
Semantic Web 0 (0) 1 1
IOS Press

Complexity of redundancy detection on RDF
graphs in the presence of rules, constraints,
and queries
Editor(s): Diego Calvanese, Free University of Bozen-Bolzano, Italy; Thomas Lukasiewicz, University of Oxford, UK
Solicited review(s): Adila A. Krisnadhi, Kno.e.sis Center, Wright State University, USA; one anonymous reviewer

Reinhard Pichler a, Axel Polleres b,c, Sebastian Skritek a,∗ and Stefan Woltran a,∗∗

a Vienna University of Technology, Faculty of Informatics, Favoritenstraße 9, A-1040 Wien, Austria
E-mail: {lastname}@dbai.tuwien.ac.at
b Siemens AG Österreich, Siemensstrasse 90, A-1210 Wien, Austria
E-mail: axel.polleres@siemens.com
c Digital Enterprise Research Institute, National University of Ireland, Galwway, IDA Business Park, Lower
Dangan, Ireland

Abstract. Based on practical observations on rule-based inference on RDF data, we study the problem of redundancy detection
on RDF graphs in the presence of rules (in the form of Datalog rules) and constraints, (in the form of so-called tuple-generating
dependencies), and with respect to queries (ranging from conjunctive queries up to more complex ones, particularly covering
features of SPARQL, such as union, negation, or filters). To this end, we investigate the influence of several problem parameters
(like restrictions on the size of the rules, the constraints, and/or the queries) on the complexity of detecting redundancy. The main
result of this paper is a fine-grained complexity analysis of both graph and rule minimisation in various settings.

Keywords: RDF, Optimisation, Rules, Constraints, Computational Complexity

1. Introduction

The Semantic Web promises to enable computers
to gather machine readable meta-data in the form of
RDF statements published on the Web and make in-
ferences about these statements by means of accom-
panying standards such as RDFS and OWL2. While
complete OWL2 reasoning is hard – and in many
cases even inappropriate for Web data [15] – (incom-
plete) rule-based inference is becoming quite popu-
lar and supported by many RDF stores and query en-
gines: frameworks like GiaBATA [17], Jena, Sesame,

*Corresponding author. E-mail: skritek@dbai.tuwien.ac.at.
**A preliminary version of this paper appeared at RR2010 [26].

OWLIM,1 etc. allow for custom inference on top of
RDF stores, supporting different rule-based fragments
of RDFS and OWL. Several such fragments have been
defined in the literature, such as ρDF [22], DLP [11],
OWL− [7], ter Horst’s pD* [28], or SAOR [16], and
– more recently – the W3C standardised OWL2RL,
a fragment of OWL implementable purely in terms
of rule-based inference [20]. All these fragments have
in common that they are implementable by simple
Datalog-like rules over RDF. As an example, de-
picted in Figure 1, let us take (1) the sub-property rule
from RDFS [14, Section 7.3, rule rdfs7], rules (2)–(6)
from OWL2RL [14, Section 4.3, rules prp-inv1,prp-

1cf. http://jena.sourceforge.net/, http://openrdf.

org/, and http://ontotext.com/owlim/

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

2 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

(1) { S P O . P subPropertyOf Q . uri(Q) } ⇒ { S Q O }
(2) { S P O . P inverseOf Q . uri(O) ∧ uri(Q) } ⇒ { O Q S }
(3) { S P O . P inverseOf Q . blank(O) ∧ uri(Q) } ⇒ { O Q S }
(4) { S P O . P type SymmetricProperty . uri(O) } ⇒ { O P S }
(5) { S P O . P type SymmetricProperty . blank(O) } ⇒ { O P S }
(6) { S P0 O1. ... On Pn O. P propertyChainAxiom (P0 ...Pn) } ⇒ { S P O }

(7) GD = { <http://semanticweb.org/wiki/Pat_Hayes> made <http://www.w3.org/TR/rdf-mt/>.

(8) <http://semanticweb.org/wiki/Pat_Hayes> name "Patrick J. Hayes".

(9) <http://www.w3.org/TR/rdf-mt/> creator "Patrick J. Hayes".}

(10) GO = { name subPropertyOf label.
(11) inverseOf type SymmetricProperty.
(12) made inverseOf maker.
(13) maker inverseOf made.
(14) creator propertyChainAxiom (maker label). }

Fig. 1. Rules and RDF graph for the example: Rule (1) is taken from RDFS, rules (2)–(6) from OWL2RL. The RDF graph GD (7)–(9) describes
authors and their publications, and GO (10)–(14) the ontology used by GD .

symp,prp-spo2] representing inverse properties, sym-
metric properties, and property chains:2

Further, let GD (Figure 1, (7)–(9)) be an RDF graph
talking about authors and their publications. Moreover,
let graph GO (Figure 1, (10)–(14)) be part of the on-
tology defining the terms used in GD.

When storing the graph G = GD ∪ GO in an RDF
store that supports inference over rules (1)–(6), differ-
ent questions of redundancy arise like if some state-
ments may be deleted since they can be inferred by
the rules. In our example, e.g. statement (9) as well
as statement (13) may be deleted, since they could be
reproduced by inference. Similarly, suppose that we
transfer the graph G = GD ∪ GO to a “weaker” RDF
store that only supports rules (1)–(3). Then the ques-
tion is if we thus loose any inferences. In fact, the an-
swer is no.

We emphasize that the investigations in this paper
are very much driven by practical observations on pub-
lished Linked Data and common inference rules: re-
dundancies do occur in practice, both in terms of pub-
lished sets of inference rules for RDF as well as within
published data from popular Linked Data datasets. For

2We disregard full URIs for common RDF terms, i.e., we
just write e.g. inverseOf , for <http://www.w3.org/2002/

07/owl#inverseOf>, name for <http://xmlns.com/foaf/0.
1/name>, or creator for <http://purl.org/dc/elements/

1.1/creator>, etc. Further, (P1 . . . Pn) in RDF is short
for a fresh variable X plus additional triples X first P1

. X1 rest X2. ...Xn first Pn . Xn rest nil . using
reserved terms first , rest , nil .

instance, on the one hand, standard rule sets such as
OWL2RL are known to be non-minimal [20, Sec-
tion 4.3]. On the other hand, if we take as an exam-
ple the RDF data published at http://dbpedia.
org/resource/Vienna – which is RDF data ex-
tracted automatically from Wikipedia within the DB-
pedia project [5] – we can observe that this data con-
tains a number of redundant RDF triples such as the
triple3

@prefix : <http://dbpedia.org/resource/>
:Vienna rdfs:label "Vienna" .

which is already implied by the RDF Schema seman-
tics via the two triples

@prefix : <http://dbpedia.org/resource/>
:Vienna foaf:name "Vienna" .
foaf:name rdfs:subPropertyOf rdfs:label .

which can be found on DBpedia itself and within the
FOAF ontology, respectively.

Many more such cases of redundancy can be found
in published Linked Data online which is why it seems
worthwhile to investigate how expensive removing
such redundancies would be.

We thus want to be able to answer the general ques-
tion about redundancy of both triples and rules. How-

3We use here common Turtle [3] syntax with prefixes to be found
at http://prefix.cc.

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 3

ever, it is often important to limit the minimisation of
RDF graphs in such a way that certain consistency con-
ditions must be preserved. These consistency condi-
tions can be expressed by means of constraints [18].
We shall restrict ourselves here to constraints in the
form of so-called tuple-generating dependency (tgd)
constraints [4], which are a generalisation of the famil-
iar foreign-key dependencies in the relational database
world. Roughly speaking, a tgd may be viewed as a
generalised rule “read” as constraint. I.e. instead of al-
lowing to infer new information, a constraint tests if
the current data satisfies certain requirements (cf. [21]
for a discussion on the difference between rules and
constraints). So, for instance, if we read rules (4)-(5) as
constraints, we could say that graph G alone without
rules satisfies these constraints, and likewise the clo-
sure of G with respect to rules (1)-(3) does. Tgd con-
straints can be more general than (Horn) rules in that
they also allow otherwise unbound, existential vari-
ables in the head, possibly occurring in a larger con-
junct. That is, tgds are – rather than rules – constrain-
ing queries (in the head) “triggered” by bindings com-
ing from a query in the body; for instance, a constraint

(15) { A made D } ⇒ { A label N . D creator N}

would hold only on graphs where everybody who
made something also has a declared label and that label
is also used to denote the creator. Note that constraint
(15) holds on the closure of G with respect to rule (1)
but – as opposed to the constraint reading of (4)-(5) –
not on G alone.

Next, we are interested in redundancy with respect
to queries. This might be particularly relevant for RDF
stores that expose a narrow SPARQL query inter-
face. For instance, suppose that, in our example, we
are interested only in completeness with respect to
the query “SELECT ?D ?L { ?D maker ?M . ?M
label ?L }” which is the SPARQL way of writing a
conjunctive query:

(16) { D maker M . M label L } → ans(D,L)

In such a setting, rules (3)–(6) as well as triples
(9),(11),(13), and (14) can be dropped. Such redun-
dancy elimination is not unique; for instance, keeping
triples (11), (13), and rule (4) we could drop (12), still
preserving completeness.

