
Undefined 1 (2009) 1–5 1
IOS Press

Effective and Efficient Semantic Table
Interpretation using TableMiner+

Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Ziqi Zhang ∗

Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello, Sheffield, S1 4DP
E-mail: ziqi.zhang@sheffield.ac.uk

Abstract. This article introduces TableMiner+, a Semantic Table Interpretation method that annotates Web tables in a both
effective and efficient way. Built on our previous work TableMiner, the extended version advances state-of-the-art in several ways.
First, it improves annotation accuracy by making innovative use of various types of contextual information both inside and outside
tables as features for inference. Second, it reduces computational overheads by adopting an incremental, bootstrapping approach
that starts by creating preliminary and partial annotations of a table using ‘sample’ data in the table, then using the outcome as
‘seed’ to guide interpretation of remaining contents. This is then followed by a message passing process that iteratively refines
results on the entire table to create the final optimal annotations. Third, it is able to handle all annotation tasks of Semantic Table
Interpretation (e.g., annotating a column, or entity cells) while state-of-the-art methods are limited in different ways. We also
compile the largest dataset known to date and extensively evaluate TableMiner+ against four baselines and two re-implemented
state-of-the-art methods. TableMiner+ consistently outperforms all comparative models under all experimental settings. On the
two most diverse datasets covering multiple domains and various table schemata, it achieves improvement in F1 by between 1
and 42 percentage points depending on specific annotation tasks. It also significantly reduces computational overheads in terms
of wall-clock time when compared against classic methods that ‘exhaustively’ process the entire table content to build features
for inference. As a concrete example, compared against an existing method based on joint inference implemented with parallel
computation, the non-parallel implementation of TableMiner+ achieves significant improvement in learning accuracy and almost
orders of magnitude of savings in wall-clock time.

Keywords: Web table, Named Entity Recognition, Named Entity Disambiguation, Relation Extraction, Linked Data, Semantic
Table Interpretation, table annotation

1. Introduction

Recovering semantics from tables is a crucial task
in realizing the vision of Semantic Web. On the one
hand, the amount of high-quality tables containing use-
ful relational data is growing rapidly to hundreds of
millions [4,5]. On the other hand, search engines typ-
ically ignore underlying semantics of such structures
at indexing, hence performing poorly on tabular data
[21,26]. Research directed to this particular problem

*Corresponding author. E-mail: ziqi.zhang@sheffield.ac.uk.

is Semantic Table Interpretation [14,15,21,27,34,25,
35,36,3,26,23], which deals with three types of anno-
tation tasks in tables. Given a well-formed relational
table (e.g., Figure 1) and reference sets of concepts
(or classes, types), named entities (or simply ‘enti-
ties’) and relations, (1) disambiguate entity mentions
in content cells (or simply ‘cells’) by linking them to
the existing reference entities; (2) annotate columns
with semantic concepts if they contain entity mentions
(NE-columns), or properties of concepts if they con-
tain data literals (literal-columns); and (3) identify the
semantic relations between columns. The annotations

0000-0000/09/$00.00 © 2009 – IOS Press and the authors. All rights reserved

2 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

created can enable semantic indexing and search of the
data and used to create Linked Open Data (LOD).

Although classic Natural Language Processing (NLP)
and Information Extraction (IE) techniques address
similar research problems [45,10,6,28], they are tai-
lored for well-formed sentences in unstructured texts,
and are unlikely to succeed on tabular data [21,26].
Typical Semantic Table Interpretation methods make
extensive use of structured knowledge bases, which
contain candidate concepts and entities, each defined
with rich lexical and semantic information and linked
by relations. The general workflow involves: (1) re-
trieving candidates corresponding to table components
(e.g., concepts given a column header, or entities given
the text of a cell) from the knowledge base, (2) repre-
sent candidates using features extracted from both the
knowledge base and tables to model semantic inter-
dependence between table components and candidates
(e.g., the header text of a column and the name of a
candidate concept), and between various table compo-
nents (e.g., a column should be annotated by a con-
cept that is shared by all entities in the cells from the
column), and (3) applying inference to choose the best
candidates.

This work addresses several limitations of state-of-
the-art on three dimensions: effectiveness, efficiency,
and completeness.

Effectiveness - Semantic Table Interpretation meth-
ods so far have primarily exploited features derived
from two sources: the knowledge bases, and table com-
ponents such as header and row content (to be called
‘in-table context’). In this work, we propose to uti-
lize the so-called ‘out-table context’, i.e., the textual
content around and outside tables (e.g., paragraphs,
captions), to further improve interpretation accuracy.
As an example, the first column in the table shown
in Figure 1 (to be called the ‘example table’) has
a header ‘Title’, which is highly ambiguous and ar-
guably irrelevant to the concept we should use to an-
notate the column. However, on the containing web-
page, the word ‘film’ is repeated 17 times. This is a
strong indicator for us to select a suitable concept for
the column. A particular type of out-table context we
utilize is the semantic markups inserted within web-
pages by data publishers such as RDFa/Microdata an-
notations. These markups are growing rapidly as major
search engines use them to enable semantic indexing
and search. When available, they provide high-quality,
important information about the webpages and tables
they contain.

We show empirically that we can derive useful fea-
tures from out-table context to improve annotation ac-
curacy. Such out-table features are highly generic and
generally available. While on the contrary, many exist-
ing methods use knowledge base specific features that
are impossible to generalize, or suffers substantially in
terms of accuracy when they can be adapted, which we
shall show in experiments.

Efficiency - We argue that efficiency is also an im-
portant factor to consider in the task of Semantic Table
Interpretation, even though it has never been explic-
itly addressed before. The major bottleneck is mainly
due to three types of operations: querying the knowl-
edge bases, building feature representations for can-
didates, and computing similarity between candidates.
Both the number of queries and similarity computa-
tion can grow quadratically with respect to the size of
a table as often such operations are required for each
pair of candidates [21,26,24]. Empirically, Limaye et
al. [21] show that the actual inference algorithm only
consumes less than 1% of total running time. Using
a local copy of the knowledge base only partially ad-
dresses the issue but introduces more problems. First,
hosting a local knowledge base requires infrastructural
support and involves set-up and maintenance. As we
enter the ‘Big-Data’ era, knowledge bases are growing
rapidly towards a colossal structure such as the Google
Knowledge Graph [1], which constantly integrates in-
creasing numbers of heterogeneous sources. Maintain-
ing a local copy of such a knowledge base is likely
to require an infrastructure that not every organization
can afford [29]. Second, local data are not guaranteed
to be up-to-date. Third, scaling up to very large amount
of input data requires efficient algorithms in addition
to parallelization [32], as the process could be bound
by the large number of I/O operations. Therefore in
our view, a more versatile solution is cutting down the
number of queries and data items to be processed. This
reduces I/O operations in both local and remote scenar-
ios, also reducing costs associated with making remote
calls to Web service providers.

In this direction, we identify an opportunity to im-
prove state-of-the-art in terms of efficiency. To illus-
trate, consider the example table that in reality contains
over 60 rows. To annotate each column, existing meth-
ods would use content from every row in the column.
However, from a human reader’s point of view, this
is unnecessary. Simply reading the the eight rows one
can confidently assign a concept to the column to best
describe its content. Being able to make such inference
with limited data would give substantial efficiency ad-

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 3

Fig. 1. An example Wikipedia webpage containing a relational table (Last retrieved on 9 April 2014).

vantage to Semantic Table Interpretation algorithms,
as it will significantly reduce the number of queries
to the underlying knowledge bases and the number of
candidates to be considered for inference.

Completeness - Many existing methods only deal
with one or two types of annotation tasks in a table
[35,36]. In those that deal with all tasks [21,27,25,
26,34], only NE-columns are considered. As shown
in Figure 1, tables can contain both NE-columns con-
taining entity mentions, and literal-columns contain-
ing data values of entities on the corresponding rows.
Methods such as Limaye et al. [21] and Mulwad et
al. [26] can recognize relations between the first and
third columns, but are unable to identify the relation
between the first and the second columns. Therefore,
we argue that a ‘complete’ Semantic Table Interpreta-
tion method should handle columns of both data types.

To address these issues, we developed TableMiner
previously [42] that uses features from both in- and
out-table context and annotates NE-columns and cells
in a relational table based on the principle of ‘start
small, build complete’. That is, (1) create prelimi-
nary, likely erroneous annotations based on partial ta-
ble content and a simple model assuming limited in-
terdependence between table components; (2) and then
iteratively optimize the preliminary annotations by en-
forcing interdependence between table components. In
this work we extend it to build TableMiner+, by adding

‘subject column’ [35,36] detection, relation enumera-
tion, and improving the iterative optimization process.
Concretely, TableMiner+ firstly interprets NE-columns
(to be called column interpretation), while coupling
column classification and entity disambiguation in a
mutually recursive process that consists of a LEARN-
ING phase and an UPDATE phase. The LEARNING
phase interprets each column independently by firstly
learning to create preliminary column annotations us-
ing an automatically determined ‘sample’ from the
column, followed by ‘constrained’ entity disambigua-
tion of the cells in the column (limiting candidate en-
tity space using preliminary column annotations). The
UPDATE phase iteratively optimizes the classification
and disambiguation results in each column based on
a notion of ‘domain consensus’ that captures inter-
column and inter-task dependence, creating a global
optimum. For relation enumeration, TableMiner+ de-
tects a subject column in a table and infers its relations
with other columns (both NE- and literal-columns) in
the table.

TableMiner+ is evaluated on four datasets contain-
ing over 15,000 tables, against four baselines and
two re-implemented state-of-the-art methods. It con-
sistently obtains the best performance on all datasets.
On the two most diverse datasets covering multiple do-
mains and various table schemata, it obtains an im-
provement of about 1-18 percentage points in disam-

4 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

biguation, 6-42 in classification, and 4-16 in relation
enumeration. It is also very efficient, contributing up to
66% reduction in terms of the amount of candidates to
be processed and up to 29% savings in wall-clock time
compared against exhaustive baseline methods. Even
in the setting where a local copy of the knowledge base
is used, TableMiner+ delivers almost orders of magni-
tude savings in wall-clock time compared against one
re-implemented state-of-the-art method.

The remainder of this paper is organized as follows.
Section 2 defines terms and concepts used in the rel-
evant domain. Section 3 discusses related work. Sec-
tions 4 to 9 introduce TableMiner+ in detail. Sections
10 and 11 describe experiment settings and discuss re-
sults, followed by conclusion in Section 12.

2. Terms and concepts

A relational table contains regular rows and columns
resembling tables in traditional databases. In practice,
tables containing complex structures constitute a small
population and have not been the focus of research. In
theory, complex tables can be interpreted by adding a
pre-process that parse complex structures using meth-
ods such as Zanibbi et al. [39]

Relational tables may or may not contain a header
row, which is typically the first row in a table. They of-
ten contain a subject column that usually (but not nec-
essarily) corresponds to the ‘primary key’ columns in a
database table [35,36]. This contains the set of entities
the table is about (subject entities, e.g., column ‘Title’
in Figure 1 contains a list of films the table is about),
while other columns contain either entities forming bi-
nary relationships with subject entities, or literals de-
scribing attributes of subject entities.

A knowledge base defines a set of concepts (or
types, classes), their object instances or entities, liter-
als representing concrete data values, and semantic re-
lations that define possible associations between enti-
ties (hence also between concepts they belong to), or
between an entity and a literal, in which case the rela-
tion is usually called a property of the entity (hence
a property of its concept) and the literal as the prop-
erty value. In the generic form, a knowledge base is a
liked data set containing a set of triples, statements,
or facts, each composed of a subject, predicate and ob-
ject. The subject could be a concept or entity, the ob-
ject could be a concept, entity, or literal, and the predi-
cate could be a relation or property. A knowledge base

can be a populated ontology, such as the YAGO1 and
DBpedia2 datasets, in which case a concept hierarchy
is defined. However this is not always true as some
knowledge bases do not define strict ontology but loose
concept networks, such as Freebase3.

The task of Semantic Table Interpretation addresses
three annotation tasks. Named Entity Disambiguation
associates each cell in NE-columns with one canon-
ical entity; column classification annotates each NE-
column with one concept, or in the case of literal-
columns, associates the column to one property of the
concept assigned to the subject column of the table;
Relation Extraction (or enumeration) identifies binary
relations between NE-columns, or in the case of one
NE-column and a literal-column and given that the
NE-column is annotated by a specific concept, identi-
fies a property of that concept that could explain the
data literals. The candidate entities, concepts and rela-
tions are drawn from the knowledge base.

Using the example table and Freebase as example,
the first column can be considered a reasonable subject
column and should be annotated by the Freebase type
‘Film’ (URI ‘fb4:/film/film’). ‘A Difficult Life’ in the
first column should be annotated by ‘fb:/m/02qlhz2’
that denotes a movie directed by ‘Dino Risi’ (in the
third column, ‘fb:/m/0j_nhj’). The relation between the
first and third column should be annotated as ‘Directed
by’ (‘fb:/film/film/directed_by’). And the relation be-
tween the first and second column (which is a literal-
column) should be the property of ‘Film’: ‘initial re-
lease date’ (‘fb:/film/film/initial_release_date’), which
we also use to annotate the second column.

3. Related work

3.1. Legacy tabular data to linked data

Research on converting tabular data in legacy data
sources to linked data format has made solid contri-
bution toward the rapid growth of the LOD cloud in
the past decade [12,19,30,7]. The key difference from
the task of Semantic Table Interpretation is that the
focus is on data generation rather than interpretation,
since the goal is to pragmatically convert tabular data
from databases, spreadsheets, and similar data struc-

1http://www.mpi-inf.mpg.de/yago-naga/yago/
2http://wiki.dbpedia.org/Ontology
3http://www.freebase.com
4fb:http://www.freebase.com

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 5

tures into RDF. Typical methods require manually (or
partially automated) mapping the two data structures
(input and output RDF), and they do not link data to
existing concepts, entities and relations from the LOD
cloud. As a result, the implicit semantics of the data
remain uncovered.

3.2. General NLP and IE

Some may argue to use the general purpose NLP/IE
methods for Semantic Table Interpretation, due to their
highly similar objectives. This is infeasible for a num-
ber of reasons. First, state-of-the-art methods [31,17]
are typically tailored to unstructured text content that
is different from tabular data. The interdependence
among the table components cannot be easily modeled
in such methods [22]. Second and particularly for the
tasks of Named Entity Classification and Relation Ex-
traction, classic methods require each target semantic
label (i.e., concept or relation) to be pre-defined and
learning requires training or seed data [28,40]. In Se-
mantic Table Interpretation however, due to the large
degree of variations in table schemata (e.g., Limaye et
al. [21] use a dataset of over 6,000 randomly crawled
Web tables of which no information about the table
schemata is known a priori), defining a comprehen-
sive set of semantic concepts and relations and sub-
sequently creating necessary training or seed data are
infeasible.

A related IE task tailored to structured data is wrap-
per induction [18,9], which automatically learns wrap-
pers that can extract information from regular, recur-
rent structures (e.g., product attributes from Amazon
webpages). In the context of relational tables, wrap-
per induction methods can be adapted to annotate table
columns that describe entity attributes. However, they
also require training data and the table schemata to be
known a priori.

3.3. Table extension and augmentation

Table extension and augmentation aims at gather-
ing relational tables that contain the same entities but
cover complementary attributes of the entities, and in-
tegrate these tables by joining them on the same en-
tities. For example, Yakout et al. [38] propose Info-
Gather for populating a table of entities with their at-
tributes by harvesting related tables on the Web. The
users need to either provide the desired attribute names
of the entities, or example values of their attributes.
The system can also discover the set of attributes for

similar entities. Bhagavatula et al. [2] introduce Wik-
iTables, which given a query table and a collection of
other tables, identifies columns from other tables that
would make relevant additions to the query table. They
first identify a reference column (e.g., country names
in a table of country population) in the query table to
use for joining, then find a different table (e.g. a list of
countries by GDP) with a column similar to the refer-
ence column, and perform a left outer join to augment
the query table with an automatically selected column
from the new table (e.g., the GDP amounts). Lehm-
berg et al. [20] create the Mannheim Search Joins En-
gine with the same goal as WikiTables but focus on
handling tens of millions of tables from heterogeneous
sources.

The key difference between these systems and the
task of Semantic Table Interpretation is that they focus
on integration rather than interpretation. The data col-
lected are not linked to knowledge bases and ambigu-
ity still remains.

3.4. Semantic Table Interpretation

Hignette et al. [14,15] and Buche et al. [3] pro-
pose methods to identify concepts represented by ta-
ble columns and detect relations present in tables in a
domain-specific context. An NE-column is annotated
based on two factors: similarity between the header
text of the column and the name of a candidate con-
cept; plus the the similarities calculated for each cell
in the column and each term in the hierarchical paths
containing the candidate concept. For relations, they
only detect the presence of semantic relations in the
table without specifying the columns forming binary
relations.

Venetis et al. [35] annotate table columns and iden-
tify relations between the subject column and other
columns using types and relations from a database con-
structed by mining the Web using lexico-syntactic pat-
terns such as the Hearst patterns [13]. The database
contains co-occurrence statistics about the subject and
object of triples. For example, how many times the
word ‘cat’ and ‘animal’ has been extracted by the pat-
tern <?, suchas, ? > representing the is-a relation be-
tween concept and instances. A maximum likelihood
inference model predicts the best type for a column
to be the one maximizing the probability of seeing all
the values in the column given that type for the col-
umn. Such probability is computed based on the co-
occurrence statistics gathered in the database. Relation
interpretation follows the same principle.

