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Abstract. Semantic Question Answering (SQA) removes two major access requirements to the Semantic Web: the mastery of a
formal query language like SPARQL and knowledge of a specific vocabulary. Because of the complexity of natural language, SQA
presents difficult challenges and many research opportunities. Instead of a shared effort, however, many essential components are
redeveloped, which is an inefficient use of researcher’s time and resources. This survey analyzes 62 different SQA systems, which
are systematically and manually selected using predefined inclusion and exclusion criteria, leading to 70 selected publications
out of 1960 candidates. We identify common challenges, structure solutions, and provide recommendations for future systems.
This work is based on publications from the end of 2010 to July 2015 and is also compared to older but similar surveys.
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1. Introduction

Semantic Question Answering (SQA) is defined by
users (1) asking questions in natural language (NL) (2)
using their own terminology to which they (3) receive
a concise answer generated by querying a RDF knowl-
edge base.1 Users are thus freed from two major ac-
cess requirements to the Semantic Web: (1) the mas-
tery of a formal query language like SPARQL and (2)
knowledge about the specific vocabularies of the knowl-
edge base they want to query. Since natural language is
complex and ambiguous, reliable SQA systems require
many different steps. While for some of them, like part-
of-speech tagging and parsing, mature high-precision
solutions exist, most of the others still present difficult
challenges. While the massive research effort has led
to major advances, as shown by the yearly Question

1Definition based on Hirschman and Gaizauskas [61].

Answering over Linked Data (QALD) evaluation cam-
paign, it suffers from several problems: Instead of a
shared effort, many essential components are redevel-
oped. While shared practices emerge over time, they
are not systematically collected. Furthermore, most sys-
tems focus on a specific aspect while the others are
quickly implemented, which leads to low benchmark
scores and thus undervalues the contribution. This sur-
vey aims to alleviate these problems by systematically
collecting and structuring methods of dealing with com-
mon challenges faced by these approaches. Our con-
tributions are threefold: First, we complement exist-
ing work with 62 systems developed from 2010 to
2015. Second, we identify challenges faced by those
approaches and collect solutions for each challenge. Fi-
nally, we draw conclusions and make recommendations
on how to develop future SQA systems. The structure
of the paper is as follows: Section 2 states the method-
ology used to find and filter surveyed publications. Sec-
tion 3 compares this work to older, similar surveys. Sec-
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2 Challenges of Semantic Question Answering

tion 4 introduces the surveyed systems. Section 5 iden-
tifies challenges faced by SQA approaches and presents
approaches that tackle them. Section 6 discusses the
maturity and future development for each challenge.
Section 7 summarizes the efforts made to face chal-
lenges to SQA and their implication for further devel-
opment in this area.

2. Methodology

This survey follows a strict discovery methodology:
Objective inclusion and exclusion criteria are used to
find and restrict publications on SQA.

Inclusion Criteria Candidate articles for inclusion in
the survey need to be part of relevant conference pro-
ceedings or searchable via Google Scholar (see Ta-
ble 1). The inclued papers from the publication search
engine Google Scholar are the first 300 results in the
chosen timespan (see exclusion criteria) that contain
“’question answering’ AND (’Semantic Web’ OR ’data
web’)” in the article including title, abstract and text
body. Conference candidates are all publications in our
examined time frame in the proceedings of the ma-
jor Semantic Web Conferences ISWC, ESWC, WWW,
NLDB, and the proceedings which contain the annual
QALD challenge participants.

Exclusion Criteria Works published before Novem-
ber 20102 or after July 2015 are excluded, as well as
those that are not related to SQA, determined in a man-
ual inspection in the following manner: First, proceed-
ing tracks are excluded that clearly do not contain SQA
related publications. Next, publications both from pro-
ceedings and from Google Scholar are excluded based
on their title and finally on their content.

Result The inspection of the titles of the Google
Scholar results by two authors of this survey led to 153
publications, 39 of which remained after inspecting the
full text (see Table 1). The selected proceedings con-
tain 1660 publications, which were narrowed down to
980 by excluding tracks that have no relation to SQA.
Based on their titles, 62 of them were selected and in-
spected, resulting in 33 publications that were catego-
rized and listed in this survey. Table 1 shows the num-
ber of publications in each step for each source. In total,
1960 candidates were found using the inclusion crite-
ria in Google Scholar and conference proceedings and

2The time before is already covered in Cimiano and Minock [24].

then reduced using track names (conference proceed-
ings only, 1280 remaining), then titles (214) and finally
the full text, resulting in 70 publications describing 62
distinct SQA systems.

Table 1
Sources of publication candidates along with the number of publica-
tions in total, after excluding based on conference tracks (I), based on
the title (II), and finally based on the full text (selected). Works that
are found both in a conference’s proceedings and in Google Scholar
are only counted once, as selected for that conference. The QALD
2 proceedings are included in ILD 2012, QALD 3 [16] and QALD
4 [117] in the CLEF 2013 and 2014 working notes.

Venue All I II Selected

Google Scholar Top 300 300 300 153 39

ISWC 2010 [93] 70 70 1 1

ISWC 2011 [6] 68 68 4 3

ISWC 2012 [27] 66 66 4 2

ISWC 2013 [3] 72 72 4 0

ISWC 2014 [82] 31 4 2 0

WWW 2011 [66] 81 9 0 0

WWW 2012 [67] 108 6 2 1

WWW 2013 [68] 137 137 2 1

WWW 2014 [69] 84 33 3 0

WWW 2015 [70] 131 131 1 1

ESWC 2011 [5] 67 58 3 0

ESWC 2012 [106] 53 43 0 0

ESWC 2013 [25] 42 34 0 0

ESWC 2014 [95] 51 31 2 1

ESWC 2015 [49] 42 42 1 1

NLDB 2011 [85] 21 21 2 2

NLDB 2012 [13] 36 36 0 0

NLDB 2013 [118] 36 36 1 1

NLDB 2014 [79] 39 30 1 2

NLDB 2015 [10] 45 10 2 1

QALD 1 [96] 3 3 3 2

ILD 2012 [116] 9 9 9 3

CLEF 2013 [42] 208 7 6 5

CLEF 2014 [19] 160 24 8 6

Σ(conference) 1660 980 61 33

Σ(all) 1960 1280 214 72

3. Related Work

3.1. Other Surveys

This section gives an overview of recent surveys
about Semantic Question Answering in general and ex-
plains commonalities and differences to this work.
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Table 2
Other surveys by year of publication. Surveyed years are given ex-
cept when a dataset is theoretically analyzed. Approaches addressing
specific types of data are also indicated.

Survey Year Surveyed
Years

Type of
Data

Athenikos and Han [7] 2010 2000–2009 biomedical
Cimiano and Minock [24] 2010 — geographic
Lopez et al. [77] 2010 2004–2010 —
Freitas et al. [46] 2012 2004–2011 —
Lopez et al. [78] 2013 2005–2012 —

Cimiano and Minock [24] present a data-driven prob-
lem analysis of QA on the Geobase dataset. The au-
thors identify eleven challenges that QA has to solve
and which inspired the problem categories of this sur-
vey: question types, language “light”3, lexical ambi-
guities, syntactic ambiguities, scope ambiguities, spa-
tial prepositions, adjective modifiers and superlatives,
aggregation, comparison and negation operators, non-
compositionality, and out of scope4. In contrast to our
work, they identify challenges by manually inspecting
user provided questions instead of existing systems.