The primary goal of our work is a systematic com-
plexity analysis of both graph and rule minimisation
under constraints, as well as with respect to queries.
To this end, we investigate the influence of several
problem parameters (like restrictions on the size of the
rules, constraints, and queries) on the complexity of
detecting redundancy. A first important step in this in-

vestigation has been recently made by Meier [19]. He
studied the following problem: Given a graph G, a set
R of rules and a set C of tgds, can G be reduced to a
proper subgraph G′ ⊂ G, such that G′ still satisfies
C and the closure of G′ under R coincides with the
closure of G under R? For the special case that both
the rules in R and the constraints in C have bounded
size (referred to as b-boundedness), this problem was
shown to be NP-complete in [19]. In this paper, we
want to extend the work initiated in [19] and provide
a much more fine-grained analysis of the complex-
ity, e.g., by weakening or strengthening restrictions
such as b-boundedness and by considering redundancy
elimination that only preserves RDF entailment (rather
than keeping the closure of the original graph under the
original rules unchanged) and additionally considering
redundancy with respect to queries.

We shall come up with a collection of complexity
results, ranging from tractability to ΣP3 -completeness.
Additionally, we address the orthogonal problems of
rule minimisation and the problem of reducing rules or
triples without preserving completeness of the entire
closure, but only ensuring that the answers to certain
queries are preserved.

We shall also discuss further variations of the graph
and rule minimisation problem. For instance, the rules
and tgds in [19] do not allow variables in predicate po-
sitions, which is a severe restriction in the sense that
many of the common RDF inferences rules are not
covered (e.g., all except rules (4) and (5) above). We
will not make this restriction, since it can be dropped
without significant change of the complexity results.

Organisation of the paper and summary of results.
In Section 2, we recall some basic notions and results.
A conclusion and an outlook to future work are given
in Section 7. Sections 3–6 contain the main results of
the paper, namely:

• Graph Minimisation. In Section 3, we provide a
comprehensive complexity analysis of the RDF graph
minimisation problem, both when full reconstruction
of the graph or only RDF entailment is required. We
study various settings which result from different re-
strictions on the rules and/or tgds like restricting their
size, considering them as fixed, omitting them, or im-
posing no restrictions at all. Our complexity results
range from tractability to ΣP3 -completeness.

• Rule Minimisation. In Section 4, we consider the
problem of minimising the set of rules. We show that
the problem of finding redundant rules with respect to

4 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

a given RDF graph is NP-complete for b-bounded rules
and not harder than ∆P

2 for arbitrary rules. Note that
rule minimisation is closely related to the field of Dat-
alog equivalence and optimisation. We therefore dis-
cuss how the large body of results in this area can be
fruitfully applied to the problems studied here.

• Graph Minimisation w.r.t. Queries. In Section 5,
we study how guaranteeing completeness only w.r.t.
a given set of conjunctive queries (CQs) or unions of
conjunctive queries (UCQs) influences the complex-
ity for each of the above settings. Considering differ-
ent restrictions on the size of the queries, hardness
never exceeds ΣP3 , but for some settings raises by two
levels in the polynomial hierarchy compared to Sec-
tion 3. Finally we extend our findings to the problem
of rule minimisation. We shall also briefly touch on
full SPARQL queries beyond unions of conjunctive
queries.

• Problem Variations. In Section 6, we analyze the
complexity of further problems which are either vari-
ations of or strongly related to the graph and rule
minimisation problems mentioned above. For instance,
rather than asking if an RDF graph contains redundant
tuples, we consider the problem whether an RDF graph
can be reduced below a certain size. We show that this
problem is NP-complete also in those settings where
the graph minimisation problem is tractable. We also
discuss the effect of allowing blank nodes in predicate
positions in the Datalog rules.

The present paper significantly extends the con-
ference version [26] in several ways: above all, full
proofs of all results are given here. In Section 4
and Section 5, all of the ∆P

2 [log n]-completeness re-
sults are new (note that in the conference version, the
∆P

2 -membership was shown while hardness was only
proved for NP- or coNP). Section 5 now also consid-
ers for some settings the extension to UCQs with safe
negation. Further, in Section 5 we initiate the study
of the influence of SPARQL as query language for
the graph minimisation problem. Finally, the proof
sketches of hardness proofs in [26] were based on a
reduction from the SAT or QSAT problem. In this pa-
per, all hardness proofs except Theorem 6.1 have been
rewritten to reduce from graph colorability problems
instead of SAT or QSAT to provide much more intu-
itive reductions.

2. Preliminaries

This section reviews the basic notions of RDF and
and RDF Entailment, formally defines the versions of
RDF Rules, constraints, and queries considered in this
paper, introduces further basic notions and fixes some
notational conventions.

2.1. RDF

Let U , B, and L denote pairwise disjoint alphabets
for URI references, Blank nodes (or variables) and Lit-
erals, respectively. Throughout this paper, unions of
these sets are simply denoted by concatenating their
names.4 An RDF statement (or triple) is a statement
of the form (s, p, o) ∈ UB × U × UBL, and an RDF
graph is a set of triples. In this paper, no distinction is
made between variables and blank nodes. Just note that
blank nodes/variables appearing in the data are under-
stood to be existentially quantified within the scope of
the whole RDF graph they appear in. Elements fromB
(U) are written as alphanumeric strings starting with
an upper case letter (lower case letter or number), ele-
ments from L as quoted strings, and – inspired by the
common Turtle [3] syntax – RDF statements as white-
space separated triples and RDF graphs as ’.’ separated
lists of triples in curly braces. Additionally, the afore-
mentioned shortcut notation for lists is used. That is,
graph GD from above would be written as:

{ patHayes made rdfmt .
patHayes name “Patrick J. Hayes”.
rdfmt creator “Patrick J. Hayes” }

A homomorphism h between two RDF graphs G1

and G2 (written as h : G1 → G2) is a blank node map-
ping h : B → UBL such that h(G1) ⊆ G2, where
h(G1) denotes the graph obtained by replacing in G1

every variable B ∈ B with h(B). A homomorphism h′

is an extension of a homomorphism h if h′(B) = h(B)
for all blank nodes B on which h is defined.

It is convenient to define the notion of entailment
between two RDF graphs via the interpolation lemma
from [14, Section 2] rather than in a model-theoretic
way: an RDF graph G1 entails G2, written G1 |= G2

if a subgraph of G1 is an instance of G2, that is, if
there exists a homomorphism h : G2 → G1. GivenG1,
G2, deciding whether there exists a homomorphism
G2 → G1 (thus also G1 |= G2) is well known to be
NP-complete.

4In this paper, a slightly simplified notion of RDF compared
to [14] is used, e.g. not considering typed literals separately.

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 5

2.2. Rules and constraints

A basic graph pattern (BGP) is a set of generalised
triples (s′, p′, o′) ∈ UBL × UBL × UBL and a filter
condition is a conjunct of the unary predicates uri(·),
blank(·), literal(·) (denoting the unary relations
U , B, and L, respectively). A filtered basic graph pat-
tern (FBGP) is a BGP conjoined with a filter condi-
tion, the latter containing only variables already ap-
pearing in the BGP. Given an FBGP P , denote its com-
ponents with BGP(P) and F (P), that is its BGP and
its filter condition, respectively. Homomorphisms be-
tween BGPs and from BGPs to RDF graphs are de-
fined analogously as before. Hence a homomorphism
h : P1 → P2 is a blank node mapping h : B → UBL
such that h(P1) ⊆ P2, where P1 is a BGP and P2 is
either a BGP or an RDF graph. Further, a blank node
mapping h is a homomorphism h : P1 → P2 from an
FBGP P1 into a BGP or RDF graph P2 if h is a homo-
morphism h : BGP(P1) → P2, and h(F (P1)) is sat-
isfied. Thereby h(F (P1)) is satisfied if for every filter
condition filter(x) in F (P1) (where filter ∈
{uri,blank,literal}) the value of ĥ(x) is of
the correct type where ĥ(x) = h(x) if x ∈ B and
ĥ(x) = x for x ∈ UL.

Note that for a FBGP P , given a homomorphism h
on BGP(P) it is easy to check if h also satisfies F(P)
(a more detailed discussion of how to do this can be
found in Section 6.3). Therefore, for a (F)BGP P , an
RDF graph or BGP G and a blank node mapping h,
throughout the paper only h(P) ⊆ G is used to denote
the property that h is indeed a homomorphism h : P →
G. Hence it is not distinguished if P is a BGP or FBGP,
and in the latter case the additional requirement that h
satisfies F(P) is not stated explicitly.

The type of constraints considered in this paper are
RDF tuple-generating dependency (tgd) constraints
(cf. [4]). A tgd constraint (or simply constraint) r is de-
fined asAnte⇒ Con, where the antecedent Ante is a
FBGP and the consequent Con is a BGP. A constraint
Ante ⇒ Con is a short-hand notation for the first-
order formula ∀ ~X

(
Ante(~X) → (∃~Y)Con(~X, ~Y)

)
(where ~Y denotes the blank nodes occurring in Con
only, while ~X are the remaining blank nodes). Hence,
a constraint Ante ⇒ Con is satisfied over an RDF
graph G if for each homomorphism h : Ante → G
on ~X there exists an an extension h′ of h to ~Y , s.t.
h′(Con) ⊆ G. To increase the readability, sometimes
the quantifiers and variable vectors will be stated ex-
plicitly.

RDF rules (or simply rules), are syntactically re-
stricted constraints, where ~Y = ∅, i.e. all variables ap-
pearing in Con also appear in Ante (akin to the com-
mon notion of safety [29] in Datalog). In the following,
RDF rules with an empty filter condition will be called
Datalog rules.5 Given a set R of rules and an RDF
graph G, the closure of G with respect to R, written
ClR(G), is defined as usual by the least fix-point of the
immediate consequence operator. I.e. using the nota-
tion from [17], for a rule r ∈ R with r : Ante⇒ Con,
let Tr(G) = {µ(Con) | µ : Ante → G}. Accord-
ingly, let TR(G) =

⋃
r∈R Tr(G). Also, letG0 =G and

Gi+1 = Gi ∪ TR(Gi) for i ≥ 0. Then, there exists a
smallest n such that Gn+1 = Gn and ClR(G) = Gn .