6 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Likewise, Wang et al. [36] argue that tables describe
a single entity type (concept) and its attributes and
therefore, consist of an entity column (subject column)
and multiple attribute columns. The goal is to firstly
identify the entity column in the table, then associate
a concept from the Probase knowledge base [37] that
best describes the table schema. Essentially this allows
annotating the subject NE-column and literal-columns
using properties of the concept, also identifying rela-
tions between the subject column and other columns.
Probase is a probabilistic database built in the similar
way as that in Venetis et al. [35] and contains an in-
verted index that supports searching and ranking can-
didate concepts given a list of terms describing pos-
sible concept properties, or names describing possi-
ble instances. The method heavily depends on these
features and the probability statistics gathered in the
database.

Muñoz et al. [23] extract RDF triples for relational
tables from Wikipedia articles. The cells in the tables
must have internal links to other Wikipedia articles.
These are firstly mapped to DBpedia named entities
based on the internal links, then to derive relations be-
tween two entities on the same row and from differ-
ent columns, the authors query the DBpedia dataset for
triples in the form of < subject, ?, object >, where
subject and object are replaced by the two mapped en-
tities. Any predicates found in the query result are con-
sidered as relations between the two entities. The work
is later extended in Muñoz et al. [24] by adding a ma-
chine learning process to filter triples that are likely to
be incorrect, exploiting features derived from both the
knowledge base and the text content from the target
cells.

Zwicklbauer et al. [46] use a simple majority vote
model for column classification. Each candidate entity
in the cells of the column casts a vote to the concept
it belongs to, and the one that receives the most votes
is the concept used to annotate the column. They show
that for this very specific task, it is unnecessary to ex-
haustively disambiguate each cell in a column. Instead,
comparable accuracy can be obtained by using a frac-
tion of the cells from the column. However, the sample
size is arbitrarily decided.

Syed et al. [34] deal with all three annotation tasks
using DBpedia and Wikitology [33], the latter of which
contains an index of Wikipedia articles describing en-
tities and a classification system that integrates several
vocabularies including the DBpedia ontology, YAGO,

WordNet5 and Freebase. The method begins by firstly
annotating each NE-column based on candidate en-
tities from every cell in the column. Candidate enti-
ties for each cell are retrieved by composing structured
queries to match the cell text, the row content, and the
column header against different fields defined in the
Wikitology index, such as the title and redirects, the
first sentence and links from candidate entities’ origi-
nal Wikipedia articles. Candidate concepts for the col-
umn combines the types associated with each candi-
date entity from each cell, and the scores are based on
the number of candidate entities associated with that
concept and the relevance score of candidate entities
in the search results returned by Wikitology. The col-
umn annotations are then used as input in Named En-
tity Disambiguation, which is cast as queries to Wiki-
tology with new constraints using the column’s anno-
tation. Finally, relations between two NE-columns are
derived based on the similar method by Muñoz et al.
[23] using DBpedia. This method is later used in Mul-
wad et al. [27] and Mulwad et al. [25].

Limaye et al. [21] propose to model table compo-
nents and their interdependence using a probabilistic
graphical model. The model consists of two compo-
nents: ‘variables’ that model different table compo-
nents, and ‘factors’ that are further divided into node
factors modeling the compatibility between the vari-
able and each of its candidate, and edge factors mod-
eling the compatibility between the variables believed
to be correlated. For example, given an NE-column,
the header of the column is a variable that takes val-
ues from a set of candidate concepts; and each cell in
the column is a variable that takes values from a set of
candidate entities. The node factor for the header could
model the compatibility between the header text and
the names of each candidate concept; while the edge
factor could model the compatibility between any can-
didate concept for the header and any candidate entity
from each cell. The strength of compatibility could be
measured using methods such as string similarity met-
rics [11] and semantic similarity measures [43]. Then
the task of inference amounts to searching for an as-
signment of values to the variables that maximizes the
joint probability. A unique feature of this method is
that it solves the three annotation tasks simultaneously,
capturing interdependence between various table com-
ponents at inference, while other methods either tackle

5http://wordnet.princeton.edu/

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 7

individual annotation tasks or tackles each separately
and sequentially.

Mulwad et al. [26] argue that computing the joint
probability distribution in Limaye’s method is very ex-
pensive. Built on the earlier work by Syed et al. [34]
and Mulwad et al. [27,25], they propose a light-weight
semantic message passing algorithm that applies infer-
ence to the same kind of graphical model. This is sim-
ilar to TableMiner+ in the way that the UPDATE phase
of TableMiner+ can be considered as a similar seman-
tic message passing process. However, TableMiner+

is fundamentally different since it (1) adds a subject
column detection algorithm; (2) deals with both NE-
columns and literal-columns, while Mulwad et al. only
handle NE-columns; (3) uses an efficient approach
bootstrapped by sampled data from the table while
Mulwad et al. build a model that approaches the task in
an exhaustive way; (4) defines and uses context around
tables as features while Mulwad et al. has used knowl-
edge base specific features; (5) uses different methods
for scoring and ranking candidate entities, concepts
and relations; and (6) models interdependence differ-
ently which, if transforms to an equivalent graphical
model, would result in fewer factor nodes.

3.5. Remark

Existing Semantic Table Interpretation methods
have several limitations. First, they have not consid-
ered using features from out-table context, which is
highly generic and generally available. Instead, many
have used knowledge base specific features that are
difficult or impossible to generalize. For example, the
co-occurrence statistics used by Venetis et al. [35]
and Wang et al. [36] are unavailable in knowledge
bases such as YAGO, DBpedia, and Freebase. Meth-
ods such as Limaye et al. [21] and Mulwad et al. [26]
use the concept hierarchy in their knowledge bases.
However, Freebase does not have a strict concept hier-
archy. These methods can become less effective when
adapted to different knowledge bases, as we shall show
later.

Second, no existing methods explicitly address effi-
ciency, which we argue as an important factor in Se-
mantic Table Interpretation tasks. Current methods are
non-efficient because they typically adopt an exhaus-
tive strategy that examines the entire table content,
e.g., column classification depends on every cell in the
column. This results in quadratic growth of the num-
ber of computations and knowledge base queries with
respect to the size of tables, as such operations are usu-

ally required for every pair of candidates, such as can-
didate relation lookup between every pair of entities on
the same row [26,23,24], and similarity computation
between every pair of candidate entity and concept in
a column [21]. This can also be redundant, as Zwickl-
bauer et al. [46] have empirically shown that compara-
ble accuracy can be obtained by using only a fraction
of data (i.e., sample) from the column. However, there
remains the challenge to automatically determine the
optimal sample size and elements.

Further, existing methods are incomplete, since they
either only tackle certain annotation tasks [35,36], or
only deal with NE-columns [21,27,25,26,34].

In an attempt to address some of the above issues,
we previously developed a prototype TableMiner [42]
that is able to annotate NE-columns and disambiguate
entity cells in an incremental, mutually recursive and
bootstrapping approach seeded by automatically se-
lected sample from a table. And in Zhang [41] we fur-
ther explored different methods for selecting the sam-
ple and its effect on accuracy. This work joins the two
and largely extends them in a number ways: (1) adding
a new algorithm for subject column detection and for
relation enumeration; (2) revising the column classifi-
cation and entity disambiguation processes (primarily
in the UPDATE process); (3) performing significantly
more comprehensive experiments to thoroughly evalu-
ate the new method; and (4) releasing both the dataset
and software to encourage future research.

4. Overview

Figure 2 shows the data flow and processes of
TableMiner+. Given a relational table it firstly detects a
subject column (Section 6), which is used by later pro-
cesses of column interpretation and relation enumer-
ation. Then TableMiner+ performs NE-column inter-
pretation, coupling column classification with entity
disambiguation in an incremental, mutually recursive,
bootstrapping approach. This starts with a LEARNING
phase (Section 7) that interprets one NE-column at a
time independently to create preliminary concept an-
notation for an NE-column and entity annotation for
the cells, followed by an UPDATE phase (Section 8)
that iteratively revises the annotations by enforcing
interdependence between columns, and between the
classification and disambiguation results.

In the LEARNING phase, for preliminary column
classification (Section 7.2), TableMiner+ works in an
incremental, iterative manner to gather evidence from

8 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

each cell in the column at a time until it reaches a
stopping criteria (automatically determined), usually
before covering all cells in the column. Therefore,
TableMiner+ can use only partial content in the column
to perform column classification. We say that it uses
a ‘sample’ from the column for the task and each el-
ement in the sample is a cell which TableMiner+ has
used as evidence for preliminary column classification
until stop. In theory, the size and elements of the sam-
ple can affect the outcome and hence the accuracy of
classification. For this reason, a sample ranking pro-
cess (Section 7.1) precedes preliminary column clas-
sification to re-order table rows based on the cells in
the target column with a goal to optimize the sam-
ple to obtain the highest accuracy of classification.
Next, the preliminary concept annotation for the col-
umn is used to constrain entity candidate space in dis-
ambiguating cells in the column (preliminary cell dis-
ambiguation, Section 7.3). Using a sample for column
classification and constraining entity candidate space
allows TableMiner+ to be more efficient than state-of-
the-art methods that exhaustively process all content
from a column.

The UPDATE phase begins by taking the entity an-
notations in all NE-cells to create a ‘domain represen-
tation’ (Section 8.1), which is compared against candi-
date concepts for each NE-column to revise the prelim-
inary column classification results (Section 8.2). If any
NE-column’s annotation changes due to this process,
the newly elected concept is then used to revise dis-
ambiguation results in that column (Section 8.3). This
process repeats until no changes are required.

Finally relation enumeration (Section 9) discovers
binary relations between the subject column and other
NE-columns; or identifies a property of the concept
used to annotate the subject column to best describe
data in the literal-columns. In the latter case, the prop-
erty is considered both the annotation for the literal-
column, and the relation between the subject column
and the literal-column.

The incremental, iterative process used by prelimi-
nary column classification is implemented as a generic
incremental inference with stopping algorithm (I-Inf),
which is also used for subject column detection and is
described in Section 5.

At different steps, TableMiner+ uses features from
both in-table and out-table context listed in Table
1. In particular, out-table context includes table cap-
tions, webpage title, surrounding paragraphs, seman-
tic markups inserted within webpages if any. Table
captions and the title of the webpage may mention

key terms that are likely to be the focus concept in
a table. Paragraphs surrounding tables may describe
the content in the table, thus containing indicative
words of the concepts, relations, or entities in the ta-
ble. Semantic markups use certain vocabularies (e.g.,
schema.org) to annotate important pieces of informa-
tion on a webpage. For example, Figure 3 shows an
annotation on the IMDB webpage of the movie ‘The
Godfather (1972)’. Here it annotates the name of the
director for the movie. Intuitively if we use this name
as contextual features to disambiguate names in the ta-
ble of cast on this webpage, we may want to give it a
higher weight than other features not included in such
semantic markups.

Table 1
Types of context from which features are created for Semantic Table
Interpretation.

In-table context Out-table context
column header webpage title
row content table caption and/or title
column content paragraphs (unstructured text)

semantic markups

In the following sections we describe details of each
component, and we will highlight the changes or addi-
tions to the previous TableMiner (if any) in each sec-
tion. In Appendix F we list an index of mathemati-
cal notations and equations that are used throughout
the remainder of this article. Readers may use this for
quick access to their definitions.

5. I-Inf

We firstly describe the I-Inf algorithm that we have
previously introduced in [42]. Here we generalize it so
it can be used by both subject column detection and
preliminary column classification. As shown in Algo-
rithm 1, it starts by taking input a dataset D, an empty
set of key-value pairs < k, v > denoting the state, and
i indicates the current iteration number. Then it itera-
tively processes each single data item d from D (func-
tion process) to generate a set of key-value pairs, which
are used to update the state (function update) by either
resetting scores of existing key-value pairs or adding
new pairs. At the end of each iteration, I-Inf checks for
convergence (function convergence), in which case the
algorithm stops. To do so, it computes entropy of the
current and previous iterations using the corresponding
sets of key-value pairs (Equation 1), and convergence

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 9

Fig. 2. The overview of TableMiner+. d - table data. Grey colour indicates annotated table elements. Angle brackets indicates annotations. Inside
a table: H - header. E, a, b, x, z - content cells

Fig. 3. Example semantic markup in a webpage.

happens if the difference between the two entropy val-
ues is less than a threshold.

entropy(i) =

−
∑

<k,v>∈{<k,v>}i

P (< k, v >) log2 P (< k, v >)

(1)

P (< k, v >) =
v∑

<k,v>∈{<k,v>}i
v

(2)

where i indicates the ith iteration. Intuitively, when
the entropy converges, we expect P (< k, v >) for

Algorithm 1 I-inf
1: Input: i = 0, D, {< k, v >}i ← ∅
2: Output: the collection of < k, v > ranked by v
3: for all d ∈ D do
4: i = i+ 1
5: {< k, v >}i−1 ← {< k, v >}i
6: {< k′, v′ >} ← process(d)
7: update({< k, v >}i, {< k′, v′ >})
8: if convergence({< k, v >}i, {< k, v >}i−1)

then
9: break

10: end if
11: end for

each key-value pair to also converge. This could
suggest that the processing of additional data items
changes little the value of each key-value pair with re-
spect to the sum for all pairs (i.e., the denominator in
Equation 2). Effectively this means that although the
absolute value for each pair still changes upon addi-
tional data items, the change in their relative values
may be neglectable and hence their rankings are sta-

10 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

bilized. I-Inf will be discussed in more details later
where they are used in specific cases.

6. Subject column detection

Although Venetis et al. [35] have introduced a su-
pervised subject column classifier, in this work we pro-
pose a new unsupervised subject column detection al-
gorithm that uses a different set of features listed in
Table 2.

6.1. Preprocessing

Subject column detection begins by classifying cells
from each column (denoted by Tj) into one of the
data types: ‘empty’, ‘named entity’, ‘number’, ‘date
expression’, ‘long text’ (e.g., sentence, or paragraph),
and ‘other’. This is done by using simple regular ex-
pressions that examine the syntactic features of cell
text, such as number of words, capitalization, mentions
of months or days in a week. A vast amount of liter-
ature can be found on this topic [3,14,15]. Then each
column is assigned a most frequent datatype by count-
ing the number of cells belonging to that type. The
only exception is that a column is empty only if all
cells are empty.

Next, if a candidate NE-column has a column header
that is a preposition word, it is discarded. An example
like this is shown in Figure 4, where the columns ‘For’
and ‘Against’ are clearly not subject columns but rather
form relations with the subject column ‘Batsman’.

Fig. 4. An example table containing columns with preposition words
as headers.

6.2. Features

Next, features listed in Table 2 are constructed for
each remaining candidate NE-column. The fraction of
empty cells (emc) of a column is simply the number
of empty cells divided by the number of rows in the
column. Likewise, the fraction of cells with unique
content (uc) is a ratio between the number of cells
with unique text content and the number of rows. The
distance from the first NE-column (df) counts how

many columns the current column is away from the
first candidate NE-column from the left. NE-columns
are also checked by regular expressions to identify the
number of cells likely to contain acronyms or ids such
as airline IACO codes (e.g., using features like upper-
case letters and presence of white spaces). A column
that is an acronym or id column (ac(Tj) = 1, or 0
otherwise) is disfavored. The intuition is that as the
subject of a table one would prefer to use full names of
entities for the purpose of clarity.

Context match score (cm) for a column Tj counts
the frequency of the column header’s composing
words in the header’s context:

cm(Tj) =
∑
xj∈Xj

∑
w∈bow(Tj)

freq(w, xj)× wt(xj)

(3)

where xj ∈ Xj are different types of context for
the header of column Tj , bow(Tj) returns the bag-of-
words representation of the column header’s text l(Tj),
and wt(xj) is the weight given to a specific type of
context. Intuitively, the more frequent a column header
text is repeated in the table’s context the more likely
it is the subject column of the table. The context el-
ements used for computing cm include webpage title,
table caption and surrounding paragraphs.

Web search score (ws) of a column gathers evi-
dence from the Web to predict the likelihood of it being
the subject column, and it is contributed by individual
rows in the table. Given a table row Ti, a query string
is firstly created by concatenating all text content from
cells on this row, i.e., l(Ti,j) for all j. Then the query is
sent to a search engine to retrieve the top n webpages.
Let P denote these webpages, then each NE-cell that
composes the query receives a score as:

ws(Ti,j) = countp(Ti,j , P)+countw(Ti,j , P) (4)

countp(Ti,j , P) =∑
p∈P

(freq(l(Ti,j), ptitle)× 2 + freq(l(Ti,j), psnippet))

(5)

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 11

Table 2
Features used for subject column detection. Examples are based on
the visible content in the example table

Feature Notation Example
Fraction of empty cells emc 0.0 for column ‘Title’
Fraction of cells with unique content uc 1.0 for column ‘Title’, 5/8 for column ‘Director’
If >50% cells contain acronym or id ac -
Distance from the first NE-column df 0 for column ‘Title’, 2 for column ‘Director’
Context match score cm -
Web search score ws -

countw(Ti,j , P) =∑
p∈P

∑
w∈bowset(Ti,j)

freq−(w, ptitle)× 2 + freq−(w, psnippet)

|bow(Ti,j)|

(6)

countp sums up the frequency of the cell text l(Ti,j)
in both the titles (ptitle) and snippets (psnippet) of re-
turned webpages. Frequency in titles are given double
weight as they are considered to be more important.
countw firstly transforms cell text into a set of unique
words bowset(Ti,j), then counts frequency of each
word. freq− ensures those occurrences of w that are
part of occurrences of l(Ti,j) are eliminated and not
double counted. bow(Ti,j) returns the bag-of-words
representation of the cell text.

