity exists with other constraints, such
as before and between constraints. Requiring that constraints are based on primitive update tasks avoids ambiguity
and complications without limiting the modeling power.

The following example illustrates the process of inserting bounding tasks to delineate the beginning and the end
of a composite task:

— Every non-iterative composite task of the form p < 2 can be changed to:

P < Dstart ® Qe Pend

— Every iterative composite task, for example, of the form p < (® ® p) v ¥, can be changed to:

P < (pstart ® ¢ ® p® pend) \ (pstart VU ® pend)

In fact, there are many other ways to insert bounding tasks, which would enable many more kinds of constraints.
For instance,

P < Dstart ® cI)start eb® (I)end ® D @ Pend

These bounding tasks are regular primitive updates that insert unique tokens every time they execute. For example,
Dstare Might insert token(psiart,0), token(pstart, 1), token(pstart, 2), and so on, on each successive execution.
A constraint such as after(p -> ¢), where p and ¢ are composite tasks, can now be interpreted as
after@start = qstart), OF after(Dend ~> Gstart), OF after@start ~> Gstart) N @aTterPend ~> Gend)- By
exposing the bounding primitive subtasks, ServLog enables many kinds of constraints that cannot be specified on
composite tasks directly. For instance, be fore(Psiart <~ Gend) O betweenPstart ~> Gstart <~ Pend)-

Definition 4.14 (Independence Assumption) Two primitive update tasks are said to be independent if and only if
they are represented by disjoint binary relations over database states.

A service process satisfies the independence assumption if and only if all its primitive update tasks are indepen-
dent of each other. O

19

Independence implies that any transition between a pair of states is caused by precisely one primitive update task,
and no other task can cause that transition.

Any set of primitive update tasks can be instrumented so that the tasks would become independent. For example,
each primitive update task, ¢, can be made to insert a unique token every time it executes. Specifically, ¢ might insert
token(t,0) on the first execution and then token(t, 1), token(t, 2), etc., on subsequent executions. As a result, any
transition between any pair of states would be possible by at most one primitive update task.

Without the independence assumption it is hard to come up with an effective algorithm for checking satisfaction
of constraints by service executions, and it is hard to develop a simple enough proof theory for finding service
executions that satisfy such constraints. To see this, suppose that the independence assumption is not satisfied and
there are two distinct primitive update tasks such that s 2, ¢ and s — s’ hold. Suppose that we are now trying to
execute p at state s. In the presence of constraints such as before(r <- ¢), absence(q), and the like, it would be
hard to determine whether p can be executed, since one must first determine if execution of p amounts to execution
of another, prohibited task, such as ¢, in this example.

5. Reasoning about Contracts in ServLog

We begin with an example that shows how service contracting and contract execution are intended to work. The
example illustrates most of the aspects of service modeling introduced in Section 4: service processes (control and
data flows), client contract requirements, and service policies. The last two are represented via constraints. Section
5.2 formalizes the decision procedure as an extension to the proof procedure of the original CTR.

5.1. Informal Example

For simplicity, the example uses propositional tasks only, but the proof procedure in Section 5.2 is designed to
work for the more general case where tasks have arguments.

For concreteness and to illustrate the interactive aspect of our model, we assume the following division among
the tasks involved:

— Service tasks: a, f, g
— Client tasks: d, e, h

Service process:

Process formula:
a® (B|C)®(gVvh)

Rules:)]
B < dve
C <« (f®C)vstate
Client contract requirements:
absence(e) Aatleasts(f) ©)
Service policy:
after(d -> f) Aabsence(g) (10)

Service contracting. As explained at the end of Section 2, service contracting is an interactive decision procedure

20

that checks whether an execution of the service process exists and satisfies both the service policies and the client
contract requirements. In our example this amounts to finding an execution path of (8) such that the constraints (9)
and (10) are satisfied. For example, {a,d,f,f,f,h} is an execution path for (8) path that satisfies the constraints, but
{a.f,f,d,h} is an execution that violates after(d -> f). The proof procedure introduced in Section 5.2 is designed
to find paths on which the constraints are satisfied, if such paths exist. Note it does not matter if the path that was
found will actually be the one to be executed—all that is needed is to find out if the contract is satisfiable. If service
contracting does not find a path that satisfies the constraints, it means that no execution will ever be successful and
the contract is unsatisfiable.

Service contract execution. If a contract is satisfiable, its execution deals with the actual interactions performed by
the client and the service. The idea is based on the same proof theory that is used for service contracting, but it is
applied differently. When a task is chosen for execution by the client or the service, the proof theory of Section 5.2
checks if acceptance of that task still leaves the possibility of a successful execution of the remainder of the service
process (that satisfies the constraints). If so, the task is accepted and executed; otherwise the task is rejected and a
different task must be chosen for execution by the agent in question. Note that such a task must exist because when
accepting the previous task we must have checked that some continuation is possible.

Contract execution for our example works as follows:

1. Suppose the service selects task a. (This is the only task that can possibly be chosen according to our process
specification.) We already checked (while doing service contracting) that there is a legal execution that starts
with a, so the task is accepted.

2. The remainder of the process is ((dve) | ((f ® C') v state)) ® (g v h) (where B and C are replaced with

their definitions). The next step can be taken either by the client (e.g., by picking d or e) or by service (e.g.,
by picking f). It is also possible for the system itself to execute an internal action by picking state (here the
client and the service “take a short break™). Let us assume that the client takes initiative and picks e for exe-
cution. The system checks if e can be executed and finds that this would violate the constraint absence(e);
so e is rejected. Suppose that the client does not give up and selects d for execution. Again, the system checks
if d is allowed to execute given the constraints. In this case no constraint forbids the execution of d because
a,d, f, f, f,his a valid execution of the remainder of the process, so d is accepted.
It would be very inefficient if the system had to go back to the beginning of the path in order to check if
acceptance of an action permits a valid continuation. To avoid this, we modify the constraints after accep-
tance of each action so that we will never have to look back in order to decide whether to accept or reject
an action. For instance, after accepting d the system revises the constraints by replacing after(d -> f)
with at least(f). This is possible because after the execution of d the constraint after(d -> f) will
be satisfied iff f is executed at some point in the future, whence atleast;(f). The system now checks
whether an execution of the remaining process ((f ® C') v state) ® (g v h) exists under the updated set of
constraints absence(e) A atleasty(f) Aatleasti(f) A absence(g) (since we have two constraints
atleasta(f) and atleasty(f), the last one can be removed).

3. For the remainder of the process, ((f ® C') v state) ® (g v h), only f and state can be chosen. Let us
assume that the internal action state is picked for execution. The system now checks whether an execution
of the remaining part of the process, (g Vv h), exists given the updated set of constraints absence(e) A
atleasta(f)Arabsence(g). Itis easy to see that (¢ Vv h) cannot execute to satisfy at leasto(f) because
there is no f in (gVvh)). Therefore, state is rejected. The only other way to proceed is for the service to pick f
(recall that f can be executed only by the service). Proceeding as before, the proof theory would check if f can
execute. There are no constraints to prevent that, so the system updates the constraints and checks if a legal
continuation is possible. The update replaces at leasto(f) with atleast (f), since executing f means
that the number of required occurrences of f decreases by 1. The remaining part of the process, C' ® (g v h)
has a legal execution (f,h} with respect to the updated set of constraints absence(e) A atleasti(f) A
absence(g), so f is accepted.

