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AbstractKeyword search is an easy way to allow inexperienced users to query an information system. It does not need the
knowledge of a specific query language or underlying schema. Recently answering keyword queries on semantic data repositories
has emerged as an important research topic. In particular, many efforts focus on RDF date due to wide spread adoption of
RDF for the representation of both open web and enterprise data. RDF and RDFS are popular frameworks for representing data
and meta-data for domain knowledge. In this article, we focus on keyword-based querying of RDF data. Current techniques
adopted for supporting keyword queries on RDF data suffer from drawbacks such as inefficient path exploration, inability to
exploit semantic characteristics and restriction on search within a distance neighbourhood. We highlight the drawbacks of the
existing systems with different examples. We present a generic approach which adopts a pruned exploration mechanism, where
component sub-graphs are formed using closely related nodes, pruned and joined using suitable hook nodes. The component
sub-graphs are enlarged selectively depending upon the relative closeness of the keywords. Semantic property class/subClassOf
of the RDF graph is our approach during different phases of the algorithm. A new indexing and ranking mechanism that exploits
semantic relationships is also proposed. The working of the algorithm is illustrated using AIFB institute data represented as an
RDF graph on keyword queries with different characteristics. The experimental results on other sets namely DBLP and LUBM
and a comparative analysis with other approaches are presented. We find that with the help of techniques proposed in this paper,
we can give accurate and relevant answer graphs for several keyword queries where existing techniques fail. This is mainly
due to the fact that the proposed techniques has no restriction on mappings and also exploit the semantic relationships from the
underlying RDF/RDFS dataset.
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1. Introduction

Query processing over graph data has attracted con-
siderable attention recently as an increasing amount of

1Footnote in title.
*Corresponding author. E-mail: editorial@iospress.nl.
**Do not use capitals for the author’s surname.

data which is available on the web, XML data sources
and relational sources can be modeled in the form of
graphs. RDF as a framework for web resource descrip-
tion appears to have gained a greater momentum on
the web and an increasing collection of repositories
of data are modeled using RDF framework. RDFS,
the RDF schema language provides guidelines or meta
data information on how to use the RDF data. RDF
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data expressed in the form of triples can be repre-
sented as a directed graph structure with each triple
is an edge from subject to object with the predicate
as the label of the edge. Notable examples are bio-
logical and chemical databases, Web-scattered data,
health-care, Personal Information Systems[18] where
emails, documents and photos are merged into a single
repository and launch vehicle design data where details
about vehicle stages, parameters and stage sequence
events are maintained. In these class of applications,
raw data may not be graph structured at the first level
but implicit connections will provide a graph structure.
The largeness and complexity of data-sets in these do-
mains makes their querying a challenging task. Also
these data sets calls for employing semantic queries
instead of simple keyword queries to closely express
the information needs. For constructing queries, one
has to either explore the ontology through graphical
tools or one neeeds knowledge of query language like
SPARQL.

As keyword queries do not require the users to know
complex query language or know details regarding the
underlying schema, much work has been carried out
on keyword search on databases represented as a graph
structure [4,6,16], tree structured data[10] and recently
on RDF data represented as graphs [15,12,13]. Exist-
ing approaches for keyword queries on RDF data suf-
fer from (i) returning incorrect answers, i.e., answer
graphs returned do not correspond to real subgraphs;
(ii) restrictions on choice of neighbour nodes by a dis-
tance metric; (iii) inefficient path exploration and (iv)
most notably does not exploit semantic characteristics
of the RDF graph. Using the standard representation of
RDF/RDFS data as graphs with types, classes as nodes
and properties as edges, we provide a generic approach
for answering keyword queries where semantic proper-
ties are exploited. Our approach blends traversal with
exploiting semantics to arrive at the correct answer
graphs.

Our specific contributions in this article are as fol-
lows:

– We bring out the limitations of the existing ap-
proaches using concrete examples and present an
efficient generic method for generating answer
graphs for keyword queries on RDF graphs that
exploits semantic relationships(e.g type/ subClas-
sOf). In our approach, keywords are mapped to
different types of nodes/edges, unwanted nodes
are pruned during several stages and no distance

limits are imposed. The distance neighbourhood
restriction is implicitly managed in our approach.

– We propose a hierarchical ranking model, tak-
ing into consideration structural characteristics
of RDF graph and also compactness of answer
graphs from the graph perspective.

– We have also conducted performance studies
on standard bench-mark data sets using various
queries with different characteristics.

The article is organized as follows. Section 2 presents
the motivation for this research activity. Section 3 de-
scribes the preliminaries of the problem. Section 4
presents the algorithm description. Section 5 presents
the component expansion strategies, Section 6 presents
indexing, Section 7 presents ranking, Section 8 presents
the design implementation and analysis and Section 9
presents the analysis and results.

2. Motivation

The present implementations of keyword search
on RDF graphs adopt the approaches from keyword
search on RDBMS and XML data[4,11,6][4,11,6].
The algorithm first identifies nodes matching key-
words of interest, traverses the graph for discover-
ing possible interconnecting paths between identified
parts. Candidate solutions built out of the connections
found are scored and ranked. For the exploration of
data graph, only substructures in the form of trees
with distinct roots are computed and the root is as-
sumed to be the answer. The algorithms uses backward
search[4] and bi-directional search[16]. They work on
the premise that the goal of the query is to find data
entities.They typically assume a simpler data model
which is a rooted directed graph without the nuances
of classification and property hierarchies. Also in the
existing approaches, the mapping of the keywords pro-
vided are confined only to data nodes(D-Node as de-
fined later in section 3) of the RDF graph. In con-
trast, in a RDF graph search, classification and prop-
erties are important. Keywords provided might also be
mapped on to edges. Often there is a need to query
these data sets not only to find entities but also to iden-
tify a chain of relationship that exists in them. This
calls for a need to identify meaningful graph structures
with rich structural relationship such as cycles and not
necessarily restricted to trees. In answering queries, we
also need to exploit classification and properties of the
RDF/RDFS data to arrive at the correct answer graphs.
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The main inspiration for our work are [14,15], where
graph based approach for answering keyword queries
is presented. The limitations of the existing approaches
are illustrated in the following paragraphs

– The methods adopted explores all possible paths.
For example in the AIFB data set, taken from
AIFB Institute, University of Karlsruhe1for the
keyword query {publication, 1999}, all the pub-
lication data nodes will be brought to memory
for processing. Unimportant nodes are logically
pruned by means of scoring and ranking mech-
anism. They do not attempt to prune the search
space in the earlier exploration phase of the graph
search. As the input RDF graph becomes bigger,
traversing through all the nodes in the exploration
phase for all possible paths as adopted in [15] will
lead to performance issues. An alternate approach
is needed where the exploration has to start with
a initial set of closely related nodes/edges to
nodes mapped to keywords and then expand the
node set. Also pruning unwanted nodes that can-
not contribute to overall answer graph framework
is essential and to be implemented in different
phases of the algorithm. This is the fundamental
essence of the approach adopted in this article.

– type/subClassOf, subPropertyOf and other se-
mantic relationships available in RDF graph
framework are not being exploited suitably for
keyword queries. Consider the following RDF
graph fragments as shown in figure 1.

2005 2005 2005

pub1 pub2 pub3

InProceedings

Publication

TechReport Misc

year
year year

type type
type

subClassOf

subClassOf subClassOf

(a) Data with all subClassOf

2005 2005 2005

pub1 pub2

InProceedings

Publication

TechReport

year
year

type type

subClassOf

subClassOf

pub3

year

type

(b) Data with mixed pattern

Figure 1. Two patterns of RDF graph fragment

For the query{publication, 1999}, [15] does not
function as it deals with RDF graphs with only data
nodes. Even in improved approach of [14], the system

1http://km.aifbunikarsruhe.de/ws/eon2006/ontoeval.zip

will either return incorrect answer graphs or no answer
graphs as per the scheme described in the paper.