For each row, the cell that receives the highest score
is considered to be containing the subject entity for the
row. The intuition is that the query should contain the
name of the subject entity plus contextual information
of the entity’s attributes. When searched, it is likely
to retrieve more documents regarding the subject en-
tity than its attributes, and the subject entity is also ex-
pected to be repeated more frequently.

Example 1. For the first content row in the example
table, we create a query by concatenating text from the
1st, 3rd and 4th cells on the row (only NE-columns
are candidates of subject columns), i.e., ‘big deal
on madonna street, mario monicelli, marcello mas-
troianni’. This is searched on the Web to return a list of
documents. Then for each document, we count the fre-
quency of each phrase in the title and snippet and com-
pute countp for each corresponding cell. Next, take the
1st cell for example, ‘big deal on madonna street’ is
transformed to a set of unique words {‘big’, ‘deal’,
‘madonna’, ‘street’}, and we count the frequency of
each word in the titles and snippets of each document

to compute countw. If any occurrence is part of an oc-
currence of the whole phrase that is already counted in
countp, we ignore them. Likewise, we repeat this for
the 3rd and 4th cells. Finally, we find that the 1st cell
receives the highest Web search score, and we mark it
as the subject entity for this row.

In principle the Web search score of a column
ws(Tj) simply adds up ws(Ti,j) for every row i in the
column. However, this is practically inefficient and ex-
tremely resource consuming as Web search APIs typ-
ically has limited quota. In fact, it is also unneces-
sary. Again using the example table, we do not need
to read all 60 rows to decide the column ‘Title’ as the
subject column. Therefore, we compute Web search
scores of a column in the context of the I-Inf algo-
rithm. To do so, we simply need to define D as the
collection of table rows Ti, and each key-value pair as
< Tj , ws(Tj) >.

Example 2. Following Example 1, we obtain three
key-value pairs after processing the first content row:
< T1, 10 >, < T3, 5 > and < T4, 2 >, where T1, T3
and T4 are columns and 10, 5 and 2 are hypothetical
Web search scores for the cell T1,1, T1,3, and T1,4 re-
spectively. We continue to process the remaining rows
one at a time by repeating the process, each time up-
dating the set of key-value pairs with the Web search
scores obtained for the cells from the new row. The
entropy of the current and the previous iterations are
calculated based on the key-value pairs, and if conver-
gence happens we stop and obtain the final scores of
each column.

6.3. Detection

Features (except df) are then normalized into rela-
tive scores by the maximum score of the same feature
type. Next, they are combined to compute a final sub-

12 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

ject column score subcol(Tj) and the column with the
highest score is chosen as subject column.

subcol(Tj) =

ucnorm(Tj) + 2(cmnorm(Tj) + wsnorm(Tj))− emcnorm(Tj)√
df(Tj) + 1

(7)

where norm indicates normalized scores. uc, cm and
ws are all indicative features of subject column in a ta-
ble. However, uc is given half the weight of cm and
ws. This is rather arbitrary and the intuition is that sub-
ject columns do not necessarily contain unique values
at every row [35], hence uc is a weaker indicator than
others. A column that contains empty cells is penal-
ized, and the total score is normalized by its distance
from the left-most NE-column as subject columns tend
to appear on the left and before columns describing
subject entities’ attributes.

7. NE-Column interpretation - the LEARNING
phase

After subject column detection, TableMiner+ pro-
ceeds to the LEARNING phase where the goal is to per-
form preliminary column classification and cell disam-
biguation on each NE-column independently.

In preliminary column classification (Section 7.2),
TableMiner+ generates candidate concepts for an NE-
column and computes confidence scores for each can-
didate. Intuitively, if we already know the entity an-
notation for each cell, we can define candidate con-
cepts as the set of concepts associated with the entity
from each cell. However, cell annotations are not avail-
able at this stage. To cope with this ‘cold-start’ prob-
lem, preliminary column classification encapsulates a
cold-start disambiguation process in the context of the
I-Inf algorithm. Specifically, in each iteration, a cell
taken from the column is disambiguated by compar-
ing the feature representation of each candidate entity
against the feature representation of that cell. Then the
concepts associated with the highest scoring (i.e., the
winning) entity6 are gathered to create a set of candi-
date concepts for the column. The candidate concepts

6Practically, our implementation also takes into account the fact
that there can be multiple entities with the same highest score from
a cell. For the sake of simplicity, throughout the discussion we as-
sume there is only one. This also applies to the winning concept on
a column and relation between two column.

are scored, and compared against those from the previ-
ous iteration. Preliminary column classification ends if
convergence happens, and the winning concept for the
column is selected to annotate the column. Note that
the ultimate goal of cold-start disambiguation is to cre-
ate candidate concepts for the column. Thus the dis-
ambiguation results can be changed in the later phase.

Since I-Inf enables TableMiner+ to use only a sam-
ple of the column data to create preliminary column
annotations, the sample ranking process (Section 7.1)
is applied before preliminary column classification to
ensure that the latter uses an optimal sample which po-
tentially contributes to the highest accuracy.

In preliminary cell disambiguation (Section 7.3),
the annotation of the column created in the previous
stage is used to (1) revise cold-start disambiguation re-
sults in cells that have been processed; and (2) con-
strain candidate entity space in the disambiguation of
the remaining cells.

For both preliminary column classification and
cell disambiguation, we mostly7 follow our previous
method in Zhang [42]. For the sample ranking pro-
cess we use our method described in Zhang [41]. For
the sake of completeness we describe details of these
work below. We also renamed many concepts and a
comprehensive list can be found in Appendix A.

7.1. Sample ranking

Preliminary column annotations depend on cold-
start disambiguation of the cells in the sample. For this
reason, we hypothesize that a good sample should con-
tain cells that are ‘easy’ to disambiguate, such that it
is more likely to obtain high disambiguation accuracy,
which then may contribute to high classification ac-
curacy. We further hypothesize that a cell makes an
easy disambiguation target if: (1) we can create rich
feature representation of its candidate entities, or its
context, or both; and (2) the text content is less am-
biguous hence fewer candidates are retrieved (i.e., if a
name is used by one or very few entities). Previously,
we introduced four methods based on these hypothe-
sis and have shown that they have comparable perfor-
mance in terms of both accuracy and efficiency. Here
we choose the method based on ‘feature representation
size’, which is slightly more balanced.

Given an NE-column, each cell is firstly given a
preference score. Then the rows containing these cells

7Minor modifications will be pointed out.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 13

are re-ordered based on the descending order of the
scores. Since preliminary column classification fol-
lows an incremental, iterative procedure using the I-Inf
algorithm until convergence, effectively by changing
the order of the cells (and rows), a different set of cells
could have been processed by the time of convergence
(thus a different sample is used). And this possibly re-
sults in different classification outcome.

To compute the preference score of each cell, we
firstly introduce a ‘one-sense-per-discourse’ hypothe-
sis in the context of a non-subject NE-column. One-
sense-per-discourse is a common hypothesis in sense
disambiguation. The idea is that that a polysemous
word appearing multiple times in a well-written dis-
course is very likely to share the same sense [8].
Though this is widely followed in sense disambigua-
tion in unstructured texts, we argue that it is also com-
mon in relational tables: given a non-subject column,
cells with identical text are extremely likely to ex-
press the same meaning (e.g., same entity or concept).
Note that one-sense-per-discourse is more likely to
hold in non-subject columns than subject-columns, as
the latter may contain cells with identical text con-
tent that expresses different meanings. A typical exam-
ple is the Wikipedia article ‘List of peaks named Bear
Mountain’8, which contains a disambiguation table
with a subject column containing the same value ‘Bear
Mountain’ on every row, and several other attribute
columns to disambiguate these names. A screenshot is
shown in Figure 5.

Fig. 5. One-sense-per-discourse does not always hold in subject–
columns.

The principle of one-sense-per-discourse allows us
to treat cells with identical text content as singleton,
to build a shared and combined in-table context by in-
cluding the rows of each cell. As a result, we can create
a larger and hence richer feature representation based
on the enlarged context. Next, we count the number of
features in the feature representation of a cell and use
the number as the preference score.

8http://en.wikipedia.org/wiki/List_of_peaks_named_Bear_Mountain,
last retrieved 28 May 2015.

Example 3. Following Example 2 and assuming that
we now need to interpret the non-subject column ‘Di-
rector’ (column 3), and the table is complete. By ap-
plying the rule of one-sense-per-discourse, we will put
the content rows 3, 4 and 7 adjacent to each other, as
the target cells (3,3), (4,3) and (7,3) contain identical
text ‘Dino Risi’, which we assume to have the same
meaning. Then suppose we use the row context of a
cell to create a bag-of-words feature representation.
The three cells will share the same feature representa-
tion, which takes the text content from rows 3, 4 and
7 (excluding the three target cells in question) and ap-
plies the bag-of-words transformation. This gives us a
bag-of-words representation of 16 features and we use
the number 16 as the preference score for the three tar-
get cells. We repeat this to other cells in the column,
and eventually we re-rank the rows to obtain the ta-
ble shown in Figure 6. Another example is shown in
Figure 2 (from data d2 to d3).

Fig. 6. Sample ranking result based on the example table. The three
‘Dino Risi’ cells will have the same feature representation based on
the row context highlighted within dashed boxes.

7.2. Preliminary column classification

Next, with the table rows re-arranged by sample
ranking, TableMiner+ proceeds to classify the column
using the I-Inf algorithm. Using Algorithm 1, D con-
tains the ranked list of cells from the column where
each element d is an individual cell; for a key-value
pair the key (k) is a candidate concept for the column,
and the value v is the confidence score. The process
operation (line 6) performs cold-start disambiguation
of a cell to generate candidate concepts and compute
their scores (Section 7.2.1); the update operation (line
7) takes the output of cold-start disambiguation from a
cell and updates the set of candidate concepts for the
entire column (Section 7.2.2). This repeats until con-
vergence.

14 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

7.2.1. Cold-start disambiguation
We first retrieve candidate entities for a cell and then

disambiguate the cell based on the similarity between
the feature representation of the cell and candidate en-
tities.
Candidate entity generation Given a cell, we search
its text content l(Ti,j) in a knowledge base to retrieve
candidate entities Ei,j . If a candidate’s name l(ei,j)
does not have overlap with l(Ti,j), the candidate is dis-
carded.
Confidence score of entity Given a candidate entity
ei,j ∈ Ei,j , we calculate its confidence score de-
pending on two components: an entity context score
ec comparing ei,j and each type of the cell’s context
xi,j ∈ Xi,j , and an entity name score en comparing
l(ei,j) and l(Ti,j).

To compare ei,j with the cell’s context xi,j ∈
Xi,j , we compute the overlap between the bag-of-
words representation of the candidate entity bow(ei,j)
and the bag-of-words representation of each context
bow(xi,j). To build bow(ei,j), the triples containing
ei,j as subject are retrieved from the knowledge base.
Then bow(ei,j) simply concatenates objects of all
triples and transforms them into a bag-of-words.

The context of the cell Xi,j contains out-table and
in-table context shown in Table 1. Row content con-
catenates l(Ti,j′) where j ̸= j′. These are likely to be
attribute data values of entities. Column content con-
catenates l(Ti′,j) where i ̸= i′. These are likely to refer
to entities that are semantically similar or related. Col-
umn header could contain useful features as entities
sometimes use words that indicate its semantic type
in its names (e.g., ‘River Sheaf’). Webpage title, table
captions/titles and surrounding paragraphs can contain
words that are important to entities. Semantic markups
may annotate important entities or their attributes on
the webpage. They are extracted as RDF triples and the
objects of triples that are literals are concatenated.

The overlap between ei,j and any out-table context
is computed using a frequency weighted dice function:

dice(ei,j , xi,j) =

2×
∑

w∈bowset(ei,j)∩bowset(xi,j)

(freq(w, ei,j) + freq(w, xi,j))

|bow(ei,j)|+ |bow(xi,j)|
(8)

The overlap between ei,j and any in-table context
is measured based on coverage, as intuitively the pres-
ence of any in-table features in the bag-of-words rep-

resentation of a candidate entity is a stronger signal of
relevance.

coverage(ei,j , xi,j) =

∑
w∈bowset(ei,j)∩bowset(xi,j)

freq(w, xi,j)

|bow(xi,j)|
(9)

Then let overlap(ei,j , xi,j) be the generalized func-
tion (either dice or coverage) that measures overlap
between a candidate entity and its source cell’s context
xi,j , the entity context score is the weighted sum of the
overlap between ei,j and each xi,j ∈ Xi,j :

ec(ei,j) =
∑

xi,j∈Xi,j

overlap(ei,j , xi,j)× wt(xi,j)

(10)

The entity name score is measured based on the
name of ei,j and the text content in Ti,j using the stan-
dard Dice coefficient as:

en(ei,j) =

√
2× |bowset(ei,j) ∩ bowset(Ti,j)|
|bowset(ei,j)|+ |bowset(Ti,j)|

(11)

Finally, an overall confidence score cf(ei,j) is com-
puted using Equation 12 below. Note that this is
different from our previous work [42]. The factor√
|bow(Ti,j)| balances the weight between the can-

didate entity’s context and name scores by the num-
ber of tokens in bow(Ti,j). Intuitively, an entity men-
tion that is a long name consisting of multiple tokens
(e.g., ‘Harry Potter and the Philosopher’s Stone’) is
less likely to be ambiguous than a single-token name
(‘Harry’). Therefore the entity name score in the for-
mer case should be given higher weight (or conversely,
the entity context score is given less weight). When the
mention has only a single token, both scores are given
the equal weight.

cf(ei,j) = en(ei,j) +
ec(ei,j)√
|bow(Ti,j)|

(12)

Candidate concept generation Then the set of can-
didate concepts associated with the winning entity are
collected and added to the set of candidate concepts for
the column Cj . Mathematically,

Cj ←
∪
i∈I

con(e+i,j) (13)

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 15

where e+i,j denotes the winning entity for cell Ti,j
and con(e+i,j) returns the set of concepts that the entity
belongs to, I is the set of rows to be considered. In case
of a sample is used, I includes a subset of rows in the
table, otherwise I simply denotes the total number of
rows in the table.
Confidence score of concept For each candidate con-
cept, we compute a confidence score based on two
components: a concept instance score ce depending
on its contributing entities, and a concept context
score cc comparing the name of the concept and the
context of the header.

The concept instance score of a candidate concept is
the sum of the confidence scores of the winning enti-
ties on each row where the winning entities elect the
candidate concept:

ce(cj) =

∑
i∈I

{
cf(e+i,j) if con(e+i,j) ∩ {cj} ̸= ∅
0 else

I

(14)

Given a candidate concept, if the winning entity on
every row i ∈ I elects the concept, and the confidence
score of each of them approaches to 1.0, the concept
instance score will approach to the highest of 1.0.

The concept context score is computed in the same
principle as entity context score ec using Equation 10,
and the function used to calculate an overlap score be-
tween cj and each of its context xj ∈ Xj is the fre-
quency weighted dice function in Equation 8. This is
adapted by replacing ei,j with cj and xi,j with xj .
The out-table context for a column header includes all
out-table context shown in Table 1. The in-table con-
text includes all but row content; and column content
concatenates all cells Ti,j , because entity names can
contain indicative words of their semantic types. For
bow(cj) we take the name and URI of the concept and
transform them into a bag-of-words.

The final confidence score of a candidate concept
cf(cj) equally combines ce(cj) and cc(cj):

cf(cj) = ce(cj) + cc(cj) (15)

7.2.2. Update candidate concepts for the column
Cold-start disambiguation derives a set of candidate

concepts from each cell in a column. If a concept cj
is new to the column, we create a new key-value pair
< cj , cf(cj) > and insert it into the set of key-value
pairs for the column. If the concept already exists, its
concept instance score is re-computed (as it depends

on the winning entity from each contributing row) and
the overall confidence score is updated accordingly.

7.2.3. Repetition and convergence
The above processes are repeated in the context of

I-Inf until convergence is detected by comparing the
set of candidate concepts from the current and previ-
ous iterations. The end output of this process is c+j the
winning concept used to annotate the column.