Lopez et al. [78] analyze the systems of the QALD
1 and 2 challenge participants. For each participant,
problems and their solution strategies are given. While
there is an overlap in the surveyed approaches between
Lopez et al. [78] and our paper, our survey has a broader
scope as it also analyzes approaches that do not take
part in the QALD challenges.

A wide overview of QA systems in the context of the
Semantic Web is presented by Lopez et al. [77]. After
defining the goals and dimensions of QA and present-
ing some related and historic work, the authors concen-
trate on ontology-based QA. Before concluding the sur-
vey, the authors summarize the achievements of QA so
far and the challenges that are still open.

In contrast to the surveys mentioned above, we do
not focus on the overall performance or domain of a
system, but on analyzing and categorizing methods that
tackle specific problems. Additionally, we build upon
the existing surveys and describe the new state of the art
systems which were published after the three surveys
in order to keep track of new research ideas.

Another related survey from 2012, Freitas et al. [46],
gives a broader overview of the challenges involved in

3semantically weak constructions
4cannot be answered as the information required is not contained

in the knowledge base

constructing effective query mechanisms for Web-scale
data. The authors analyze different approaches, such as
Treo [45], for five different challenges: usability, query
expressivity, vocabulary-level semantic matching, en-
tity recognition and improvement of semantic tractabil-
ity. The same is done for architectural elements such as
user interaction and interfaces and the impact on these
challenges is reported.

BioASQ [112] is a benchmark challenge which ran
until September 2015 and consists of semantic index-
ing as well as an SQA part on biomedical data. In the
SQA part, systems are expected to be hybrids, return-
ing matching triples as well as text snippets but partial
evaluation (text or triples only) is possible as well. The
introductory task separates the process into annotation
which is equivalent to named entity recognition (NER)
and disambiguation (NED) as well as the answering
itself. The second task combines these two steps.

Similar to Lopez et al. [77], Athenikos and Han [7]
gives an overview of domain specific QA systems for
biomedicine. After summarising the current state of the
art by September 2009 for biomedical QA systems, the
authors describe different approaches from the point of
view of medical and biological QA. The authors of this
survey only describe approaches, but do not identify
the differences between those two main categories. In
contrast to our survey, the authors hereby do not sort
the presented approaches through problems, but more
broader terms such as "Non-semantic knowledge base
medical QA systems and approaches" or "Inference-
based biological QA systems and approaches".

3.2. Notable exclusions

We exclude the following approaches since they do
not fit our definition of SQA (see Section 1).

Swoogle [41] is independent on any specific knowl-
edge base but instead builds its own index and knowl-
edge base using RDF documents found by multiple
web crawlers. Discovered ontologies are ranked based
on their usage intensity and RDF documents are ranked
using authority scoring. Swoogle can only find single
terms and cannot answer natural language queries and
is thus not a SQA system.

Wolfram|Alpha is a natural language interface based
on the computational platform Mathematica [124] and
aggregates a large number of structured sources and a
algorithms. However, it does not support Semantic Web
knowledge bases and the source code and the algorithm
is are not published. Thus, we cannot identify whether
it corresponds to our definition of a SQA system.
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4. Systems

The 70 surveyed publications describe 62 distinct
systems or approaches. The implementation of a SQA
system can be very complex and depending on, thus
reusing, several known techniques.

SQA systems are typically composed of two stages:
(1) the query analyzer and (2) retrieval. The query ana-
lyzer generates or formats the query that will be used to
recover the answer at the retrieval stage. There is a wide
variety of techniques that can be applied at the analyzer
stage, such as tokenization, disambiguation, internation-
alization, logical forms, semantic role labels, question
reformulation, coreference resolution, relation extrac-
tion and named entity recognition amongst others. For
some of those techniques, such as natural language
(NL) parsing and part-of-speech (POS) tagging, ma-
ture all-purpose methods are available and commonly
reused. Other techniques, such as the disambiguating
between multiple possible answers candidates, are not
available at hand in a domain independent fashion.
Thus, high quality solutions can only be obtained by
the development of new components.

This section exemplifies some of the reviewed sys-
tems and their novelties to highlight current research
questions, while the next section presents the contribu-
tions of all analyzed papers to specific challenges.

Hakimov et al. [54] proposes a SQA system us-
ing syntactic dependency trees of input questions. The
method consists of three main steps: (1) Triple patterns
are extracted using the dependency tree and POS tags
of the questions. (2) Entities, properties and classes
are extracted and mapped to the underlying knowl-
edge base. Recognized entities are disambiguated us-
ing page links between all spotted named entities as
well as string similarity. Properties are disambiguated
by using relational patterns from PATTY [86] which
allows a more flexible mapping, e.g., “die” is mapped
to DBpedia properties like dbo:deathPlace 5 Finally, (3)
question words are matched to the respective answer
type, e.g., Who matches person, organization, company

5URL prefixes are defined in Table 3.

dbo http://dbpedia.org/ontology/

dbr http://dbpedia.org/resource/

owl http://www.w3.org/2002/07/owl#

Table 3
URL prefixes used throughout this work.

while Where matches places) and ranked. The best re-
sult is returned as answer.

PARALEX [37] is a SQA system that only answers
questions for subjects or objects of property-object or
subject-property pairs, respectively. It contains phrase
to concept mappings in a lexicon that is trained from
a corpus of paraphrases, which is constructed from the
question-answer site WikiAnswers6. If one of the para-
phrases can be mapped to a query, this query is the cor-
rect answer for the paraphrases as well. By mapping
phrases between those paraphrases, the patterns are ex-
tended. For example, “what is the r of e” leads to “how
r is e ”, so that “What is the population of New York”
can be mapped to “How big is NYC”.

Xser [125] is based on the observation that SQA con-
tains two independent steps. First, Xser determines the
question structure solely based on a phrase level depen-
dency graph and second uses the target knowledge base
to instantiate the generated template. For instance, mov-
ing to another domain based on a different knowledge
base thus only affects parts of the approach so that the
conversion effort is lessened.

QuASE [108] is a three stage open domain approach
based on web search and the Freebase knowledge base7.
First, QuASE uses entity linking, semantic feature con-
struction and candidate ranking on the input question.
Then, it selects the documents and according sentences
from a web search with a high probability to match the
question and presents them as answers to the user.

DEV-NLQ [107] is based on lambda calculus and
an event-based triple store8 using only triple based re-
trieval operations. DEV-NLQ claims to be the only QA
system able to solve chained, arbitrarily-nested, com-
plex, prepositional phrases.

CubeQA [62] is a novel approach of SQA over multi-
dimensional statistical Linked Data using the RDF Data
Cube Vocabulary 9, which existing approaches cannot
process. Using a corpus of questions with open domain
statistical information needs, the authors analyze how
those questions differ from others, which additional ver-
balizations are commonly used and how this influences
design decisions for SQA on statistical data.