– Existing algorithms use indexing only to identify
a set of nodes containing query keywords. Stan-
dard inverted index used is inadequate to graph
data since it is very difficult to identify struc-
tural relationship using inverted index. It is criti-
cal and natural to exploit indexes that provide se-
mantic graph connectivity information to speed
up searches.

– In order to limit the traversal during graph explo-
ration step,[15] fixes a distance metric d to obtain
a graph containing all elements related to a key-
word of the query. The nodal elements are within
a distance d to the keyword. This structure which
is called the d neighborhood is used for further
processing. In a keyword search, the major as-
sumption is that the user is not fully aware of
the underlying data model. There is a possibility
that the keywords provided may be be far apart
but still might have a strong connection chain.
But the distance metric d chosen may produce
a graph which is not connected. The restriction
of the maximum distance between entities is to
restrict exploration space and also to justify the
fact that smaller distances are likely to contain the
missing links the user looks for. But the user is
providing the keywords without the full knowl-
edge of the schema. So some of the keywords
provided could be far apart. If d happens to be
small then the graph constructed becomes discon-
nected and chained relationship links cannot be
extracted. The user has to experiment with differ-
ent d for exploring the graph. In the example illus-
trated in [15], the keywords Philip X-Media pub-
lication are closer and equal-spaced. In some sce-
narios,given the set of keywords, some keywords
could be closer and some could be farther(from
a graph perspective). In example 3 as illustrated
later in the paper, the mappings to (AIFB, journal,
titles) are not equi-spaced. The mapping to jour-
nal, titles are closer whereas mapping to AIFB
is farther (d > 1). While finding out the neigh-
bouring nodes, even though the knowledge about
strength of relationship is available in terms of
distance between the nodes, the closeness or the
farness between the nodes is not exploited during
the exploration phase.

– To improve the search performance, [14] uses
summarisation technique where relations in en-
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tities of distinct types are summarised. But the
summarisation which bundles all the entities of
the same type into one node of its summary has
the serious limitation of loosing too much infor-
mation.This leads to results which are false posi-
tives and false negatives. For example, the query
{Staab, 1999}to find out publications of Staab
with year 1999 will include answer graph with
nodes containing the keywords even though there
might not be a publication of Staab in year 1999.

In this article, we propose a novel approach for con-
struction of answer graphs to keyword queries for
RDF/RDFS data represented in graph format, specifi-
cally addressing the above mentioned issues. The ap-
proach is an hybrid approach that attempts to pro-
vide possible set of answers in an efficient way. For
the keywords, initial sub-graphs are identified, pruned
for removing unimportant nodes and then are hooked
together using suitable join nodes. For each mapped
node or edge for the keyword, the type node and a clos-
est set of neighbouring class nodes are identified to
form a component sub-graph using type and relatio-
ship indexes. Nodes from the sub-graphs, which can-
not contribute to the overall structure of the query are
removed. The modified set of sub-graphs are joined us-
ing suitable hook elements iteratively to construct the
final answer graph for the keyword query.The novelty
of the our approach is that we exploit the semantics of
the graph at each one of the stages of the algorithm.
Also the approach does not fix any distance prior. An
upper bound on the distance is implicitly managed
in our approach. If the sub-graphs have neighbouring
class nodes on common, implying the closeness of the
corresponding keywords, the pruning step maintains
the existing class nodes for processing. If the keyword
sub-graphs do not have class nodes in common imply-
ing that keywords are not too closer, the pruning step
adds a chain of class nodes for processing. Intuitively
the sub-graphs are enlarged selectively using relation-
ship chains. The algorithm then explores the new set
of sub-graphs to find suitable hook elements for join-
ing and the build up the answer graph for the keyword
query. In short, our approach constructs answer graphs
by judicious expansion of additional nodes and edges,
exploiting RDF graph classification and property fea-
tures. We strongly believe that the framework can be
generalised to exploit even other RDFS features like
inverseOf,subPropertyOf.

3. Preliminaries

3.1. RDF/RDFS

An RDF/RDFS dataset is a graph composed by
triples formed by subject, predicate, object in that or-
der. The dataset can be viewed as a directed graph.

Definition 1: An RDF/RDFS graph G consists of tu-
ple of the form (N,E,L) where

– N is a finite set of nodes which is a disjoint union
of C-Nodes representing types, EN-Nodes entities
and D-Nodes data values i.e N=C-Nodes ] EN-
Nodes ] D-Nodes. In the RDF fragment shown
in figure 2, Person, Organization are some of the
nodes which represent C-Nodes, AIFB, Efficient
Algorithms are some nodes which represent D-
Nodes and pub1, proj1 are some nodes which rep-
resent EN-Nodes.

– E is the finite set of edges connecting nodes n1,n2

with n1, n2 ε N. The different types of edges are
IE-Edges(inter-entity edges), EA-Edges(entity-
attribute edges) or Type/SubClassOf edges. In
Figure 1 Author, CarriesOut are examples of IE-
Edges and Title, Journal are examples of EA-
Edges.

– L is a labeling function which associates a label
l for an edge. L = L(IE-Edges) ] L(EA-Edges)
] {Type,SubClass} where L(IE-Edges) represents
labels for inter-entity edges, L(EA-Edges) repre-
sents labels for entity-attribute edges. The follow-
ing restrictions apply on l:

∗ l ∈L(IE-Edges) if and only if n1,n2∈ EN-Nodes
∗ l ∈L(EA-Edges) if and only if n1∈ EN-Nodes

and n2∈ D-Nodes
∗ l = SubClassOf if and only if n1,n2∈ C-Nodes
∗ l = Type if and only if n1∈ EN-Nodes and n2∈

C-Nodes.

type and SubClassOf are two predefined type of edges
which captures class membership of an entity and class
hierarchy. In Section 3 we use a notation CR-Node.
This is defined by the following property:

CR-Node is a C-Node which has an inter-entity re-
lationship with another C-Node. For example the C-
Node Researchgroup is a CR-Node for the C-Node Or-
ganization and vice-verse.

Figure 2 shows a fragment of RDF graph contain-
ing data taken from AIFB institute, University of Karl-
sruhe which will be used for illustration of the algo-
rithm in this article. The fragment models the infor-
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AIFB

inst1

proj1

Name

Finances

Person

Colony 
Fast Ant

optimisation
and evolving machines
Genetic Programming

Title Journal

Publication

Name

Efficient
Algorithms

publishes

Article

CarriesOut

project

ResearchGroup

Organisation

Author pub1

resgrp1

Type

Type
Type

Type

SubClassOf

Figure 2. RDF Graph fragment from AIFB Institute Data

mation related to financing of Research group by Or-
ganization AIFB, Projects carried out by the Research
group and publications from those projects. This frag-
ment models a chain of relationship.

3.2. Chains

Relationship chain A relationship chain RC is a fi-
nite sequence of relations {RC1, RC2 . . . RCn}
where RCiis a label associated with IE-edge or
EA-edge or type/subClassOf. For e.g in Figure
1 {carriesout, publishes, title} is a relationship
chain

Class chain A class chain CC corresponding to a rela-
tionship chain RC is a finite sequence {CC1, CC2 . . . CCn}
where

CCi(1 ≤ i ≤ n− 1)is a C-Node

CCn is a D-node if RCnis a IE-Edge
CCn is a C-node if RCnis a EA-Edge

For the relationship chain {carriesout, publishes, title},
{ResearchGroup„Project,Article,Fast ant. . .optimisation}
is one class chain
The length of a relationship chain is equal to the num-
ber of relations in the chain. For the example chain, the
length is 3. The length of the class chain will be one
more than relationship length.
Two relationship chains RCiand RCj are intersecting
if CLASSCHAIN(RCi) ∩ CLASSCHAIN(RCj) 6=φ.