Example 4. Following Example 3 we continue to clas-
sify the ‘Director’ column in the table shown in Fig-
ure 6. Starting from the first cell ‘Dino Risi’, we re-
trieve candidate entities and compute a confidence
score for each. Assuming the winning entity is the
Freebase topic ‘fb:/m/0j_nhj’, we then extract its as-
sociated concepts and compute confidence score for
each concept. Some of the concepts are ‘Film direc-
tor (fb:/film/director)9’, ‘Film writer (fb:/film/writer)’,
and ‘Award nominee (fb:/award/award_nominee)’.
Then as we proceed to the second and third cells,
no new concepts are added and the scores of ex-
isting concepts are updated. Suppose that the win-
ning entity for the fourth cell is ‘Mario Monicelli
(fb:/m/041kw5)’ and the associated concepts are ‘Film
writer (fb:/film/writer)’ and ‘TV personality (fb:/tv/tv
_personality)’. Here the score of ‘Film writer’ is fur-
ther updated and ‘TV personality’ is added as candi-
date concept for the column. Assuming that we reach
convergence at this point as the change of scores of
candidate concepts compared to the previous itera-
tion is neglectable, and the highest scoring candi-
date concept is ‘Film writer’. We therefore stop at the
fourth cell and annotate the column as ‘Film writer
(fb:/film/writer)’.

7.3. Preliminary cell disambiguation

Next, c+j is used as constraint to perform prelimi-
nary cell disambiguation in the column. The process
re-starts from the first cell in the column. For cells that
have already passed a cold-start disambiguation pro-
cess during preliminary column classification, we sim-
ply need to re-select the highest scoring candidate en-
tities satisfying the condition: con(ei,j) ∩ {c+j } ̸= ∅.
For any new cells, disambiguation follows the same
procedure as cold-start disambiguation (Section 7.2.1)
with one modification: candidate generation uses c+j as
a filter to select only entities that are associated with

9All examples are superficial and adapted based on real data.

16 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

c+j as disambiguation candidates. Compared to the ex-
haustive strategy adopted by state-of-the-art methods,
this reduces computation by cutting down the number
of candidate entities for consideration.

Disambiguation of each new cell generates a set of
concepts, of which some can be new while others may
already exists in Cj . By the end of the process, Cj
is updated by: (1) adding newly derived concepts; (2)
for those already exist in Cj at the beginning, revising
their confidence scores. This changes Cj and in some
cases, causes the winning concept for the column to
be inconsistent from that at the beginning of the pre-
liminary cell disambiguation stage. This is handled by
the UPDATE phase to be discussed in the following
section.

Example 5. Following Example 4, we use ‘Film writer
(fb:/film/writer)’ as constraint to disambiguate the
cells in the column. For the four cells already pro-
cessed in Example 4, we simply re-select from their
candidate entities the highest scoring one that is also
an instance of this concept. To disambiguate the new
cell ‘Nanni Loy’, we only consider candidate enti-
ties that are instances of the concept for the col-
umn:‘Film writer’. Assuming that the winning entity
is ‘fb:/m/02qmpfs’. Then its associated concepts ‘Film
writer’, ‘Film director (fb:/film/director)’, ‘Film actor
(fb:/film/actor)’ are used to further update the candi-
date concepts on the column. At the end of the process,
it is likely that the highest scoring concept for the col-
umn has changed to ‘Film director (fb:/film/director)’.

8. NE-Column interpretation - the UPDATE phase

Once the LEARNING phase is applied to all NE-
columns in the table, the UPDATE phase begins to en-
force interdependence between classification and dis-
ambiguation within each column as well as across dif-
ferent columns. This is done by an iterative optimiza-
tion process shown in Algorithm 2. Note that our previ-
ous work [42] only captures interdependence between
classification and disambiguation within each separate
column. Here we improve it by also capturing cross-
column interdependence with a notion of ‘domain con-
sensus’.

8.1. Domain representation

In each iteration, the process starts with creating a
bag-of-words representation of the domain using the

Algorithm 2 UPDATE
1: Input: C, E , prev_C ← ∅, prev_E ← ∅
2: while stabilized(C, E , prev_C, prev_E)=false do
3: prev_C ← C, prev_E ← E
4: bow(domain)← domainrep(E)
5: for all Cj ∈ C do
6: for all cj ∈ Cj do
7: cf(cj) = ce(cj) + cc(cj) + dc(cj)
8: end for
9: c+j ← electConcept(Cj)

10: Cj , Ei,j ← disambiguate(Ti,j , c+j)
11: update(Cj , C, Ei,j , E)
12: end for
13: end while

winning entities from all cells (E) in the table at the
current iteration (line 4 in Algorithm 2):

bow(domain)←
∪
i,j

defbow(e+i,j) (16)

where defbow denotes ‘definitional’ bag-of-words,
and takes a definitional sentence about an entity and
converts it into a bag-of-words representation in the
same way as bow(·). A definitional sentence is com-
monly found in almost any knowledge base. For exam-
ple, WordNet has a one-sentence definition for every
synset; the first sentence in an Wikipedia article usu-
ally defines an entity [16]; this also applies to the de-
scription of a Freebase topic (e.g., a concept or named
entity) or a DBpedia resource. The idea is that the def-
initional sentence provides a focused description of
the entity, likely to contain informative words about
the general domain it is related to. In particular, it of-
ten contains words forming hypernymy relation with
the entity [16,44]. For example, the Freebase defini-
tional sentence about the English city ‘Sheffield’ con-
tains words10 ‘city’, ‘metropolitan’, ‘borough’, ‘York-
shire’, and ‘England’, which are useful words defining
the concept space of the entity.

8.2. Column annotation revision

The bag-of-words representation of the domain is
then used to revise the concept annotations on all NE-
columns (C). To do so, we compute a domain consen-
sus score dc for each candidate concept from each NE-
column, and add this to their overall confidence score

10http://www.freebase.com/m/0m75g, last retrieved on 13 April
2014.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 17

(line 7 in Algorithm 2). The domain consensus score
is based on the frequency weighted dice overlap be-
tween the bag-of-words representations of the concept
and the domain.

dc(cj) =
√
dice(cj , domain) (17)

Since the sizes of bow(cj) and bow(domain) are
often different orders of magnitude, square root is
used to balance the score. Also domain consensus
is computed with respect to entities from all cells
from any columns, which serves as a way of ensur-
ing inter-column dependence. After revising the confi-
dence scores of candidate concepts, the winning con-
cepts for each column are re-selected (Line 9).

8.3. Cell annotation revision

For any column, if the new winning concept is dif-
ferent from the that generated in the previous itera-
tion, the disambiguation result on that column is re-
vised (Line 10). This follows the procedure of prelim-
inary cell disambiguation (Section 7.3).

These updating processes are repeated until all an-
notations are stabilized. Specifically, in each iteration
function stabilized checks the winning concepts for
all NE-columns and the winning entities for all cells in
the previous iteration against those in the current itera-
tion. The UPDATE process is called to be stabilized if
no difference is detected.

Note that re-computing disambiguation and classifi-
cation may require retrieving data of new entity candi-
dates from the knowledge base and subsequently con-
structing their feature representation for disambigua-
tion due to the possible change of c+j at each itera-
tion. However, this design still largely improves the
exhaustive strategy because: (1) empirically the UP-
DATE phase stabilizes fast and in most cases involves
merely re-selecting those ‘losing’ candidate entities
that were already seen in the LEARNING phase; (2)
when new candidates are indeed added it only happens
in significantly fewer cells than the entire column that
an exhaustive strategy would otherwise have to deal
with.

Example 6. Following Example 5, assuming we have
annotated all NE-columns and their cells (also see d6
in Figure 2). We begin the UPDATE process by tak-
ing the winning entity annotations from columns 1, 3,
and 4 in the Table shown in Figure 6 to create a bag-
of-words representation of the domain. Again using

the ‘Director’ column, we proceed to compute a do-
main consensus score for each candidate concept for
this column (i.e., ‘Film director’, ‘Film writer’ etc) and
update their confidence scores. The winning concept
is re-selected, which we assume is changed to ‘Film
director’. This is different from that at the beginning
(‘Film writer’). Therefore, we take the new concept
and use it to revise cell annotations in the column. We
do this for the other two columns and repeat this pro-
cess until all annotations are no longer changed.

9. Relation enumeration and annotating
literal-columns

9.1. Relation enumeration

Relation enumeration firstly begins by interpreting
relations between the subject column and any other
columns on each row independently. Let Tj be the
subject column in a table and Tj′ denote any other
columns. Given the winning subject entity e+i,j for cell
Ti,j and Ti,j′(j ̸= j′) as another cell on the same
row, the candidate set of relations between Ti,j and
Ti,j′ , denoted by Rij,j′ , is derived from the triples
containing e+i,j as subject, denoted by Ψi,j = {<
e+i,j , predicate, object >}. Then let ψi,j ∈ Ψi,j be an
instance of the triples, and functions p(ψi,j), o(ψi,j)
return the predicate and object from the triple respec-
tively, the candidate relations Rij,j′ is the set of unique
predicates in Ψi,j , i.e., {p(ψi,j)|∀ψi,j ∈ Ψi,j}.

Then a confidence score is computed for each can-
didate relation rij,j′ ∈ Rij,j′ . To do so, the subset of
triples from Ψi,j containing rij,j′ as predicate are se-
lected. Then the object of each triple in this set is
matched against the content in Ti,j′ using the fre-
quency weighted dice function (Equation 8), and the
highest score is assigned to be the confidence score for
the candidate relation:

cf(rij,j′) =

max
ψi,j∈Ψi,j ,p(ψi,j)=rij,j′

dice(Ti,j′ , o(ψi,j))
(18)

where function dice(Ti,j′ , o(ψi,j)) computes an
overlap score between the bag-of-words representa-
tions of the cell and the object of a triple that contains
rij,j′ as predicate. The winning relation for the row is
denoted by ri+j,j′ .

After the winning relation is computed for each row
between Tj and Tj′ , the candidate set of relations for

18 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

the two columns R(j, j′) is derived by collecting the
winning relations on all rows:

R(j, j′)←
∪
i

ri+i,j′ (19)

Then a confidence score is computed for each in-
stance rj,j′ ∈ R(j, j′), and it consists of two parts:
a relation instance score re and a relation context
score. The relation instance score is computed in the
same way as concept instance score:

re(rj,j′) =

∑
i

{
cf(ri+j,j′) if ri+j,j′ ≡ rj,j′
0 else

|{Ti}|
(20)

where i denotes the row index of the table and |{Ti}|
returns the number of rows in the table.

The relation context score is computed in the same
way as entity context score using Equation 10, and the
function used to calculate an overlap score between
rj,j′ and each of its context is the frequency weighted
dice function in Equation 8. This is adapted by re-
placing ei,j with rj,j′ and xi,j with xj,j′ . The bag-
of-words representation bow(rj,j′) is based on l(rj,j′)
which returns the name and URI of the relation. The
context of a relation includes column header (which
sometimes indicates the relation with the subject col-
umn), surrounding paragraphs and semantic markups.
Other types of context are less likely to contain men-
tions of relations.

The final confidence score of a candidate relation
adds up its instance and context score with equal
weights, and the final binary relation that associates
subject column Tj with column T ′

j is the candidate
with the highest confidence score.

Example 7. Assuming the entity annotation for cell
T3,1 in the table of Figure 6 is ‘A Difficult Life
(fb:/m/02qlhz2)’, which has two triples<fb:/m/02qlhz2,
fb:/film/film/directed_by, ‘Dino Risi’> and <fb:/m/
02qlhz2, fb:/film/film/starring, ‘Dino Sordi’>. To pre-
dict the relation between columns T1 and T3 on this
row, the object values of the two triples are matched
against the text value ‘Dino Risi’ in cell T3,3 based on
overlap. Then the first triple will receive a score of 1.0
while the second 0.5. Hence the relation between the
two columns elected by this row (r3+1,3) is the predicate
‘fb:/film/film/directed_by’ and cf(r3+1,3) = 1.0. Next
we repeat this process for the remaining rows to elect a
relation for every other row between the two columns,
and the set of all these relations become R3,3. Sup-

pose that r4+1,3 is also ‘fb:/film/film/directed_by’ and
cf(r4+1,3) = 0.9. Then to compute the overall confi-
dence score of ‘fb:/film/film/directed_by’ across the
two columns, the relation instance score adds up the
two values and become 1.9. We then calculate the re-
lation context score and add it to the instance score to
derive the final score.

9.2. Labeling literal-columns

Literal-columns are expected to contain attribute
data of entities in the subject column. They do not de-
note entities and therefore, cannot be interpreted us-
ing the column interpretation method described above.
In previous work [21,34,27,25,26] they are simply ig-
nored. This work also assigns a column annotation that
best describes the attribute data in literal-columns.

Given a literal-column T ′
j that forms a binary rela-

tion rj,j′ with the subject column Tj , the annotation
for this column is simply l(rj,j′), since rj,j′ typically
describes a property of the subject column concept in
such cases.

10. Experiment settings

Semantic Table Interpretation can be evaluated by
both in-vitro (assessing the annotations directly) and
in-vivo (assessing the accuracy of applications built on
top of the annotations) experiments. In this work, we
use in-vitro experiments because (1) they are the most
commonly used evaluation approach and (2) standard
datasets are available.

10.1. Knowledge base and datasets

We use Freebase as the knowledge base for Se-
mantic Table Interpretation. Freebase is currently the
largest knowledge base and linked data set in the
world, containing over 2.4 billion facts about over 43
million topics (e.g., entities, concepts), significantly
exceeding other popular knowledge bases such as DB-
pedia and YAGO. For evaluation, we compiled and
annotated four datasets using Freebase: Limaye200,
LimayeAll, IMDB and MusicBrainz. To the best of
our knowledge, this is the largest dataset for this task
and we make them available to encourage comparative
studies11.

11Download from: http://staffwww.dcs.shef.ac.uk/people/
Z.Zhang/resources/tableminerplus/data.tar.gz. We are aware that

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 19

10.1.1. LimayeAll and Limaye200
These datasets are the rebuilt versions of the origi-

nal four datasets used by Limaye et al. [21]. The orig-
inal datasets consist of over 6,000 tables, 94% col-
lected from Wikipedia and the rest from the general
Web. Entities in the tables were annotated with links
to Wikipedia articles; columns and binary relations be-
tween columns were annotated by concepts and rela-
tions in the YAGO knowledge base (2008 version).

These datasets are re-created for a number of
reasons. First, Wikipedia has undergone significant
changes since the publication of the datasets such that
a large proportion of the source webpages - as well
as the contained tables - have been changed. Second,
we notice that the original ground truth for named en-
tity disambiguation were very sparse and possibly bi-
ased. As shown in Appendix C, it is less well-balanced
than the re-created dataset and a simple exact name
match baseline has achieved significantly higher accu-
racy than the original reported results in Limaye et al.
[21]. Third, this work uses a different knowledge base
from YAGO, such that the original ground truth cannot
be directly used.
Entity ground truth - LimayeAll We run a process
to automatically update the webpages in the original
dataset and re-annotate entity cells by mapping the
original Wikipedia ground truth to Freebase. Details of
this process is described in Appendix B.
Column annotation and relation ground truth - Li-
maye200 To create the ground truth for evaluating
column classification and relation enumeration, a ran-
dom set of 200 tables are drawn from the LimayeAll
dataset. These tables are firstly manually examined
to identify subject columns, then annotated following
a similar process as Venetis et al. [35]. Specifically,
TableMiner+ and the baselines (Section 10.3) are run
on these tables and the candidate concepts for all table
columns and relations between the subject column and
other columns in each table are collected and presented
to annotators. The annotators mark each label as ‘best’,
‘okay’, or ‘incorrect’. The basic principle is to prefer
the most specific concept/relation among all suitable

Freebase is to be shut-down on 30/06/2015 and its migration to
Wikidata and a similar API service based on the Google Knowl-
edge Graph will be further announced. This work was however, first
submitted in May 2013, at which time the shut-down of Freebase
was not foreseeable. To enable comparative studies, we also release
cached snapshots of Freebase that covers our datasets. Also a plan
is made to migrate relevant software (also released) to the Google
Knowledge Graph once an appropriate API is available.

candidates. For example, given a cell ‘Penrith Pan-
thers’, the concept ‘Rugby Club’ is the ‘best’ candidate
to label its parent column while ‘Sports Team’ and ‘Or-
ganization’ are ‘okay’. The annotators may also insert
new labels if none of the candidates are suitable.

10.1.2. IMDB
The IMDB dataset contains over 7,000 tables ex-

tracted from a random set of IMDB movie webpages.
Each IMDB movie webpage12 contains a table listing a
‘cast’ column of actors/actresses and a column of cor-
responding characters played. Cells in the actor/actress
column are linked with an IMDB item id, which, when
searched in Freebase, returns a unique (if any) mapped
Freebase URI. Thus entities in these columns are an-
notated automatically in such a way. The ‘character’
column is not used since they are not mapped in Free-
base. The cast column is also manually labeled with
‘best’ and ‘okay’ concepts in the same way as for Li-
maye200. No subject column or relations are annotated
because only one column is considered in this dataset.

10.1.3. MusicBrainz
The MusicBrainz dataset contains some 1,400 tables

extracted from a random set of MusicBrainz record
label webpages. Each MusicBrainz record label web-
page13 contains a table listing the music released by
a production company. Each webpage uses pagination
to separate very large tables, and only the first page
is downloaded. The table typically has 8 columns, of
which one lists music release titles (subject column)
and one lists music artists. Each release title or artist
has a MusicBrainz id, which can be mapped to a Free-
base URI in the same way as for the IMDB dataset.
Thus entities in these two columns are annotated in
such a way. Then the table columns and binary rela-
tions between the subject column and others are also
annotated manually following the same procedure as
for IMDB and Limaye200.