21

4. To proceed, we need to expand C using the rule in (8), which gives us ((f® C') vstate)® (gVvh) — the same
process as in the previous step. Although the set of constraints has now changed, because of atleast;(f)
the task f must still be executed for the same reasons as in the previous step. This task is accepted because a
legal continuation exists, and now the set of constraints gets changed to absence(e) A absence(g).

5. Now the remainder of the process is (C'vstate)®(gvh) and state can be successfully picked for execution
and the remainder of the process becomes g Vv h. Either g can now be attempted by the client or i by the
service. However, the constraint absence(g) prevents the former, so the service proceeds by picking h and,
since no constraint prevents it from going ahead, it is executed. At this point, the remainder of the process is
empty and we are done.

Note that other executions are also possible and could have been taken. For instance, if the service continued to
press initiative in step 2, it could have picked f and the execution could have become a,f,d,f.f,h or a.f.f,d.f,h.

As we saw above, both service contracting and contract execution rely on the same inference rules which do not
explicitly differentiate between client and service tasks, however the difference plays out in the way the inference
rules are applied.

5.2. Proof System

Let C € ConsTr be a constraint (which can be composite), where Con'sTr includes both the service policy and
the client contract requirements. Let G be a service process and G and C satisfy the service contracts assumption.
We consider the following reasoning problems in ServLog:

1. Contracting: The problem of determining if contracting for a service is possible amounts to finding out if
there is an execution of the CTR formula G A C. Formally, contracting aims to determine if there is a path on
which G A C is true in every multi-path structure that makes all composite task definitions true.

2. Contract Execution: The problem of contract execution amounts to producing an interactive proof that G AC
can execute along some path. In that proof, the client and the service take turns that are prescribed by the
process specification and by the ownership of the primitive tasks, as illustrated in the previous subsection.
This proof must be constructive—a sequence of applications of the inference rules of CTR, which starts with
an axiom and ends with the aforesaid formula G A C. Each such proof provides a way to execute the process
without violating any of the constraints in C.

The rest of this section develops a proof theory for formulas of the form G A C, where G is a service process and
C eConsTR.

To simplify matters, we will assume that the service process G has no disjunctions in the rule bodies and in its
CTR goal part. This does not limit the generality, as such disjunctions can always be eliminated through a simple
transformation similar to the one in classical logic. For instance, the disjunction in

p < qo(rvs)®t
can be eliminated by transforming this rule into

p <« g®newpred ®t
newpred <« r
newpred <« s

Hot components. We recall the notion of hor components of a CTR goal from [11]: hot(%)) is a set of subformulas
of ¢ that are “ready to be executed” and corresponds to the notion of goal selection in SLD-style resolution proof
theories. Hot components are defined inductively as follows:

1. hot(()) = {}, where () is the empty goal
2. hot(y) = {4}, if ¢ is an atomic formula

3. hot(1)1 ® ... ®) = hot(1)y)

22

4. hot(¥y | ... |) = hot(eb1) U...U hot(¥),,)
5. hot(eY) ={®1)}

Additional constraints. The set of constraints is changing as tasks in the process execute. The exact mechanism
is explained in the inference rule “executing primitive update tasks,” below. It involves three new constraints:
force(p(t)), suspend(p(t)), and next_right_before(q(u’) « p(t) < q(u)), plus a generalization of
the constraint be fore, which allows exceptions. We did not introduce these before, since the new constraints are
technical means by which the proof theory works and they are unlikely to be employed by users directly.

The meaning of the constraint force(p(t)), where p(t) is a task pattern for a primitive update, is that the very
next task to be executed must match p(¢). More precisely, an execution (s1, So, ..., S,) satisfies force(p(t)) if

»(T) — _
s1 — sz holds and p(T") matches p(t).
The constraint suspend(p(¢)) means that no task that matches p(%) can execute at the current state. Formally,

. r(V) — . N\ i
an execution (sg, S, ..., S,), such that s; — s holds for some task atom 7(V), satisfies suspend(p(t)) if (V)
does not match p(t).
The constraint next_right_before(q(u') « p(t) < q(u)) says that ¢(u’) must be immediately preceded
by p(%) unless it is the first task to be executed. That first task can be a g-task, if it matches ¢(u’). Formally, an
execution (81, $2, ..., S,) satisfies this constraint if and only if either (s1, s, ..., s, } satisfies right_before(p(t) «

% — _
q(u)) orsy 1) s2 holds, where ¢(V') matches q(u'), and (s2, ..., s,,) satisfies right_before(p(t) < q()).
The generalization of before has the following syntax:

before(p(t) <= q(@) ~ {g(@n), ... a(@)}) (n

where p(t), q(u), and q(u7), ..., (U,), n > 0 (n = 0 means that the sets of exceptions are empty), are task patterns.
The use of “\” here indicates that be fore(p(t) <- ¢(u)) must hold, except for the tasks that match one of the
exceptions q(uy),..., ¢(Un).

Formally, an execution (sq, ...,S,,) satisfies the constraint (11) if and only if whenever there is a state s; in this

U _
execution such that s; «) si+1 and ¢(U) matches ¢(u) but none of the ¢(w;)’s then there is j, j < 4, such that

S;) s;j+1 holds and p(T') matches refine(p(?);q(U),q(w)).

Note that, when the set of exceptions is empty, the constraint (11) reduces to the old form of the before-
constraint. Therefore, to simplify the language, in the rest of this section we will be using only the generalized form
of this constraint.

Substitutions. As usual in logic proof theories, we will rely on the notion of substitution, which is a mapping from
variables to terms. If o is a substitution and v is a service process or a term then we write ¥o for the result of
applying the substitution o to ¥. We call ¥o an instance of 1. If 1o has no variables left, we say that 1o is a ground
instance and that o is a ground substitution.

Sequents. Let P be a set of composite task definitions. The proof theory manipulates expressions of the form
P,s-— + (3)¢ AC, called sequents, where P is a set of task definitions, s is an identifier for the underlying
database state, ¢ is a CTR goal, and C is a (possibly composite) constraint, which may include the constraints in
ConsTr as well as the new constraints (force, suspend, etc.) introduced just above. Informally, a sequent is a
statement that (3) ¢, which is defined by the rules in P, can execute along some path that starts at state s so that all
the constraints in C will be satisfied. Each inference rule has two sequents, one above the other. This is interpreted
as: if the upper sequent is inferred, then the lower sequent should also be inferred. As in classical logic, any instance
of an answer-substitution is a valid answer to a query.

The inference system presented here extends the inference system for Horn CTR [11] with two additional infer-
ence rules (Rules 2 and 3). Other rules from [11] (e.g., Rule 6) are also significantly modified. The new system
reduces to the old one when the constraint C is a CTR tautology (path). The new system also extends and simplifies
the proof theory developed in [38].

23

All rules and the axioms operate with constraints, which get modified as a result of the rule application. However,
some of the rules require the constraint to be a conjunction of the existence, serial, and the additional constraints
introduced in this section. We call such constraints conjunctive. A conjunctive constraint can be viewed as a set, so
we will often write ¢ € C meaning that c is a conjunct in C.

The notion of a proof. A proof of a sequent seq is a series of sequents, seqq, seqi, ..., S€qn—1, S€qy, where
seqn, = seq and each segq; is either an axiom-sequent (below) or is derived from earlier sequents by one of the
inference rules below.