C εCLASSCHAIN(RCi) ∩ CLASSCHAIN(RCj) is
called intersect-node
Two relationship chains RC1= {S1, S2 . . . Sn}and
RC2 = {T1, T2 . . . Tn}are called similiar chains if

for all i, 1 ≤ i ≤ n Si= Tior SiSubClassOf Tior
TiSubClassof Si

3.3. Problem statement

Problem Given the RDF/RDFS graph, we are looking
at the construction of set of ranked answer graphs
to the keyword query.

Queries A keyword search query KQ consists of a
list of keywords {k1,. . . kn}. Formally a semantic
query associated with the search query KQ is a
triple SQ = (KQ,φ) where φ is a function which
maps elements of KQ to D-nodes, C-Nodes, IE-
edges and EA-edges. EN-nodes will not be used
for queries as they are internal to the RDF graph.
Given this list of keywords, the answer graph to
the semantic query is a minimal sub-graph A s.t

– every k ∈ Kis mapped to a vertex or an edge in
G

– The sub-graph A consists only of nodes/edges
associated with keywords of KQ, C-Nodes, CR-
Nodes connected by IE-edges and nodes con-
nected by EA-edges. The edge labels as per the
defined labeling function L also form part of the
answer graph

– A is connected i.e from every graph element of A
to every other graph element of A, there exists a
path.

– A is minimal in the sense that no sub-graph of
A can be an answer to Q. If keyword node is re-
moved, then that keyword is not matched. If a non
keyword node is removed, the graph becomes dis-
connected.

Different mapping of the keywords will lead to multi-
ple answer graphs. The answer graph will be used to
construct SPARQL queries.

4. Algorithm Description

The term mapping step maps each keyword ki to
a set of nodes/edges of the RDF/RDFS graph us-
ing string search mechanisms. By taking one mapped
node for each keyword, a node-list NL is formed
which is an input for answer graph construction.
For each node-list NL, an answer graph will be
constructed in three steps namely Component_sub-
graph_Creation, Pruning and Hooking. This is shown
in CREATE-ANSWER-GRAPH procedure.
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CREATE-ANSWER-GRAPH(K ,G)

1 SG = ∅ // set of set of graphs
2 foreach keyword k ∈ K
3 SG = SG ∪ { SUBGRAPHS(k,G) }

4 CG = COMPUTE-SUBGRAPH-SETS-FOR-PRUNNING(SG)

5 A = ∅ // set of answer graphs
6 foreach graph set C ∈ CG
7 P = PRUNE-GRAPHS(C) // set of graphs
8 A = A ∪ {HOOK-GRAPHS(P ) }

9 return A

SUBGRAPHS(k ,G)

10 S = ∅ // set of graphs for k
11 foreach node n ∈ NODE-SET(k ,G)
12 S = S ∪ {COMPUTE-SUBGRAPH(n,G) }
13 return S

Component Subgraph Creation Initially the com-
ponent sub-graph for each element in NL is
empty. An element from NL is taken and the as-
sociated node/edge category is identified. If the
element is associated with a C-Node ,the C-Node,
its CR-Node along with the associated edges are
added. If it is associated with a D-node, then the
C-Node for the class to which this D-node be-
longs, CR-Nodes for the C-Node and associated
edges are added. We restrict the CR-Nodes only to
the nodes that are related to the D-Node through
the corresponding EN nodes. If it is associated
to an IE-Edge ,the C-Nodes corresponding to the
EN-Nodes are added and if it is associated to an
EA-Edge, a dummy node for the attribute side, C-
Node for the class to which the entity belongs and
CR-Nodes for the C-Node are added. The com-
ponent sub-graphs constructed as above for all
node in NL will act as input to the pruning step.
This step is shown as pseudo code in Algorithm
2. Formally, a component subgraph is formed us-
ing C-Nodes, CR-nodes associated with C-Nodes
and related edges. The component subgraph for-
mation for a D-Node association is shown in fig-
ure 3.

CREATE-COMPONENT-SUBGRAPH(ge)

1 CSG = {ge} // component subgraph
2 if ge is C-NODE
3 CSG = CSG ∪ {CR-NODES(C-NODE)}
4 elseif ge is D-NODE
5 CSG = CSG ∪ {type(D-NODE)}
6 CSG = CSG ∪ {CR-NODES(type(C-NODE)}
7 elseif ge is EA-EDGE
8 CSG = CSG ∪ {type(EN-NODE(EA-EDGE))}
9 CSG = CSG ∪ {dummynode}

10 CSG = CSG ∪ {CR-NODES(C-NODE)}
11 elseif ge is IE-EDGE
12 CSG = CSG ∪ {type(EN-NODES(IE-EDGE))}
13 CSG = CSG ∪ {CR-NODES(C-NODES)}
14 return CSG

d
1

e1

e2
c1

c2

d1

c1

c2

ea
1

Type

Type

ie1

ea1

ie1

e3

ie2

Type

c3

c3

ie2

Figure 3. Component subgraph for a D-Node association

Pruning In this step, the algorithm prunes the loosely
hanging nodes which possibly cannot be utilised
for hooking. For each pairwise component sub-
graph {CCi, CCj}, common nodes are identi-
fied. Common nodes are defined by the term si-
miliar nodes. This is found by the intersection of
the node-list pair. Two nodes n1, n2 are similiar
if they satisfy any one of the following property:

1. n1 = n2 i.e they correspond to the same nodes
of the graph

2. n1, n2are related by type/subClassOf relation-
ship chain

For e.g if Publication ε CCi, TechReport ε CCjand
TechReport subClassOf Publication then
{Publication, Journal}ε {CCi}

⋂
{CCj}

The union of all the similiar nodes found by consid-
ering all pairs of component sub-graphs, represents the
full C-Node set. The C-Nodes obtained by pairwise in-
tersection of component sub-graphs constitute the ac-
tive C-Node set. The nodes to be pruned is the compli-
ment of the active C-Node set with respect to the full
C-Node set.
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Formally the full C-Node set FCNS is given by⋃
i,j {CCi, CCj}

The active C-Node set ACNS is given by⋃[⋂i,j
]
CCi,CCj

The pruned C-Node set PCNS given by
PCNS = FNCS r PCNS
The pruned nodes along with the associated edges

are removed from the corresponding component sub-
graph. The new list of component sub-graphs obtained
will act as input to hooking step. For two component
sub-graphs, the pruning sequence is illustrated in fig-
ure 4.

Subgraph Enlargement If the intersection of the
C-nodes for a pair of component sub-graphs
{CCi, CCj} is empty, it indicates that the nodes
mapped for the keywords from the RDF/RDFS
graph are not close neighbours in terms of rela-
tionships and we explore for relationship chains
connecting member elements of {CCi, CCj}.
The sub-graphs are enlarged using class chains
corresponding to those relationship chains. If
multiple chains exists, the chain with the least
number of C-Nodes is used. If the chain has n
nodes, n

2 nodes of the chain is linked to one sub-
graph and other n

2 nodes to the other subgraph
with centre C-Node added to both. This step is
shown as pseudo code in Algorithm 3.