QAKiS [15,26,17] queries several multilingual ver-
sions of DBpedia at the same time by filling the
produced SPARQL query with the corresponding
language-dependent properties and classes. Thus, QAKiS

6http://wiki.answers.com/
7https://www.freebase.com/
8http://www.w3.org/wiki/LargeTripleStores
9http://www.w3.org/TR/vocab-data-cube/

http://dbpedia.org/ontology/deathPlace
http://dbpedia.org/ontology/
http://dbpedia.org/resource/
http://www.w3.org/2002/07/owl#
http://wiki.answers.com/
https://www.freebase.com/
http://www.w3.org/wiki/LargeTripleStores
http://www.w3.org/TR/vocab-data-cube/
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can retrieve correct answers even in cases of missing in-
formation in the language-dependent knowledge base.

Freitas and Curry [43] evaluate a distributional-
compositional semantics approach that is independent
from manually created dictionaries but instead relies on
co-occurring words in text corpora. The vector space
over the set of terms in the corpus is used to create a
distributional vector space based on the weighted term
vectors for each concept. An inverted Lucene index is
adapted to the chosen model.

Instead of querying a specific knowledge base, Sun
et al. [108] use web search engines to extract relevant
text snippets, which are then linked to Freebase, where
a ranking function is applied and the highest ranked
entity is returned as the answer.

HAWK [120] is the first hybrid source SQA sys-
tem which processes Linked Data as well as textual
information to answer one input query. HAWK uses
an eight-fold pipeline comprising part-of-speech tag-
ging, entity annotation, dependency parsing, linguistic
pruning heuristics for an in-depth analysis of the nat-
ural language input, semantic annotation of properties
and classes, the generation of basic triple patterns for
each component of the input query as well as discard-
ing queries containining not connected query graphs
and ranking them afterwards.

SWIP (Semantic Web intercase using Pattern) [94]
generates a pivot query, a hybrid structure between the
natural language question and the formal SPARQL tar-
get query. Generating the pivot queries consists of three
main steps: (1) Named entity identification, (2) Query
focus identification and (3) subquery generation. To
formalize the pivot queries, the query is mapped to pat-
terns, which are created by hand from domain experts.
If there are multiple applicable patterns for a pivot
query, the user chooses between them.

Hakimov et al. [55] adapt a semantic parsing algo-
rithm to SQA which achieves a high performance but
relies on large amounts of training data which is not
practical when the domain is large or unspecified.

Answer Presentation Another, important part of SQA
systems outside the SQA research challenges is result
presentation. Verbose descriptions or plain URIs are un-
comfortable for human reading. Entity summarization
deals with different types and levels of abstractions.

Cheng et al. [22] proposes a random surfer model
extended by a notion of centrality, i.e., a computation
of the central elements involving similarity (or related-
ness) between them as well as their informativeness.

The similarity is given by a combination of the related-
ness between their properties and their values.

Ngonga Ngomo et al. [89] present another approach
that automatically generates natural language descrip-
tion of resources using their attributes. The rationale
behind SPARQL2NL is to verbalize10 RDF data by
applying templates together with the metadata of the
schema itself (label, description, type). Entities can
have multiple types as well as different levels of hier-
archy which can lead to different levels of abstractions.
The verbalization of the DBpedia entity dbr:Microsoft
can vary depending on the type dbo:Agent rather than
dbo:Company .

Frameworks SQA systems are currently regarded as
one of the key technologies to empower lay users to ac-
cess the Web of Data. SQA still lacks tools to facilitate
the development process which ease implementation
and evaluation of SQA systems. Thus, a new research
sub field focusses on question answering frameworks,
i.e., frameworks to combine different SQA systems.
openQA [80] is a modular open-source framework for
implementing, integrating, evaluating and instantiating
SQA approaches. The framework’s main work-flow
consists of four stages (interpretation, retrieval, syn-
thesis, rendering) and adjacent modules (context and
service). The adjacent modules are intended to be ac-
cessed by any of the components of the main work-
flow. openQA enables a conciliation of different archi-
tectures and approaches.

Several industry-driven SQA-related projects have
emerged over the last years. For example, DeepQA of
IBM Watson [53], which was able to win the Jeopardy!
challenge against human experts.

The open-source variant of IBM Watson is Brmson11

which able to access several open semantic knowledge
bases. It builds the basis for the Yoda QA system12.

Further, KAIST’s Exobrain13 project aims to learn
from large amounts of data while ensuring a natural
interaction with end users. However, it is yet limited to
Korean for the moment.

10For example, "123"ˆˆ<http://dbpedia.org/
datatype/squareKilometre> can be verbalized as 123
square kilometres.

11http://brmlab.cz/project/brmson
12http://ailao.eu/yodaqa/
13http://exobrain.kr/

http://dbpedia.org/resource/Microsoft
http://dbpedia.org/ontology/Agent
http://dbpedia.org/ontology/Company
http://brmlab.cz/project/brmson
http://ailao.eu/yodaqa/
http://exobrain.kr/
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5. Challenges

In this section, we address 7 challenges that have
to be faced by state-of-the-art SQA system and which
remain an open research field.

5.1. Lexical Gap

Each textual tokens in the question needs to be
mapped to a Semantic Web-based individual, property,
class or even higher level concept. Most natural lan-
guage questions refer to concepts, which can be con-
crete (Barack Obama) as well as abstract (love, hate).
Similarly, RDF resources, which are designed to repre-
sent concepts, are characterized by binary relationships
with other resources and literals, forming a graph. How-
ever, natural language text is not graph-shaped but a se-
quence of characters which represent words or tokens,
whose relations form a tree. Thus, RDF graph struc-
tures cannot be directly mapped to the question to cap-
ture the semantic meaning of the user input. However,
RDF resources are often annotated with at least one la-
bel, which is a surface form of the concept the resource
represents. Those surface forms can in turn be used to
map single resources to input concepts. Still, there are
several major problems: (1) There are resources with
overlapping surface forms and thus RDF resources with
the same label. For example, the word “bank” has 10
different senses as a noun alone in WordNet. (2) A con-
cept can have several surface forms, so that the RDF
resource label can be different from the word. For ex-
ample, 2985 synonyms have been found for the word
drunk . (3) A surface form can have multiple different
variations, such as by verb form (run, running), time
(run, ran) or region (analyse, analyze). (4) Typographi-
cal errors cause one or more characters to differ.

A SQA system has to determine, which of those
senses is the one meant by the user. This problem is
called ambiguity and is detailed in Section 5.2. Because
a question can usually only be answered if every re-
ferred concept is identified, bridging this gap signifi-
cantly increases the proportion of questions that can
be answered by a system. Table 4 shows methods for
bridging the lexical gap along with examples.

Normalization and Similarity Normalizations, such
as conversion to lower case or to base forms, such as
“é,é,ê” to “e”, allow matching of slightly different forms
(problem 3) and some simple mistakes (problem 4),
such as “Deja Vu” for “déjà vu”, and are quickly imple-
mented and executed. More elaborate normalizations

Table 4
Different techniques for bridging the lexical gap along as well as an
example of a deviation of the word “running”.

Identity running
Similarity Measure running
Stemming/Lemmatizing run
AQE—Synonyms sprint
Pattern libraries X made a break for Y

use natural language programming (NLP) techniques
for stemming (both “running” and “ran” to “run”).