Axiom. All axioms have the form P, s --- + () A C, where s is a database state identifier and C is a conjunctive
constraint that does not contain constraints of the form force(7), atleasty(7), and exactly,(7), where
k>1.

Inference Rules. In Rules 1-7 below, o denotes a substitution, ¢ and 1)’ are service processes, C and C’ are con-
straints, s, S1, So are database state identifiers, and p is a task.

1. Eliminating disjunctive constraints: Let 1) be a CTR goal and C’ a disjunct in the disjunctive normal form of
C (i.e., C’ is a conjunctive constraint). Then

P.s —+~9ynl
P,s -+~ AC

Note that C’ is a conjunction of existence and serial constraints.
2. Solving builtin tests: Let x be a conjunction of builtin test tasks. Suppose there is a ground substitution ¢ such
that xo evaluates to true. Then

P,s —-+-(O)AC
P,s —-~(3) xAC

3. Commutativity with respect to builtin tests: Let x be a conjunction of builtin test tasks and ¢ a CTR goal.
Then
Ps—--@)@Wex) Al
P,s -+ (xoyY)AC
4. Applying composite task definitions: Let r < [be arule in P, and assume that its variables have been renamed
so that none are shared with . If p and r unify with the most general unifier o then

P,s —-+~@)yY'onaC
P,s —+ ()i nrC

where 1)’ is obtained from 1) by replacing a hot occurrence of p with 3.
5. Executing query tasks: Suppose that po and v)'c share no variables and either (i) p is a primitive query task
such that (3)po is true in the state s; or (ii) p = state and o is the identity substitution. Then

P,s —-+@)yY'onaC
P,s —-+@ ¢y AC

where ¢’ is obtained from 1) by deleting a hot occurrence of p.

6. Executing primitive update tasks: Let po be a primitive update task such that s; 2 sy, pe hot(v), and
C has no constraint of either of the forms below. In the description below, we assume that p is a task pattern
such that po matches p and that 7 denotes an arbitrary task pattern:

- absence(p)

24

suspend(p)

force(7) such that po does not match 7

before(r <- p~{p1,...,0k}) k > 0 and po matches neither 7 nor any of the p;’s
right_before(7 « D)

- next_right_before(p’ « T « p), where po does not match p’.

Then the inference rule has the following form:

P,sy —~ @Yol
P,s; —--@ ¢y aC

where C is a conjunctive constraint, ¢’ is obtained from t by deleting the hot component p, and C’ is con-
structed out of C as follows.

Initially, C’ is empty (a tautology, path). Then constraints are added to it (as conjuncts) according to the cases
below. (Again, in all these cases, we assume that po matches p and 7, § are arbitrary task patterns.)

(a) If at least,(p) € C, where n > 1, add the following to C":
- atleast,-1(p);

(b) If exactly, (p) € C, where n > 1, add the following to C":
- exactly,_1(D);

(c) If exactly,(p) €C, add the following to C":
— absence(p);

(d) If after(p -> 7) € C, add the following to C:

- after(p ->7)
— atleast(7), where ¥ = refine(7;po, D)

(e) If blocks(p /> 7) € C, add the following to C':

- blocks(p /> 7)
— absence(7), where 7 = refine(7; po, p)

(f) f right_after(p - 7) € C, add the following to C':

- right_after(p—»>7)
— force(7), where 7' = refine(¥; po, p).

(g) fbefore(p <- 7\ {71,...,7x}) € C, add the following to C:
- before(p <- 7~ {F',71,...,Tr}) Where 7 = refine(7;po,p);
(h) If not_right_after(p+ 7) € C, add the following to C":

— not_right_after(p+ 7)
- suspend(7), where ¥ = refine(7;po,p)

(i) If right_before(p « 7) € C, add the following to C’:

- next_right_before(F « p« 7), where ¥ = refine(7; po,D);
() If next_right_before(7 « 5§« 7) € C, add the following to C":

— right_before(s « 7), where s, 7 are arbitrary task patterns;
(k) If between(p -> 7 <- 5) € C, add the following to C":

— between(p -> 7 <- 3)

25

— before(7 <- &), where 7 = refine(7;po,p) and § = refine(s;po, D)
() If not_between(p -/> T </- 5) € C, add the following to C':

- not_between(p /> 7 </- 5)
— blocks(7 -/> §') where 7 = refine(7;po,p) and § = refine(s;po,p)

(m) For all other constraints in C, copy them over to C’, but leave out the constraints of the form:

- atleasti(p)
- force(p)
— suspend(7), for any task pattern 7

7. Executing atomic tasks: If ®a is a hot component in 1) then

P.s —+@)(a®y)AC
P,s ()i ArC

where ¢/’ is obtained from 1 by deleting a hot occurrence of ®a.

Theorem 1 The above inference system is sound and complete for proving constrained service processes, if the
service processes and the constraints satisfy the service contracts assumptions.

Proof: Soundness of the inference system is proved in Appendix A and completenessin B. O
Example. The following example illustrates the inference procedure.

Goal G: 3%z ((p(?z)®q)|r(?x))
Rules: r(?z) < (zyz(?y,?2) ® s(?x,7y,72) @ r(?y))
r(?x) < state
Constraint C: (atleasta(s(_,_,_))vbefore(p(_x) <- s(_z,1,_2)))

Here p, g, and s are assumed to be primitive tasks, and in the case of p and s they can be executed with any integer
argument. Furthermore, in this example we assume that the execution of p, s, and ¢ modifies the database, as follows:
p(1) adds zy2(3,7); s(1,3,7) adds zyz(2,7); s(3,2,7) adds abc(1); and g deletes xyz(3, 7). These assumptions
were needed in order to show that the constraint is satisfied in this example. If we did not make these assumptions,
then the constraint might not be satisfied in which case the inference procedure would not infer the constraint. The
goal G can be executed in several ways such that C is satisfied. We show one possibility, which corresponds to one
derivation of the sequent P, s ---+ G A C, where s is an identifier for { }, the empty state. In this derivation, we use
the top-down method, i.e., we start with the goal and apply the inference rules backwards. Each sequent is derived
from the previous one by an inference rule. The deduction succeeds when the last sequent is an axiom. We start with
the sequent

P {}—+@3% ((p(?z) ®q) | r(?2)))
A(atleasta(s(_,_,_)) vbefore(p(_z) <- s(_x,1,_)))

Here, instead of a state identifier (s) we put the corresponding database state ({ }) explicitly. To make the sequent
easier to read, we will continue doing this in the rest of this example.
Hot components: {p(?x),r(?z)}. By inference rule 1 (eliminating disjunctive constraints) we obtain:

P} + 3% ((p(?z) ®q) | r(?2)))
Aatleasta(s(_,_,_))

26

Hot components: {p(?x),r(?x)}. By inference rule 4 (composite task definitions) we obtain:

P, {} -+ (372,79, (p(%2) @ 9) | (ay=(7y, 72) @ 5(72,79,72) © 7(7y)))
Aatleasta(s(_,_,_))

Hot components: {p(?x),zyz(7y,?z)}. By inference rule 6, choosing p(?x) and executing this primitive task with
the argument 7z = 1, we obtain (recall that the execution of p(1) adds the fact zyz(3,7) to the database):

P {xyz(3,7)} -+ (3 7y, 72 q| (xyz(?y,?72) ® s(1,7y,72) ® r(?y)))
natleasta(s(,,_,_))