10.1.4. Dataset statistics
Table 3 shows general statistics of the datasets. Fig-

ure 7 shows the distribution of rows, columns contain-
ing entity annotations in the ground truth, and length
of text in cells by number of tokens. Tables in Mu-
sicBrainz contain no more than 50 rows because of
the pagination on the webpage and only the first page
is downloaded. The IMDB entity ground truth has

12E.g., http://www.imdb.com/title/tt0071562/
13E.g., http://musicbrainz.org/label/9e6b4d7f49584db78504-

d89e315836af

20 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Table 3
Statistics of the datasets for evaluation. ‘All’ under ‘Labeled columns’ shows the number of both labeled NE- and literal-columns, while ‘NE’
refers to only NE-columns. Likewise ‘All’ under ‘Labeled relations’ shows the number of labeled relations between subject columns and either
NE- or literal columns, while ‘NE’ refers to only relations with NE-columns.

Dataset Tables Subject column Entities Labeled columns Labeled relations
All NE All NE

Limaye200 200 X - 615 415 361 204
LimayeAll 6,310 227,046 - - - -
IMDB 7,416 92,321 7,416 7,416 - -
MusicBrainz 1,406 X 93,266 9,842 4,218 7,030 5,624

Fig. 7. Dataset statistics (min., max. avg. (black diamonds), kth quantile): #r - number of rows; #nec - number of columns containing annotated
named entities in ground truth; cl - content cell text length in terms of number of tokens delimited by non-alphanumeric characters.

Table 4
Comparison against datasets used by state-of-the-art. ‘-’ indicates unknown or not clear.

Method Dataset Tables Columns Entities Relations

TableMiner+

Limaye200 200 615 - 361
LimayeAll 6,310 - 227,046 -
IMDB 7,416 7,416 92,321 -
MusicBrainz 1,406 9,842 93,266 -

Hignette et al. [14,15] 1 dataset - 81 - -
Limaye et al. [21] 4 datasets 6,310 747 142,737 90
Syed et al. [34] 1 dataset 5 21 171 -
Venetis et al. [35] 1 dataset 168 - - -
Buche et al. [3] 1 dataset 90 81 - 316
Mulwad et al. [26] 1 dataset 203-490 - - -
Zhang [42] 2 datasets 7,446 7,608 94,406 -
Zhang [41] 2 datasets 6,310 615 227,046 -

only 1 column in every table; while for MusicBrainz,
this is either 1 or 2 columns. Very long cell text is
found to be rare in LimayeAll, but slightly more fre-
quent in MusicBrainz due to long names of classic
music titles. Cells in IMDB tables are typically per-
son names and usually contains 1 or 2 tokens. Ar-

guably, LimayeAll and Limaye200 are the most di-

verse datasets, since they cover a significantly larger

number of domains and more diverse table structures

and schemata, whereas IMDB and MusicBrainz each

contains only one table structure and schema.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 21

Table 4 compares against datasets used by other
studies. Arguably, TableMiner+ is evaluated using the
most comprehensive collection of datasets known to
date.

10.2. Evaluation metrics

Effectiveness - Subject column detection is evaluated
by Precision. Then the three annotation tasks of Se-
mantic Table Interpretation are evaluated using the
standard Precision, Recall and F1 measures. Since
TableMiner+ ranks candidates by scores, only the high-
est ranked prediction by TableMiner+ is considered.
Each ‘best’ label is awarded a score of 1 while each
‘okay’ label is awarded 0.5. Further, if there are mul-
tiple highest-ranked candidates, each candidate con-
sidered correct only receives a fraction of its score as

score
#topranked . For example, if a column containing film
titles has two concept candidates with the same highest
score: ‘Film’ (best) and ‘Book’ (incorrect), this pre-
diction receives a score of 0.5 instead of 1. This is
to penalize the situation where the Semantic Table In-
terpretation system fails to discriminate false positives
from true positives. From a knowledge base population
point of view, false positives cause incorrect triples to
be populated into knowledge bases and the LOD cloud.

For column classification and relation enumeration,
evaluation reports results under both ‘strict’ and ‘tol-
erant’ mode. To evaluate column classification, the
strict mode only considered ‘best’ annotations; while
the tolerant mode considers both ‘best’ and ‘okay’ an-
notations. Evaluating relation enumeration under the
strict mode only considers relations between subject
column and other columns in a table, and only ‘best’
annotations are included. Under the tolerant mode,
in addition to also including ‘okay’ annotations, if
TableMiner+ predicts correct relations between non-
subject columns or the reversed relation between the
subject column and other columns, then each predic-
tion is awarded a score of 0.5.

Moreover, since most state-of-the-art methods have
focused on only NE-columns, we report results ob-
tained on NE-columns as well as both NE- and literal-
columns for column classification and relation enu-
meration.
The efficiency of TableMiner+ is assessed by empirical
wall-clock time and savings in terms of candidate en-
tities needed to be considered for disambiguation. As
discussed before, retrieving candidate entities and their
data, constructing feature space and computing sim-
ilarities consume the large majority of time. A more

reliable way of improving efficiency is thus reducing
the size of the candidate space. To reduce network la-
tency we use a caching mechanism in each compara-
tive model and TableMiner+ (see Section 10.3). Specif-
ically, when a request to the knowledge base is sent for
the first time, we cache the query results locally. Then
all subsequent identical requests will only be served by
the local cache.

10.3. Comparative models and configurations

TableMiner+ is evaluated against four baseline meth-
ods and two re-implemented state-of-the-art methods.
The implementation of all these methods are released
on GitHub14.

10.3.1. Baselines
Each baseline starts with the same subject column

detection component, but uses different methods for
disambiguating entity cells, classifying columns, and
annotating relations between subject column and other
columns.
Baseline ‘name match’ Bnm firstly disambiguates ev-
ery cell in an NE-column by retrieving candidate enti-
ties from Freebase using the text content in the cell as
query, then selecting a single entity: the highest ranked
candidate whose name matches exactly the cell text.
If no candidates are found to match, the top-ranked
candidate is chosen. Freebase adopts a ranking algo-
rithm that reflects both the relevance and popularity of
a topic in the knowledge base.

Next, to classify the NE-column with a concept, en-
tities from each cell cast a vote for the concepts they
are associated to, and the the one receiving the most
votes is chosen as the annotation for the column.

Relation enumeration follows a similar procedure.
Candidate relations on each row is derived and their
scores computed in the same way as TableMiner+

(Section 9.1, Equation 18). Then each candidate with a
score greater than 0 is selected from the row and con-
sidered as a candidate relation for the two columns and
casts a vote toward the candidate. The best relations
for the two columns are those receiving the most votes.

Literal-columns are annotated the same way as
TableMiner+ (Section 9.2).
Baseline ‘similarity-based’ firstly disambiguates ev-
ery cell in an NE-column, then derives column anno-
tations based on the winning entity from every cell.

14https://github.com/ziqizhang/sti

22 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

For cell disambiguation, we compute a score for
each candidate entity as the sum of a simple context
score and the string similarity between the name of the
candidate and the cell text. The context score is com-
puted using Equation 9, where x is the row content
only.

For column classification, candidate concepts for an
NE-column are firstly gathered based on the winning
entities from each cell. The final score of a candidate
concept consists of two parts: (1) the number of win-
ning entities associated with the concept normalized
by the number of rows in the table, and (2) a string
similarity score between the concept’s name and the
header text (if exists).

For relation enumeration and the annotation of
literal-columns, we use the same procedures from the
name match baseline Bnm.

To compute string similarity, we test three metrics
and therefore create three similarity baselines: Cosine
(Bcos), Dice (Bdice) coefficient, and Levenshtein (Blev).

The key differences between the four baselines and
TableMiner+ are: (1) TableMiner+ uses out-table con-
text while the baselines do not; (2) TableMiner+ adopts
a bootstrapping, incremental approach with an itera-
tive, recursive optimization process to enforce inter-
dependence between different annotation tasks. The
baselines however, use an exhaustive strategy and are
based on very simple interdependence (i.e., both rela-
tion enumeration and column classification depend on
cell disambiguation).

10.3.2. Re-implementation of state-of-the-art
We re-implemented two state-of-the-art methods

and adapted them to Freebase as there are no existing
software that can be directly used, and also different
knowledge bases have been used in the original work.
We choose to implement the methods by Limaye et al.
[21] and Mulwad et al. [26], as they are able to address
all three annotation tasks in Semantic Table Interpreta-
tion. Re-implementation of these methods is not a triv-
ial task. First, the use of different knowledge bases im-
plies that certain features used in the original work are
unavailable, must be adapted or replaced. Second, each
method has used in-house tools for pre-processing or
training. Therefore, our re-implementation has focused
on the core inference algorithm in the two methods.
We advise readers that the re-implementation is not
guaranteed to be an identical replication of the original
systems. We describe details of re-implementation in
Appendix D, and here we summarize key points. Note
that both methods can only deal with NE-columns.

Limaye et al. (Limaye2010) model a table as a factor
graph and apply joint inference to solve the three anno-
tation tasks simultaneously. A factor encodes the com-
patibility between a variable (e.g., a cell) and its can-
didates (e.g., candidate entities), or between variables
believed to be interdependent. In the original work, the
compatibility is calculated based on a number of fea-
tures, the weight of which is learned using a super-
vised model. Our implementation15 simply uses equal
weights. Further, we discard all relation variables and
only build a smaller factor graph of concept and en-
tity variables. This is because empirically, we have no-
ticed that adding relation variables caused drop in the
accuracy of column classification (see Appendix D).
Mulwad et al. model a table using a similar factor
graph, then apply a light-weight inference algorithm
based on semantic message passing. Their method de-
pends on a pre-process that disambiguates entity cells
(i.e., the so-called ‘entity ranker’). This process uses
a supervised model built on features that are specific
to the knowledge bases used in the original work. We
create two models each with a different substitute of
the ‘entity ranker’. Mulwad2013 uses a simple ranker
that linearly combines features equivalent to those
used in the original work (but derived from Freebase)
to score and rank candidate entities. Mulwad2013tm+

uses TableMiner+’s formula of entity confidence score
(cf(ei,j) in Section 7.2.1) to score and rank candidate
entities.

10.3.3. TableMiner+ configuration
The convergence threshold in the I-Inf algorithm

is set to 0.01 in both subject column detection and
the preliminary column classification phases. The Web
search API used for computing the Web search score in
subject column detection is the Bing Search API16 and
default parameters are used. TableMiner+ uses various
context for Semantic Table Interpretation. The weights
of context in different annotation tasks are defined in
Table 5.

Context is assigned a weight of 1.0 if it is consid-
ered ‘very important’ or 0.5 otherwise (subjectively
decided). For example, in subject column detection, if
header words are found in the webpage title or table
captions, they are stronger indicators (hence ‘very im-
portant’) of subject column than if found in paragraphs
that are distant from tables. For column classification
and relation enumeration, different types of context are

15We used Mallet GRMM: http://mallet.cs.umass.edu/grmm/
16http://datamarket.azure.com/dataset/bing/search

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 23

Table 5
Different context weight used in different components.

Component In-table context Out-table context
column
header

row
content

column
content

webpage
title

table caption
/title paragraphs

semantic
markups

Sub.Col. detection §6.2 - - - 1.0 1.0 0.5 -
Entity context score §7.2.1 1.0 1.0 0.5 1.0 1.0 0.5 1.0
Concept context score §7.2.1 1.0 - 1.0 1.0 1.0 1.0 1.0
Relation context score §9.1 1.0 - - - - 1.0 1.0

equally weighted because the bag-of-words represen-
tations for candidate concepts and relations are based
on their names - semantically very important features
but can be very sparse therefore any matches are con-
sidered a strong signal.

In the four datasets, semantic markups are only
available in IMDB and MusicBrainz as the Microdata
format. Any2317 is used to extract these annotations
as RDF triples and the objects of triples are concate-
nated to create features. Annotations within the HTML
< table > tags are excluded.

10.3.4. Parallelization and hardware
All models except Limaye2010 do not require par-

allelization as they are reasonably fast. Each model is
able to run on a server with 4GB memory. Limaye2010
requires similarity computation between every pair of
candidate entity and concept for each column, the
amount of which grows quadratically with respect to
the size of a table. Thus the running of Limaye2010
is parallelized on 50 threads, each allocated with 4GB
memory.

11. Results and discussion

11.1. Subject column detection

Table 6 shows the precision of predicting subject
columns in the Limaye200 and MusicBrainz datasets.
The unsupervised subject column detection method
achieves a precision of near 96% and 93% on the Li-
maye200 and MusicBrainz datasets respectively, com-
pared to the reportedly 94-96% precision by a super-
vised model in Venetis et al. [35], and therein 83% by
a baseline that chooses the leftmost column that does
not contain numeric data.

Figure 8 shows the convergence statistics in comput-
ing the Web search score (ws) in the I-Inf algorithm.

17https://any23.apache.org/

Table 6
Subject column detection results in Precision

Dataset Tables Precision
Limaye200 200 95.5
MusicBrainz 1406 92.7

The number of tables in which the ws score is calcu-
lated18 is: 145 (73%) in Limaye200, 4,711 (75%) in Li-
mayeAll, and 1,402 (near 100%) in MusicBrainz. Ta-
ble 7 shows the statistics of the slowest convergence
on each dataset.

Fig. 8. Convergence statistics (max, min, average (black diamond),
kth quantiles) for I-Inf in the calculation of the Web search score for
subject column detection. itr - number of iterations (rows processed)
until convergence; % - fraction of table rows processed.

Using Limaye200 as an example, Figure 8 suggests
that to compute the ws score, on average, only 4 rows
(or less than 35%) are processed, and in 75% of ta-
bles no more than 5 rows (or less than 55%) are pro-
cessed. Table 7 suggests that among all 145 tables that
need calculation of ws scores, only 10 tables have all
of their rows processed. They have an average of 7.2
rows and none has greater than 20 rows. Then 26.2%

18In cases that only one NE-column is available in a table, this
column is simply selected as the subject column.

24 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Table 7
Statistics of the slowest convergence in the calculation of the Web
search score for subject column detection.

Limaye200 LimayeAll MusicBrainz
100% of rows processed in

% of tables 6.9% 5.9% 6.5%
Avg. rows 7.2 6.5 4.6
Rows >20 0 4 0

>50% of rows processed in
% of tables 26.2% 19.8% 12.6%
Avg. rows 6.0 6.0 5.2
Rows >20 0 7 0

of these 145 tables have at least 50% of their rows pro-
cessed. However, on average they have only 6 rows
and none of them have greater than 20 rows. These
figures suggest potentially significant improvement in
efficiency over an exhaustive approach that computes
the ws score using all rows in tables. The figures on
the LimayeAll and MusicBrainz datasets suggest even
greater savings. Consider that typical Web search APIs
are quota-limited and pay-per-use, and it is extremely
expensive (if not impossible) to run a local search en-
gine on a reasonable sample of the entire Web. We be-
lieve that the I-Inf algorithm delivers substantial bene-
fits in the task of subject column detection.

Manual inspection shows that in most cases the er-
rors fall under several categories. The first is due to du-
plicate values in subject columns. An extreme exam-
ple is the disambiguation table discussed before (i.e.,
‘List of peaks named Bear Mountain’), in which the
subject column contains only a single unique value.
The second is caused by long-named entities in sub-
ject columns. For example, the subject column in the
MusicBrainz tables lists titles of music releases, some
of which has a name consisting of more than 10 to-
kens. This severely penalizes their context match cm
and ws scores as it is unlikely to find exact match of
their names in table context and search result docu-
ments. The third category includes arguable (few) ta-
bles that in strict terms, do not necessarily have a sub-
ject column. This includes tables listing events, such as
lap records of racing car drivers in a particular tourna-
ment. In these cases, annotators typically selected the
leftmost NE-column.

11.2. Effectiveness

11.2.1. Against baselines
Tables 8, 9 and 10 compare TableMiner+ against the

four baselines in the cell disambiguation, column clas-
sification and relation enumeration tasks respectively.
The highest figures are marked in bold. Overall, it is
clear that TableMiner+ always obtains the best perfor-
mance in all tasks and on all datasets. It also shows
stronger improvement in the classification and relation
enumeration tasks.

For disambiguation, even the simplistic baseline
Bnm obtains surprisingly competitive results on the Li-
mayeAll and IMDB datasets. In fact, on the original
datasets by Limaye et al. [21] Bnm obtains a surpris-
ingly high F1 of 92.6, significantly higher than the
weighted average19 of 84.1 based on figures reported
in Limaye et al. [21]. As discussed earlier, our analy-
sis - shown in Appendix C - suggests that the original
datasets are sparse and less balanced.

Its highly competitive performance on the IMDB
dataset could be explained by the domain and the
method for ranking search results by Freebase. Movie
is a highly popular domain representing a fair large
proportion of Freebase. Since Freebase Search API
promotes popular topics, when a person name is
searched it is more likely to obtain movie-related top-
ics as top results than any other domains. Hence by
selecting the top result Bnm is very likely to succeed.