If normalizations are not enough, the distance—and
its complementary concept, similarity—can be quan-
tified using a similarity function and a threshold can
be applied. Common examples of similarity functions
are Jaro-Winkler, an edit-distance that measures trans-
positions and n-grams, which compares sets of sub-
strings of length n of two strings. Also, one of the sur-
veyed publications, Zhang et al. [130], uses the largest
common substring, both between Japanese and trans-
lated English words. However, applying such similar-
ity functions can carry harsh performance penalties.
While an exact string match can be efficiently executed
in a SPARQL triple pattern, similarity scores gener-
ally need to be calculated between a phrase and ev-
ery entity label, which is infeasible on large knowledge
bases [120]. For instance, edit distances of two charac-
ters or less can be mitigated by using the fuzzy query
implementation of an Apache Lucene ndex14 which
implements a Levenshtein Automaton [100]. Further-
more, Ngonga Ngomo [87] provides a different ap-
proach to efficiently calculating similarity scores that
could be applied to QA. It uses similarity metrics where
a triangle inequality holds that allows for a large por-
tion of potential matches to be discarded early in the
process. This solution is not as fast as using a Leven-
shtein Automaton but does not place such a tight limit
on the edit distance.

Automatic Query Expansion Normalization and string
similarity methods do not address polysemy, i.e., words
with different forms have the same sense, for instance
naturally and clearly. Approaches to overcome poly-
semic problems are aware of phrases with syno-, hyper-
and hyponyms (all subclasses of polysemy) using lexi-
cal databases such as WordNet [83] . Automatic query
expansion (AQE) is commonly used in information re-
trieval and traditional search engines, as summarized
in Carpineto and Romano [20]. These additional sur-

14http://lucene.apache.org

http://lucene.apache.org


Challenges of Semantic Question Answering 7

face forms allow for more matches and thus increase
recall but lead to mismatches between related words
and thus can decrease the precision.

In traditional document-based search engines with
high recall and low precision, this trade-off is more
common than in SQA. SQA is typically optimized for
concise answers and a high precision, since a SPARQL
query with an incorrectly identified concept mostly re-
sults in a wrong set of answer resources. However, AQE
can be used as a backup method in case there is no
direct match. One of the surveyed publications is an
experimental study [103] that evaluates the impact of
AQE on SQA. It has analyzed different lexical15 and
semantic16 expansion features and used machine learn-
ing to optimize weightings for combinations of them.
Both lexical and semantic features were shown to be
beneficial on a benchmark dataset consisting only of
sentences where direct matching is not sufficient.

Pattern libraries RDF individuals can be matched
from a phrase to a resource with high accuracy using
similarity functions and normalization alone. Proper-
ties however require further treatment, as (1) they deter-
mine the subject and object, which can be in different
positions17 and (2) a single property can be expressed
in many different ways, both as a noun and as a verb
phrase which may not even be a continuous substring18

of the question. Because of the complex and varying
structure of those patterns and the required reasoning
and knowledge19, libraries to overcome this issues have
been developed.

PATTY [86] detects entities in sentences of a corpus
and determines the shortest path between the entities.
The path is then expanded with occurring modifiers
and stored as a pattern. Thus, PATTY is able to build
up a pattern library on any knowledge base with an
accompanying corpus.

BOA [51] generates patterns using a corpus and a
knowledge base. For each property in the knowledge
base, sentences from a corpus are chosen containing ex-
amples of subjects and objects for this particular prop-
erty. BOA assumes that each resource pair that is con-
nected in a sentence exemplifies another label for this
relation and thus generates a pattern from each occur-
rence of that word pair in the corpus.

15lexical features include synonyms, hyper and hyponyms
16semantic features making use of RDF graphs and the RDFS

vocabulary, such as equivalent, sub- and superclasses
17E.g., “X wrote Y” and “Y is written by X”
18E.g., “X wrote Y together with Z” for “X is a coauthor of Y”.
19E.g., “if X writes a book, X is called the author of it.”

PARALEX [37] contains phrase to concept map-
pings in a lexicon that is trained from a corpus of para-
phrases from the QA site WikiAnswers. The advantage
is that no manual templates have to be created as they
are automatically learned from the paraphrases.

Entailment A corpus of already answered questions
or question patterns can be used to infer the answer for
new questions. This technique is called entailment. Ou
and Zhu [90] generate possible questions for an ontol-
ogy in advance and identify the most similar match to a
user question based on a syntactic and semantic similar-
ity score. The syntactic score is the cosine-similarity of
the questions using bag-of-words. The semantic score
also includes hypernyms, hyponyms and denorminal-
izations based on WordNet [83]. While the preprocess-
ing is algorithmically simple compared to the complex
pipeline of NLP tools, the number of possible questions
is expected to grow superlinearly with the size of the
ontology so the approach is more suited to specific do-
main ontologies. Furthermore, the range of possible
questions is quite limited which the authors aim to par-
tially alleviate in future work by combining multiple
basic questions into a complex question.

Document Retrieval Models for RDF resources Blanco
et al. [11] adapt entity ranking models from traditional
document retrieval algorithms to RDF data. The au-
thors apply BM25 as well as tf-idf ranking function to
an index structure with different text fields constructed
from the title, object URIs, property values and RDF
inlinks. The proposed adaptation is shown to be both
time efficient and qualitatively superior to other state-
of-the-art methods in ranking RDF resources.

Composite Approaches Elaborate approaches on
bridging the lexical gap can have a high impact on the
overall runtime performance of an SQA system. This
can be partially mitigated by composing methods and
executing each following step only if the one before
did not return the expected results.

BELA [122] implements four layers. First, the ques-
tion is mapped directly to the concept of the ontology
using the index lookup. Second, the question is mapped
based on Levenshtein distance to the ontology, if the
Levenshtein distance of a word from the question and
a property from an ontology exceed a certain threshold.
Third, WordNet is used to find synonyms for a given
word. Finally, BELA uses explicit semantic analysis
(ESA) Gabrilovich and Markovitch [48]. The evalua-
tion is carried out on the QALD 2 [116] test dataset and
shows that the more simple steps, like index lookup and
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Levenshtein distance, had the most positive influence
on answering questions so that many questions can be
answered with simple mechanisms.

Park et al. [92] answer natural language questions
via regular expressions and keyword queries with a
Lucene-based index. Furthermore, the approach uses
DBpedia [76] as well as their own triple extraction
method on the English Wikipedia.

5.2. Ambiguity

In contrast to the lexical gap, which impedes the re-
call of a SQA system, ambiguity negatively effects its
precision. There are different types of ambiguity, most
notably syntactic and lexical. Syntactical ambiguity oc-
curs when a sequence of words can be structured in
alternative ways. One example of syntactic ambiguity
is the question “Can flying planes be dangerous?” that
can be derived in two different grammatical structures.
Flying planes might refer to the activity of flying, or
to the concrete machines, planes, when they are flying.
Lexical ambiguity results from the interpretation of sin-
gle words and not from their structure. The main cause
for lexical ambiguity is homonymy, where two or more
words have an identical surface form but represent a
different meaning. An example of homonymy occurs
with the word “bank” that can be used to express ei-
ther a type of financial institution or an area of land
next to a river. This problem is aggravated by the very
methods used for overcoming the lexical gap. The more
loose the matching criteria become (increase in recall),
the more candidates are found which are generally less
likely to be correct than closer ones.

Disambiguation is the process of selecting one of the
candidates concepts for an ambiguous phrase. Disam-
biguation is possible because the concepts in a sentence
are related. Thus, disambiguation is not done separately
on each word or phrase but on the whole sentence by
picking a candidate solution that maximizes the total
relatedness [119]. Statistical disambiguation relies on
word co-occurrences, while corpus-based disambigua-
tion also uses synonyms, hyponyms and others. More
elaborate approaches also take advantage of the context
outside of the question, such as past queries.