Hot components: {q, zyz(?y, ?z)}. By inference rule 5 (executing query tasks):

P {xyz(3,7)} - +q| (s(1,3,7) ®r(3))
natleasta(s(,,_,_))

Hot components: {q, s(1,3,7)}. By inference rule 6 applied to the primitive task s(1,3,7) and the earlier assump-
tion, this execution adds the fact xyz(2, 7) to the database:

P {xyz(3,7),2y2(2,7)} - + (q|r(3)) A atleasti(s(_,_,_))

Hot components: {¢,7(3)}. By inference rule 6 applied to the primitive task ¢ (which, as mentioned above, deletes
xyz(3,7)):

P {zyz(2,7)} - +r(3) natleasti(s(_,_,_))
Hot components: {r(3)}. By inference rule 4 (composite task definitions):

P {xyz(2,7)} - + (3 ?y, 72 (xyz(Ty,72) ® s(3,7y,72) @ (7y)))
natleasti(s(L,_,_))

Hot components: {zyz(?y,?z)}. By inference rule 5 (executing query tasks) and choosing zyz(?y, ?72):
Pa {Z‘yZ(Q, 7)} i (8(37 2a 7) ® T(Q)) A atleaStl(S(—v_a—))

Hot components: {s(3,2,7)}. By inference rule 6 for executing the primitive task s(3,2,7) and by the earlier
assumption, it adds the fact abc(1) to the database:

P, {xyz(2,7),abc(1)} --- + r(2)

Hot components: {r(2)}. By inference rule 4 (composite task definitions), where we use the second rule for r:
P, {zyz(2,7),abc(1)} --- + state

Hot components: {state}. By rule 5 applied to state we derive:
P, {xyz(2,7),abc(1)} - + ()

During the deduction, we executed the following sequence of primitive tasks:

{p(1),xyz(3,7),s(1,3,7),q9,xyz(2,7),(3,2,7),state}

27

It is easy to see that this sequence indeed satisfies the constraint C, which required s(_, _,) to be executed at least
twice.

Decidability and Complexity. In general, query answering in CTR is semi-decidable [11], like in classical logic,
so no effective procedure exists to answer all possible queries and terminate. Appendices A and B show that the
same is true for ServLog. In [7], various subsets of CTR were investigated for their decidability and complexity
properties. One important restriction studied there is called full boundedness. In terms of ServLog, this roughly
means that every update task must diminish some bounded from below, discrete measure (e.g., a positive integer
measure). In that case, the CTR proof procedure is data-complete for NP [7] (i.e., NP-complete when the rules
are fixed but data is allowed to vary). Fortunately, all existing workflow modeling systems are implicitly based on
the assumption that any useful workflow must be fully bounded (where the bounds can be defined for different
processes). Typically this is manifested by imposing upper bounds on the number of iterations, the number of steps,
and other similar restrictions. It is also easy to instrument ServLog service processes so that they become fully
bounded. For instance, primitive update tasks could be forced to diminish a global discrete and bounded resource.
More importantly, the recent trend in Logic Programming is to avoid restricting the expressive power of programs by
curtailing the usefulness of logical frameworks with restrictions, such as full boundedness. Instead, new approaches
aim to develop tools for detecting non-terminating behavior and help the programmer correct the problem [30,22]. It
is our contention that this is a more productive direction for Transaction Logic-based approaches than the restriction-
based approaches. We should also note that some decidability results developed for other approaches carry over to
ServLog—see the discussion of artifact systems [15] in Section 6.

6. Related Work

ServLog builds on the service contracting framework that was partially developed in [39,38], greatly expanding
and generalizing it, while at the same time simplifying the technical details. The major simplifications and extensions
include:

Removing the unique task occurrence restriction and obviating the need for complex simplification transfor-
mations.

Tasks are no longer limited to propositional constants. This provides the ability to represent complex data flow
among tasks as well as general transitional constraints.

General iterative and even mutually recursive tasks in the specification of service processes.

Generalization of the proof theory, which now deals with the many new additions to the language, and handles
constrained (non-Horn) formulas, which previous CTR proof theory was not able to handle.

Proofs of soundness and completeness for the generalized proof theory.

The present paper significantly extends this proof theory to formulas that contain the A connective thus enabling
execution of constrained transactions, which are non-Horn. We also deal with a much larger class of constraints
than [16,38], including iterative processes.

Declare [45] is a service flow language that is closely related to ServLog. It uses Linear Temporal Logic to for-
malize service flows and automata theory to enact service specifications. The relations between tasks are described
entirely in terms of constraints. Apart from the obvious radical differences in the formalisms, some other impor-
tant differences are worth noting. First, the constraint algebra Coxs7r of ServLog is more expressive than the one
used in Declare. Second, by combining constraints with service processes (conditional control flow and data flow),
ServLog incorporates current practices in workflow modeling. Third, data flow and conditional control flow are eas-
ily available in ServLog, while they have not been developed in the context of Declare. Declare was also formalized
using Abductive Logic Programming in [33]. While this formalization supports different verification tasks, the focus
remains on modeling service flow exclusively in terms of constraints and does not deal with control and data flow.

In [49,48] the authors propose a combination of colored Petri nets, Declare, and DCR graphs as a way of model-
ing procedural processes with data support. This combination can be seen as either “adding declarative control-flow
to CP-nets” or as “adding data-flow to declarative formalisms.” From the modeling perspective, the approach re-

28

quires the user to be familiar with three formalisms, as opposed to our framework where all aspects are represented
within a single logical language. The authors do not provide a precise formalization of the combination of the three
languages, so it is unclear how certain elements such as atomic transactions, hierarchical definitions of tasks, and
constraints over complex tasks can be expressed in the combination of those three languages. From the analysis
point of view, the authors address the problem of simulation: checking whether a transition is enabled in the CP-net
model, and subsequently whether it is also allowed according to the declarative constraint. This is done using model
checking. Our approach differs conceptually in that we rely on a logical proof theory as opposed to model checking.

In the same spirit of extending Declare with data elements, [32] extends the Declare notation by allowing activities
to have associated multiple ports (denoting events associated to the activity lifecycle) and constraints to be attached
to ports thereby allowing data-aware conditions. These extensions are then formalized in the Event Calculus (EC).
In terms of modeling, the focus remains on modeling service flow exclusively in terms of constraints and this does
not address the aforesaid limitations with respect to control and data flow (e.g., it is unclear how elements such as
hierarchical definitions of tasks can be achieved with the proposed extensions). For reasoning, the paper defers to
generic EC reasoners, which are significantly more complicated than those for CTR.

Another related approach to service modeling and verification is based on the business artifact model [28,18,15].
In this approach, tasks (which they call “services”) are represented as transformations on objects, called artifacts
and they have pre- and post-conditions. In addition, various constraints can be specified using Linear Temporal
Logic (like Declare) where first-order statements are allowed in place of propositions. In ServLog, artifact-based
systems correspond to a very special form of service processes of the following form:

serv(?X) < termination_condition(?X)
serv(?X) <« precond; (7X) ® task1(?X,?7Y) ® postcond, (7 X,?7Y) ® serv(?Y)
serv(?X) <« preconds (7X) ® tasks(?7X,7Y") ® postcondy (7 X,?7Y) ® serv(?Y)

The artifacts are represented here via variables, but they can also be represented as data items passed around via the
underlying database. While the control structure of artifact systems is a small subset of what ServLog services can
have, the constraints used in those systems form a superset of the constraints in ServLog: they can be arbitrary LTL
formulas. (It is not clear, however, whether this generality makes a difference in practice.) It is interesting to note
that the decidability results from [18] carry over from artifact systems to the special case of the ServLog service
processes described above.