While although music is also a highly popular do-
main, Bnm could not replicate similar performance.
Manual inspection shows that a fair proportion of mu-
sic titles and artists uses very ambiguous names (e.g.,
‘Trouble’, a musical release, ‘Pine’, an artist). In con-
trast, other baselines perform significantly better by
considering row content in tables.

Compared to the baselines, TableMiner+ consis-
tently obtains the best performance. On the most di-
verse dataset LimayeAll, it improves F1 by between
0.9 and 1.5 points. On the MusicBrainz dataset, it
makes little difference from Blev, Bcos, and Bdice. By
examining the data it is found that the out-table con-
text on MusicBrainz webpages are very sparse. In most
cases, the webpage contains only the table. Microdata
annotations are also predominantly found inside table
structures, which are not used by TableMiner+. On the
contrary, the IMDB dataset is completely the opposite:
the webpages contain much richer out-table context

19Macro-average over all datasets taking into account the size of
each dataset.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 25

Table 8
Disambiguation results (F1) on four datasets.

Limaye200 LimayeAll IMDB MusicBrainz
Bnm 78.3 82.2 92.8 57.0
Blev 78 82.1 93.5 84.83
Bcos 79.2 82.7 93.4 84.76
Bdice 79.9 82.8 93.5 84.84
TableMiner+ 82.3 83.7 97.6 84.87

Table 9
Classification results (F1) on three datasets.

Bnm Blev Bcos Bdice TableMiner+

L
im

ay
e2

00 NE-columns only
strict 23.9 45.4 43.5 48.9 65.8
tolerant 48.8 63.8 62.2 66.1 75.0

All columns
strict 31.4 48.7 46.9 51.3 64.0
tolerant 51.1 63.3 61.8 65.0 71.5

IM
D

B

NE-/All columns
strict 22.7 32.3 31.9 32.0 97.0
tolerant 60.0 64.6 64.4 64.5 97.2

M
us

ic
B

ra
in

z

NE-columns only
strict 59.1 82.6 83.4 83.9 85.2
tolerant 61.7 82.6 83.6 83.9 85.9

All columns
strict 54.6 72.2 72.6 72.9 74.3
tolerant 55.9 72.2 72.7 72.9 74.7

Table 10
Relation enumeration results (F1) on two datasets.

Bnm Blev Bcos Bdice TableMiner+

L
im

ay
e2

00 NE-columns only
strict 61.3 61.7 61.8 61.8 72.5
tolerant 65.8 66.3 66.5 66.4 76.0

All columns
strict 59.7 61.0 60.6 61.1 66.2
tolerant 63.0 64.4 64.1 64.4 68.7

M
us

ic
B

ra
in

z

NE-columns only
strict 63.8 67.2 67.1 67.1 67.9
tolerant 65.0 68.3 68.2 68.2 69.1

All columns
strict 78.7 82.0 81.9 81.9 82.6
tolerant 79.2 82.5 82.4 82.4 83.1

(including pre-defined Microdata annotations), but lit-
tle in-table context as the tables have only two columns
and neither has column headers. TableMiner+ achieves
significant improvement (between 3.9 and 4.6) over
baselines on IMDB. This strongly suggests that out-
table context serves as useful clues for disambiguating
entities in table cells, particularly when in-table con-
text is absent. Further, the Microdata-annotations ex-
tracted from these webpages could have been a strong
contributor considering that the only difference in out-
table context used on LimayeAll and IMDB is that the
latter also uses them as features.

For classification, TableMiner+ in most cases out-
performs baselines by a very large margin. Experi-
ments on the most diverse dataset Limaye200 see an
improvement of between 16.9 and 41.9 under strict
mode and 8.9-26.2 under tolerant mode when only
NE-columns are considered. When all columns are in-
cluded, the figures are 12.7-32.6 strict and 6.5-20.4 tol-
erant. MusicBrainz sees the smallest improvement of
the minimum of 1.3 strict and 2.0 (both v.s. Bdice) when
only NE-columns are considered, or 1.4 strict and 1.8
tolerant when all columns are included. This is due to
the same reason behind TableMiner+’s moderate per-

26 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

formance in the disambiguation task on this dataset:
the out-table context is very sparse, thus TableMiner+

in most cases only uses in-table context. Again the
most significant improvement is obtained on the IMDB
dataset. With the lack of in-table context, particu-
larly column headers that are considered a crucial fea-
ture in annotating table columns, all baselines perform
poorly compared against TableMiner+. TableMiner+

more than tripled their performance under the strict
mode and significantly outperforms under the tolerant
mode, achieving near-perfect accuracy in both cases.

Also note that the performance by Bnm is generally
inferior on any dataset. This is due to its inability to
promote a single top ranked candidate concept in most
cases, or in other words, multiple winning candidates
are penalized by the scoring method. Other baselines
improve this by also considering the string similarity
between candidate concept’s label and table column
headers.

For relation enumeration, on the multi-domain Li-
maye200 dataset, an improvement of between 10.7-
11.2 strict and 9.5-10.2 tolerant is obtained when only
relations between NE-columns are considered. Re-
gardless of column types, the figures are 5.1-6.5 strict
and 4.3-5.7 tolerant. Improvement on MusicBrainz is
smaller: the minimum of 2.8 strict and 0.8 tolerant
with NE-columns only, and the minimum of 0.6 strict
and 0.7 tolerant if all columns are included. Again this
could be attributed to the lack of out-table context in
this dataset.

11.2.2. Against state-of-the-art
Table 11 shows that TableMiner+ outperforms the

re-implemented state-of-the-art models by a large mar-
gin in most cases. Surprisingly, models Limaye2010
and Mulwad2013 have even underperformed many
baselines in most occasions, particularly in the disam-
biguation task. This may be attributed to two reasons.
First, as discussed before, the original work has used
knowledge base specific features that are unavailable
in Freebase, or supervised processes to optimize fea-
tures. This has made the adaptation work difficult and
although we have made careful attempt to implement
alternatives, we cannot guarantee an identical replica-
tion of the original methods. Second, we observe that
in the cell disambiguation task, both Limaye2010 and
Mulwad2013 have only used features that are based on
string similarity metrics. Our similarity baselines (Blev,
Bcos, Bdice) also use string similarity features but add an
important type of feature that proves to be very effec-
tive: a context score that compares the bag-of-words

representation of candidate entities of a cell against the
row context of the cell.

By using the disambiguation component of TableMiner+,
Mulwad2013tm+ made significant improvement over
Mulwad2013 on the cell disambiguation and column
classification tasks. It also outperforms baselines in
several occasions, but still obtained lower accuracy
than TableMiner+.

The poor performance of all three models on the
column classification task under strict mode is mainly
due to the fact that the algorithms empirically favored
general concepts (‘Person’) over more specific ones
(‘Movie Directors’). Again this could be caused by the
lack of a clean, strict concept hierarchy that could be
more reliable reference of concept specificity than the
alternative features we have to use in Freebase. How-
ever, concept hierarchies are not necessarily available
in all knowledge bases. Nevertheless, TableMiner+ is
able to predict a single best concept candidate in most
cases without such knowledge. Additionally, the ex-
tremely poor accuracy on the IMDB dataset under the
strict mode is largely because all tables in the dataset
share the same schema.

Further, following the practice adopted by Mulwad
et al. [26], we also compare against state-of-the-art
using reported figures in Table 12. As it is shown,
TableMiner+ has obtained very competitive results.

11.2.3. Remark
Overall, we believe these results are very positive.

The rich context model adopted by TableMiner+ -
especially the usage of out-table context - enables
TableMiner+ to achieve the best performance in all
tasks, and significantly outperform both baseline and
state-of-the-art methods that ignore out-table contex-
tual features in most cases. In particular, column clas-
sification appears to benefit most, suggesting that out-
table context provides very useful clues for annotating
table columns. The superior performance observed on
the IMDB dataset further confirms this, and also shows
that existing semantic markups within webpages can
be very useful features in this task. Intuitively, when
describing table content we tend to focus on the gen-
eral information rather than specific data in individual
table components, which possibly explains the partic-
ular contribution by out-table context to the column
classification task. Moreover, results on the IMDB
dataset also suggest that TableMiner+ can be easily
adapted to solve tasks in list structures, which are es-
sentially single column tables without headers.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 27

Table 11
Comparison (F1) against the two re-implemented state-of-the-art (NE-columns only).

Limaye2010 Mulwad2013 Mulwad2013tm+ TableMiner+

D
is

am
bi

g. Limaye200 - 64.3 68.3 80.2 82.3
LimayeAll - 66.0 70.1 81.9 83.7
IMDB - 80.6 76.0 96.0 97.6
MusicBrainz - 66.4 73.4 83.0 84.87

C
la

ss
ifi

ca
tio

n Limaye200
strict 28.4 30.5 37.4 65.8
tolerant 51.9 52.3 58.9 75.0

IMDB
strict 1.7 15.1 59.8 97.0
tolerant 49.3 55.2 78.2 97.2

MusicBrainz
strict 72.4 65.6 71.0 85.2
tolerant 72.4 74.2 79.3 85.9

R
el

at
io

n

Limaye200
strict - 55.9 55.1 72.5
tolerant - 60.5 58.5 76.0

MusicBrainz
strict - 60.5 49.5 67.9
tolerant - 67.6 62.7 69.1

Table 12
TableMiner+ on Limaye200 (classification and relation enumeration)
and LimayeAll (disambiguation) and state-of-the-art reported figures.
All results are based on NE-columns only. [26] and [35] report results
under tolerant mode only, weigted average are used where necessary.

Disamb. Class. Relation
TableMiner strict

83.7
65.8 72.5

TableMiner tolerant 75.0 76.0
Limaye et al. [21] 84.1 44.5 58.3
Mulwad et al. [26] 75.9 54.9 83.5
Venetis et al. [35] - 68.6 54.8

11.3. Efficiency

Firstly, the efficiency of TableMiner+ is compared
against the baselines Blev, Bcos and Bdice that represent
the exhaustive strategy. The three baselines are almost
identical in terms of efficiency since they only differ in
the string similarity metric used. Therefore, only Blev

is compared as an example.
Table 13 compares the wall-clock hours of TableMiner+

against Blev on the four datasets, and shows the propor-
tion of time spent by TableMiner+ on data retrieval -
including searching for candidate entities and retriev-
ing their data from Freebase or cache. TableMiner+ is
shown to be faster than Blev, despite its complicated
feature modeling and algorithmic computation.

TableMiner+ achieves efficiency improvement by
using sample-driven column classification and reduc-
ing the number of candidates for cell disambigua-
tion, therefore cutting down both the number of data

Table 13
Wall-clock hours observed for TableMiner+ as savings against the
baseline Blev .

Savings
(hours)

Savings
(% of Blev)

% of time
on data
retrieval

Limaye200 3.7 21.7% 99%
LimayeAll 45.7 15.2% 97%
IMDB 3.9 4.1% 96%
MusicBrainz 34.3 28.6% 97%

retrieval and feature construction operations. Specifi-
cally, it benefits from two design features. First, the
one-sense-per-discourse hypothesis ensures that val-
ues repeating on multiple cells in non-NE columns are
disambiguated collectively costing only one operation.
This avoids both repeated data retrieval and feature
construction operations for the same set of entity can-
didates. Whereas classic methods disambiguate these
cells individually, costing extra computation. Second,
the bootstrapping approach in TableMiner+ reduces the
total number of candidate entities by firstly creating
preliminary column annotations using a sample instead
of the entire column content, then using this outcome
to constrain candidate space in entity disambiguation.
Table 14 compares the total number of candidate en-
tities processed during disambiguation operations in
TableMiner+ against (1) the exhaustive baseline Blev,
and (2) a ‘would-be exhaustive TableMiner+’ (exh-
TableMiner+) which exploits one-sense-per-discourse
but is forced to disambiguate every unique cell in

28 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Table 14
Candidate entity reduction in disambiguation operations by
TableMiner+ compared against exhaustive baseline Blev and a
would-be exhaustive TableMiner (exh-TableMiner).

Blev exh-TableMiner
Overall Overall Constrained Dis-

ambiguation phase
Limaye200 48.4% 30.4% 39.2%
LimayeAll 52.2% 32.7% 41.4%
IMDB 10.6% 10.6% 59.4%
MusicBrainz 66.4% 44.3% 50.4%

the column before running column classification (i.e.,
without using I-Inf to create preliminary column an-
notations to constrain disambiguation). TableMiner+’s
improvement is shown as reduction in % against the
two reference methods.

Compared against the exhaustive baseline Blev,
TableMiner+ reduces the total number of candidate en-
tities to be disambiguated by 10-67%. Note that the
smallest improvement on the IMDB dataset is due to
(1) the dataset being dominated by very small tables
(see Figure 7 on average less than 15 rows), and as a
result, I-Inf in the LEARNING phase does not converge
or converges relatively slowly (to be discussed in Ap-
pendix E); and (2) one-sense-per-discourse being void
since only one column (hence the subject column) is
available. Empirically, this translates to the very small
improvement in wall-clock time shown in Table 13.

The reduction narrows when compared against exh-
TableMiner+, however it still represents a substantial
improvement. If we only consider the new cells to be
disambiguated after the preliminary column classifica-
tion phase, in which case the disambiguation candidate
space is constrained by the preliminary column anno-
tations (i.e., ‘constrained disambiguation phase’ in Ta-
ble 14), TableMiner+ improves over exh-TableMiner+

by a significant 39-60%.
Furthermore, as mentioned before, one potential is-

sue that may damage TableMiner+’s efficiency is that
during the UPDATE phase, new entity candidates can
be retrieved and processed, due to the change of win-
ning concepts on a column in each update iteration.
In the worst case, the total number of candidates to
be retrieved from Freebase equals that in an exhaus-
tive method. However, empirically it is found that
this rarely happens. The number of entity candidates
to be retrieved from Freebase in the UPDATE phase
are shown in Table 15, compared to the total number
of new entity candidates retrieved from Freebase by
TableMiner+ in all phases. Further, Table 16 shows the

Table 15
Number of entity candidates need to be retrieved from Freebase at
the UPDATE phase.

Number hof total
Limaye200 177 3.9h
LimayeAll 7,762 5.1h
IMDB 418 0.8h
MusicBrainz 867 1.6h

Table 16
Number of iterations until stabilization at the UPDATE phase. 1 itr
- fraction of tables on which the UPDATE phase stabilizes after 1
iteration.

Max. Avg. 1 itr.
Limaye200 4 1.3 72.8%
LimayeAll 5 1.3 75.8%
IMDB 4 1.2 79.7%
MusicBrainz 4 1.3 73.1%

number of iterations until stabilization is reached in the
UPDATE phase. It suggests that the UPDATE phase
stabilizes very fast. Compared to the semantic mes-
sage passing algorithm in Mulwad et al. [26], at high-
level, the iterative UPDATE phase is similar to running
semantic message passing on a graph containing two
types of variable nodes - column headers and content
cells - and one type of factor nodes that model com-
patibility between the variable nodes. This is a much
simpler graph than that used by Mulwad et al., which
can fail to converge and empirically a threshold must
be used to exit the loop.

Secondly, we compare TableMiner+ against Li-
maye2010 and Mulwad2013. To factor out network la-
tency we re-run the three systems using cached Free-
base data and compare the wall-clock time. Note that
TableMiner+ and Mulwad2013 are both run in a single
thread while Limaye2010 is run with parallelization
using 50 threads. Both Mulwad2013 and Limaye2010
exhaustively process the entire table before running in-
ference algorithms. Table 17 shows that TableMiner+

is the most efficient, completing the annotation tasks
faster than the other two systems. It is significantly
faster than Limaye2010, which spent an enormous
amount of time on computing similarity between pairs
of entity and concept candidates in each column. The
improvement by TableMiner+ is rather compelling:
had we implemented parallelization for TableMiner+,
the savings in wall-clock time would be in the orders of
magnitude. We believe this is convincing evidence that
Semantic Table Interpretation can significantly bene-

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 29

Table 17
Wall-clock hours observed for TableMiner+ (1 thread), Mulwad2013
(1 thread), and Limaye2010 (50 threads) when only local cache is
used

Table
Miner+

Mulwad
2013

Limaye
2010

LimayeAll 4.6 5.4 76.0
IMDB 2.3 2.5 28.5
MusicBrainz 1.0 1.9 9.0

fit from efficient algorithms, while parallelization can
only be partial solution.

11.4. The effect of using partial content for
interpretation

TableMiner+ uses partial content from a table col-
umn to perform preliminary column classification, the
outcome of which is used to guide preliminary cell dis-
ambiguation. The annotations are then revised by the
UPDATE process, which allows evidence from the re-
maining content from the table to feed back into the
annotation process. Hence one question that remains
to be answered is whether a Semantic Table Interpreta-
tion system that is purely based on partial data can be
as good as systems that use the entire table content.

To answer this question we carry out additional ex-
periments that are detailed in Appendix E. First, we
drop the UPDATE phase from TableMiner+ to create
a model TMnu

iinf (nu means ‘no update’). Effectively,
this means that preliminary column classification in
TMnu

iinf will create the final column annotations using
a sample from each column, and preliminary cell dis-
ambiguation will create the final cell annotations based
on the column classification results. Next, we create al-
ternative models by replacing the stopping criteria au-
tomatically calculated by I-Inf in TMnu

iinf with arbi-
trarily set sample size. For example, we may config-
ure the system to use a maximum of 10 rows from a
column in preliminary column classification.