A rule or constraint is said to be b-bounded if both,
antecedent and consequent contain at most b triples.
Given an RDF graph and an arbitrary tgd τ , testing
if G satisfies τ is ΠP

2 -hard [10, Proposition 5.5, (1)].
On the other hand, for b-bounded tgds, it follows from
well-known results that the problem is tractable, cf.
[19, Proposition 3]. Testing if an RDF rule is applica-
ble is well-known to be NP-complete, and tractable in
case of b-bounded rules (cf. [19, Proposition 9]).

For a given graph G or a given set R of rules, let
XG and XR (X ∈ {U,B,L}) denote the subset of U
(resp. B, L) used in G orR, respectively.

2.3. Queries

2.3.1. Conjunctive Queries
A conjunctive query (CQ) q over an RDF graph G

is of the form Gq → ans(~X), where Gq is a FBGP,
ans is a distinguished predicate, and ~X is a vector
of blank nodes occurring in Gq . Gq is referred to as
the body of q (body(q)), and ans(~X) as the head of q
(head(q)). A union of conjunctive queries (UCQs) is
a set of CQs, all having the same head. The result of
a CQ q over some RDF graph G is defined as the set
q(G) = {τ(~X) | τ : body(q) → G}. The result of a
UCQ is the union of the results of its CQs.

For extending (U)CQs to (U)CQs¬ (i.e. allowing
for negation), given a query q, partition BGP(body(q))
into two sets, pos(q) and neg(q). Intuitively, pos(q)
encodes positive information that must be satisfied by
G, while G must not contain the negative informa-
tion encoded by neg(q). In the following, assume all

5In fact, in most parts of this paper, only Datalog rules will be
considered. Extension to arbitrary RDF rules will be revisited at the
end of Section 6, concluding that this extension does not change any
of the results presented.

6 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

(U)CQs¬ to be safe, that is, all blank nodes appearing
in head(q) and neg(q) must also appear in pos(q). The
result of a CQ¬ q over some RDF graph G is defined
as the set q(G) = {τ(~X) | τ : pos(q)∪F (body(q))→
G and τ(t) /∈ G for all t ∈ neg(q)}. The result of
a UCQ¬ is the union of the results of its CQs¬. In
the following, when considering a CQ or UCQ q (i.e.
neg(q) = ∅), the expressions body(q) and pos(q) are
used interchangeably.

A conjunctive query q is said to be body-b-bounded
if body(q) contains at most b triples. Moreover, q is
said to be head-b-bounded if | ~X| ≤ b for some con-
stant b (however, body(q) may be arbitrary). A set Q
of (U)CQs is body-b-bounded (resp. head-b-bounded)
if every q ∈ Q is body-b-bounded (resp. head b-
bounded).

2.3.2. SPARQL graph patterns
SPARQL [27] is the W3C Recommendation for a

query language for RDF. A SPARQL query consists of
two main parts. In the body of a query, a set of variable
bindings is created. The head of the query then allows
to apply several solution modifiers (like projection, or-
der, . . .) on these variable mappings. The main part of
the body are the so called SPARQL graph patterns,
which are used to define the variable bindings. They
have been studied in [24]. Following [24], this paper
concentrates on SPARQL graph patterns only.

Assume a set V of variables disjoint from UBL.
The basic building block of a SPARQL graph pat-
tern is a SPARQL triple pattern, which is a triple in
VU × VU × VUL. Note that in this work, SPARQL
triple patterns are not allowed to contain blank nodes.
Therefore elements from V are written as alphanu-
meric strings starting with an upper case letter just as
elements from B, since the specific kind of an element
will be always clear from the context.

Complex SPARQL graph patterns are constructed
from SPARQL triple patterns by using operators AND,
OPT, UNION, and FILTER. Formally, SPARQL
graph patterns are recursively defined as follows. (1)
A SPARQL triple pattern is a SPARQL graph pat-
tern, and (2) if P1 and P2 are SPARQL graph pat-
terns and R is a SPARQL filter expression, then
(P1 AND P2), (P1 OPT P2), (P1 UNION P2),
and (P1 FILTER R) are SPARQL graph patterns.
Thereby a SPARQL filter expression is built of ele-
ments from ULV , logical connectives, equality and in-
equality symbols, predicates similar to the filter con-
ditions uri(.) and literal(.) introduced above, and
further features (for a complete reference see [27]).

For a SPARQL triple pattern t, let vars(t) denote
the set of variables occurring in t, and for a SPARQL
graph pattern P let vars(P) denote the set of variables
that occur in the triples that compose P .

Next, the semantics of SPARQL graph patterns is
defined, following closely the definitions proposed
in [24]. A mapping µ is a partial function µ : V → U .
The domain of µ, denoted by dom(µ), is the set of
all variables from V for which µ is defined. Given a
triple pattern t and a mapping µ such that vars(t) ⊆
dom(µ), denote by µ(t) the RDF triple obtained by
replacing the variables in t according to µ. Two map-
pings µ1 and µ2 are said to be compatible, denoted by
µ1 ∼ µ2, if for every ?X ∈ dom(µ1) ∩ dom(µ2) it
holds that µ1(X) = µ2(X). The mapping with empty
domain, denoted by µ∅ is compatible with any map-
ping. The fact that a mapping µ satisfies a SPARQL fil-
ter expression R is denoted as µ |= R. Since SPARQL
filter expressions are of little importance in this paper,
a formal definition of the semantics of SPARQL fil-
ter expression is omitted. Note however that their for-
mal semantics represents their intuitive meaning. For
details, see [24].

The semantics of SPARQL graph patterns is defined
with the help of the following operations between sets
of mappings that resemble relational operators over
sets of tuples. Let M1 and M2 be sets of mappings.
Then the join and the left-outer join between M1 and
M2 are defiend as follows:
M1 1M2 = {µ1 ∪ µ2 | µ1 ∈M1, µ2 ∈M2

and µ1 ∼ µ2}
M1 M2 = (M1 1M2) ∪

{µ ∈M1 | ∀µ′ ∈M2 : µ 6∼ µ′}
This allows one to formalize the evaluation of a
SPARQL graph pattern over an RDF graph G as a
function J · KG that, given a SPARQL graph pattern,
returns a set of mappings. Formally, JP KG is defined
recursively as follows [24]:

1. If P is a triple pattern t, then JP KG =
{µ | dom(µ) = vars(t) and µ(t) ∈ G}.

2. If P = (P1 AND P2), then
JP KG = JP1KG 1 JP2KG.

3. If P = (P1 OPT P2), then
JP KG = JP1KG JP2KG.

4. If P = (P1 UNION P2), then
JP KG = JP1KG ∪ JP2KG.

5. If P = (P1 FILTER R), then
JP KG = {µ ∈ JP1KG | µ |= R}.

Given a mapping µ, it was shown in [24] that deciding
if µ ∈ JP KG is PSPACE-complete.

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 7

2.4. Graphs and further notation

A graph G = (V,E) consists of a set V of nodes
(also called vertices) and a set E of edges. Thereby
an edge e ∈ E is a pair (vi, vj) of nodes vi, vj ∈ V .
Throughout the paper, unless stated otherwise, edges
are considered to be undirected, i.e. (vi, vj) = (vj , vi).
A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. A clique is a complete graph, i.e. G =
(V,E) is a clique if for all pairs vi, vj ∈ V , the edge
(vi, vj) ∈ E. Further, given some graphG = (V,E), a
3-coloring of V is a mapping φ : V → {1, 2, 3}. A 3-
coloring φ is called a valid 3-coloring of G if φ(vi) 6=
φ(vj) for all pairs vi, vj ∈ V s.t. (vi, vj) ∈ E. Also
recall the well-known NP-complete problems graph 3-
colorability (3COL) and vertex cover.

Introducing some additional notation, let [n] denote
the set {1, . . . , n}. Finally, recall that given some set
V , subsets V1, . . . , Vn ⊆ V are a partition of V if Vi ∩
Vj = ∅ for i, j ∈ [n] with i 6= j and

⋃n
i=1 Vi = V .

2.5. Complexity classes and complete problems

The different problems studied in this paper are
shown to be complete for a handful of different com-
plexity classes. In the following, a short recapitula-
tion of the less well-known classes among them is
given. Further, the less well-known problems used in
the hardness proofs are introduced.

All problems under consideration are shown to be
contained in some class of the polynomial hierar-
chy. Recall that the polynomial hierarchy contains the
classes ΣPi and ΠP

i for all i ≥ 0, which are defined
as ΣP0 = ΠP

0 = P, and ΣPi+1 = NP ΣPi and ΠP
i+1 =

coNP ΣPi for i ≥ 0. The prototypical problem com-
plete for the the kth level of the polynomial hierarchy
are QSAT∃,k (for ΣPk) and QSAT∀,k (for ΠP

k) (cf. for
example [23, Theorem 17.10]). However, due to the
syntactic restriction of RDF to consider only triples,
reducing from QSAT to the problems studied in this
paper turns out to be rather tedious. Therefore, in most
cases, hardness will be shown via reduction from the
appropriate quantified variants of 3COL.

Definition 2.1 (Q-3COL∃,3). Let Q-3COL∃,3 be the
following decision problem:
INPUT: A graph G = (V,E) together with a partition
(V1, V2, V3) of V .
QUESTION: Does there exist a 3-coloring φ1 of V1,
such that for all possible 3-colorings φ2 of V2 there
exists a 3-coloring φ3 of V3, such that the 3-coloring
φ = φ1 ∪ φ2 ∪ φ3 is a valid 3-coloring of G.