Statistical Disambiguation Underspecification [113]
discards certain combinations of possible meanings be-
fore the time consuming querying step, by combining
restrictions for each meaning. Each term is mapped to
a Dependency-based Underspecified Discourse REpre-
sentation Structure (DUDE [23]), which captures its

possible meanings along with their class restrictions.
Another approach is Shen et al. [105] which uses ma-
chine learning to disambiguate query semantic using
the previous search history of the user. Different intent
categories are modelled as hidden variables and later
matched to the current question.

RTV [52] uses Hidden Markov Models (HMM) in
order to select the proper ontological triples accord-
ing to the graph nature of DBpedia. In the first step,
the syntactic dependency graph of the question is ana-
lyzed to find all grammatical relevant elements (nouns,
verbs and adjectives) and initialize the HMM. This in-
formation is used for computing the optimal sequence
of states including a disambiguation which is finally
used to convert the sequence to a SPARQL query.

He et al. [59] use a Markov Logic Network (MLN)
for disambiguation. A MLN allows first-order logic
statements that may be broken with a certain numerical
penalty which is used to define hard constraints like
“each phrase can map to only one resource” alongside
soft constraints like the larger the semantic similarity
is between two resources, the higher the chance is that
they are connected by a relation in the question.

Semantic Disambiguation While statistical disam-
biguation works on the phrase level, semantic disam-
biguation works on the concept level.

Treo [45,44] performs entity recognition and disam-
biguation using Wikipedia-based semantic relatedness
and spreading activation. Semantic relatedness calcu-
lates similarity values between pairs of RDF resources.
Determining semantic relatedness between entity can-
didates associated to words in a sentence allows to find
the most probable entity by maximizing the total relat-
edness. This takes advantage of the context of a word in
a sentence and the assumption that all entities in a sen-
tence are somehow related and thus similar concepts
have a higher probability of being correctly identified.

EasyESA [21] is based on distributional semantic
models which allow to represent an entity by a vector
of target words and thus compresses its representation.
The distributional semantic models allow to bridge the
lexical gap and resolve ambiguity by avoiding the ex-
plicit structures of RDF-based entity descriptions for
entity linking and relatedness.

gAnswer [65] tackles ambiguity with RDF frag-
ments, i.e., star-like RDF subgraphs. The number of
connections between the fragments of the resource can-
didates is then used to score and select them.

Wikimantic [12] can be used to disambiguate short
questions or even sentences. It uses Wikipedia article
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interlinks for a generative model, where the probability
of an article to generate a term is set to the terms rela-
tive occurrence in the article. Disambiguation is then
an optimization problem to locally maximize each ar-
ticle’s (and thus DBpedia resource’s) term probability
along with a global ranking method.

Shekarpour et al. [101,104] disambiguate resource
candidates using segments consisting of one or more
words from a keyword query. The aim is to maximize
the high textual similarity of keywords to resources
along with relatedness between the resources (classes,
properties and entities). The problem is cast as a Hid-
den Markov Model (HMM) with the states represent-
ing the set of candidate resources extended by OWL
reasoning. The transition probabilities are based on the
shortest path between the resources. The Viterbi algo-
rithm generates an optimal path though the HMM that
is used for disambiguation.

DEANNA [126,127] manages phrase detection, en-
tity recognition and entity disambiguation by formu-
lating the SQA task as an integer linear programming
(ILP) problem. It employs semantic coherence which
measures co-occurrence of resources in the same con-
text. DEANNA constructs a disambiguation graph
which encodes the selection of candidates for resources
and properties. The chosen objective function maxi-
mizes the combined similarity while constraints guar-
antee that the selections are valid. The resulting prob-
lem is NP-hard but it is efficiently solvable in approx-
imations by existing ILP solvers. The follow-up ap-
proach [128] uses DBpedia and Yago with a mapping
of input queries to semantic relations based on text
search. At QALD 2, it outperformed almost every other
system on factoid questions and every other system on
list questions. However, the approach requires detailed
textual descriptions of entities and only creates basic
graph pattern queries.

LOD-Query [102] is a keyword-based SQA system
that tackles both ambiguity and the lexical gap by se-
lecting candidate concepts based on a combination of
a string similarity score and the connectivity degree.
The string similarity is the normalized edit distance be-
tween a labels and a keyword. The connectivity degree
of a concept is approximated by the occurrence of that
concept in all the triples of the knowledge base.

Dialogue-based approaches A cooperative approach
is proposed in [81] which transforms the question into a
discourse representation structure and starts a dialogue
with the user for all occurring ambiguities.

CrowdQ [32] is a SQA system that decomposes com-
plex queries into simple parts (keyword queries) and
uses crowdsourcing for disambiguation. It avoids ex-
cessive usage of crowd resources by creating general
templates as an intermediate step.

FREyA (Feedback, Refinement and Extended Vocab-
ularY Aggregation) [28] represents phrases as poten-
tial ontology concepts which are identified by heuris-
tics on the syntactic parse tree. Ontology concepts are
identified by matching their labels with phrases from
the question without regarding its structure. A consoli-
dation algorithm then matches both potential and ontol-
ogy concepts. In case of ambiguities, feedback from the
user is asked. Disambiguation candidates are created
using string similarity in combination with WordNet
synonym detection. The system learns from the user
selections, thereby improving the precision over time.

TBSL [115] uses both an domain independent and
a domain dependent lexicon so that it performs well
on specific topic but is still adaptable to a different do-
main. It uses AutoSPARQL [74] to refine the learned
SPARQL using the QTL algorithm for supervised ma-
chine learning. The user marks certain answers as cor-
rect or incorrect and triggers a refinement. This is re-
peated until the user is satisfied with the result. An
extension of TBSL is DEQA [75] which combines
Web extraction with OXPath [47], interlinking with
LIMES [88] and SQA with TBSL. It can thus an-
swer complex questions about objects which are only
available as HTML. Another extension of TBSL is
ISOFT [91], which uses explicit semantic analysis to
help bridging the lexical gap.

NL-Graphs [36] combines SQA with an interactive
visualization of the graph of triple patterns in the query
which is close to the SPARQL query structure yet still
intuitive to the user. Users that find errors in the query
structure can either reformulate the query or modify the
query graph.

Answer types A different way to restrict the set of an-
swer candidates and thus handle ambiguity is to deter-
mine the expected answer type of a factual question.
The standard approach to determine this type is to iden-
tify the focus of the question and to map this type to
an ontology class. In the example “Which books are
written by Dan Brown?”, the focus is “books” which
is mapped to dbo:Book . There is however a long tail
of rare answer types that are not as easily alignable to
an ontology, which, for instance, Watson [53] tackles
using the TyCor [73] framework for type coercion. In-
stead of the standard approach, candidates are first gen-

http://dbpedia.org/ontology/Book
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erated using multiple interpretations and then selected
based on a combination of scores. Besides trying to
align the answer type directly, it is coerced into other
types by calculating the probability of an entity of class
A to also be in class B. DBpedia, Wikipedia and Word-
Net are used to determine link anchors, list member-
ships, synonyms, hyper- and hyponyms.