Results have shown that TMnu
iinf still consistently

outperforms the best performing baseline in almost
all occasions. Compared against the alternative mod-
els using arbitrarily set sample size, it is able to ob-
tain either the best or very close (with a difference of
merely 0.1-0.6 point) performance in accuracy. We be-
lieve that these further confirm that: (1) Semantic Ta-
ble Interpretation can benefit from using various in-
table and out-table features; (2) it is possible to achieve
higher accuracy using only partial data in the task, im-
proving both effectiveness and efficiency; (3) the I-Inf

algorithm is very robust as it is able to automatically
determine an optimal sample size for column classifi-
cation.

12. Conclusion

This work introduced TableMiner+, a Semantic Ta-
ble Interpretation method that annotates tabular data
for semantic indexing, search and knowledge base
population. We have made several contributions to
state-of-the-art. First, TableMiner+ uses various con-
text both inside and outside tables as features in Se-
mantic Table Interpretation. This is shown to be partic-
ularly useful for improving annotation accuracy. Sec-
ond, TableMiner+ is able to make inference based on
partial content sampled from a table. This is shown
to deliver significant efficiency improvement against
state-of-the-art methods that exhaustively process the
entire table. Third, TableMiner+ offers a comprehen-
sive solution, solving all annotation tasks of Semantic
Table Interpretation and deals with both entity and lit-
eral column. And finally, we release the largest collec-
tion of datasets as well as the first publicly available
software for the task.

Extensive experiments show that TableMiner+ out-
performs all baselines and re-implemented state-of-
the-art methods on any datasets under any settings. On
the two most diverse datasets covering multiple do-
mains and different table schemata, it significantly im-
proves over all the other models by up to 42 percent-
age points. Compared against classic, exhaustive base-
lines, TableMiner+ reduces empirical wall-clock time
by up to 29% and in the column classification task
alone, but uses only 55% of table content (as opposed
to 100% by exhaustive methods) to classify columns
in the two most diverse datasets. It is also significantly
faster than the re-implemented state-of-the-art meth-
ods even when network latency is eliminated by using
a local copy of the knowledge base.

TableMiner+ is however, still limited in a number of
ways. First, relation enumeration is yet incomplete, as
TableMiner+ only handles binary relations between the
subject column and other columns. Second, alterna-
tive measures for convergence in the I-Inf may be ex-
plored. Finally, TableMiner+ is evaluated using Free-
base. Ideally, it should be evaluated using other knowl-
edge bases as well. We will explore these directions in
the future work.

30 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

References

[1] Singhal Amit. Introducing the knowledge graph: Things, not
strings. In Official Blog (of Google). Google Blog, 2012.

[2] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug
Downey. Methods for exploring and mining tables on
wikipedia. In Proceedings of the ACM SIGKDD Workshop on
Interactive Data Exploration and Analytics, IDEA ’13, pages
18–26, New York, NY, USA, 2013. ACM.

[3] Patrice Buche, Juliette Dibie-Barthélemy, Liliana Ibanescu,
and Lydie Soler. Fuzzy web data tables integration guided by
an ontological and terminological resource. IEEE Transactions
on Knowledge and Data Engineering, 25(4):805–819, 2013.

[4] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene
Wu, and Yang Zhang. Webtables: exploring the power of tables
on the web. Proceedings of VLDB Endowment, 1(1):538–549,
August 2008.

[5] Michael J. Cafarella and Eugene Wu. Uncovering the relational
web. In Proceedings of the 11th International Workshop on
Web and Databases, 2008.

[6] Silviu Cucerzan. Large-scale named entity disambiguation
based on Wikipedia data. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 708–716, Prague, Czech Republic,
June 2007. Association for Computational Linguistics.

[7] Li Ding, Dominic DiFranzo, Alvaro Graves, James R.
Michaelis, Xian Li, Deborah L. McGuinness, and James A.
Hendler. TWC data-gov corpus: Incrementally generating
linked government data from data.gov. In Proceedings of the
19th International Conference on World Wide Web, WWW ’10,
pages 1383–1386, New York, NY, USA, 2010. ACM.

[8] William A. Gale, Kenneth W. Church, and David Yarowsky.
One sense per discourse. In Proceedings of the Workshop
on Speech and Natural Language, HLT ’91, pages 233–237,
Stroudsburg, PA, USA, 1992. Association for Computational
Linguistics.

[9] Anna Lisa Gentile, Ziqi Zhang, Isabelle Augenstein, and Fabio
Ciravegna. Unsupervised wrapper induction using linked data.
In Proceedings of the seventh international conference on
Knowledge capture, K-CAP ’13, New York, NY, USA, 2013.
ACM.

[10] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Ex-
ploiting shallow linguistic information for relation extraction
from biomedical literature. In Proceedings of the 11th Confer-
ence of the European Chapter of the Association for Computa-
tional Linguistics (EACL 2006), Trento, Italy, April 2006.

[11] Wael H. Gomaa and Aly A. Fahmy. Article: A survey of text
similarity approaches. International Journal of Computer Ap-
plications, 68(13):13–18, April 2013. Published by Foundation
of Computer Science, New York, USA.

[12] Lushan Han, Tim Finin, Cynthia Parr, Joel Sachs, and Anupam
Joshi. Rdf123: From spreadsheets to rdf. In Proceedings of the
7th International Conference on The Semantic Web, ISWC ’08,
pages 451–466, Berlin, Heidelberg, 2008. Springer-Verlag.

[13] Marti A. Hearst. Automatic acquisition of hyponyms from
large text corpora. In Proceedings of the 14th Conference on
Computational Linguistics - Volume 2, COLING ’92, pages
539–545, Stroudsburg, PA, USA, 1992. Association for Com-
putational Linguistics.

[14] Gaëlle Hignette, Patrice Buche, Juliette Dibie-Barthélemy, and

Ollivier Haemmerlé. An ontology-driven annotation of data
tables. In Proceedings of the 2007 international conference on
Web information systems engineering, WISE’07, pages 29–40,
Berlin, Heidelberg, 2007. Springer-Verlag.

[15] Gaëlle Hignette, Patrice Buche, Juliette Dibie-Barthélemy, and
Ollivier Haemmerlé. Fuzzy annotation of web data tables
driven by a domain ontology. In Proceedings of the 6th Eu-
ropean Semantic Web Conference on The Semantic Web: Re-
search and Applications, ESWC 2009 Heraklion, pages 638–
653, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] Jun’ichi Kazama and Kentaro Torisawa. Exploiting wikipedia
as external knowledge for named entity recognition. In Joint
Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning, pages
698–707, 2007.

[17] Vijay Krishnan and Christopher D. Manning. An effective two-
stage model for exploiting non-local dependencies in named
entity recognition. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th An-
nual Meeting of the Association for Computational Linguistics,
ACL-44, pages 1121–1128, Stroudsburg, PA, USA, 2006. As-
sociation for Computational Linguistics.

[18] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos.
Wrapper induction for information extraction. In Proc. IJCAI-
97, 1997.

[19] Andreas Langegger and Wolfram Wöß. Xlwrap — querying
and integrating arbitrary spreadsheets with sparql. In Pro-
ceedings of the 8th International Semantic Web Conference,
ISWC ’09, pages 359–374, Berlin, Heidelberg, 2009. Springer-
Verlag.

[20] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Kai Eckert,
Heiko Paulheim, and Christian Bizer. Extending tables with
data from over a million websites. In Semantic Web Challenge
2014, 2014.

[21] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. An-
notating and searching web tables using entities, types and rela-
tionships. Proceedings of the VLDB Endowment, 3(1-2):1338–
1347, 2010.

[22] Chunliang Lu, Lidong Bing, Wai Lam, Ki Chan, and Yuan Gu.
Web entity detection for semi-structured text data records with
unlabeled data. International Journal of Computational Lin-
guistics and Applications, 2013.

[23] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Triplifying
wikipedia’s tables. In Anna Lisa Gentile, Ziqi Zhang, Claudia
d’Amato, and Heiko Paulheim, editors, The Linked Data for
IE workshop at ISWC2013, volume 1057 of CEUR Workshop
Proceedings. CEUR-WS.org, 2013.

[24] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Using
linked data to mine rdf from wikipedia’s tables. In Proceed-
ings of the 7th ACM International Conference on Web Search
and Data Mining, WSDM ’14, pages 533–542, New York, NY,
USA, 2014. ACM.

[25] Varish Mulwad, Tim Finin, and Anupam Joshi. Automatically
generating government linked data from tables. In Working
notes of AAAI Fall Symposium on Open Government Knowl-
edge: AI Opportunities and Challenges, November 2011.

[26] Varish Mulwad, Tim Finin, and Anupam Joshi. Semantic mes-
sage passing for generating linked data from tables. In Inter-
national Semantic Web Conference (1), Lecture Notes in Com-
puter Science, pages 363–378. Springer, 2013.

[27] Varish Mulwad, Tim Finin, Zareen Syed, and Anupam Joshi.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 31

T2ld: Interpreting and representing tables as linked data. In
Axel Polleres and Huajun Chen, editors, ISWC Posters and De-
mos, CEUR Workshop Proceedings. CEUR-WS.org, 2010.

[28] David Nadeau and Satoshi Sekine. A survey of named entity
recognition and classification. Linguisticae Investigationes,
30(1):3–26, January 2007. Publisher: John Benjamins Publish-
ing Company.

[29] Nik Rouda. Getting real about big data: Build versus buy. In
Oracle White Paper. ESG, 2014.

[30] Satya S. Sahoo, Wolfgang Halb, Sebastian Hellmann, Kings-
ley Idehen, Ted Thibodeau Jr, S?ren Auer, Juan Sequeda, and
Ahmed Ezzat. A survey of current approaches for mapping of
relational databases to rdf, 01 2009.

[31] Sunita Sarawagi and William W. Cohen. Semi-markov con-
ditional random fields for information extraction. In In Ad-
vances in Neural Information Processing Systems 17, pages
1185–1192, 2004.

[32] Gonçalo Simões, Helena Galhardas, and Luis Gravano. When
speed has a price: Fast information extraction using approxi-
mate algorithms. Proc. VLDB Endow., 6(13):1462–1473, Au-
gust 2013.

[33] Zareen Syed, Tim Finin, and Anupam Joshi. Wikipedia as an
ontology for describing documents. In Proceedings of the Sec-
ond International Conference on Weblogs and Social Media.
AAAI Press, March 2008.

[34] Zareen Syed, Tim Finin, Varish Mulwad, and Anupam Joshi.
Exploiting a web of semantic data for interpreting tables. In
Proceedings of the Second Web Science Conference, April
2010.

[35] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca,
Warren Shen, Fei Wu, Gengxin Miao, and Chung Wu. Recov-
ering semantics of tables on the web. Proceedings of VLDB
Endowment, 4(9):528–538, June 2011.

[36] Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q.
Zhu. Understanding tables on the web. In Proceedings of the
31st international conference on Conceptual Modeling, ER’12,
pages 141–155, Berlin, Heidelberg, 2012. Springer-Verlag.

[37] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu.
Probase: a probabilistic taxonomy for text understanding. In
Proceedings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’12, pages 481–492,
New York, NY, USA, 2012. ACM.

[38] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and
Surajit Chaudhuri. Infogather: Entity augmentation and at-
tribute discovery by holistic matching with web tables. In Pro-
ceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’12, pages 97–108, New
York, NY, USA, 2012. ACM.

[39] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of table
recognition: Models, observations, transformations, and infer-
ences. International Journal of Document Analysis and Recog-
nition, 7:1–16, 2003.

[40] Ziqi Zhang. Named entity recognition: Challenges in docu-
ment annotation, gazetteer construction and disambiguation,
2013.

[41] Ziqi Zhang. Methods of using partial data in disambiguating
web tables. In Proceedings of the 19th International Confer-
ence on Knowledge Engineering and Knowledge Management,
2014.

[42] Ziqi Zhang. Towards effective and efficient semantic table in-
terpretation. In Proceedings of the 13th International Semantic

Web Conference, pages 487–502, 2014.
[43] Ziqi Zhang, Anna Lisa Gentile, and Fabio Ciravegna. Recent

advances in methods of lexical semantic relatedness Äì a sur-
vey. Natural Language Engineering, FirstView:1–69, 4 2012.

[44] Ziqi Zhang and José Iria. A novel approach to automatic
gazetteer generation using wikipedia. In Proceedings of the
2009 Workshop on The People’s Web Meets NLP: Collabo-
ratively Constructed Semantic Resources, People’s Web ’09,
pages 1–9, Stroudsburg, PA, USA, 2009. Association for Com-
putational Linguistics.

[45] GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. Explor-
ing various knowledge in relation extraction. In Proceedings
of the 43rd Annual Meeting on Association for Computational
Linguistics, ACL ’05, pages 427–434, Stroudsburg, PA, USA,
2005. Association for Computational Linguistics.

[46] Stefan Zwicklbauer, Christoph Einsiedler, Michael Granitzer,
and Christin Seifert. Towards disambiguating web tables. In
International Semantic Web Conference (Posters & Demos),
pages 205–208, 2013.

Appendix

A. Name changes from Zhang [41]

In the following, we use italic to highlight names
adopted in our previous work.

– the LEARNING phase - the forward learning
phase

– the UPDATE phase - the backward update phase
– preliminary annotations/interpretation - initial

annotations/interpretation
– entity context score (ec) - context score ctxe
– entity name score (en) - name score nm
– entity confidence score (cf) - final confidence

score fse
– concept instance score (ce) - base score bs
– concept context score (cc) - context score ctxc
– concept confidence score (cf) - final confidence

score fsc

B. Recreation of the Limaye datasets

The original Limaye datasets are firstly divided into
tables extracted from Wikipedia (wiki-table) and those
from the general Web (Web-table). Each wiki-table is
re-created based on the live version of Wikipedia. To
do so, the corresponding Wikipedia article is down-
loaded, and tables containing links to other Wikipedia
articles (internal links) are extracted. Each newly ex-
tracted table is then submitted to a content checking
process against the original table. Let Tnew denote one
such table from the new Wikipedia article and T old de-

32 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

note the original table. bow(Tnew) and bow(T old) cre-
ates a bag-of-words representation of Tnew and T old

respectively by concatenating the text content from all
cells and headers in each table then converting them
into bag-of-words representations. The similarity be-
tween the two tables is computed using the frequency
weighted dice function in Equation 8 to obtain a score
between 0 and 1.0. Then if the one Tnew that has the
highest similarity score satisfies the following condi-
tions it is selected: (1) has a similarity score of greater
than 0.5; (2) contains at least an equal number of rows
as T old and at least two columns; (3) has less than 200
rows20.

If no tables are extracted from the new source article
or pass the content check, the original table T old is re-
annotated by a ‘fuzzy’ matching process. First, the in-
ternal links are extracted from the new Wikipedia arti-
cle and a map between the links and their anchor texts
is created. Multiple links that share the same anchor
texts are discarded. Then, each content cell in T old

is looked up in the map. If the text of a content cell
matches any anchor text, the link is selected for that
cell.

In some cases, no Wikipedia articles can be found to
contain the original table, usually because the article
has been deleted. In this case, the original table is kept
as-is. Original Web-tables are also kept as-is, since no
provenance has been recorded for them.

Thus after re-creating all tables in these datasets,
they are re-annotated according to Freebase to create
the entity annotation ground truth. Each internal link in
a table is firstly searched using the MediaWiki API21

to find the corresponding Wikipedia page number. The
page number is then queried on Freebase using MQL22

to find the corresponding Freebase URI. The end out-
come of this process is a collection of tables whose
cells are annotated by Freebase URIs.

C. Testing with the original Limaye datasets

In addition to the re-created entity ground truth de-
scribed above, another version has also been created by
only re-annotating entity cells without re-downloading
the most recent webpages. Each Wikipedia internal

20Very large tables in the original datasets are split into smaller
ones. The criteria of splitting is unknown. In this case, tables from
the original dataset are used.

21http://www.mediawiki.org/wiki/API:Main_page
22http://www.freebase.com/query

link in the original table ground truth is mapped to
a Freebase URI using the MediaWiki API and Free-
base using the MQL API, following the procedures
discussed in the previous section. To contrast against
the new Limaye dataset, this is to be called the original
Limaye dataset, LimayeAll-Original.

TableMiner+ and the four baselines are tested on
this dataset for entity disambiguation and results are
shown in Table 18. Surprisingly, the most simplistic
baseline Bnm obtains the highest accuracy (F1) while
TableMiner+ scores the second. Considering the intu-
ition behind Bnm this could suggest that LimayeAll-
Original is biased toward popular entities. To obtain a
better understanding, two types of analysis have been
carried out.

Table 18
Disambiguation results (F1) on LimayeAll-Original.

Bnm Blev Bcos Bdice TableMiner+

92.6 91.2 91.8 91.5 92.0

First, the dataset statistics of LimayeAll-Original is
gathered and compared against LimayeAll, as shown
in Table 19. The statistics show that LimayeAll nearly
doubled LimayeAll-Original in terms of the number
of entity annotations in the ground truth. Further, Li-
mayeAll also has a larger population of short entity
names, as measured by the number of tokens in cells.
Typically, short names are much more ambiguous than
longer names, thus making disambiguation tasks more
challenging. Together this could have made LimayeAll
a more balanced dataset with much improved level of
diversity, increasing the difficulty of the task and pos-
sibly offsetting the bias in LimayeAll-Original.