Definition 2.2 (Q-3COL∃,2). Let Q-3COL∃,2 be the
following decision problem:
INPUT: A graph G = (V,E) together with a partition
(V1, V2) of V .
QUESTION: Does there exist a 3-coloring φ1 of V1,
such that for all possible 3-colorings φ2 of V2 the 3-
coloring φ = φ1 ∪ φ2 is no valid 3-coloring of G?

The ΣP3 -completeness of Q-3COL∃,3 and the ΣP2 -
completeness of Q-3COL∃,2 follow immediately from
[1]. There, the property k-round 3-colorability of
graphs was introduced via a k-round game and shown
to be complete for ΣPk ([1, Theorem 11.4]). An inspec-
tion of the proof of this theorem reveals the complete-
ness results for Q-3COL∃,3 and Q-3COL∃,2.

Next, consider the co-problem of Q-3COL∃,2, which
can be defined as follows.

Definition 2.3 (Q-3COL∀,2). Let Q-3COL∀,2 be the
following decision problem:
INPUT: A graph G = (V,E) together with a partition
(V1, V2) of V .
QUESTION: For all possible 3-colorings φ1 of V1,
does there exist a 3-coloring φ2 of V2 such that the
3-coloring φ = φ1 ∪ φ2 is a valid 3-coloring of G?

The ΠP
2 -completeness of the problem follows im-

mediately.
The final complexity class of interest in this paper

is the class ∆P
2 [log n]. It contains all decision prob-

lems that can be solved by a deterministic Turing ma-
chine having access to an NP-oracle in polynomial
time while calling the oracle at most O(log n) times
(where n is the size of the input). The following prob-
lem is known to be complete for ∆P

2 [log n] [31].

Definition 2.4 (ODD CLIQUE). Let ODD CLIQUE
be the following decision problem:
INPUT: A graph G = (V,E).
QUESTION: Is the size of the biggest clique inG odd?

In fact, it is sometimes convenient not to prove
membership for ∆P

2 [log n] directly, but instead to
show membership for the class PNP

‖ . However, since
∆P

2 [log n] is known to be equivalent with the class
PNP
‖ (cf. for example [23, Theorem 17.7]), this imme-

diately also gives ∆P
2 [log n] membership.

Thereby PNP
‖ is the class of all decision problems

that can be solved in polynomial time by a determin-
istic Turing machine M with an NP-oracle under the
following restrictions.M is allowed to call the oracle a
polynomial number of times, but all these calls must be
performed in parallel. I.e. all these calls must be inde-

8 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

pendent of the results returned from the other calls, and
must not be adapted according to the answers from the
oracle. Note that it follows immediately that a prob-
lem is still in ∆P

2 [log n] (hence also in PNP
‖) if it can

be solved in polynomial time by the machine M de-
scribed above, but allowing in addition a fixed num-
ber of queries to the oracle that depend of the results
retrieved from the polynomial number of parallel calls.

3. RDF graph minimisation

Given an RDF dataset and an additional set of rules
that allow one to infer information from the explicitly
stored data, the first question of interest is – beside ask-
ing what information can be actually inferred – if it
is indeed necessary to keep all the explicit data, or if
some of this data could be removed because it is still
derivable from the remaining data and the rules. There-
fore this is the basic question considered in this sec-
tion. As already motivated in the introduction, beside
a set of rules, it might also be the case that certain con-
straints are defined that must hold on the dataset. This
leads to the two problems whose complexity is inves-
tigated in this section, formally defined as follows:

Definition 3.1. Let MINI-RDF|=(G,R, C) be the fol-
lowing decision problem:
INPUT: RDF graph G, set R of RDF rules, set C of
tgds (G satisfies C).
QUESTION: Is there a G′ ⊂ G s.t. ClR(G ′) |=
ClR(G) and G′ satisfies C?

Definition 3.2. Let MINI-RDF⊆(G,R, C) be the fol-
lowing decision problem [19]:
INPUT: RDF graph G, set R of RDF rules, set C of
tgds (G satisfies C).
QUESTION: Is there a G′ ⊂ G s.t. ClR(G) =
ClR(G ′) and G′ satisfies C?

The main motivation for these two problems (maybe
even more important than the obvious goal of reduc-
ing the size of the dataset) is the avoidance of redun-
dancy in the stored data. Thereby two kinds of redun-
dancy elimination are addressed by the above settings.
On the one hand, in MINI-RDF⊆, triples which can
be restored via the rules are considered as redundant.
On the other hand, the minimisation of RDF graphs
via entailment is an important topic on RDF in gen-
eral. Minimisation via entailment allows to replace a
graph G by a proper subgraph Ḡ ⊂ G if Ḡ |= G
holds, i.e. one checks ifG is lean (see [12]). The MINI-

RDF|=(G,R, C) problem introduced above combines
these two approaches and thus yields the strongest re-
dundancy criterion. Nevertheless, in most cases, its
complexity is not higher than for MINI-RDF⊆ (see
Theorem 3.1).

3.1. Overview of results

It turns out that both problems, MINI-RDF⊆ and
MINI-RDF|= are ΣP3 -complete in the general case.
Thus several restrictions on the input parameters (more
concrete on the set of rules and set of constraints) are
taken into account. Based on these restrictions, the
complexity of the problems varies between tractability
and ΣP3 -completeness. The results are summarised in
the following theorem.

Theorem 3.1. For MINI-RDF|= and MINI-RDF⊆, the
complexity with respect to different assumptions on the
input (arbitrary, b-bounded, or fixed rule set; arbi-
trary, b-bounded, fixed, or no constraints) is as de-
picted in Table 1.

The remainder of this section is devoted to discuss
and prove the correctness of the entries in Table 1. First
of all, note that several settings are special cases of oth-
ers. The following lemma makes some of these rela-
tionships explicit. It thus justifies that in order to show
the correctness of Theorem 3.1 it is not necessary to
give an explicit completeness proof for each entry in
Table 1, but points out a proof plan for Theorem 3.1.

Lemma 3.2. The graph in Fig. 2 correctly describes
the dependencies between the problems (identified by
their line number) in Table 1, i.e.: if there is an arrow
from A to B, then B is a special case of A.

Proof. The Lemma follows immediately from the ob-
servation that arbitrary sets R (resp. C) include b-
bounded sets R (resp. C), which in turn include sets
of constant size. Finally, the empty set is of constant
size.

Hence an arrow from A to B means that member-
ship results forA hold also forB, and that hardness re-
sults forB apply also toA. Note that the graph in Fig. 2
is not complete, i.e. not all dependencies are made ex-
plicit, but only those needed in order to prove Theo-
rem 3.1. To prove this theorem, it now suffices to show
membership for both problems for (1) and (2), and ad-
ditionally for MINI-RDF⊆ for setting (8). On the other
hand, hardness must be shown for both problems for
setting (9), in addition for MINI-RDF|= in setting (12)

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 9

MINI-RDF|= MINI-RDF⊆

(1) R arb., C arb. ΣP
3 -complete ΣP

3 -complete
(2) R arb., C bb NP-complete NP-complete
(3) R arb., C fixed NP-complete NP-complete
(4) R arb., C = ∅ NP-complete NP-complete
(5) R bb., C arb. ΣP

3 -complete ΣP
3 -complete

(6) R bb, C bb NP-complete NP-complete [19]
(7) R bb, C fixed NP-complete NP-complete
(8) R bb, C = ∅ NP-complete in P
(9) R fixed, C arb. ΣP

3 -complete ΣP
3 -complete

(10) R fixed, C bb NP-complete NP-complete
(11) R fixed, C fixed NP-complete NP-complete
(12) R fixed, C = ∅ NP-complete in P

Table 1
The complexity of MINI-RDF|= and MINI-RDF⊆ w.r.t. input pa-
rameters (“bb” indicates the set to be b-bounded, and “arb.” allows
for arbitrary sets.)

1 5 9 2 3 4 6 7 8 10 11 12

Fig. 2. Dependency graph: Numbers refer to lines in Table 1. An arrow from A to B means that B is a special case of A.

and for MINI-RDF⊆ for settings (4) and (11). The con-
crete proofs are given in Section 3.2, but beforehand,
the rough intuition of these results is sketched.

The idea of the ΣP3 -membership in the most gen-
eral case, (1), can be seen by the following guess and
check algorithm that is allowed to call a ΠP

2 oracle for
the checks. In order to solve the problem, one has to
guess: a subgraph G′ of G, a sequence of rule applica-
tions on G′, and for each rule application a homomor-
phism justifying that the rule is applicable. Note that
ClR(G ′) ⊆ AD3 (with AD = UGURBGBRLGLR).
Hence if considering all possible rule applications of
length |AD|3, one of them has to return ClR(G ′). The
most expensive check is to test if G′ satisfies C. How-
ever, it obviously fits into ΠP

2 . The completeness result
shows that the above intuition of the sources of com-
plexity for the problem is indeed correct.

Concerning the restricted settings from Theorem 3.1,
the reasons for the lower complexity are the following
properties: If R is a b-bounded set, then ClR(G ′) can
be computed in polynomial time [19, Proposition 9]
and if C is a b-bounded set, then testing if G′ satis-
fies C is in PTIME [19, Proposition 3]. These two ob-
servations lead to the NP-complete settings. For the

tractable cases, note that in addition to the two prop-
erties mentioned above, if C = ∅, then not all sub-
graphs of G have to be checked, but only those miss-
ing exactly one triple from G. It thus suffices to check
only a polynomial number of subgraphs, instead of an
exponential number.