The follow-up, Welty et al. [123] compare two differ-
ent approaches for answer typing. Type-and-Generate
(TaG) approaches restrict candidate answers to the ex-
pected answer types using predictive annotation, which
requires manual analysis of a domain. Tycor on the
other hand employs multiple strategies using generate-
and-type (GaT), i.e., it generates all answers regardless
of answer type and tries to coerce them into the ex-
pected answer type. Experimental results hint that GaT
outperforms TaG when accuracy is higher than 50%.
The significantly higher performance of TyCor when
using GaT is explained by its robustness to incorrect
candidates while there is no recovery from excluded
answers from TaG.

Alternative Approaches SQUALL [39,40] defines a
special English-based input language, enhanced with
knowledge from a given triple store vocabulary. As
such it moves the problems of the lexical gap and dis-
ambiguation to the user. (1) This results in a high per-
formance but (2) the user has to provide exactly for-
mulation determined in the underlying language. Still,
it covers a middle ground between SPARQL and full-
fledged SQA with the author’s intent that learning the
grammatical structure of this proposed language is eas-
ier for a non-expert than to learn SPARQL.

Pomelo [56] answers biomedical questions on the
combination of Drugbank, Diseasome and Sider using
owl:sameAs links between them. Properties are dis-
ambiguated using predefined rewriting rules which are
categorized by context.

Rani et al. [98] use fuzzy logic co-clustering algo-
rithms to retrieve documents based on their ontology
similarity. Possible senses for a word are assigned a
probability depending on the context.

Zhang et al. [130] translates RDF resources to the
English DBpedia. It uses feedback learning in the dis-
ambiguation step to refine the resource mapping

KOIOS [9] answers queries on natural environment
indicators and allows the user to refine the answer to
a keyword query by faceted search. Instead of relying
on a given ontology, a schema index is generated from
the triples and then connected with the keywords of the
query. Ambiguity is resolved by user feedback on the
top ranked results.

5.3. Multilingualism

Knowledge on the Web is expressed in various lan-
guages. While RDF resources can be described in mul-
tiple languages at once using language tags, there is
not a single language that is always used in Web docu-
ments. Partially because users want to use their native
language in search queries. A more flexible approach
is to have SQA systems that can handle multiple input
languages, which may even differ from the language
used to encode the knowledge. Deines and Krechel [31]
use GermaNet [57] which is integrated into the multi-
lingual knowledge base EuroWordNet [121] together
with lemon-LexInfo [14], to answer German questions.

Aggarwal et al. [2] only need to successfully trans-
late part of the query after which the recognition of the
other entities is aided using semantic similarity and re-
latedness measures between resources connected to the
initial ones in the knowledge base.

5.4. Complex Queries

Simple questions can most often be answered by
translating into a set of simple triple pattern. Problems
arise when several facts have to be found out, connected
and then combined respectivly the resulting query has
to obey certain restrictions or modalities like a result
order, aggregated or filtered results.

YAGO-QA [1] allows nested queries when the sub-
query has already been answered, for example “Who
is the governor of the state of New York?” after “What
is the state of New York?” YAGO-QA extracts facts
from Wikipedia (categories and infoboxes), WordNet
and GeoNames. It contains different surface forms such
as abbreviations and paraphrases for named entities.

PYTHIA [114] is an ontology-based SQA system
with an automatically build ontology-specific lexicon.
Due to the linguistic representation, the system is able
to answer natural language question with linguistically
more complex queries, involving quantifiers, numerals,
comparisons and superlatives, negations and so on.

IBM’s Watson System [53] handles complex ques-
tions by first determining the focus element, which rep-
resents the searched entity. The information about the
focus element is used to predict the lexical answer type
and thus restrict the range of possible answers. This ap-
proach allows for indirect questions and multiple sen-
tences.

Shekarpour et al. [101,104], as mentioned in Sec-
tion 5.2, propose a model that use a combination of

http://www.w3.org/2002/07/owl#sameAs
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knowledge base concepts with a HMM model to handle
complex queries.

Intui2 [33] is an SQA system based on DBpedia
based on synfragments which map to a subtree of the
syntactic parse tree. Semantically, a synfragment is a
minimal span of text that can be interpreted as a RDF
triple or complex RDF query. Synfragments interop-
erate with their parent synfragment by combining all
combinations of child synfragments, ordered by syntac-
tic and semantic characteristics. The authors assume
that an interpretation of a question in any RDF query
language can be obtained by the recursively interpreta-
tion of its synfragments. Intui3 [34] replaces self-made
components with robust libraries such as the neural
networks-based NLP toolkit SENNA and the DBpedia
Lookup service. It drops the parser determined inter-
pretation combination method of its predecessor that
suffered from bad sentence parses and instead uses a
fixed order right-to-left combination.

GETARUNS [111] first creates a logical form out
of a query which consists of a focus, a predicate
and arguments. The focus element identifies the ex-
pected answer type. For example, the focus of “Who
is the major of New York?” is “person”, the predi-
cate “be” and the arguments “major of New York”. If
no focus element is detected, a yes/no question is as-
sumed. In the second step, the logical form is con-
verted to a SPARQL query by mapping elements to
resources via label matching. The resulting triple pat-
terns are then split up again as properties are refer-
enced by unions over both possible directions, as in
({?x ?p ?o} UNION {?o ?p ?x}) because the
direction is not known beforehand. Additionally, there
are filters to handle additional restrictions which can-
not be expressed in a SPARQL query, such as “Who
has been the 5th president of the USA”.

5.5. Distributed Knowledge

If concept information–which is referred to in a
query–is represented by distributed RDF resources, in-
formation needed for answering it may be missing if
only a single one or not all of the knowledge bases
are found. In single datasets with a single source, such
as DBpedia, however, most of the concepts have at
most one corresponding resource. In case of combined
datasets, this problem can be dealt with by creating
sameAs, equivalentClass or equivalentProperty links,
respectively. However, interlinking while answering a
semantic query is a separate research area and thus not
covered here.

Some questions are only answerable with multiple
knowledge bases and we assume already created links
for the sake of this survey. The ALOQUS [72] system
tackles this problem by using the PROTON [29] upper
level ontology first to phrase the queries. The ontology
is than aligned to those of other knowledge bases us-
ing the BLOOMS [71] system. Complex queries are
decomposed into separately handled subqueries after
coreferences20 are extracted and substituted. Finally,
these alignments are used to execute the query on the
target systems. In order to improve the speed and qual-
ity of the results, the alignments are filtered using a
threshold on the confidence measure.

Herzig et al. [60] search for entities and consolidate
results from multiple knowledge bases. Similarity met-
rics are used both to determine and rank results can-
didates of each datasource and to identify matches be-
tween entities from different datasources.

5.6. Procedural, Temporal and Spatial Questions

Procedural Questions Factual, list and yes-no ques-
tions are easiest to answer as they conform directly
to SPARQL queries using SELECT and ASK. Others,
such as why (causal) or how (procedural) questions re-
quire more additional processing.

As there is no SQA system capable of handling pro-
cedural questions, we include KOMODO [18] to mo-
tivate for further research in this area. Instead of an
answer sentence, they return a Web page with step-by-
step instructions on how to reach the goal specified by
the user. This reduces the problem difficulty as it is
much easier to find a Web page which contains instruc-
tions on how to, for example, assemble a “Ikea Billy
bookcase” than it would be to extract, parse and present
the required steps to the user. Additionally, there are ar-
guments explaining reasons for taking a step and warn-
ings against deviation. Instead of extracting the sense of
the question using an RDF knowledge base, KOMODO
submits the question to a traditional search engine. The
highest ranked returned pages are then cleaned and pro-
cedural text is identified using statistic distributions of
certain POS tags.