An emerging area related to our work is that of compliance checking between business processes and business
contracts. For example, in [24,25] both processes and contracts are represented in a formal language called FCL.
FCL is based on a formalism for the representation of contrary-to-duty obligations, i.e., obligations that arise when
other obligations are violated as typically happens with penalties embedded in contracts. Based on this, the authors
give a semantic definition for compliance, but no practical algorithms. In contrast, ServLog provides a proof theory
for verifying feasibility of service contracting as well as for contract execution.

Several other approaches to service contracting and contract execution are relevant to our work [41,2,3,13], but not
directly related. Most of these present logical modeling languages for contracts in various settings. Being based on
normative deontic notions of obligation, prohibition, and permission, we believe that these works are complementary
to ours and the approaches could be combined.

Other popular tools for process modeling are based on Petri nets, process algebras, and temporal logic. A related
area of research is data-centric business and service modeling and verification, for which a representative approach
is [47]. Approaches in this area primarily combine databases and model checking techniques for the purpose of
automated verification. The advantage of CTR over these approaches is that it is a unifying formalism that integrates
a number of process modeling paradigms ranging from conditional control flows to data flows to hierarchical mod-
eling to constraints, and even to game-theoretic aspects of multiagent processes (see, for example, [17]). Moreover,
as shown in [16], CTR modeling sometimes leads to algorithms with better known complexity for special cases than
general model checking.

Finally, it is worth mentioning our work in the context of general Al techniques on reasoning about actions.
A key differentiation of our approach based on CTR is that, while many works in Al focus on reasoning about

29

actions, CTR also has constructs for defining transactions and executing them. These issue and further comparison
are discussed in detail in the original and follow-up papers [8,9,11,36,5].

7. Conclusions

The main contribution of this paper is ServLog, a unifying logical framework for semantics-aware services ad-
dressing two core aspects of services: modeling and contracting. In particular, this work adds a few new building
blocks to the theoretical foundations for service contracting. It offers an expressive set of modeling primitives and
addresses a wide variety of issues in service contracts. These primitives range from complex process description (in-
cluding iteration and conditional transitions between tasks) to temporal and data constraints. Despite its expressive
power, ServLog still provides a reasoning procedure for automated service contracting.

In the context of established business process languages (e.g., BPMN, WS-BPEL), ServLog not only captures typ-
ical procedural constructs found in such languages, but also greatly extends them, enables declarative specification
and reasoning, and opens the way for automatic generation of business processes from service contracts. Further-
more, in the context of Semantic Web Services, ServLLog complements established approaches such as OWL-S and
WSMO, which primary focused on semantic annotations for Web services, and brings new directions for research
in Semantic Web Services related to service contracts.

The approach presented in this paper has been implemented for the propositional case (when tasks do not have
parameters) in the GEECoP (Graphical Editor and Engine for Constrained Processes)'® tool with promising results
(further described in [44]).

Future work may include support for reasoning about quality of service (QoS) and non-functional properties in
service contracts—see, e.g., [14] for an example of a framework for QoS-based Web service contracting, which
could be combined with ServLog, and a more complete implementation of the reasoning framework based on recent
results on efficient implementation of Transaction Logic [20]. Another challenging issue is generation of service
contracts in ServLog from informal, often ambiguous, natural language contracts. It would be also interesting to
do a methodological comparison of the expressive power of ServLog with workflow specification languages based
on automata, pre/post conditions, and temporal constraints. In this respect, the recent framework introduced in
[1] for comparing distinct workflow models by means of views might be relevant. Explicitly treating violations
and reasoning about the effects of violations in contracts is also an interesting direction for further research in
ServLog. Service discovery is complementary to the problem of service contracting addressed by ServLog. Some
approaches to semantic service discovery are based on Transaction Logic (e.g. [29]) and could be combined with
ServLog. Such a combination would be yet another intriguing continuation for the present work. ServLog, as a logical
framework for specification of and reasoning about service contracts, is orthogonal to implementation issues such
as centralized or distributed provisioning of services. ServLog can be instantiated in different settings; for example,
when different tasks are provisioned in a distributed or decentralized environment. Studying the implications of
instantiating ServLog in different environments is interesting from a practical perspective. We are also investigating
applicability of ServLog and CTR to other areas such as smart contracts'* in the context of cryptocurrencies.'
Here, ServLog could prove to be a useful approach for modeling and reasoning about distributed cryptocurrency
contracts. '

Acknowledgements. We thank the anonymous referees for their valuable comments, which helped to improve this
paper. Michael Kifer was partially supported by the NSF grant 0964196.

13http://sourceforge.net/projects/gecop/

14http://szabo.best.vwh.net/smart_contracls_idea.html

15See for example Bitcoin contracts at https://en.bitcoin.it/wiki/Contracts.

16For a relevant related idea, see [4], where the authors proposed timed automata for formalizing Bitcoin contracts.

30
Appendix
A. Soundness of the Inference System

Theorem 2 (Soundness of the Inference System). Suppose P is a set of composite task definitions, s a database
identifier, 1 a service process, C a conjunction of primitive or serial constraints. We also assume that 1 and C satisfy
the service contracts assumption. Then:

If P,s---+ynC then P,s-—- £yl

Proof: 1t suffices to prove that the axiom and each inference rule are sound. The only nontrivial case here is sound-
ness of the inference rule 6, execution of primitive update tasks. This proof is given in Proposition 1. O

Proposition 1 (Soundness of the executing primitive tasks inference rule)

Let po be a primitive update task such that s 27, so holds, p € hot(v), and C has no constraint of either of
the forms below. We assume that p is a task pattern such that po matches p and that v denotes an arbitrary task
pattern:

absence(p)

suspend(p)

force(F) such that po does not match 7

before(F <- pN{p1,...,pr}) k > 0 and po matches neither 7 nor any of the p;’s
right_before(F « D)

next_right_before(p’ « T « p), where po does not match p'.

Then the inference rule has the following form:

P sy, —+(3)Y'onl’
Ps, ——-—(3)yYAaC

where ' is obtained from 1) by deleting the hot component p and C' is constructed out of C as follows.
Initially, C' is empty (a tautology, path). Then constraints are added (as conjuncts) according to the cases below.
As before, in all these cases we assume that po matches p and v, § represent arbitrary task patterns.

(a) If at least,(p) € C, where n > 1, add the following to C":
- atleast,-1(p);

(b) If exactly, (p) € C, where n > 1, add the following to C":
- exactly,_1(p);

(¢) If exact 1y (p) € C, add the following to C":
— absence(p);

(d) If after(p -> 7) € C, add the following to C’:

- after(p -> 7)
— atleast(7), where ¥ = refine(7;po, D)

=l

(e) If blocks(p /> 7) € C, add the following to C':

- blocks(p /> 7)
— absence(7), where 7 = refine(7; po, p)

(f) f right_after(p - 7) € C, add the following to C':

31

— right_after(p—>7)
— force(7), where 7 = refine(7; po, p).