3.2. Complexity of RDF graph minimisation

Almost all complexity results presented in this sec-
tion make use of the following observations. First of
all, it is easy to see that the condition ClR(G) =
ClR(G ′) in Definition 3.2 is equivalent to G ⊆
ClR(G ′). The following lemma shows that similarly,
for MINI-RDF|=, it is enough to show ClR(G ′) |= G
rather than ClR(G ′) |= ClR(G).

Lemma 3.3. Let G1, G2 be RDF graphs and R a
set of rules. Then the following equivalence holds:
ClR(G2) |= ClR(G1)⇔ ClR(G2) |= G1 .

Proof. The “⇒”-direction is trivial. To show the “⇐”-
direction, recall that the closure ClR(G) of a graph G
under a set of rules R is defined by the least fix-point
of the immediate consequence operator.

10 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

Let r ∈ R with r = ∀~x
(
Ante(~x) → Con(~x)

)
. A

single application of the immediate consequence op-
erator T w.r.t. r extends the graph G1 to the graph
G′1 = G1∪Con(λ(~x)), where λ is a mapping on ~xwith
Ante(λ(~x)) ⊆ G1. It suffices to prove the implica-
tion ClR(G2) |= G1 ⇒ ClR(G2) |= G ′1 . From this,
the lemma follows by induction on the number of rule
applications when computing the closure ClR(G1).

By assumption, Ante(λ(~x)) ⊆ G1. Moreover,
ClR(G2) |= G1 holds. Hence, there exists a map-
ping η on the blank nodes in G1, s.t. η(G1) ⊆ G2.
In total, for σ = η ◦ λ, we thus have Ante(σ(~x)) ⊆
G2. Since ClR(G2) is closed under R, the inclusion
Con(σ(~x))) ⊆ G2 holds as well. We claim that η is
the desired homomorphism η : G′1 → G2. Clearly, we
have η(G1) ⊆ G2 by the above considerations. It re-
mains to show that η also maps the triples in G′1 \ G1

to G2. Consider G′1 \ G1 = Con(λ(~x)). By defini-
tion, σ = η ◦ λ. Moreover, Con(σ(~x)) ⊆ G2. Hence,
η(Con(λ(~x))) = Con(η ◦ λ(~x)) = Con(σ(~x)) ⊆ G2.
In total, we thus have η(G′1) ⊆ G2 and, therefore,
ClR(G2) |= G ′1 .

3.2.1. Settings complete for ΣP3
The idea of why both problems are ΣP3 -complete

in the case of unrestricted constraints was already
sketched above. Next, the result is shown formally.

Lemma 3.4. Both, MINI-RDF|=(G,R, C) and MINI-
RDF⊆(G,R, C), for arbitrary sets R and C can be
solved in ΣP3 .

Proof. First of all, note that every rule with more than
one triple in the consequent can be replaced in a pre-
processing step by several rules with the same an-
tecedent, each of them containing in its consequent ex-
actly one triple from the original consequent. Further,
let r0 encode some “do nothing” rule r0 : ∅ ⇒ ∅ and
denote with AD the active domain AD = UG ∪UR ∪
BG∪BR∪LG∪LR. Then the following nondetermin-
istic algorithm decides MINI-RDF|=(G,R, C) in poly-
nomial time using a ΠP

2 -oracle:

1. Guess a subgraph G′ ⊂ G with G′ 6= ∅
2. Check (by a ΠP

2 -oracle) if G′ satisfies C
If it does not, return “no”.

3. Set Ĝ0 = G′ and k = |AD|3
4. For j = 1, . . . , k:

(a) Guess a rule ri : Gi ⇒ {ti} fromR∪ {r0}
(b) Guess a mapping µ : Gi → Ĝj−1 (i.e. from

the rule body Gi to the intermediate graph)

(c) Check whether µ is a homomorphism Gi →
Ĝj−1. If it is not return “no”

(d) Set Ĝj = Ĝj−1 ∪ {µ(ti)}

5. Guess a mapping λ : G→ Ĝk
6. If λ is a homomorphism G→ Ĝk return “yes”,

otherwise return “no”

To see that this algorithm indeed runs in polyno-
mial time, observe the following: Step (2) can be eas-
ily solved by a ΠP

2 -oracle, see [10, Proposition 5.5,
(1)]. The remaining steps obviously fit into polyno-
mial time. In (1),(4a),(4b),(5) a polynomial size sub-
graph respectively mapping is guessed. Finally, testing
in steps (3),(4c),(5) if those mappings guessed are ho-
momorphisms is obviously in polynomial time. This
concludes the proof for MINI-RDF|=(G,R, C).

For MINI-RDF⊆(G,R, C), in steps (4) and (5), in-
stead of testing ClR(G ′) |= G , one needs to test
whether G ⊆ ClR(G ′), which is obviously not harder.

Hardness is shown in Lemma 3.5 below by reduc-
tion from Q-3COL∃,3. Recall the algorithm sketched
in the ΣP3 -membership proof. Then the intuition of the
reduction can be described according to the steps in
this algorithm. “Guessing a subgraph” corresponds to
fixing a coloring on the first set of nodes, while testing
if all constraints are satisfied on this subgraph corre-
sponds to testing if for all colorings on the second set
of nodes (encoded in the – universally quantified – an-
tecedent of a tgd) there exists a coloring on the third
set of nodes such that the combined coloring gives a
valid 3-coloring of the graph (both encoded in the –
existentially quanitfied – consequent of a tgd). Hence
there exists one tgd whose size is linear in the size of
the input graph.

Lemma 3.5. The problems MINI-RDF|=(G,R, C)
and MINI-RDF⊆(G,R, C), for fixed R and arbitrary
C, are ΣP3 -hard.

Proof. Consider the MINI-RDF⊆ problem first. The
hardness is shown by reduction from Q-3COL∃,3.
Hence let G = ((V,E), (V1, V2, V3)) be an arbitrary
instance of Q-3COL∃,3 with V = {v1, . . . , vn}. De-
fine an instance (G,R, C) of MINI-RDF⊆ as follows.
LetG = Gcols∪Gv1∪Gcol1∪Gcol2∪Ge1∪Ge2∪Gneg

where

Gcols = {0 iscol 0 . 1 iscol 1 . 2 iscol 2}
Gv1 = {vi v vi | vi ∈ V1},
Gcol1 = {vi a 0 . vi a 1 . vi a 2 | vi ∈ V1},

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 11

Gcol2 = {vi c 0 . vi c 1 . vi c 2 | vi ∈ V2 ∪ V3},
Ge1 = {0 e 0 . 1 e 1 . 2 e 2},
Ge2 = {0 e 2 . 0 e 1 . 2 e 0 . 2 e 1 . 1 e 2 . 1 e 0},
Gneq = {0 neq 2 . 0 neq 1 . 2 neq 0 . 2 neq 1 .

1 neq 2 . 1 neq 0},

and each vi is a new URI for every vi ∈ V (by slight
abuse of notation, vi is used to denote both, nodes in V
and URIs in G). Next, let the setR of rules be defined
asR = Rcol1 ∪Re1, with

Rcol1 = {{X a C . Y iscol Y } ⇒ {X a Y }},
Re1 = {{Y iscol Y } ⇒ {Y e Y }}.

Finally, the set C of constraints is defined as C =
Ccol1 ∪ C0 ∪ CG , where

Ccol1 = {{X a C .X a D .C neq D} ⇒ {0 e 0}}
C0 = {{X e X . Y iscol Y } ⇒ {Y e Y };

{X e X . Y v Y . Z iscol Z} ⇒ {Y a Z}}
CG = {G1 ∪G2 ⇒ G3 ∪G4} where

G1 = {vi a Ci | vi ∈ V1},
G2 = {vi c Ci | vi ∈ V2},
G3 = {vi c Ci | vi ∈ V3}, and
G4 = {Ci e Cj | (vi, vj) ∈ E}.

Obviously, the reduction is feasible in LOGSPACE.
Before showing its correctness, a short sketch of its
intuition is given: Gcols encodes the three colors, and
Gv1 the vertices contained in V1. Further, Gcol1 en-
codes for each vi ∈ V1 all possible colorings, and
Gcol2 does so for all vertices in V2 ∪ V3. Finally Ge2
contains all valid edge colorings while Ge1 stores the
invalid ones, and Gneq mimics the 6= predicate for
the three colors. Now the idea of the reduction can
be summarized as follows. Every subgraph G′ ⊂ G
that satisfies C, and for which ClR(G) = ClR(G ′)
holds, does not contain a triple from Ge1, that is the
encoding of an invalid edge coloring. Further it en-
codes a single coloring on V1 by containing exactly
one triple from Gcol1 for every vi ∈ V , and finally
Gcols ∪ Gv1 ∪ Gcol2 ∪ Ge2 ∪ Gneq ⊂ G′. This is
achieved on the one hand by the set of rules R that
only allow to derive triples from Gcol1 and Ge1, and
on the other hand by the constraints in C0 and Ccol1
that require G′ = G if Ge1 ∩ G′ 6= ∅ or G′ contains
more than one triple from Gcol1 for a single vi ∈ V1.
Finally, CG is satisfied over G′ exactly if the coloring
σ1 on V1 encoded by G′ is such that for every color-
ing σ2 on V2 there exists a coloring σ3 on V3 such that
σ1∪σ2∪σ3 is a valid 3-coloring of (V,E). To see this,
just note that there exists exactly one way to map G1

intoG′ while every possible coloring on V2 is reflected

by a mapping G2 → G′. Further, a mapping from G3

into G′ encodes a 3-coloring on V3. Now G4 can be
mapped into G′ if the assignment on C1, . . . , Cn re-
flects a valid 3-coloring for (V,E).