PRUNE-GRAPHS(CE )

1 // input set of graphs for pruning
2 FNCS←

⋃
k,l{CSk, CSl}

3 foreach pairwiseset{g, h} ∈ CE
4
5 if g h h or vice-versa
6 Add keywordnodes to smaller element
7 Remove g or h
8 ICNS←

⋂
{g, h}

9 if ICNS = ∅
10 foreach pair of C −Nodes ∈ {g, h}
11 RC← shortest RC chain {RC1 . . . RCm}
12 CC← ClassChain{RC}
13 Add left half of nodes of CC to g
14 Add right half of CC to h
15 ACNS =

⋃
{ICNS}

16 PNCS = FNCS - ACNS
17 Strip Nodes of PrunedCNodeSet in each CSt

18
19 return FNCS

a

b

cd

e

d

c f g b

e

d

c b

i
ii

Graph ii after pruning

Figure 4. Pruning illustrated for 2 component sub-graphs

Hooking In this step, we start to explore whether a
node of a component sub-graph can be hooked
on to a similiar node of another component sub-
graph. Initially any component sub-graph with
lowest cardinality of C-Nodes/CR-Nodes is cho-
sen for starting the hooking operations. The prop-
erty of similiar nodes defined earlier is also used
for hooking operation. Once nodes to be hooked
are identified, the corresponding component sub-
graphs are glued together. Nodes which are du-
plicates are removed and a new glued compo-
nent sub-graph is used for further hooking op-
erations. This process is iterated until no more
nodes could be hooked. The final component sub-
graph arrived at is analyzed for hanging nodes
and they are cut off. A node n is a hanging
node if it is not a keyword mapped node and
it has only one edge associated with it. In fig-
ure 5, n6, n7are loosely hanging nodes and hence
{n6, e6}and {n7, e7}will be pruned. The closely
connected subgraph thus formed will be the an-
swer graph for the keywords presented by the
user. This step is shown as pseudo-code in Algo-
rithm 4. The hooking step is illustrated in figure 6.

1 2

2

e5

3e e4

e6

e1 e

n n

n6

n5

n4
n3

1 2

e1 e2

e5

e3 e4

e6

n n

n6

n5

n4
n3

n
7

e
7

Figure 5. Illustration of hanging nodes
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HOOK-GRAPHS(HE )

1 // input set of graphs for hooking
2 PRGS←{CSt1 · · ·CStl}
3 while cardinality(PRGS) <> 1
4
5 g← CSt with lowest node cardinality
6 h← CSr with minimum relationship chain
7 CSnew ← merge{g,h}
8 PRGS← merge{g,h}
9 PRGS← PRGS

⋃
CSnew

10 remove hanging nodes of PRGS if any
11 return PRGS

a f f

b c

h

d g

h
After hook h

b d c g
c

a

Figure 6. Hooking illustrated

4.1. Homomorphic graph structures

The graph structures created during the component_sub-
graph_creation phase may have some similiarity in
their structures. We look for exploiting such homomor-
phic structures that can be merged. Two graph struc-
tures gi, gj for different D-Nodes are homomorphic,
if

1. C − Nodes(gi) = C − Nodes(gj) i.e the C-
Nodes are same

2. C − Nodes(gi) = C − Nodes(gj) CR-Nodes
are same

C-Node,CR-Nodes are identical. The D-Nodes will
be different. For e.g, if the keywords are optimisa-
tion,genetic, in the RDF graph fragment shown in fig-
ure 2, the keywords are mapped to the D-Nodes title
and journal. The component sub-graphs constructed
for these keywords will be homomorphic.

In a similiar manner, for EA-edges, two graph struc-
tures are homomorphic, if

1. C − Nodes(gi) = C − Nodes(gj) i.e the C-
Nodes are same

2. C − Nodes(gi) = C − Nodes(gj) CR-Nodes
are same

C-Node,CR-Nodes are identical. The Dummy D-
Nodes will be different.

4.2. Towards optimal subgraph hooking strategies

In this section, we discuss on the strategies adopted
during pruning and hooking stages of the algorithm.

As pointed out earlier, since some keywords could
be closer and some of them could be distance apart,
the algorithmic strategy should be optimal in the sense
of restricting the number of CR-Nodes that are used
to merge the sub-graphs. In our approach, we adopt
a relationship balanced expansion for controlling the
expansion of sub-graphs. We also use indexing which
supports this expansion and which allows to deter-
mine the relationship distance. The details of indexing
mechanism will be discussed in Section 5.

– Relationship balanced expansion: The algo-
rithm attempts to balance the number of CR-
Nodes for each subgraph. Formally during the
hooking stage, one of the the next sub-graphs
to consider for hooking is the subgraph with the
smallest number of CR-Nodes. Once this is iden-
tified, the second subgraph to be considered for
hooking is identified based on the hook node
which is chosen based on the Equi-spaced ex-
pansion.

Intuitively the subgraph expansion must follow the
strategy of equal-spaced expansion in each subgraph:

– Equi-spaced expansion: This strategy decides
which node to hook during the hooking stage.
Hooking is a logical expansion of the subgraph
and the hook node is chosen in the increasing or-
der of distance from the CR-Nodes of the sub-
graph under consideration. Formally node h to be
hooked for subgraph Ci is the node with shortest
path relationship chain {CR−Nodeij , . . . h}

5. Indexing mechanisms

In order to enhance the performance of pruning and
hooking steps of the algorithm and also manage rela-
tionship chains, indexes are maintained. The following
indexes are maintained

Type Index For eachEN−Node, the associated type
is maintained as a list and for each type, the list
of associated EN −Nodes is maintained.

Relationship Index For each EN −Node, the list of
associated EN − Nodes to which it is related
through a IE − edge is maintained both as a for-
ward and as a backward reference
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SubClass Index For eachC−Node that has a subClass
relationship with other C −Nodes, an index list
is maintained.

In figure 7, for the Researcher, the EN-Nodes res1
and res2 will form the list entries for its type index
and Researcher will be a list entry for EN-Node res1.
res2(Philip Camiano) and inst(AIFB) will be entries
in their respective Relationship index through the IE-
edge worksAt. Article and Publication are maintained
as part of SubClass index.

The type index is used to associate the type dur-
ing the component_sub-graph_creation phase. The re-
lationship index is used to associate the related CR-
nodes and the subClass index is used to identify Class
chains during the pruning and hooking phase.

6. Ranking

Since multiple answer graphs could be constructed
through our approach, there is a need to meaning-
fully rank the answer graphs to identify top answers.
In existing approaches of keyword search in rela-
tional sources, standard IR-ranking formula is used.
In [15], the path length is used for ranking the an-
swers. [11] provides a comprehensive ranking mech-
anism for graph data. Since we adopt a graph model,
ranking from a graph perspective is equally important.
Our approach is also similiar to [11], where we have
used structural compactness as the criteria. We have
also added two more factors i.e relationship relevance
and node type relevance into our ranking model to take
care of RDF graph attributes.

Compactness Relevance For the keywords which re-
flects the information needs of the user, com-
pact answers should be preferred, i.e closer con-
nections between the mapped nodes are pre-
ferred rather than the farther connections. From
a graph perspective, this translates into structural
compactness among the elements of the graph.
The structural compactness of the answer graph
is determined from two aspects: the compact-
ness among the mapped nodes and the relevancy
among the keyword nodes in terms of the nodes
to which it is mapped. In our approach when the
length of the class chain between the mapped
nodes is larger, the compactness between the is
smaller. If niand nj are mapped nodes corre-
sponding to keywords kiand kj we define struc-
tural compactness as follows:

SC(ki, kj | AG) =

{
1

(chnl+1)2 if n1 = n2
1

2(chnl+1)2 ifn1 6= n2

where chnl = number of C-Nodes in the smallest
class chain + 1

Term Relevance Since the term mapping step uses
IR model, the textual relevancy of the keywords
with reference to the nodes mapped is one of
the important attribute for ranking. For example
the term AIFB gets mapped to node with project
name AIFB or it gets mapped to title of a publi-
cation which has AIFB string or gets mapped to
keyword of a publication which has AIFB string.
The term affinity will be different for these map-
ping from IR. For each keyword element a match-
ing score TR using standard IR approach can
be computed. Combining compactness relevance
and term relevance we have the following ranking
formula:

RANKV AL(ki, kj | AG)

= SC(ki, kj | AG) ∗ (TR(ki | AG)

+ TR(kj | AG))

Node Relevance The node/edge to which the key-
word is mapped also plays a prominent role for
ranking. For example, the keyword publications
gets mapped to the C-Node Publication or to a
D-Node which has the string publication. The an-
swer graph which has the class node should be
ranked higher since the user intention will also be
to get publication information rather than abstract
information if the keyword specified is publica-
tion. C-Nodes/IE-Edges will have highest scores
followed by EA-Edges followed by D-Nodes. The
node relevance scores NR for all the mapped
nodes is computed.