(g) If before(p <- 7~ {F,...,,7x}) € C, add the following to C":
— before(p <- 7\ {7, 71,...,7x}) where 7 = refine(T;po,p);
(h) If not_right_after(p» 7) € C, add the following to C’:

- not_right_after(p»7)
— suspend(7'), where 7 = refine(7; po, p)

(i) If right_before(p « 7) € C, add the following to C’:

- next_right_before(7 « p« 7), where ¥ = refine(T;po,p);
() If next_right_before(7 « 5« T) € C, add the following to C":

— right_before(§ « 7), where §, 7 are arbitrary task patterns.
(k) If between(p -> 7 <- 5) € C, add the following to C":

— between(p -> 7 <- 3)
— before(7 <- &), where ¥/ = refine(7;po,p) and § = refine(5;po, D)

() If not_between(p -/> 7 </- 5) € C, add the following to C’:

- not_between(p -/> 7 </- 3)
— blocks(7 -/> &) where 7 = refine(7;po,p) and § = refine(s;po,p)

(m) For all other constraints in C, copy them over to C’, but leave out the constraints of the form:

- atleasti(p)
- force(p)
— suspend(7), for any task pattern 7

Proof: Suppose P s, ...s,, £ (3) ©'c AC’. By soundness of the CTR proof theory, it follows that P s; ...s,, E (3) 1.
So, it remains to prove that P,s; ...s, = (3) 1) A C and, as a special case, that:

P,(s;, ...8n)E C (12)
In the proof, we will rely on the premise
P,(sy, ..,8p)E C’ (13)

which is a special case of the assumption P.s, ...s,, = (3) 'o A C".

Proof of (12) To prove (12), we need to consider each case in the inference rule 6 and, for each constraint that is
not copied directly from C to C’ via Case (m), we need to show that it holds over the execution (s, ...s,).

Case (a): In this case, C has at least,(p) and C’ has atleast,_1(p). By (13), it follows that P,ss ...s,, E
atleast,-1(p).

If P,sy...s, £ atleast,_1(p) then since s; 2, s and po matches p, it follows that P,s;..s, E
atleasty,(p) holds.

Case (b): similar to Case (a).

Case (c): In this instance, C’ contains absence(p), so s; 5 801, 1 < i < m, is not possible for any r that
matches p. Therefore, (s1, ...,S,) satisfies exact 1y, (p), i.e., P,sy ...s, = exactly;(p) holds.

Case (d): In this case, C’ contains after(p -> 7) and atleast(7), and C contains after(p -> 7). By
(13), it follows that P, s ...s,, £ atleast (7). Suppose after(p ->) does not hold on (s1,Ss2, ...,y). Since

32

the transition from s; to so can be made only by po (by the primitive update task independence assumption), it
follows that absence(7') must hold on (ss, ..., s,). But this contradicts the fact that at 1least; (7') must hold on
the same path. Thus, after(p -> 7) must hold on (sy, ...,s,), i.e.,, P,s; ...s, =after(p -> 7) holds.

Case (e): Here C’ contains blocks(p -/> 7) and absence(7'), and C contains blocks(p /> 7). By (13),
P,s;...s, E absence(7). Suppose blocks(p /> 7) does not hold on (s, 89, ..., S,). Since the transition from s;
to s can be made only by po (by the primitive update task independence assumption), it follows that at 1east(7)
must hold on (ss, ..., s,). But this contradicts P, sz ... s,, = absence(7'). Thus P, s; ...s, = blocks(p /> 7) must
hold.

Case (f): Here C’ contains both right_after(p — 7) and force(7'), while C contains right_after(p —

7). By (13), it follows that P,s, ...s,, £ force(7), and thus sy . s3 must hold for some r’ that matches 77, a
refinement pattern of 7. Since s; 27, sy and po matches p, it follows that P;s; ...s, £ right_after(p — 7)
holds.

Case (g): In this instance, C’ contains before(p <- 7 \ {7, 7,...,Tr}) while C contains before(p <- 7 \
{71,...,7x}). By (13), it follows that P,s,...s,, &= before(p <- ¥ ~ {F',71,...,7x}). Since s; —— s, holds,
po matches p, and 7 = refine(T;po,p), it follows that before(po <- ') (and, as a special case,
before(p <- 7)) is satisfied by (s1, S, ..., S,). Since (So, ..., s,) satisfies before(p <- 7\ {7, 7,...,Tr}), we
conclude that it also satisfies before(p <- 7 \ {Fy,...,7}). But the transition from s; to sy was made by po,
which matches p, so (s1,82, ..., S,) cannot violate before(p <- 7\ {F1,...,Tx}).

Case (h): In this case, C’ contains not_right_after(p + 7) and suspend(7), and C contains
not_right_after(p+ 7). By (13), it follows that P,ss ...s,, £ suspend(7#)Anot_right_after(p» 7).
Suppose not_right_after(p +» 7) does not hold on (s, ss, ...,s,). Since the transition from s; to sy can be
made only by po (by the primitive update task independence assumption), it follows that the only way to violate
not_right_after(p +» 7) over (81,82, ...,S,) is to cause a transition sy > s3 using some 7’ that matches
7' = refine(T;po,p). But this contradicts the assumption that P,s;...s,, £ suspend(7') holds. Therefore
P.s;..s, Enot_right_after(p + 7) holds.

Case (i): In this case, next_right_before(# « p « 7) € (', where ¥ = refine(7;po,p), and
right_before(p « 7) € C. Since the path (so, ..., s,) satisfies the constraint next_right_before (7 «

p < 7), we have that either (i) s, — s3 holds and (ss, ..., s,,) satisfies right_before(j < 7); or (ii) (s, ...,Sn)
satisfies right_before(p <« 7). In either case, since s; 2, so holds by the assumption, it follows that
right_before(p « 7) holds on the entire execution path (sq, ..., Sp).

Case (j): Here right_before(s « 7) € C’ and next_right_before(7 « 5 « T) € C, where §, 7 are
arbitrary task patterns. We thus have that P, (s, ...s,,) E right_before(s « 7) and s, 27, s, both hold. By the
premise of rule 6, either

— po does not match 7; or
— po matches 7.

Since the constraint right_before(s « 7) is satisfied by (so,...,s,), in either of these cases the constraint
next_right_before(7 « 5« 7) € C holds on (s, ...,S,).

Case (k): In this case, C’ contains between(p -> 7 <- 3) andbefore(# <- §'),where 7 = refine(7;po,p)
and § = refine(3;po,p), while C contains between(p -> 7 <- 5) instead. In addition, s; 2% s, holds.
Since (8o, ..., s,) satisfies before(# <- 5') and between(p -> 7 <- 3), it follows that (s1,ss, ..., s,) satisfies
between(po -> 7 <- §'). Therefore, between(p -> 7 <- 3) cannot be violated by (s1,S2, ..., S,).

Case (1): Here C’ contains not_between(p -/> 7 </- 5) and blocks(7 -/> §'), while C contains the con-
straint not_between(p /> 7 </~ §). In addition, s; —> s holds. Since (ss, ..., s,) satisfies blocks(# /> §),
and not_between(p -/> ¥ </- 5), it follows that (s1,ss,...,s,) satisfies not_between(po /> 7 </-).
Therefore, not _between(p -/> 7 </- 5) cannot be violated by (s1,Ss, ...,S,).

Case (m): In this catch-all case, all constraints are copied over from C to C’ except the following:

33

— atleast(p): In this case, C has atleasti(p), while C' does not. Recall that the initial transition was
s1 2% sy and po matches p. Therefore, P, s; ...s,, F at least(p) holds.