To conclude, the alternating quantifiers in the in-
stance of the Q-3COL∃,3 problem are “encoded” in the
above instance of MINI-RDF⊆ as follows: the existen-
tial quantification over colorings of V1 is encoded by
the selection of the proper subgraph G′ of G. The uni-
versal quantification over colorings of V2 corresponds
to the evaluation of the tgd CG ; indeed, checking if a
tgd holds requires to inspect all possible homomor-
phisms from the antecedent to the graph G′. Finally,
also the existential quantification over colorings of V3

is contained in the evaluation of the tgd CG ; indeed, for
each homomorphism of the antecedent into the RDF
graph G′ it must be checked if there exists a homo-
morphism from the conclusion into G′. Note that the
colorings of V2 (referred to by G2) “occur” in the an-
tecedent of CG while the colorings of V3 (referred to by
G3) “occur” in the conclusion. Actually, also the color-
ings of V1 (referred to by G1) occur in the antecedent.
However, here no universal quantification takes place
since G′ only contains one possible color (i.e., one
triple with subject vi and predicate a) for each vertex
in V1.

The proof of the correctness of the reduction is given
in the appendix.

3.2.2. NP-complete settings
As already pointed out above, the main reason why

in settings without arbitrary tgds the complexity drops
by two levels in the polynomial hierarchy is that testing
if some subgraphG′ ⊂ G satisfies C is now possible in
polynomial time, and no longer requires a ΠP

2 oracle.

Lemma 3.6. Both, MINI-RDF|=(G,R, C) and MINI-
RDF⊆(G,R, C), for arbitrary sets of rulesR and sets
C of b-bounded tgds, are in NP.

Proof. The problems can be decided by the algo-
rithms depicted in the proof of Lemma 3.4, but (by
[19]/Proposition 3) step (2) now requires only polyno-
mial time, hence no call to an oracle is needed.

Hence it remains to show the NP-hardness for three
cases. For the first case MINI-RDF⊆(G,R, C) with
fixed sets R and C, the proof is by reduction from
3COL. Similarly to the ΣP3 -hardness proof, the idea of
this reduction is to follow the steps from the algorithm
sketched in the membership proof. “Guessing” a sub-
set of the RDF triples corresponds to defining a color-

12 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

ing on the given graph. On the other hand, the (now
tractable) steps of testing if this subset satisfies C and
if it allows one to derive all removed RDF triples via
R correspond to checking if this coloring is indeed a
valid 3-coloring. Note that because C is fixed, it is no
longer possible to encode the graph structure into it,
but only tests like “if two nodes are connected by an
edge, then they must be assigned different colors”.

Lemma 3.7. The problem MINI-RDF⊆(G,R, C) where
both,R and C are considered to be fixed, is NP-hard.

Proof. MINI-RDF⊆(G,R, C). For this problem, the
NP-hardness is proven by reduction from the problem
3COL. First, consider the following fixed set of rules
and constraints,R and C, respectively.

R = {{X a C .D iscol D} ⇒ {X a D};
{D iscol D} ⇒ {D neq D}}

C = {{X a C .X a D .C neq D} ⇒ {0 neq 0};
{C neq C .X a D .F iscol F} ⇒ {X a F};
{C neq C .F iscol F} ⇒ {F neq F};
{X e Y .X a C . Y a D} ⇒ {C neq D}}

Now let an arbitrary instance of 3COL be given by
the graph Ĝ = (V,E) with V = {v1, . . . , vn}. Define
an instance (G,R, C) of MINI-RDF⊆ as follows. Let
G = Gcols ∪Gv ∪Ge ∪Geq ∪Gneq where

Gcols = {0 iscol 0 . 1 iscol 1 . 2 iscol 2}
Gv = {vi a 0 . vi a 1 . vi a 2 | vi ∈ V },
Ge = {vi e vj | {vi, vj} ∈ E}, and
Geq = {0 neq 0 . 1 neq 1 . 2 neq 2},
Gneq = {0 neq 1 . 0 neq 2 . 2 neq 0 . 2 neq 1 .

1 neq 2 . 1 neq 0},

and a new URI vi is introduces for every node vi ∈ V
(by slight abuse of notation, vi is used to denote both,
nodes in V and URIs in G). This reduction is obvi-
ously feasible in LOGSPACE. The idea of the reduc-
tion is as follows. First of all, the only purpose of Geq

is to guarantee that G satisfies C. On the other hand,
G′ ∩ Geq = ∅ holds for every “valid” (in the sense
of MINI-RDF⊆) subgraph G′ ⊂ G. This is achieved
by the second and third tgd, that informally state that
either G′ ∩ Geq = ∅ or G′ = G. Further, the idea
is that G′ contains for every vi ∈ V exactly one of
the three triples vi a 0, vi a 1, and vi a 2: At least
one of the three triples must be in G′ since otherwise
Gv * ClR(G ′), and if G′ contains more than one of
these triples, thenG′ = Gmust hold in order to satisfy
the first three tgds. Therefore G′ encodes a 3-coloring

of V , which is a valid 3-coloring of Ĝ iff G′ satisfies
the last tgds.

The proof of the correctness of this reduction can be
found in the appendix.

The remaining two cases for follow immediately
from well-known complexity results.

Lemma 3.8. The problem MINI-RDF⊆(G,R, C), for
arbitrary setsR and no constraints (i.e. C = ∅) is NP-
hard.

Proof. The hardness can be immediately shown by
exploiting that testing whether some Datalog rule
ri : Gi ⇒ {ti} is applicable (i.e. whether there exists
a homomorphism Gi → G) is already NP-complete
[12].

Lemma 3.9. The problem MINI-RDF|=(G,R, C) for
a fixed set R and no constraints (i.e. C = ∅) is NP-
hard.

Proof. The NP-hardness, even forR = C = ∅, follows
easily from the coNP-hardness of testing if G is lean
[12]: (G, ∅, ∅) is a positive instance of MINI-RDF|= iff
there exists some G′ ⊂ G such that G′ |= G, which is
exactly the case if G is not lean.

3.2.3. Tractable cases
Note that one reason for the settings considered so

far being intractable was that because of the constraints
it was necessary to in fact check for every possible
subgraph of the input G, if it satisfies C and allows to
derive the original information via R. The reason for
this is that it might well be the case that some sub-
graph G′ ⊂ G does not satisfy C, while some sub-
graph G′′ ⊂ G′ satisfies C. This occurs if in G′ there
exists some homomorphism from the antecedent of a
tgd into G′ that cannot be extended to the consequent
of the tgd. However, by removing further triples from
G′, for some G′′ ⊂ G′ there no longer exists the ho-
momorphism from the antecedent into G′′, hence G′′

now satisfies this tgd.
However, if there are no constraints at all, such

a case cannot occur, and therefore it suffices just to
check all subgraphs G′ ⊂ G missing exactly one triple
of G. If in addition R is such that the closure can be
computed efficiently, MINI-RDF⊆ becomes tractable.

Lemma 3.10. The problem MINI-RDF⊆(G,R, C)
can be decided in PTIME if all rules in R are b-
bounded and there are no constraints (i.e. C = ∅).

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 13

Proof. The problem can be decided by testing for ev-
ery triple t ∈ G, whether it can be removed from G:
For every t ∈ G, test whether t ∈ ClR(G)\{t}. If this
is the case for some triple t, then there obviously ex-
ists some smaller graph, hence the answer is Yes. Oth-
erwise, as no triple in G can be derived via the rules
in R from the remaining triples, the answer is No. By
[19]/Proposition 9, the check requires only polynomial
time.

4. Rule minimisation

Given the general setting considered so far, another
natural question is if the set of rules contains some re-
dundancies. Note that unlike the traditional problems
like query containment or several implication prob-
lems, the question is not if some rules are redundant (or
implied by the other rules) over all possible datasets.
Instead the question is posed with a specific dataset in
mind. One situation where this may be of interest is
to decide if over some dataset indeed all rules must be
considered for deriving data. Knowing that some rules
can be omitted without losing information may speed
up query answering.

Note that rules for RDF, when written as Data-
log rules, have a fixed predicate arity of three, which
makes reasoning problems computationally easier than
in the general Datalog setting (see, e.g. [8]). Although
there is a huge amount of literature in the Datalog
world addressing related problems (as query contain-
ment), the particular nature of the problems studied
in this paper requires a distinguished complexity anal-
ysis. Depending on whether the Datalog rules are
considered as b-bounded or not, the complexity of
the problems studied in this section ranges between
tractability and ∆P

2 [log n]-completeness.
The rule minimisation problem is formally defined

as follows. Note that since the RDF graph remains un-
changed, constraints are irrelevant here.

Definition 4.1. Let RDF-RULEMIN|=(G,R) be the
following decision problem:
INPUT: An RDF graph G and a setR of RDF rules.
QUESTION: Does there exist R′ ⊂ R such that
ClR′(G) |= ClR(G)?

Definition 4.2. Let RDF-RULEMIN⊆(G,R) be the
following decision problem:
INPUT: An RDF graph G and a setR of RDF rules.
QUESTION: Does there exist R′ ⊂ R such that
ClR′(G) = ClR(G)?

4.1. Overview of results

The following theorem summarises the complex-
ity results for the two problems of interest. Thereby
two settings are considered, namely R containing b-
bounded or arbitrary rules.

Theorem 4.1. For RDF-RULEMIN|=(G,R) and RDF-
RULEMIN⊆(G,R), the complexity with respect to the
rules in R being b-bounded or not is as depicted in
Table 2.

Before these results are formally proved in Sec-
tion 4.2, the intuition behind these results is sketched.