Relationship Relevance Since the fundamental ap-
proach to answer graph construction is identifica-
tion of missing interconnection nodes, the neigh-
bouring C-Nodes that contributes to the answer
graph is an important parameter for ranking. It is
computed as follows
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X−Media

pro1

pro2

Project

Thanh Tran

res1

inst1 inst2pub1

2006

pub2

Researcher

Person

Institute

Agent

Thing

Camiano

Philip

res2

res3

AIFB

Type

subClassof

Type

Type

Type

Type

Type

Type Type

hasProject

author rnamename

inameworksAt

Type

year

rname

author

subClassof subClassof

subClassof

 Article Publication
subClassof

Figure 7. RDF Example from AIFB Data

RR = Number of C−Nodes inAG
TotalNumber of C−Nodes

− Number of C−Nodes addedAG
TotalNumber of C−Nodes

The overall ranking score is calculated as follows

RANKVAL(AG) =
∑

RANKVAL(ki, kj | AG)

+ NR(AG)

+ RR(AG) 1 ≤ i ≤ j ≤ n

7. Illustration of the algorithm for different query
scenarios

The RDF fragment shown in figure 7 models the in-
formation related to Project X-Media in institute AIFB,
the researchers associated with the project and the
publications.

Example 1
Keyword Query: X-Media Philip Publications

This query has been taken for illustration to differen-
tiate our approach with that of approach adopted in
[15,14] as the same query has been illustrated there.

– Keyword X-Media will be mapped on to the
nodes/edges containing the term X-Media

– Keyword Philip will be mapped on to the nodes/edges
containing the term Philip Camiano

– Keyword Publication will be mapped on to the
nodes/edges containing the term Publications

In the component sub-graph creation step, using the
C-Nodes and CR-Nodes associated with the terms, the
component sub-graphs as shown in figures 8a to 8c are
constructed.

In the pruning step, the node Institute along with the
edge label WorksAt associated with the subgraph for
Philip Camiano is removed. Article node is not pruned
as {Publication,Article}are similiar nodes.

In the hooking step, we start from the Publication
node in Figure 9 and hook it with the Article node
in Figure 8a. Now in Figure 8b since already Article
node is available, we choose Article node as it can be
hooked with Article node of merged sub-graph 8a,9a.
Now there is no more component sub-graph to be con-
sidered for hooking we will have the answer graph as
shown in figure 11a.
In [15], the system explores all possible nodes and
edges of RDF graph . For the node Publication, all
instances corresponding to the Publication are added.
If the number of instances are more, then multiple
edges will be added. This will lead to explosion of
nodes and edges and also the need to have more traver-
sals to find out the missing link nodes or edges. This
also illustrates the scenario where the RDF semantics
type/SubClassOf is exploited.

Example 2

For the following keyword query, the RDF data frag-
ment as shown in figure 9 is used.

author

AIFB

inst1

Name

Finances Class

Journal

Publication

Name

Efficient
Algorithms

Article

Class

ResearchGroup

Organisation

pub1

Class

resgrp1

proj1 project

CarriesOut

Type

SubClassOf

fp1

affliation

Type

FullProfessor

Schemeck

Name

Roadmap 
towards
ant

Transactions
on System Science
and applications

2005year

Title

Title

In this ...
Job scheduling
in hetrogenous
systems

2005 Inproceedings

pub2

AbstractTypeyear

author

Person

SubClassOfType

Figure 9. RDF fragment for example 2

Keyword Query: abstract schmeck 2005

The term mapping step will map the keywords in the
following manner:

– keyword abstract will be mapped on to the
nodes/edges containing the term abstract
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Article

X−Media

Name

Project

hasProject

(a) X-Media

Philip Camiano

Name

Researcher

Institute

author WorksAt

  Article

(b) Philip Camiano

dummy_publicationNode

Publication

type

(c) Publication

Figure 8. Structural Component for Example 1

– keyword Schmeck will be mapped on to nodes/edges
containing the term Schmeck

– keyword 2005 will be mapped on nodes/edges
containing the term 2005

The component sub-graph creation step will form the
three components as shown in figures 10a to 10c.

In the pruning step, the node ResearchGroup with
relationship affiliation associated with subgraph for
Schmeck gets removed. The subgraphs for abstract and
2005 has homomorphic structures and hence their sub-
graphs are merged into one. Also the subgraphs has
nodes Person and FullProfessor. Since they share a
subClassOf relationship, the node Person is removed
and FullProfessor is retained.

The hooking step starts with a node in a compo-
nent structure having smallest cardinality. The node
FullProfessor in the merged component structure is
hooked with FullProfessor node in component struc-
ture of figure 10a. Since Person node has already been
considered and no more component structures need to
be considered we get the final answer graph as shown
in figure 11b

[15] does not capture the type/subClassOf relation-
ship as part of the RDF graph. As such, it cannot han-
dle the keyword scenario where the keywords either
refer to the super-class or a subclass. Even in the im-
proved version [14], RDF semantics are not exploited.
We exploit this knowledge to arrive at the correct an-
swer graph. Our approach uses schema knowledge
rather than relying purely on the graph paths alone. We
also exploit homomorphic structures in our algorithm.

Philip Camiano

Researcher

author

X−Media

name name

hasProject

Project

 
Article

type dummy_PublicationNode

(a) Example 1

InCollection

abstractstring 2005

Misc

FullProfessor

Abstract

Abstract

Author

Abstract

Schmeck

Author Author

Year Year

Year

InProceedings

Name

(b) Example 2

Figure 11. Answer Graph for Examples 1 and 2

Example 3

For the following keyword query, the RDF data frag-
ment as shown in figure 12 is used.

AIFB

inst1

proj1

Name

Finances

Colony 
Fast Ant

optimisation
and evolving machines
Genetic Programming

Journal

Publication

Name

Efficient
Algorithms

publishes

Article

Type

CarriesOut

project

ResearchGroup

Organisation

pub1

Type

resgrp1

Inproceedings

InCollection

Misc

SubClassOf

Type

SubClassOf

SubClassOf

SubClassOf

Type

Title

p1

Author

Person

type

Figure 12. RDF fragment for example 3

Keyword Query: AIFB journal titles

– Keyword AIFB will be mapped on to the term
AIFB

– Keyword journal will be mapped on to the term
journal

– Keyword titles will be mapped on to the term title
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InCollection Misc

Person FullProfessor

Author Author

Author

Author

Abstract Abstract Abstract

AbstractStringNode

InProceedings

(a) abstract

Person

Schmeck

ResearchGroup

FullProfessor

Affliation Affliation

Name Name

(b) Schemck

InCollection Misc

Year
Year

Year

     2005

Person FullProfessor

Author Author

Author

Author

InProceedings

(c) 2005

Figure 10. Structural Component for Example 2

In the first step, the component subgraphs as shown in
figures 13a, 13b and 14 are constructed. For AIFB, the
C-Node Organization and CR-node ResearchGroup
is added. The component subgraph as shown in fig-
ure 13a is obtained. For the term journal which is
mapped to an entity-attribute edge, a node which rep-
resents a dummy journal name along with C-Node Ar-
ticle and CR-Node Person are added to form the com-
ponent subgraph as shown in figure 13b. For the term
title which is again mapped to an entity-attribute edge,
a node which represents a dummy title, along with C-
Nodes Article, Misc, InProceedings, InCollection and
CR-Nodes Person are added to form a component sub-
graph as shown in figure 14.