— force(p): In this case C has force(p), while C’ does not. Since the initial transition was s; —> sy and
po matches p, we conclude that P,s; ...s,, £ force(p) holds. (Note that the case of force(7) € C, where
po does not match 7, is precluded by the precondition to rule 6, so we are not missing cases by considering
force(p) only.)

- suspend(7), for some task pattern 7: Here C has suspend(7), but C’ does not. Suppose P,s; ...s,, E
suspend(7) does not hold. This means that the initial transition from s; to sy was caused by a task that

matches 7. At the same time, the initial transition was s; ro, S, so po must match 7. However, this contradicts
the precondition for rule 6, which says that po must not match any pattern that appears inside a suspend
constraint in C, including 7. Thus P, s; ...s,, = suspend(7) holds. O

B. Completeness of the Inference System

Theorem 3 (Completeness of the Inference System). Suppose P is a set of composite task definitions, s a database
identifier, 1 a service process, C a conjunction of primitive or serial constraints, and 1 and C satisfy the service
contracts assumption. Then:

P,s—-- = (¢ AC) implies P,s---+ (Y AC)

Proof: The proof of completeness is based on the following facts:

— The original CTR proof theory is complete.

— The current proof theory restricts the original CTR proof theory by eliminating certain derivation paths. Sound-
ness implies that all the remaining paths satisfy C. Completeness means that none of the eliminated path satis-
fies C.

The key step in the proof is to show that the eliminated derivation paths correspond to executions that violate
some of the constraints.

First, by the inference rule 1, it is always possible to ensure that C in rule 6 and in the axiom is a conjunctive
constraint.

One reason why a derivation path may be eliminated by the proof theory is that in the inference rule 6 (executing
primitive update tasks) a hot task po is blocked because C contains:

absence(p)

force(r) such that po does not match 7

before(F <- p~{p1,...,Pr}) k > 0 and po does not match any of the p;’s
right_before(F « D)

- next_right_before(p’ « T « p), where po does not match p’.

where 7 is an arbitrary task pattern and po matches p.

If such a hot task po is executed at some state, s1, and causes a transition to state s, then either absence(p),
or before(F <-p~ {p1,...,Pr}), right_before(F « D), or next_right_before(p’ « 7 « p), or
force(F) are not satisfied on any path of the form (s;s; ... s,). Therefore, such an eliminated path is not a valid
execution.

The other case when our proof theory may eliminate an execution path that would have been otherwise found by
the plain CTR proof procedure is when we derive P,;s --- ~ () A C but cannot declare success because the axiom
does not apply due to the fact that C contains a constraint of the form force(7), at Least(T), or exact 1y (7),
where k£ > 1. But then, if the eliminated execution path satisfied the original constraint C then, by soundness of
the inference rules, the path (s) would have to satisfy C and thus also one of the aforesaid constraints: force,
atleast, or exactly, which is not the case.

34

Since the remaining inference rules do not restrict execution of transactions and are essentially identical to the
corresponding rules in CTR (except that the constraints are tacked on to them), the result follows. O

C. Representing Constraints of ServLog as CTR Formulas

This appendix provides direct definitions of the constraints introduced Cons7r (Section 4.2) and the additional
ones from Section 5.
The followings are CTR representations for the constraints in Con's7r that are equivalent to the semantic defini-

tions for these constraints given in Sections 4.2 and 5. In the formulas below we use vars(t) to represent the set of
variables appearing in ,!” and wp(%) denotes'®

path ® p(¢) ® path (14)
The constraints in Con'sTr are now represented in CTR as follows:
- atleast,(p(t)):
Jvars(uiLiti) (wp(t) ® ... ® wp(t,)) (15)

Where ¢; is ¢ in which all underscores (unnamed placeholders) are replaced with new variables. (Recall that
named placeholders are regular variables.)

— absence(p(f)):

Voars(t) - wp(t) (16)
— exactly, (p(®)):

atleast,(p(t)) A-atleast,1(p(t)) (17)

- atter(p(d) -> q(a)):

Y vars(t) 3wvars(u) ~ vars(t)

a va 18
path® p(t) = wq(a) (18)
Here vars(u) \ vars(t) is the set of variables in 7 minus those that appear in ¢.
- before(p(t) <- q(u)):
Y vars(u) Jwvars(t) ~vars(u) (19)
vp(t) < q(u) ® path
- before(p(t) <- q(@) ~{q(®1),...,q(Tn)}):
V vars(u) ¥ vars(ulL,v;) Jvars(t) N vars(u) 20)

Vi1 (@ =1;) v (wp(t) <= q(u) ® path)

17Note that all underscores (unnamed placeholders) are replaced with new variables, e.g. vars(p(_,_)) = {?X,?Y}.
¥Informally, wp(Z) means that p(Z) eventually executes.

35
- blocks(p(t) /> q(u)):

Y vars(t,w)
path ® p(t) = - v q(u) 2n

- between(p(t) -> q(@) <- r(v)):

Y vars(t,v) Jvars(u) \vars(t,v) 22)
path® p(t) = wq(u) < r(v) ® path

- not_between(p(t) /> q(w) < r(v)):

Y vars(t,u,v) 23)
path® p(t) = - v q(u) < r(v) ® path

- right_after(p(t) - q(u)):

Y vars(t) 3wvars(u) ~ vars(t) 24
path ® p(t) = q(u) ® path (24)

- right_before(p(t) « q(u)):

Y vars(u) Jvars(t) N vars(u))5
path ® p(t) < ¢(u) ® path (25)

- next_right_before(q(u') « p(t) < q(n)):

right_before(p(t) « q(u)) V B 26)
(Fvars(u) q(w)) ® right_before(p(t) « q(u))

- not_right_after(p(t) » q(u)):

Y vars(t,w) 27
path® p(t) = (arc A -~ w q(u)) < q(u) ® path

where arc is a CTR proposition such that s; 25 sy is true for any pair of states s;, Sz and arc is not true on
any other path.

— force(p(?)):

3 vars(t) p(t) ® path (28)
- suspend(p(?)):

Vovars(t) (arcA-p(t)) ® path (29)

— Composite constraints: If Cy, C5 € ConsTr then so are C; A C5 (a conjunctive constraint) and C; v Cs (a
disjunctive constraint).