First of all, consider the case that all rules in R are
b-bounded. Then, given some RDF graph G, the clo-
sure of G under R can be computed efficiently. In or-
der to check if some rules are redundant, it suffices to
check for each r ∈ R if it is redundant. That is, it suf-
fices to compare the closure of G under R with the
closure of G under every subset of R missing exactly
one rule. This gives PTIME-membership for RDF-
RULEMIN⊆, since checking if one closure is con-
tained in another one is easy. For RDF-RULEMIN|=,
comparing two closures means to check if one clo-
sure entails the other closure. Since checking entail-
ment is NP-complete, this only gives membership for
NP. In fact, it will be shown that the full complexity of
testing entailment cannot be avoided, and thus RDF-
RULEMIN|= is NP-complete as well.

Allowing for arbitrary rules, note that computing the
closure of an RDF graph with respect to a given set of
rules is neither in NP nor in coNP: Deciding if certain
triples can be derived by the rules is an NP-hard prob-
lem. On the other hand, checking if some set of triple
patterns is indeed the closure (that is, if no more rule
can be applied) is coNP-hard. However, the problem
can be easily solved in polynomial time by a determin-
istic Turing machine having access to an NP-oracle. In
fact, a short reflection on the algorithm reveals that the
necessary oracle calls are non-adaptive, i.e. completely
independent of each other. For RDF-RULEMIN⊆, this
immediately shows that the problem is in PNP

‖ , hence
∆P

2 [log n]. RDF-RULEMIN|= on the other hand still
requires an entailment test, which obviously is not in-
dependent of the closures. However, the problem re-
mains in ∆P

2 [log n] nevertheless.
In order to reduce the complexity of the problems

RDF-RULEMIN⊆ and RDF-RULEMIN|=, one could
seek for approximations of those problems. In fact, one
option is to check for redundant rules in the set R
of given Datalog rules; or whether some rule is sub-

14 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

RDF-RULEMIN|= RDF-RULEMIN⊆

(1) R bb. NP-complete in P
(2) R arb. ∆P

2 [O(log(n))]-complete ∆P
2 [O(log(n))]-complete

Table 2
The complexity of RDF-RULEMIN|= and RDF-RULEMIN⊆ depending on whether the rules inR are b-bounded (“bb”) or not (“arb.”)

sumed by another rule from R. The first problem is
known to be tractable while the test for rule subsump-
tion is NP-complete (see [9]). The latter result can be
shown to hold also for rules of bounded arity (which
we deal with here), but becomes tractable in the case of
b-bounded rules. Further methods (for example, fold-
ing and unfolding of rules) are well understood for
logic programs (see [25]), and could also apply to the
present domain. An in-depth analysis how to use those
results in the setting considered in this paper is left for
future work.

As mentioned earlier, the rules dealt with in this pa-
per can be seen as Datalog rules using a ternary pred-
icate. Note that the complexity of evaluating Datalog
programs which have their (intensional) predicates’ ar-
ity bounded by a constant has been carefully investi-
gated in [8]. In particular, it is shown there that the
general EXPTIME-complexity for reasoning in Data-
log programs drops down to complexity classes NP
(resp. DP), thus mirroring the results discussed here
and by Meier [19].

4.2. Complexity of rule minimisation

The first lemma formally shows the complexity re-
sults in the case ofR containing only b-bounded rules.
Thereby the membership is shown using the algorithm
sketched before. The hardness proof is again by reduc-
tion from 3COL. Its idea is to use a single rule whose
application adds an encoding of the edge relation to
the RDF data set. Now the RDF triples are defined in
such a way that every homomorphism mapping these
additional triples into the original set of triples (and
therefore witnessing the entailment) defines a valid 3-
coloring on the graph. Hence the only rule is redundant
iff the graph is 3-colorable.

Lemma 4.2. For a set R of b-bounded rules (for
fixed b), the problem RDF-RULEMIN|=(G,R) is
NP-complete while RDF-RULEMIN⊆(G,R) is in
PTIME.

Proof. RDF-RULEMIN⊆(G,R). Consider the fol-
lowing algorithm to test whetherR contains redundant
rules:

1. Compute Gclos = ClR(G)
2. For every r ∈ R

(a) SetR′ = R \ {r}
(b) Compute G′ = ClR′(G)
(c) If G′ = Gclos then return “Yes”

3. Return “No”

The algorithm is obviously correct. To see that it also
runs in polynomial time, just note that since R is b-
bounded, the closure of G under (a subset of) R can
be computed in polynomial time. Hence, the entire al-
gorithm obviously works in polynomial time.

RDF-RULEMIN|=(G,R). For the membership, con-
sider the following changes on the above algorithm.
Step (2c) is replaced by the check if G′ |= Gclos
holds. Moreover, in order to avoid multiple entailment
checks, the loop in step (2) over all r ∈ R is replaced
by guessing an appropriate rule r ∈ R. Hence the wit-
ness guessed consists of a rule r ∈ R and a homo-
morphism Gclos → G′. This obviously gives a correct
NP-algorithm.

The hardness is shown by reduction from 3COL.
Hence let an arbitrary instance of 3COL be given by
the graph (V,E) with V = {v1, . . . , vn}. Further let
d, e be URIs and ~X = {X1, . . . , Xn} a set of blank
nodes. Then the RDF graph G and rule set R are de-
fined as follows:

G = {0 d 1 . 0 d 2 . 1 d 2 . 1 d 0 . 2 d 0 . 2 d 1 .
0 e 1 . 0 e 2 . 1 e 2 . 1 e 0 . 2 e 0 . 2 e 1} ∪
{Xα d Xβ | (vα, vβ) ∈ E}

R= {{Z1 d Z2} ⇒ {Z1 e Z2}}

Clearly, this reduction is feasible in LOGSPACE.
For its correctness, observe that ClR(G) = G ∪
{Xα e Xβ | (vα, vβ) ∈ E}. It remains to show that
G |= ClR(G) holds (that is r is redundant) iff (V,E)
is 3-colorable:

First suppose that G |= ClR(G) holds, this means
there exists a homomorphism h : ClR(G) → G .
Clearly, this homomorphism must map every triple
Xα e Xβ to one of the triples 0 e 1 . 0 e 2 . 1 e 2 . 1 e 0
. 2 e 0 . 2 e 1. This immediately gives a valid 3-

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 15

coloring σ of (V,E) by defining σ(vi) = h(Xi) for
every i ∈ [n].

Conversely, suppose that there exists a valid 3-
coloring σ of (V,E). Then consider the mapping h

defined on the blank nodes in ~X by setting h(Xi) =
σ(vi). It is easy to check that h is indeed a homomor-
phism from ClR(G) to G.

The following lemma shows the ∆P
2 [log n]-com-

pleteness for RDF-RULEMIN⊆ in the presence of ar-
bitrary rules. As already indicated before, the idea of
the membership proof is to first provide an algorithm
for solving the problem that runs in polynomial time
on a deterministic Turing machine using polynomially
many calls to an NP-oracle. In a second step it is then
shown that these calls are in fact non-adaptive. The
corresponding hardness proof, which is by reduction
from ODD CLIQUE, follows precisely this intuition.
Its idea is – given a graph with n nodes – to define for
every i ∈ {1 . . . n} a nonredundant rule that creates
a unique triple iff the graph contains a clique of size
i. Intuitively, evaluating these rules requires the NP-
oracle. In addition, there exists another rule that cre-
ates this unique triple for each odd size i iff the cor-
responding triple for i − 1 exists. Hence this rule is
redundant iff the size of the biggest clique is odd.

Lemma 4.3. For a set R of arbitrary rules, RDF-
RULEMIN⊆(G,R) is ∆P

2 [log n]-complete.

Proof. For the membership, consider the following no-
tation: Let G be an arbitrary RDF graph and R =
{r1, . . . , rn}. Then define Ri for each i ∈ [n] as
Ri = R \ {ri}. Finally recall the definition of the ac-
tive domain AD . The following (deterministic) algo-
rithm, using an NP-oracle, solves the problem in poly-
nomial time:

1. For everyR′ ∈ {R,R1, . . . ,Rn}

(a) Set GR′ = G
(b) For every t ∈ AD3

– Check (by an NP-oracle) if t ∈ ClR′(G)
– If t ∈ ClR′(G), set GR′ = GR′ ∪ {t}

2. Check if GR = GRi for some i ∈ [n].

To see that this algorithm indeed runs in polynomial
time, just note that ClRi(G) ⊆ ClR(G) ⊆ AD ×
AD × AD . This bounds the total number of itera-
tions of the loop in step (1b) by (n + 1) · |AD |3,
hence by O(pol(n)). Finally, note that t ∈ ClR′(G)
(step (1a)) can be indeed decided in NP: Just consider

step (4) from the algorithm presented in the proof of
Lemma 3.4. The oracle computes this step and returns
“yes” if t ∈ Ĝk, and “no” otherwise. It is easy to
see that such an oracle returns “yes” iff t ∈ ClR′(G).
Hence the presented algorithm indeed runs in polyno-
mial time. Its correctness follows immediately.

To see that the above algorithm indeed shows
∆P

2 [log n]-membership, just note that the calls to the
oracle are independent of each other. Hence the al-
gorithm uses a polynomial number of non-adaptive
NP oracle calls. This proves the membership for PNP

‖ ,
which is equivalent to ∆P

2 [log n].