In the pruning step, we identify homomorphic struc-
tures in the component sub-graphs. For the query, the
component subgraph for title and journal provides
the intersection as shown in figure 15a. The compo-
nent subgraph of journal is a sub-graph of component
subgraph of title except for the dummy node added.
Both these sub-graphs are merged by pushing the ex-
tra dummy node to the smaller sub-graph. The inter-
section of node set of title with AIFB and journal with
AIFB is empty. The algorithm attempts to find a rela-
tionship chain of C-Nodes connected by edge labels.
For the query, the relationship chain as shown in ??
is obtained. The class chain {Project} is added to
sub-graph of AIFB and {Project, Article} is added to
sub-graph {journal, title}. We are left with two sub-
graphs corresponding to AIFB and journal as shown in
figure 16.

In the hooking step, the Project node of AIFB com-
ponent sub-graph can be hooked with the Project node
of Journal sub-graph. We will have the final answer
graph as shown in figure 17.
Compared to earlier approaches for graph querying
and also the the approach adopted in [15] our approach
has the following enhancements

– Edge mapping is allowed
– Exploits type/subClassOf relationship during the

graph exploration phase
– Distance neighborhood is not fixed but managed

during the pruning phase

AIFB

Finances

Class

Organisation

ResearchGroup

(a) AIFB

Person

Journal

DummyJournalNameNode

publsihes

Author

Article

Project

(b) Journal

Figure 13. Structural Component for AIFB and Journal

Article InCollection InProceedings Misc

Title

Author

Title

DummyTitleNameNode

Author

Person

publishes

Project

Figure 14. Structural Component for term title
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DummyTitleNameNode

Title

Person

Author

Article

Journal

DummyJournaNameNode

publishes

Project

(a) Intersection of journal and title node

CarriesOut

Publishes

SubClass

Article

Publication

Project

ResearchGroup

(b) Relationship chain be-
tween Research Project and
Publication

Figure 15. Component subgraph illustration during pruning phase

DummyJournalNameNodeDummyTitleNameNode

ArticleProject Publishes

Person Publication

Title Journal

SubClassAuthor

(a) Journal, Title

ResearchGroup

Project

AIFB

Organisation

Finances

Class

CarriesOut

(b) AIFB

Figure 16. Final Component subgraph for hooking step

AIFB

Name

Finances

ResearchGroup

CarriesOut

 

publishes

Organisation

project

DummyTitleNameNode DummyJournamNameNode

Article

Title Journal

Figure 17. Final Answer Graph for the query

Example 4

figure 18 shows a fragment of RDF graph containing
data taken from AIFB data set. The fragment mod-
els the information related to association of Professors
and Students with projects and events, Topics related
to the project and publications related to the topics.

Keyword Query: titles topic webservice student studer

– Keyword topic will be mapped on to the term
topic

– Keyword webservice will be mapped on to the
term webservice

– Keyword titles will be mapped on to the term title
– Keyword student will be mapped on to the term

PhdStudent
– Keyword Studer will be mapped on to the term

Rudi Studer

In the Component_subgraph_Creation step, using the
Type nodes and relationship nodes associated with
the terms, the component sub-graphs as shown in
figures 19 to 21 are constructed. For the term Rudi
Studer, the C-Node FullProfessor, CR-nodes PhDStu-
dent ,Project and Event and edges Supervises ,Work-
sAt and ChairOf are used to form the component sub-
graph. For the term PhdStudent, which refers to a
C-Node, the CR-Nodes FullProfessor,Project, InPro-
ceedings along with the respective edges are added
to form its component subgraph. For the term title
which is again mapped to an entity-attribute edge,
a dummy title node along with C-Node InProceed-
ings and CR-Nodes FullProfessor,PhdStudent and Re-
searchTopic are added to form its component subgraph
as shown in figure 20. For the term webservice which
is mapped on to the D-Node ’Semantic Web Service’,
the C-Node ResearchTopic along with CR-Node InPro-
ceedings are added to form the subgraph. For the term
topic the C-Node topic and the CR-Node InProceed-
ings is used to form its subgraph.

In pruning step, we take the pairwise intersection of
the nodes of the components to prune hanging nodes.
For the sub-graphs constructed, the Node Event along
with the associated edge ChairOf will be pruned. The
component subgraph of webservice is identical to the
component subgraph of Topic except for the additional
D-Node and the node ResearchTopic. But Research-
Topic and Topic are similiar nodes(Type/SubClassOf
relationship). Both these sub-graphs are superimposed
by pushing the D-Node to the smaller subgraph and
retaining the node ResearchTopic.

In the hooking step, the InProceedings node of web-
service subgraph is hooked with the InProceedings
node of Title subgraph and merged. In the next hook-
ing operation, the Phdstudent node of previous merged
subgraph is hooked with PhdStudent node of PhdStu-
dent subgraph. The two sub-graphs formed are shown
in figure 22. Finally in the last hooking, FullProfessor
node of the previous merged subgraph will be hooked
with the FullProfessor node of Rudi Studer subgraph.
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Type

FullProfessor

PhDStudent

fpro1

pstud1

Rudi Studer

proj1

topic1

Semantic Web Services

ResearchTopic

KAON− Web 

services

pub1 pub2

Automatic

matching

of web
services

Semantic

management

of web

services

InProceedings

Publication

Type

Type

Type

Type

Name

WorksAt

WorksAt

Name

Supervises

Name

Author

Author

Name

Title Title

SubClassOf

Author

IsAbout

Sudhir Agarwal

TopicPub

event1

Event

Type

Chairof

SubClassOf

Topic Project

Figure 18. RDF Graph fragment from AIFB Institute Data

There is no more component to be considered and the
final merged subgraph will be the answer graph as
shown in figure 23.
Compared to earlier approaches adopted for keyword
queries on graphs and also to the approach adopted in
[15], our approach has the following enhancements

– Edge mapping is allowed
– Exploits graph semantics(type/subClassOf rela-

tionship) during the graph exploration phase
– The final answer graph can also have loops or cy-

cles
– Uses graph similarity pattern for merging similiar

graphs.

Rudi Studer

FullProfessor Project

PhdStudent

Author Supervises

WorksAt

InProceedings

Event

ChairOf

name

(a) Rudi Studer

Author

PhdStudent

FullProfessorProjectInProceedings

Supervises

WorksAt

(b) Phdstudent

Figure 19. Component subgraph for Rudi Studer,Phdstudent

Author

FullProfessor PhDStudentResearchTopic

InProceedings

DummyTitleNode

Title

TopicPub Author

Figure 20. Component subgraph for title

type

Topic

Dummy_Topic_Node

ResearchTopic

TopicPub IsAbout

InProceedings Project

Name

Semantic Web Service

Figure 21. Component sub-graphs for topic,webservice
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AuthorTopicPub
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DummyTitleNode

Author
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Figure 22. Component sub-graphs formed during hooking
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Semanic Web

Service
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Figure 23. Final answer graph for the query

8. Design, Implementation and Analysis

8.1. Design and implementation

One of the approaches for implementing keyword
search on RDF graphs is to represent it as a mem-
ory resident graph using JENA or SESAME to which
graph traversal algorithms can be applied. For finding
relationship chains, path algorithms can be used. The
issues with this approach are if the data graph is large,
the memory requirements will be high and exploring
relationship chains also will be time consuming.