In basic RDF, each fact, which is expressed by a
triple, is assumed to be true, regardless of circum-
stances. In the real world and in natural language how-
ever, the truth value of many statements is not a con-
stant but a function of either or both the location or
time.

20Such as “List the Semantic Web people and their affiliation.”
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Temporal Questions Tao et al. [110] answer tempo-
ral question on clinical narratives. They introduce the
Clinical Narrative Temporal Relation Ontology (CN-
TRO), which is based on Allen’s Interval Based Tempo-
ral Logic [4] but allows usage of time instants as well
as intervals. This allows inferring the temporal relation
of events from those of others, for example by using the
transitivity of before and after. In CNTRO, measure-
ment, results or actions done on patients are modeled
as events whose time is either absolutely specified in
date and optionally time of day or alternatively in re-
lations to other events and times. The framework also
includes an SWRL [64] based reasoner that can deduce
additional time information. This allows the detection
of possible causalities, such as between a therapy for a
disease and its cure in a patient.

Melo et al. [81] propose to include the implicit tem-
poral and spatial context of the user in a dialog in order
to resolve ambiguities. It also includes spatial, temporal
and other implicit information.

QALL-ME [38] is a multilingual framework based
on description logics and uses the spatial and temporal
context of the question. If this context is not explicitly
given, the location and time are of the user posing the
question are added to the query. This context is also
used to determine the language used for the answer,
which can differ from the language of the question.

Spatial Questions In RDF, a location can be ex-
pressed as 2-dimensional geocoordinates with latitude
and longitude, while three-dimensional representations
(e.g. with additional height) are not supported by the
most often used schema21. Alternatively, spatial rela-
tionships can be modeled which are easier to answer
as users typically ask for relationships and not exact
geocoordinates .

Younis et al. [129] employ an inverted index for
named entity recognition that enriches semantic data
with spatial relationships such as crossing, inclusion
and nearness. This information is then made available
for SPARQL queries.

5.7. Templates

For complex questions, where the resulting SPARQL
query contains more than one basic graph pattern, so-
phisticated approaches are required to capture the struc-
ture of the underlying query. Current research fol-

21see http://www.w3.org/2003/01/geo/wgs84_pos
at http://lodstats.aksw.org

lows two paths, namely (1) template based approaches,
which map input questions to either manually or au-
tomatically created SPARQL query templates or (2)
template-free approaches that try to build SPARQL
queries based on the given syntactic structure of the
input question.

For the first solution, many (1) template-driven ap-
proaches have been proposed like TBSL [115] or
SINA [101,104]. Furthermore, Casia [58] generates the
graph pattern templates by using the question type,
named entities and POS tags techniques. The gener-
ated graph patterns are then mapped to resources using
WordNet, PATTY and similarity measures. Finally, the
possible graph pattern combinations are used to build
SPARQL queries. The system focuses in the generation
of SPARQL queries that do not need filter conditions,
aggregations and superlatives.

Ben Abacha and Zweigenbaum [8] focus on a nar-
row medical patients-treatment domain and use manu-
ally created templates alongside machine learning.

Damova et al. [30] return well formulated natural
language sentences that are created using a template
with optional parameters for the domain of paintings.
Between the input query and the SPARQL query, the
system places the intermediate step of a multilingual
description using the Grammatical Framework [99],
which enables the system to support 15 languages.

Rahoman and Ichise [97] propose a template based
approach using keywords as input. Templates are auto-
matically constructed from the knowledge base.

However, (2) template-free approaches require addi-
tional effort of making sure to cover every possible ba-
sic graph pattern [120]. Thus, only a few SQA systems
tackle this approach so far.

Xu et al. [125] first assigns semantic labels, i.e., vari-
ables, entities, relations and categories, to phrases by
casting them to a sequence labelling pattern recognition
problem which is then solved by a structured percep-
tron. The perceptron is trained using features including
n-grams of POS tags, NER tags and words. Thus, Xser
is capable of covering any complex basic graph pattern.

Going beyond SPARQL queries is TPSM, the open
domain Three-Phases Semantic Mapping [50] frame-
work. It maps natural language questions to OWL
queries using Fuzzy Constraint Satisfaction Problems.
Constraints include surface text matching, preference
of POS tags and the similarity degree of surface forms.
The set of correct mapping elements acquired using the
FCSP-SM algorithm is combined into a model using
predefined templates.

http://www.w3.org/2003/01/geo/wgs84_pos
http://lodstats.aksw.org
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An extension of gAnswer [131] (see Section 5.2) is
based on question understanding and query evaluation.
First, their approach uses a relation mining algorithm
to find triple patterns in queries as well as relation ex-
traction, POS-tagging and dependency parsing. Second,
the approach tries to find a matching subgraph for the
extracted triples and scores them based on a confidence
score. Finally, the top-k subgraph matches are returned.
Their evaluation on QALD 3 shows that mapping NL
questions to graph pattern is not as powerful as gener-
ating SPARQL (template) queries with respect to ag-
gregation and filter functions needed to answer several
benchmark input questions.

6. Discussion

In this section, we discuss each of the seven research
challenges and give a short overview of already estab-

Table 5
Number of publications per year per addressed challenge. Percent-
ages are given for the fully covered years 2011–2014 separately and
for the whole covered timespan, with 1 decimal place. For a full list,
see Table 7.
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2010 1 0 0 0 0 0 1 0

2011 16 11 12 1 3 1 2 2

2012 14 6 7 1 2 1 1 4

2013 20 18 12 2 5 1 1 5

2014 13 7 8 1 2 0 1 0

2015 6 5 3 1 0 1 0 0

all 70 46 42 6 12 4 6 11

percentage

2011 68.8 75.0 6.3 18.8 6.3 12.5 12.5

2012 42.9 50.0 7.1 14.3 7.1 7.1 28.6

2013 85.0 60.0 10.0 25.0 5.0 5.0 25.0

2014 53.8 61.5 7.7 15.4 7.7 7.7 0.0

all 65.7 60.0 8.6 17.1 5.7 8.6 15.7

lished as well as future research directions per chal-
lenge, see Table 6.

Overall, the authors of this survey cannot observe a
research drift to any of the challenges. The number of
publications in a certain research challenge does not de-
crease significantly, which can be seen as an indicator
that none of the challenges is solved yet – see Table 5.
Naturally, since only a small number of publications
addressed each challenge in a given year, one cannot
draw statistically valid conclusions. The challenges pro-
posed by Cimiano and Minock [24] and reduced within
this survey appear to be still valid.

Bridging the (1) lexical gap has to be tackled by ev-
ery SQA system in order to retrieve results with a high
recall. This challenge is addressed by the most meth-
ods like normalization, string similarity measures and
pattern libraries, see Table 6. However, current SQA
systems duplicate already existing efforts or fail to de-
cide on the right technique. Thus, reusable libraries to
lower the entrance effort to SQA systems are needed.