Table 19
Comparing the statistics of the re-constructed LimayeAll dataset
against the original LimayeAll-Original.

LimayeAll LimayeAll-
Original

Avg.# rows 21.2 20.8
Avg.# NE-annotated cols. 2.1 1.1
Total # annotated
NE cells (A.N.C.)

227,046 118,927

single-token A.N.C. 30.5% 24.5%
A.N.C. with two tokens 44.4% 45%

Second, to obtain a more balanced view of the per-
formance of different systems on LimayeAll-Original,
the results created by the baselines and TableMiner+

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 33

Table 20
Precision on the manually annotated 903 named entity annotations
that the three systems disagree on.

Precision Precision either-or (579)
Bnm 25.3 39.4
Blev 32.1 42.7
TableMiner+ 48.2 75.1

are manually inspected and re-annotated. To do so, a
random set of 100 tables are selected from LimayeAll-
Original and the output by Bnm, Blev and TableMiner+

are collected. The output of Bcos and Bdice are not
examined since they only differ from Blev in terms
of the string similarity metric and the performance
of the three systems is not much different. Then for
each method, the predicted entity annotations that are
already covered by the ground truth in LimayeAll-
Original are excluded. Then, in the remaining annota-
tions, those that all three systems predict the same are
removed. The remainder are the ones that the three sys-
tems ‘disagree’ on, and are manually validated. This
resulted in a total of 903 entity annotations, of which
579 is predicted correctly by at least one system. Ta-
ble 20 shows the precision by the three systems based
on this part of data. TableMiner+ significantly outper-
forms the two baselines. Manual inspection of 20% of
the wrong annotations by all three methods shows that
it is largely because (over 80%) the knowledge base
does not contain the correct candidate. When only an-
notations that are correct by any one method are con-
sidered (‘Precision either-or’), TableMiner+ achieves a
precision of 75.1, 35.7 higher than Bnm and 32.4 higher
than Blev.

D. Implementation of state-of-the-art

We describe adaptations of the methods by Limaye
et al. [21] and Mulwad et al. [26] below.

D.1. Limaye2010

The first point of adaptation relates to features used
to compute the compatibility between candidate con-
cepts and entities (Section 4.2.3 in [21], ‘Column type
and cell entity’). Limaye et al. use the YAGO concept
hierarchy to compute a specificity score of a concept
with respect to an entity. Freebase however, does not
have such a hierarchy. Instead, we compute a speci-
ficity of a concept based on its number of instances
in Freebase. A concept that has a smaller number of

instances has a higher specificity score than a con-
cept with more instances. Further, Limaye et al. also
use the concept hierarchy to compute similarity be-
tween a candidate entity and concept. Our alternative
implementation computes a similarity score based on
the bag-of-words representations of an entity and a
concept. Specifically, we retrieve the triples contain-
ing the entity and the concept as subject respectively,
then build their bag-of-words representations by taking
the objects from their triple sets. We then compute the
overlap between the two bag-of-words representations
using the frequency weighted dice function in Equa-
tion 8.

The second point of adaptation relates to feature
weights. In the original work, the weights are learned
using a supervised method and training data. Here we
opt for a simple solution of equal weights.

The third point of adaptation is the removal of rela-
tion variables from the construction of factor graphs.
This is because empirically, we have noticed that
adding relation variables caused 3 percentage points
drop in the accuracy of column classification, and also
resulted in inconsistent constraints on the constructed
graph. This is likely due to the lack of strict con-
cept hierarchy in Freebase. In Limaye et al., candi-
date relations are derived as the set of all possible re-
lations between any pair of candidate concepts from
two columns, and candidate concepts are derived as
concepts associated with entities in the cells from each
column. In Freebase, it is common to find an entity as-
sociated with several concepts of different granularity
and domains (e.g., ‘Tony Blair’ is a ‘Person’, ‘Politi-
cian’, ‘TV Personality’, ‘Guitarist’ etc; ‘Labour Party’
is a ‘Political Party’, ‘Organization’, ‘Employer’ etc.).
Without a concept hierarchy we are unable to prune the
candidate concept space to discard the highly general,
less relevant concepts, which may have caused noisy
candidate relations to be generated and added to the
factor graph. Such noise may have created misleading
evidence that damages overall inference accuracy. As a
result, our implementation only builds a smaller factor
graph of concept and entity variables for each table.

D.2. Mulwad2013

The only adaptation of the method by Mulwad et
al. relates to the entity ranker, for which the original
method uses a supervised named entity disambigua-
tion module trained on manually annotated data. The
entity ranker takes a query (containing the cell’s text
to be disambiguated) as input, and outputs a ranked

34 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

list of candidate entities from Wikitology. It uses a
number of features derived from Wikitology, includ-
ing: a candidate entity’s index score, its Wikipedia
page length, page rank, the string similarity (Leven-
shtein and Dice) between the candidate entity and the
string in the query. The string similarity is calculated
between the query string and all possible names for the
candidate entity.

We replace the original entity ranker with an unsu-
pervised method that takes the following features: a
candidate entity’s index score (based on its rank in the
query results returned by Freebase), and the string sim-
ilarity (Levenshtein and Dice) scores between the can-
didate entity and the string in the query calculated in
the same way as in the original work. We then sim-
ply take the sum of the scores as the final score for the
candidate entity.

E. The effect of using samples in TableMiner+

To specifically evaluate the accuracy of annotations
using sample data as opposed to an entire table col-
umn, four ‘slim’ versions of TableMiner+ are created.
Firstly, the UPDATE phase is dropped from the col-
umn interpretation component. This creates TMnu

iinf

(nu means ‘no update’). The column annotations cre-
ated by preliminary column classification based on
sample are considered to be final and used in pre-
liminary cell disambiguation. Then, three alternative
models are created by replacing the automatically de-
termined I-Inf stopping criteria with arbitrarily set
sample size. The first uses a maximum of 10 rows
as sample to create column annotations (TMnu

10), the
second uses a maximum of 20 rows (TMnu

20), and
the third uses the entire column (TMnu

all). TM
nu
10

and TMnu
20 can be considered as supervised versions

of TableMiner+ without UPDATE. Ideally, the best
threshold is to be empirically derived23. Results of
these settings are also compared against the best per-
forming baseline Bdice and the full TableMiner+.

E.1. Accuracy

Tables 21, 22 and 23 show F1 accuracy obtained on
the disambiguation, classification and relation enumer-
ation tasks respectively. First and foremost, TMnu

iinf

23Zwicklbauer et al. [46] have shown that a sample size between
10 and 20 rows lead to close-to-maximum performance in column
classification.

outperforms the best performing baseline in almost
all occasions except two cases: disambiguation on
MusicBrainz and classification on MusicBrainz under
‘NE-column only’ and ‘strict’ mode, in which cases
the difference is very small (0.2 and 0.6 point). With-
out the UPDATE phase, the key differences of TMnu

iinf

from the baseline are the use of out-table context as
features and using partial content for column classifi-
cation. The consistent improvement over the baseline
is another confirmation of the benefits of using out-
table context in Semantic Table Interpretation, partic-
ularly in the task of column classification where the
improvement is the greatest.

Comparison against other slim versions of TableMiner+

shows that TMnu
iinf is very competitive: it is able

to obtain the best performance in many cases and
where it does not, it achieves close-to-best perfor-
mance (with a difference of merely 0.1-0.6 point). In
particular, in the classification task on the Limaye200
dataset, TMnu

iinf outperforms all the other versions un-
der any settings. Considering that Limaye200 is the
most diverse dataset for this task while IMDB and Mu-
sicBrainz each has only one type of table schema, the
results suggest that the I-Inf algorithm is very much
capable of automatically selecting optimal sample size
for column classification.

Also interesting to note is that the exhaustive ver-
sion TMnu

all appears to have little advantage over any
sample-based versions. It only outperforms all the rest
in 5 cases, where the improvement is merely 0.1-
0.2 point. In many cases, results are even worse than
sample-based versions. This could be attributed to the
addition of noisy candidate concepts when more cells
are allowed to feed in evidence to column classifica-
tion compared to sample-based versions.

Compared against the full TableMiner+, the results
show that the addition of the UPDATE phase indeed
further improves learning accuracy, particularly in the
classification and relation enumeration tasks where the
benefits are substantial in most cases.

E.2. I-Inf convergence speed

While the I-Inf algorithm is already shown to be
very effective, it is also very efficient. Figure 9 shows
the convergence statistics in the preliminary column
classification phase of TableMiner+ on all datasets. Ta-
ble 24 shows the statistics of the slowest convergence
on each dataset.

On all datasets, I-Inf in the preliminary column clas-
sification phase typically converges in an average of 10

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 35

Table 21
Named entity disambiguation results (F1) of the ‘slim’ versions
of TableMiner+ compared against the best baseline Bdice and the
full TableMiner+. The highest figures among all slim versions of
TableMiner+ are highlighted in bold.

Limaye200 LimayeAll IMDB MusicBrainz
Bdice 79.9 82.8 93.5 84.84
TableMiner 82.3 83.7 97.6 84.87
TMnu

10 81.3 83.3 96.4 84.69
TMnu

20 81.4 83.3 96.1 84.82
TMnu

all 81.3 83.3 96.1 84.85
TMnu

iinf 81.2 83.3 96.4 84.62

Table 22
Classification results (F1) of the ‘slim’ versions of TableMiner+ compared against the best baseline Bdice and the full TableMiner+. The highest
figures among all slim versions of TableMiner+ are highlighted in bold.

Bdice TableMiner+ TMnu
10 TMnu

20 TMnu
all TMnu

iinf

L
im

ay
e2

00 NE-columns only
strict 48.9 65.8 56.5 56.5 56.5 56.9
tolerant 66.1 75.0 71.7 71.8 71.6 72.1

All columns
strict 51.3 64.0 56.2 56.4 56.4 56.7
tolerant 65.0 71.5 68.6 68.8 68.6 69.1

IM
D

B

NE-/All columns
strict 32.0 97.0 65.1 60.3 60.3 64.5
tolerant 64.5 97.2 81.7 79.3 79.3 81.4

M
us

ic
B

ra
in

z

NE-columns only
strict 83.9 85.2 83.3 83.4 83.4 83.3
tolerant 83.9 85.9 85.2 85.4 85.4 85.2

All columns
strict 72.9 74.3 73.4 73.5 73.6 73.4
tolerant 72.9 74.7 74.4 74.5 74.5 74.4

Table 23
Relation enumeration results (F1) of the ‘slim’ versions of TableMiner+ compared against the best baseline Bdice and the full TableMiner+. The
highest figures among all slim versions of TableMiner+ are highlighted in bold.

Bdice TableMiner TMnu
10 TMnu

20 TMnu
all TMnu

iinf

L
im

ay
e2

00 NE-columns only
strict 61.8 72.5 70.0 70.2 69.6 69.6
tolerant 66.4 76.0 74.9 75.1 74.6 74.6

All columns
strict 61.1 66.2 63.8 64.2 63.9 63.9
tolerant 64.4 68.7 67.5 67.9 67.6 67.6

M
us

ic
B

ra
in

z

NE-columns only
strict 67.1 67.9 67.5 67.6 67.6 67.5
tolerant 68.2 69.1 68.6 68.7 68.7 68.6

All columns
strict 81.9 82.6 82.1 82.2 82.2 82.2
tolerant 82.4 83.1 82.6 82.7 82.7 82.6

iterations. In other words, only 10 cells are processed
to create preliminary column classification. This also
explains the observation that the learning accuracy ob-
tained by TMnu

iinf is very similar to TMnu
10 . It repre-

sents about 55% of data in an average table from the
Limaye200 and LimayeAll datasets, less than 30% in
the case of MusicBrainz, and about 75% for IMDB

where the majority (75%) are small tables (see Figure
7). In the cases that TableMiner+ does not converge or
converges slowly (Table 24), the tables are very small.

F. Mathematical notation lookup table

Continue on the next page.

36 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Fig. 9. Convergence statistics (max, min, average (black diamond),
kth quantiles) for I-Inf at the LEARNING phase. itr - number of
iterations (rows processed) until convergence; % - fraction of content
cells processed in a column

Table 24
Statistics of the slowest convergence of I-Inf when used for preliminary
column classification in the LEARNING phase.

Limaye
200

Limaye
All

IMDB Music
Brainz

100% of rows processed in
% of tables 33.8% 30.7% 27.6% 7.5%
Avg. rows 11.0 10.0 13.0 8.5
Rows >20 10 190 0 24

>50% of rows processed in
% of tables 47.8% 47.6% 49.2% 13.9%
Avg. rows 11.4 11.0 12.0 8.6
Rows >20 16 442 0 47

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 37

Table 25: Mathematical notations in alphabetical order. §- Section, Eq. -
Equation, Alg. - Algorithm

Notations
Definition First defined in

< k, v > a key-value pair in the I-Inf Algorithm §5, near Alg. 1
Cj candidate concepts for Tj §7.2.1, near Eq. 13
cj ∈ Cj a candidate concept for Tj §7.2.1, near Eq. 14
c+j the highest scoring concept for Tj §7.2.3 beginning
C the set of Cj for all columns in the table §5, near Alg. 2
D a generic dataset used in the I-Inf algorithm §5, near Alg. 1
d ∈ D a generic data item used in the I-Inf algorithm §5, near Alg. 1
Ei,j candidate entities from Ti,j §7.2.1 beginning
ei,j ∈ Ei,j a candidate entity from Ti,j §7.2.1 beginning
e+i,j the highest scoring entity for Ti,j §7.2.1, near Eq. 13
E the set of Ei,j for all cells in the table §8.1, near Alg. 2

i ∈ I
I is the set of row indexes in the sample used by preliminary
column classification; i is the index of one row unless
otherwise stated

§7.2.1, near Eq. 13

p ∈ P a webpage, and a set of webpages §6.2, near Eq. 4
ptitle The title of a webpage in the results returned by a search engine §6.2, near Eq. 5

psnippet
The snippet of a webpage in the results returned by a search
engine §6.2, near Eq. 5

Rj,j′ candidate relations between two columns §9.1, near Eq. 19
Rij,j′ candidate relations between two columns collected from row i §9.1 beginning
rj,j′ ∈ Rj,j′ a candidate relation between two columns §9.1, near Eq. 19
rij,j′ ∈ Rj,j′ a candidate relation between two columns collected from row i §9.1, near Eq. 18

ri+j,j′ ∈ Rj,j′
the highest scoring candidate relation between two columns
collected from row i

§9.1, near Eq. 19

R the set of Rj,j′ for all pairs of columns
Ti a table row §6.2, near Eq. 4
Tj a table column §6.1 beginning
Ti,j a table cell §6.2, near Eq. 4
w a single word §6.2, near Eq. 3

x ∈ X x denotes a particular type of context (e.g., header text,
paragraphs). X denotes the set of all types of contexts §6.2, near Eq. 3

ψi,j ∈ Ψi,j
ψi,j denotes a triple whose subject is ei,j ;
Ψi,j denotes the set of all such triples §9.1, near Eq. 18

Functions
Definition Used in equations

bow(·) returns a bag-of-words (multiset) of an object, applying
morphological normalization and stop words removal Eq. 3, 6, 8, 9, 12, 16

bowset(·) returns the set of unique tokens in bow(·) Eq. 6, 8, 9, 11
cc(cj) concept context score of cj Eq. 15
ce(cj) concept instance score of cj Eq. 14, 15
cf(cj) overall confidence score of cj Eq. 15
cf(ei,j) overall confidence score of ei,j Eq. 12, 13, 14

cf(rj,j′)
overall confidence score of a relation (on a particular row
or between two columns in general) Eq. 18, 20

con(ei,j) returns the concepts associated with ei,j Eq. 13, 14
countp(Ti,j , P) component function of the Web search score Eq. 4, 5

38 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

countw(Ti,j , P) component function of the Web search score Eq. 4, 6
coverage(ei,j , xi,j) measures overlap between bow(ei,j) and bow(xi,j) Eq. 9
dc(cj) domain consensus score of cj Eq. 17

defbow(e+i,j)
a special bag-of-words representation of e+i,j based on
its definition in a knowledge base

Eq. 16

dice(·, ·) frequency weighted dice function measuring overlap between
two objects Eq. 8, 17, 18

ec(ei,j) entity context score of ei,j Eq. 10, 12
en(ei,j) entity name score of ei,j Eq. 11, 12
entropy(i) entropy of iteration i computed in the I-Inf algorithm Eq. 1
freq(w, ·) returns the frequency of w in bow(·) Eq. 3, 5, 6, 8, 9
l(·) returns the ‘name’ or ‘label’ of an object Eq. 4,5
o(ψi,j) returns the object of triple ψi,j Eq. 18

overlap(ei,j , xi,j)
generalized function to denote either coverage(ei,j , xi,j)
or dice(ei,j , xi,j)

Eq. 10

p(ψi,j) returns the predicate of triple ψi,j Eq. 18
re(rj,j′) relation instance score of rj,j′ Eq. 20
subcol(Tj) returns a score of the degree to which Tj is the subject column Eq. 7
wt(·) weight assigned to a feature Eq. 3, 10