In our approach, we leverage on the existing RDF
data store technology Allegro RDF Suite and develop
a query processing layer which performs some of
the computation and relegates specific portions of the
computation to the data store layer. The first phase
of the algorithm i.e Component Sub-graph Creation

uses the data store layer. A query to the data store
layer which exploits rdf;type statement is used to iden-
tify the C-Nodes. We use the predicate and object in-
dices of the Allegro Suite to identify associated triples
in a faster time. the free-text indices are also used to
identify the multiple triples which are matched. Based
on the mapping of keyword to node or an edge and
the type of the node or edge corresponding to the
triple, component sub-graph is constructed. (C-Node),
CR-Nodes and (SubClass) chains are identified from
the data store using (type index), relational index and
(SubClass index. The component sub-graphs relevant
to the keywords are only maintained in memory. Much
of the processing is done in the pruning and hook-
ing phase where graph techniques and index structures
as mentioned the section 5 are used. In the pruning
stage, irrelevant nodes and edges are renewed from
the component sub-graphs constructed. Homomorphic
features of the sub-graphs are exploited to merge com-
ponent sub-graphs. If there are no common nodes
between the component sub-graphs, the relationship
chains corresponding to the C-Nodes of the component
sub-graphs are identified and the chain with the min-
imum length is used for linking the component sub-
graphs.The hooking phase implements merger of com-
ponent sub-graphs using equi-spaced and relationship-
based expansion. The algorithmic framework for key-
word search on RDF data is implemented using Alle-
gro RDF Suite framework and Java.

8.2. Experiments

The approach presented has been implemented us-
ing Java. For storing of the RDF data AllegroGraph
RDF data store was used. We used three data sets
AIFB, DBLP and LUBM(50). The experiments was
conducted on a Intel Xeon 2.6 Ghz machine under 64
bit environment with 6 GB memory. The number of
triples loaded was varied from a few thousand triples
in AIFB to around 5M triples from DBLP data set. The
load time is shown in figure 24a.

During the index creation phase, the system creates
type index, relationship index and class chains and also
removes redundant type declarations. The index cre-
ation time for DBLP data set of 2M triples is shown in
figure 24b.

The system has been tested on the following set of
queries in the AIFB database:

1. {smart-web, Cimiano, Publication}
2. {abstract, Staab, 2005}
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3. {AIFB, journal, titles}
4. {titles, topic, web-service,student,studer}
5. {Publication,staab, 2013}
6. {title,scheduling, 2005, InProceedings}
7. {title,scheduling, 2005, Article}

The set of queries illustrate different keyword map-
pings to different types of nodes and edges of the RDF
graph.

The queries as shown in table 1 are used for keyword
search on DBLP data set with 2M and 5M triples:

The number of keyword nodes mapped for 2M, 5M
triples in DBLP data set is shown in table 2

Query
Ref

No. of nodes(2M) No. of nodes(5M)

Q1 (38634,5036) (50223,8912)

Q2 (4,3016) (8,5743)

Q3 (2,3370,38634) (2,5743,50223)

Q4 (227,5210,1888) (368,9671,3858)

Q5 (2,24,3150,302) (6,28,3872,434)

Q6 (1,2,1932,3150) (1,2,5860,3872)

Q7 (1,2) (1,4)

Q8 (1,3794) (1,7348)

Q9 (36,794) (84,1686)

Q10 (6,320) (18,446)

Q11 (4,4,3016) (4,8,5743)

Table 2
Number of nodes mapped for DBLP Queries

The query time for running the queries Q1-Q10 is
shown in figure 25.

8.3. Answer graph to Query conversion

The final answer graph is a graphical representa-
tion of a SPARQL query. For each concept node in the
query subgraph or edge between the nodes, a triple pat-
tern expression of SPARQL is generated. In the first
case it specifies the node type, in the second case it
specifies the relation between the nodes. Finally for
each search term, a filter expression is added. For the
query {X-Media, Philip, Publication} the SPARQL
query is as follows:

SELECT * where {?dummy-publicationNode rdf:type
aifb:Article.

?project rdf:type aifb:Project ?researcher rdf:type
aifb:Researcher

?researcher aifb:author ?dummy-publicationNode.
?dummy-publicationNode aifb:hasProject ?project.

?Researcher aifb:name ?term1 FILTER regex(?term1,
“.*X-Media.*”).

?project aifb:name ?term2 FILTER regex(?term2,
.*X-Media.*”).

8.4. Evaluation and Analysis

The queries chosen for the AIFB data set illustrates
a mixture of queries where the keywords are mapped
to nodes and edges of different categories.

In our approach, keywords get mapped to different
nodes and edges of the RDF graph. For example, if
we consider Q3 in table 1, the keywords (adaptive, al-
gorithm) gets mapped to D-Node representing Title or
Abstract. In addition, the mapping can be to multiple
D-Nodes. The component sub-graphs with respect to
the mapped D-Nodes will be grouped to form differ-
ent clusters. The sub-graphs in the same cluster are
identical. We bring one such component sub-graph el-
ement from each cluster into memory for processing.
Depending on the associated EN-Node of the mapped
D-Node and the relationship and sub-class chain, the
component sub-graph has full set of Cr-Nodes associ-
ated or a partial set of CR-Nodes. The approach thus
helps us to maintain minimum component sub-graphs
in memory for processing during pruning and hooking
stage.

In the query {smart-web,Camiano,Publication}, the
semantic relationship type/subClassOf is exploited for
finding the answer graph. Even though the triples are
represented using keywords {InProceedings, Misc, In-
Collection} and not through keyword Publication, the
subClassOf property is exploited for answering the
keyword query. For the query {abstract, Staab, 2005},
the term abstract is mapped on to an edge of an
RDF graph. In the query {AIFB, journal, title},
component sub-graphs of [AIFB, journal/title] do
not have any CR-Nodes in common and hence sub-
graph enlargement step is performed for answer graph
construction. The query {Publication,staab,2013} is
interesting. As per the data, there are no publica-
tions of Staab in year 2013, and we do not re-
turn any answer graph. In [14] approach, answer
graphs will still be constructed as only summary in-
formation is maintained. If we consider the query
{title, scheduling, InProceedings, 2005}, the an-
swer graph will directly represents the answer for
(titles with keword scheduling in Publications of type
InProceedings published in year 2005) whereas the
query {title, scheduling,Article, 2005}, no answer
graph wiil be returned as results combining such data
combination does not exist in the RDF graph. Thus we
are able to address different class of keyword queries.
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Q1 algorithm 1999

Q2 wang database

Q3 arumugam adaptive algorithm

Q4 verma dynamic optimal

Q5 William zander performance improving

Q6 chuni yang software performance

Q7 Lorenz cached

Q8 lam optimization

Q9 kim statistical

Q10 liu carrier

Q11 publication wang 1999

Q12 ai 1999

Q13 ir 1999

Q14 machine learning, 1999

Q15 web services, 1999

Q16 1999 171-183

Q17 1999 243-290

Q18 multiple instance learning, 1999

Q19 1998 IEEE

Q20 1999 acm

Q21 guassian weighted histogram IEEE

Q22 computer graphic springer

Q23 guassian weighted histogram IEEE

Q24 1999 springer
Table 1

DBLP Queries
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Figure 24. Timings for load, index operations

To assess the scalability of our approach, we have
run the queries from table 1. These queries are sim-
iliar to the queries used for evaluation in [6,14]. The
environment used is also equivalent to what was used
in those approaches. Strict performance comparison
cannot be done. as [14] approach is based on summa-
rization technique, [6] uses general data graphs and
[15] maps keywords only to data nodes.[14] uses sum-
marization approach and hence performance is better
for queries on RDF graphs with regular structure as
in DBLP. With respect to [6], based on the data pro-
vided in their paper, the nodes mapped to keywords
for query Q1, in DBLP data set, the number of nodes
mapped to keywords is (1299, 941) whereas the num-
ber of nodes mapped in our case is (50233, 8912) with
5M triple data set. The node mappings in our case are
considerably large. Taking this into consideration, our
performance for (2M,5M) triples is comparable with
[6]
(
2× 104, 1× 104

)
. To evaluate the performance of

queries that exploit type/SubClassOf relationship in

larger data sets, extra triples as specified below were
added to DBLP data set(2M,5M).