The next challenge, (2) ambiguity is addressed by the
majority of the publications but the percentage does not
increase over time, presumably because of use cases
with small knowledge bases, where its impact is mi-
nuscule. Yet, many approaches reinvent disambigua-
tion efforts and thus–like for the lexical gap–holistic,
knowledge-base aware, reusable systems are needed to
facilitate faster research.

Despite its inclusion since QALD 3 and following,
publications dealing with (3) multilingualism remain a
small minority. By this means, future research has to fo-
cus on language-independent SQA systems to lower the
adoption effort. For instance, DBpedia [76] provides
a knowledge base in more than 100 languages which
could form the base of a next multilingual SQA system.

Moreover, (4) complex operators seem to be used
only in specific tasks or factual questions. Most sys-
tems either use the syntactic structure of the question or
some form of knowledge-base aware logic. Future re-
search will be directed towards domain-independence
as well as non-factual queries.

Approaches using (5) distributed knowledge as well
as those incorporating (6) procedural, temporal and spa-
tial data remain niches. Nevertheless, with the growing
amount of available structured and unstructured data
sources those SQA will be required to account for novel
user information needs.

The (7) templates challenge which subsumes the
question of mapping a question to a query structure is
still unsolved. Although, the development of template
based approaches seems to have decreased in 2014, pre-
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Table 6
Established and actively researched as well as envisioned techniques
for solving each challenge.

Challenge Established Future

Lexical Gap stemming, lemmatization, string similarity, synonyms, vector space model,
indexing, pattern libraries, explicit semantic analysis

combinated efforts,
reuse of libraries

Ambiguity user information (history, time, location), underspecification, machine learning,
spreading activation, semantic similarity, crowdsourcing, Markov Logic Network

holistic,
knowledge-base
aware systems

Multilingualism translation to core language, language-dependent grammar usage of multilingual
knowledge bases

Complex Operators reuse of former answers, syntactic tree-based formulation, answer type
orientation, HMM, logic

non-factual questions,
domain-independence

Distributed Knowledge and
Procedural, Temporal,
Spatial

temporal logic domain specific
adaptors, procedural
SQA

Templates fixed SPARQL templates, template generation, syntactic tree based generation complex questions

sumably because of their low flexibility on open do-
main tasks, still this is the fastest way to develop a novel
SQA system.

7. Conclusions

In this survey, we analyzed 62 systems and their con-
tributions to seven challenges for SQA systems. Seman-
tic question answering is an active and upcoming re-
search field with many existing and diverse approaches
covering a multitude of research challenges, domains
and knowledge bases.

This plethora of existing approaches has lead to a
wide and confusing set of algorithms. Future research
should be directed at more modularization, automatic
reuse, self-wiring and encapsulated modules with their
own benchmarks and evaluations. Thus, novel research
field can be tackled by reusing already existing parts
and focusing on the research core problem itself. An-
other research direction are SQA systems as aggrega-
tors or framework for other systems or algorithms to
benefit of the set of existing approaches. Furthermore,
benchmarking will move to single algorithmic modules
instead of benchmarking a system as a whole. Addition-
ally, we foresee the move from factual benchmarks over
common sense knowledge to more domain specific
questions without purely factual answers. Thus, there
is a movement towards multilingual, multi-knowledge-
source SQA systems that are capable of understanding
noisy, human natural language input.
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Table 7: Surveyed publications from November 2010 to July of 2015, inclusive, along with the challenges they
explicitely address and the approach or system they belong to. Additionally annotated is the use light expressions as
well as the use of intermediate templates. In case the system or approach is not named in the publication, a name is
generated using the last name of the first author and the year of the first included publication.
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Tao et al. [110] Tao10 2010 X

Adolphs et al. [1] YAGO-QA 2011 X X
Blanco et al. [11] Blanco11 2011 X
Canitrot et al. [18] KOMODO 2011 X X
Damljanovic et al. [28] FREyA 2011 X X X
Ferrandez et al. [38] QALL-ME 2011 X X
Freitas et al. [45] Treo 2011 X X X X
Gao et al. [50] TPSM 2011 X X
Kalyanpur et al. [73] Watson 2011 X
Melo et al. [81] Melo11 2011 X X
Moussa and Abdel-Kader [84] QASYO 2011 X X
Ou and Zhu [90] Ou11 2011 X X X X
Shen et al. [105] Shen11 2011 X
Unger and Cimiano [113] Pythia 2011 X
Unger and Cimiano [114] Pythia 2011 X X X X
Bicer et al. [9] KOIOS 2011 X X
Freitas et al. [44] Treo 2011 X

Ben Abacha and Zweigenbaum [8] MM+/BIO-CRF-H 2012 X
Boston et al. [12] Wikimantic 2012 X
Gliozzo and Kalyanpur [53] Watson 2012 X
Joshi et al. [72] ALOQUS 2012 X X
Lehmann et al. [75] DEQA 2012 X X X
Yahya et al. [126] DEANNA 2012
Yahya et al. [127] DEANNA 2012 X X
Shekarpour et al. [101] SINA 2012 X X
Unger et al. [115] TBSL 2012 X X X
Walter et al. [122] BELA 2012 X X X X
Younis et al. [129] Younis12 2012 X X
Welty et al. [123] Watson 2012 X
Elbedweihy et al. [35] Elbedweihy12 2012 X
Cabrio et al. [15] QAKiS 2012 X

Demartini et al. [32] CrowdQ 2013 X X
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Aggarwal et al. [2] Aggarwal12 2013 X X X
Deines and Krechel [31] GermanNLI 2013 X
Dima [33] Intui2 2013 X X
Fader et al. [37] PARALEX 2013 X X X X
Ferre [39] SQUALL2SPARQL 2013 X X X
Giannone et al. [52] RTV 2013 X X
Hakimov et al. [54] Hakimov13 2013 X X X
He et al. [58] CASIA 2013 X X X X X
Herzig et al. [60] CRM 2013 X X X
Huang and Zou [65] gAnswer 2013 X X
Pradel et al. [94] SWIP 2013 X X
Rahoman and Ichise [97] Rahoman13 2013 X
Shekarpour et al. [104] SINA 2013 X X X
Shekarpour et al. [103] SINA 2013 X
Shekarpour et al. [102] SINA 2013 X X X
Tripodi and Delmonte [111] GETARUNS 2013 X X X
Cojan et al. [26] QAKiS 2013 X
Yahya et al. [128] SPOX 2013 X X
Zhang et al. [130] Kawamura13 2013 X X

Carvalho et al. [21] EasyESA 2014 X X
Rani et al. [98] Rani14 2014 X
Zou et al. [131] Zhou14 2014 X
Stewart [107] DEV-NLQ 2014 X
Höffner and Lehmann [63] CubeQA 2014 X X X
Cabrio et al. [17] QAKiS 2014 X
Freitas and Curry [43] Freitas14 2014 X X
Dima [34] Intui3 2014 X X X
Hamon et al. [56] POMELO 2014 X X
Park et al. [91] ISOFT 2014 X X
He et al. [59] CASIA 2014 X X X
Xu et al. [125] Xser 2014 X X
Elbedweihy et al. [36] NL-Graphs 2014 X
Sun et al. [109] QuASE 2015 X X

Park et al. [92] Park15 2015 X X
Damova et al. [30] MOLTO 2015 X
Sun et al. [108] QuASE 2015 X X
Usbeck et al. [120] HAWK 2015 X X X
Hakimov et al. [55] Hakimov15 2015 X
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