36

References

[1] S. Abiteboul, P. Bourhis, and V. Vianu. Comparing workflow specification languages: a matter of views. In Proceedings of the 14th
International Conference on Database Theory, ICDT ’11, pages 78-89, New York, NY, USA, 2011. ACM.
[2] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, and P. Torroni. Expressing and verifying business contracts with
abductive logic programming. In Normative Multi-agent Systems, number 07122 in Dagstuhl Seminar Proceedings, 2007.
[3] J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Stefansen. Compositional specification of commercial contracts. Int. J. Softw.
Tools Technol. Transf., 8(6):485-516, 2006.
[4] M. Andrychowicz, S. Dziembowski, D. Malinowski, and £.. Mazurek. Modeling bitcoin contracts by timed automata. In Formal Modeling
and Analysis of Timed Systems, pages 7-22. Springer, 2014.
[5] R. Basseda, M. Kifer, and A. J. Bonner. Planning with transaction logic. In Web Reasoning and Rule Systems, 8th International Conference
(RR 2014), volume 8741 of Lecture Notes in Computer Science, Athens, Greece, September 2014. Springer.
[6] M. Y. Becker and S. Nanz. A logic for state-modifying authorization policies. ACM Trans. Inf. Syst. Secur., 13(3):20:1-20:28, July 2010.
[7]1 A.Bonner. Workflow, transactions, and datalog. In ACM Symposium on Principles of Database Systems, pages 294-305, Philadelphia, PA,
May/June 1999.
[8] A.Bonner and M. Kifer. An Overview of Transaction Logic. Theoretical Comput. Sci., 133:205-265, 1994.
[9] A. Bonner and M. Kifer. Transaction Logic Programming (or A Logic of Declarative and Procedural Knowledge). Technical Report
CSRI-323, University of Toronto, November 1995.
[10] A. Bonner and M. Kifer. A Logic for Programming Database Transactions. In J. Chomicki and G. Saake, editors, Logics for Databases
and Information Systems, chapter 5, pages 117-166. Kluwer, 1998.
[11] A.J. Bonner and M. Kifer. Concurrency and Communication in Transaction Logic. In Joint International Conference and Symposium on
Logic Programming, 1996.
[12] D. Calvanese, G. De Giacomo, and M. Montali. Foundations of data-aware process analysis: A database theory perspective. In Proceedings
of the 32nd symposium on Principles of database systems, pages 1-12. ACM, 2013.
[13] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of contracts for web services. In WS-FM, pages 148-162, 2006.
[14] M. Comuzzi and B. Pernici. A framework for qos-based web service contracting. ACM Trans. Web, 3:10:1-10:52, July 20009.
[15] E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems with data dependencies and arithmetic. ACM Transactions on Database Systems,
37(3):1-36, September 2012.
[16] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic Based Modeling and Analysis of Workflows. In PODS, pages
25-33, 1998.
[17] H. Davulcu, M. Kifer, and I. Ramakrishnan. CTR-S: A Logic for Specifying Contracts in Semantic Web Services. In WWW2004, pages
144+, 2004.
[18] A. Deutsch, R. Hull, and V. Vianu. Automatic verification of database-centric systems. ACM SIGMOD Record, 43(3):5-17, 2014.
[19] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic Commerce Research and Applications, 1(2):113 —
137, 2002.
[20] P. Fodor and M. Kifer. Tabling for transaction logic. In Proceedings of the 12th international ACM SIGPLAN symposium on Principles
and practice of declarative programming, PPDP 10, pages 199-208, New York, NY, USA, 2010. ACM.
[21] P. Fodor and M. Kifer. Transaction logic with defaults and argumentation theories. In ICLP (Technical Communications), pages 162-174,
2011.
[22] T. Fruwirth. A devil’s advocate against termination of direct recursion. In International Conference on Principles and Practice of Declar-
ative Programming (PPDP). ACM, July 2015.
[23] A.S. Gomes and J. J. Alferes. Extending transaction logic with external actions. TPLP, 13(4-5-Online-Supplement), 2013.
[24] G. Governatori, Z. Milosevic, S. Sadiq, and M. Orlowska. On compliance of business processes with business contracts. Technical report,
File System Repository [http://search.arrow.edu.au/apps/ArrowUI/OAIHandler] (Australia), 2007.
[25] G. Governatori and S. Sadiq. The journey to business process compliance. In Handbook of Research on BPM, pages 426—454. 1GI Global,
2008.
[26] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel. Semantic business process management: A vision towards using semantic
web services for business process management. In ICEBE, pages 535-540, 2005.
[27] M. Hepp and D. Roman. An ontology framework for semantic business process management. In Wirtschaftsinformatik (1), pages 423—440,
2007.
[28] R. Hull. Artifact-centric business process models: Brief survey of research results and challenges. On the Move to Meaningful Internet
Systems: OTM 2008, pages 1152-1163, 2008.
[29] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A logical framework for web service discovery. In ISWC
2004 Workshop on Semantic Web Services: Preparing to Meet the World of Business Applications, volume 119. Hiroshima, J apan, 2004.
[30] S. Liang and M. Kifer. A practical analysis of non-termination in large logic programs. Theory and Practice of Logic Programming,
13:705-719, September 2013.
[31] D.Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott, D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan,
and K. Sycara. Bringing Semantics to Web Services: The OWL-S Approach. In J. Cardoso and A. Sheth, editors, Semantic Web Services
and Web Process Composition, volume 3387 of Lecture Notes in Computer Science, pages 26—42. Springer, 2005.
[32] M. Montali, F. Chesani, P. Mello, and F. M. Maggi. Towards data-aware constraints in declare. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, pages 1391-1396. ACM, 2013.

37

[33] M. Montali, M. Pesic, W. M. P. v. d. Aalst, F. Chesani, P. Mello, and S. Storari. Declarative specification and verification of service
choreographiess. ACM Trans. Web, 4:3:1-3:62, January 2010.

[34] S. Newman. Building Microservices. " O’Reilly Media, Inc.", 2015.

[35] M. Papazoglou. Service-oriented computing: concepts, characteristics and directions. In Web Information Systems Engineering, 2003.
WISE 2003. Proceedings of the Fourth International Conference on, pages 3—12, Dec 2003.

[36] M. Rezk and M. Kifer. Transaction logic with partially defined actions. J. Data Semantics, 1(2):99-131, 2012.

[37] D.Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web service modeling
ontology. Applied Ontology, 1(1):77-106, 2005.

[38] D. Roman and M. Kifer. Reasoning about the behavior of semantic web services with concurrent transaction logic. In VLDB, pages
627-638, 2007.

[39] D. Roman and M. Kifer. Semantic web service choreography: Contracting and enactment. In International Semantic Web Conference,
pages 550-566, 2008.

[40] D. Roman, J. Kopecky, T. Vitvar, J. Domingue, and D. Fensel. Wsmo-lite and hrests: Lightweight semantic annotations for web services
and restful apis. Web Semantics: Science, Services and Agents on the World Wide Web, 31:39-58, 2015.

[41] P. G. S. Angelov. B2B E-Contracting: A Survey of Existing Projects and Standards. Report I/RS/2003/119, Telematica Instituut, 2003.

[42] P. Senkul, M. Kifer, and I. Toroslu. A Logical Framework for Scheduling Workflows under Resource Allocation Constraints. In VLDB
2002, pages 694-705, 2002.

[43] J. Spohrer and W. Murphy. Service science. In S. Gass and M. Fu, editors, Encyclopedia of Operations Research and Management Science,
pages 1385-1392. Springer US, 2013.

[44] H. Staffler. A system for modeling and reasoning about constrained processes. Master’s thesis, Univeristy of Innsbruck, September 2009.

[45] W. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows: Balancing between flexibility and support. Computer Science -
Research and Development, 23(2):99-113, 2009.

[46] L. Vasiliu, S. Harand, and E. Cimpian. The DIP project: Enabling systems & solutions for processing digital content with semantic web
services. In EWIMT, 2004.

[47] V. Vianu. Automatic verification of database-driven systems: a new frontier. In Proceedings of the 12th International Conference on
Database Theory, pages 1-13. ACM, 2009.

[48] M. Westergaard. Cpn tools 4: Multi-formalism and extensibility. In Application and Theory of Petri Nets and Concurrency, pages 400—409.
Springer, 2013.

[49] M. Westergaard and T. Slaats. Mixing paradigms for more comprehensible models. In Business Process Management, pages 283-290.
Springer, 2013.