– (Inproceedings subClassOf Publication)
– (Misc subClassOf Publication)
– (InCollection subClassOf Publication)
– (Article subClassOf Publication)

Triples of the form pubirdf typePublication were
modified with Publication replaced randomly by the
types: {InProceedings, Misc,InCollection}. The query
Q11 was run and the timings are (3233, 1877). In
order to validate our method further, experiments
were conducted on the queries shown in from the
LUBM(50)[5], a synthetic benchmark. The queries
chosen for the experiments are shown in table 3. The
total number of triples, load time and index time are
shown in table 4. The timings of the four LUBM
queries are shown in figure 26.

Though our emphasis in this paper is not ranking,
we would just like to illustrate our ranking mechanism.
For example, if we consider Q3 in table 1, the key-
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Figure 25. Timings for query processing for 2M,5M triples

words (adaptive, algorithm) gets mapped to D-Node

representing Title or Abstract. In addition, the mapping

can be to multiple D-Nodes as there will be several

D-Nodes containing these keywords. The rank factor

Term Relevance differentiates the affinity of different

D-Node mappings and plays a key role for providing

different rank values. Also there could be a mapping

of a keyword to a D-Node or a C-Node. In Q1 of AIFB

data set or Q11 in DBLP data set, Publication gets

mapped to a C-Node and may be to some D-Node. In

this scenario, Node Relevance rank factor is high for

C-Node mapping and hence ranked higher relative to

a D-Node mapping. In case the component sub-graphs

are enlarged for certain mappings, relationship rele-

vance factor will be the key factor. Sub-graphs which

have shorter relationship chain has a larger relationship

relevance factor. Thus our hierarchical ranking scheme

enables to do correct ranking of answer graphs.

Query
Ref

Query Keywords

Q1 Publication2, lecturer6

Q2 Researcher5, FullProfessor9, Publication8

Q3 FullProfessor9, GraduateStudent0, Publica-
tion18, Lecturer6

Q4 Department0, GraduateStudent1, Publica-
tion8, AssociateProfessor0

Table 3
LUBM Queries

No. of tripless Load time in secs Index Time in
secs

4646923 96 1830

Table 4
LUBM Load and Index timings
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Figure 26. Query time-LUBM
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9. Related Work

In this technical article, we have addressed the is-
sue of answer graph construction for keyword queries
on RDF/RDFS data through a concrete graph ex-
ploration algorithm . We have tried to improve the
graph exploration through an alternative approach by
adopting pruning and hooking. as compared to [15,
12]. Our approach exploits RDF graph semantics like
Type/SubClass relationship. We also extended our ear-
lier approach [8] to remove the distance neighborhood
restriction in our approach. We have also proposed a
formal indexing scheme which exploits RDF seman-
tics. In order to restrict index size to a comparable level
we have proposed a two tier indexing scheme using
graph partition techniques similiar to [6]

Keyword search on structured data has been exten-
sively investigated in recent years under different con-
texts. Earlier approaches BANKS [4,6,16] addresses
keyword search in the context of providing those facil-
ities for databases. Exact matches between keywords
and labels of data elements were done. Also substruc-
tures in the form of trees were constructed and the
root element is assumed to be the answer. [4] uses
backward search algorithm. In order to improve the
search by limiting the nodes to be visited, [16] pro-
posed bi-directional search algorithm where the explo-
ration is through both backward and forward edge. The
idea is to reach the root element faster through this
approach. [6] also adopts distinct root semantics but
improves the efficiency of the search using partition-
ing, balanced cost strategy and indexing to support for-
ward jumps. These methods however do not exploit the
schema knowledge for processing queries. The graphs
are schema-less.

[15,12,9] presents different approaches for adapting
keyword queries against different knowledge reposi-
tories represented in the form of graphs. [9] presents
a system called SemSearch which follows a template
based approach. In SemSearch, keywords are first in-
terpreted as instances, concepts or properties. Even if
two keywords are given as input nine templates are
maintained and templates fix the structure. Also it is
assumed that direct connections exists between enti-
ties denoted by keywords. For higher order keyword
queries, heuristics are applied. In contrast to Sem-
Search, [15] presents a generic graph based approach
to explore the connections between terms mapped to
keywords of the query using knowledge available in
ontology. A three step process consisting of term map-
ping, connection exploration and DL query construc-

tion is used. The exploration is restricted to connec-
tions where an instance is related to a concept by an is-
a relation and two instances are related by object and
data properties.The exploration builds a graph con-
necting a term element with all its neighbours within
a specified range d. The process of exploration relies
mainly on assertional knowledge resulting in a large
number of paths that need to be processed. The graph
does not model type/subClassOf of relationship. Rank-
ing is based on path length. [12] also adopts three
step process: term mapping, query graph construction
and query ranking. Term mapping maps keywords into
different terms using techniques like stemming, Edit-
distance and sub-string matching. For each grouping of
terms different query sets are constructed by enumer-
ating all possible combinations from different sense of
terms. From each query set a query graph is derived. A
probabilistic ranking model is adopted for ranking the
query graphs. In this system also the knowledge fea-
tures and pruning mechanisms are not exploited dur-
ing the exploration phase. In another interesting pa-
per [11] which is also a motivation for this work, the
authors have modeled unstructured, semi-structured
and structured data as graphs and propose an efficient
keyword search method EASE to adaptively process
keyword queries over heterogeneous data. The data
set is implemented as graphs and the search is mod-
eled as r-Radius Steiner Graph problem i.e to iden-
tify all all r-radius Steiner graphs which contain all
the keywords. In this paper also radius is fixed. The
argument proposed is that graphs with larger diame-
ter are not so meaningful and relevant. In[7] the au-
thors present an approximation algorithm STAR for re-
lationship queries. The problem is modeled as com-
puting k lowest-cost Steiner trees. During the process
taxonomic relationship type or subclass relationship is
explored to construct first a tree and then improving
the tree by scanning and pruning the neighborhood.
In this paper, the graph is an entity relationship graph
and only type/subclass relationship is exploited for an-
swer tree construction. In [14], the authors improve
upon their earlier work[15]. The keywords can also be
mapped to edges. Complex data structures are intro-
duced to keep track of the explored paths. To reduce
the search space, a strategy for graph summarisation is
employed. Exploration is restricted to a summary con-
taining only the necessary elements.

In our approach ,we have adopted a different strat-
egy for the exploration phase. We construct a hy-
brid graph from the original graph, which preserves as
much connectivity information as possible. We create
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fragments of closely related nodes and edges depend-
ing on the node or edge mapped to the keyword using
type and relationship schema attributes and then prune
unwanted nodes and edges. We also adopt a guided
exploration strategy which exploits other knowledge
characteristics(type/subClassOf relationship). Also we
do not impose any distance metric. The distance fac-
tor is implicitly managed in the pruning phase depend-
ing on the closeness of the relationship nodes found
out during the component subgraph creation phase. We
have also presented a ranking scheme for the answer
graphs in line with our algorithm.

10. Conclusions and Future Work

We have presented a concrete algorithm for an-
swer graph construction given a set of keywords and a
RDF/RDFS repository represented as a graph. We have
illustrated the approach on a set of sample queries with
different keyword mappings and demonstrated how se-
mantic characteristics like type/subClassOf can be ex-
ploited. We have also presented the experimental re-
sults on benchmark sets AIFB,DBLP and,LUBM. We
could demonstrate that correct answer graphs can be
constructed for several queries with different charac-
teristics and different mappings(nodes, edges).
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