The hardness is shown by reduction from the prob-
lem ODD CLIQUE. Hence let an arbitrary instance of
this problem be given by a graph Ĝ = (V,E) with
V = {v1, . . . , vn}, and assume without loss of gener-
ality that E 6= ∅. Define an instance (G,R) of RDF-
RULEMIN⊆(G,R) as follows. Let G = Ge1 ∪Ge2 ∪
Geh ∪Gc where

Ge1 = {vα e vβ | (vi, vj) ∈ E,
α = min(i, j), β = max(i, j)},

Ge2 = {vi e∗ vj | 1 ≤ i < j ≤ n},
Geh = {e s e . e∗ s e∗},
Gc = {ei c oi+1 | 2 ≤ i ≤ n and i mod 2 = 0},

and vi is a new URI for each vi ∈ V (by slight abuse
of notation, vi will be used to denote both, vertices in
V and URIs in G). Next, for i ∈ {2, . . . , n}, consider
the following rules. If i mod 2 = 1, then
ri = {E s E} ∪

{Xr E Xs | 1 ≤ r < s ≤ i} ⇒ {E oi E}
and if i mod 2 = 0 then
ri = {E s E} ∪

{Xr E Xs | 1 ≤ r < s ≤ i} ⇒ {E ei E}

Using these rules, define

R = {ri | 1 ≤ i ≤ n} ∪
{{E c O . e E e} ⇒ {e O e}}

The following property, which is shown in the ap-
pendix, is crucial for both, the correctness and the un-
derstanding of the reduction:

Claim 1: Let Ĝ be an arbitrary instance of ODD
CLIQUE and (G,R) be defined as above. Then none
of the rules ri ∈ R for i ∈ [n] is redundant.

The intuition of the reduction is now as follows:Ge1
encodes the edge relationE, whileGe2 encodes a com-
plete graph with n nodes. The idea is that there exists
a homomorphism from Gi into Ge1 if Ĝ indeed con-
tains a clique of size i. On the other hand, there always

16 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

exists a homomorphism from Gi into Ge2 for i ≤ n.
Now denote with m the size of the biggest clique in
Ĝ. Then obviously there also exist cliques of all sizes
1 ≤ i ≤ m. Hence all rules ri for (1 ≤ i ≤ m) can
be applied to G. Now if m is odd, then for every triple
e ei e in ClR(G) derived via ri there also exists a
triple e oi+1 e in ClR(G) derived via ri+1. Hence the
additional rule in R is redundant. On the other hand,
if m is even, then there exists some triple e ei e in
ClR(G) s.t. e oi+1 e cannot be derived by rule ri+1.
Hence the only possibility to derive this triple is by the
additional rule in R. Therefore no rule in R is redun-
dant.

The correctness of the reduction is shown in the ap-
pendix.

To conclude the proof of Theorem 4.1, the next
lemma shows that the computational complexity re-
mains unchanged for RDF-RULEMIN|= compared to
RDF-RULEMIN⊆. For the hardness it is rather easy
to see that the proof from Lemma 4.3 also applies in
this case. Extending the membership proof from the
previous lemma however no longer leads to only non-
adaptive calls to an NP oracle. Nevertheless, the prob-
lem can still be shown to be in ∆P

2 [log n].

Lemma 4.4. For a set R of arbitrary rules, RDF-
RULEMIN|=(G,R) is ∆P

2 [log n]-complete.

Proof. In order to show the membership, recall the
algorithm presented in the proof of Lemma 4.3. For
RDF-RULEMIN|=, instead of checking in step (2) if
GR = GRi for some i ∈ [n], it is now necessary to
check ifGRi |= GR for some i ∈ [n], which cannot be
done in polynomial time. In order to solve the problem
it is necessary to replace step (2) by

2. Check (by an NP-oracle) if GRi |= GR for some
i ∈ [n]

In order to decide the problem, the oracle just guesses
GRi and a homomorphism h : GR → GRi . Hence the
correctness of this modification follows immediately.
Therefore it only remains to show that the problem can
still be solved in polynomial time by a deterministic
Turing machine using at mostO(log(|G|+|R|)) oracle
calls.

This is trivially still true for step (1). Step (2) re-
quires a single oracle call only, but this call depends
on the result of the calls in step (1). Hence not all or-
acle calls are non-adaptive. However, by the equiva-
lence of PNP

‖ and ∆P
2 [log n], there exists a determinis-

tic Turing machine on which step (1) runs in polyno-

mial time usingO(log(|G|+|R|) adaptive oracle calls.
It follows immediately that this machine can be mod-
ified such that it also performs the check in step (2),
and that this modification does not change the bound
of O(log(|G|+ |R|) oracle calls.

For the hardness, note that the hardness proof in
Lemma 4.3 also shows hardness for MINI-RDF|=.
Both, the graph G defined by the reduction and
ClR(G) do not contain any blank node. Hence
ClR(G ′) |= ClR(G) iff ClR(G) ⊆ ClR(G ′), which
concludes the proof.

5. Minimisation in the presence of queries

So far, the aim of the problems was always to min-
imise the given RDF graph only in such a way that no
information is lost. However, in practice, this might be
more restrictive than necessary. For example, if data is
transferred into some RDF store that can only be ac-
cessed through some narrow query interface. In such
situations, it might be the case that some information
cannot be accessed anyway. Hence it would be save to
remove all this information. Obviously, this increases
the potential for minimisation.

Therefore the variant of the RDF graph and rule
minimisation problems considered in this section guar-
antees completeness only with respect to a given set of
queries. Thereby the focus lies on (unions of) conjunc-
tive queries (CQs resp. UCQs). Formally, the follow-
ing two problems are studied:

Definition 5.1. MINI-RDF⊆,CQ(G,R, C,Q) is the
following decision problem:
INPUT: An RDF graph G, a setR of RDF rules, a set
C of tgds such that G satisfies C, and a set Q of CQs.
QUESTION: Is there a G′ ⊂ G such that (1) for every
q ∈ Q, the answers to q over ClR(G) coincide with
the answers to q over ClR(G ′) and (2) G′ satisfies C?

Definition 5.2. RDF-RULEMIN⊆,CQ(G,R,Q) is the
following decision problem:
INPUT: An RDF graph G, a set R of RDF rules, and
a set Q of CQs.
QUESTION: Is there a R′ ⊂ R s.t. for every q ∈ Q,
the answers to q over ClR(G) coincide with the an-
swers to q over ClR′(G)?

Note that the result of a CQ not necessarily rep-
resents a valid RDF graph – for instance, take a
CQ with answer predicate of arity bigger than 3.
Hence the notion of RDF-entailment is not applica-

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 17

ble to the answers of a CQ. This is the reason why
only the extended variants of MINI-RDF⊆ and RDF-
RULEMIN⊆ are studied here, but not of MINI-RDF|=

and RDF-RULEMIN|=.
As already pointed out, there is hope that maintain-

ing only those information actually contributing to the
result of the queries allows to further reduce the size
of the stored RDF graph. However, it turns out that
for most of the settings considered in the previous sec-
tions, this additional optimisation potential does not
come for free. In many cases, the computational com-
plexity of determining if some RDF graph can be fur-
ther reduced or not increases compared to the problems
in Section 3 and Section 4. To be able to better under-
stand how queries influence the computational com-
plexity of the problem, queries are considered to be
either body-b-bounded, head-b-bounded, or arbitrary
(see Section 2 for the definition of these concepts).
However, it turns out that in some cases already body-
b-bounded queries are enough to increase the complex-
ity of the problem.

5.1. Overview of results

A simple observation reveals that the problems
RDF-RULEMIN⊆ and MINI-RDF⊆ are special cases
of the problems RDF-RULEMIN⊆,CQ and MINI-
RDF⊆,CQ , respectively. Just consider the simple query
{S P O} → ans(S, P,O). Then, given some RDF
graph G, in order to return over some subgraph G′ ⊂
G all answers from q over G it must be possible to
derive G from G′. Hence, all hardness results from the
previous sections carry over. Thus adding the CQQ to
the input of the problem does not make the problem
easier.

In addition to the various settings studied in the pre-
vious sections resulting from different restrictions on
C and R, three different settings of each CQ-variant
of these problems are studied by considering Q to be
body-b-bounded, head-b-bounded, or unrestricted, re-
spectively. This gives the following complexity results.

Theorem 5.1. For MINI-RDF⊆,CQ , the complexity
w.r.t. different assumptions on the input (arbitrary,
b-bounded or fixed rule set; arbitrary, b-bounded,
fixed, or no constraints; body-b-bounded, head b-
bounded, or arbitrary CQs) is as depicted in Table 3,
rows (1) – (12). Likewise, the complexity of RDF-
RULEMIN⊆,CQ is depicted in Table 3, rows (I) – (II).

All lower bounds hold even if Q consists of a single
CQ. Likewise, all upper bounds hold even if Q is a set
of UCQs.

In order to compare the new results with those pre-
sented in the previous sections, the last column in Ta-
ble 3 recalls the corresponding results for MINI-RDF⊆

and RDF-RULEMIN⊆. Note that for body-b-bounded
queries the complexity changes slightly only in the
cases where arbitrary rules are allowed, while for head-
b-bounded queries no case is below ∆P

2 [log n]. Hence
in this setting, also the previously tractable cases be-
come hard. Finally, in case of arbitrary queries, the
complexity heavily increases in most of the settings.

Similar to the case in Section 3, it is not neces-
sary to show each of the results separately. Instead,
the proof plan for Theorem 5.1 is composed as fol-
lows: Obviously, body-b-bounded (U)CQs are a spe-
cial case of head-b-bounded (U)CQs, which in turn
are a special case of arbitrary (U)CQs. By combin-
ing this observation with Lemma 3.2, to prove Theo-
rem 5.1, it suffices to show membership for the entries
(8a) (covering the two tractable cases), (6a) (covering
all cases in NP), (2b) (covering all cases in ∆P

2 [log n]),
(1c) (covering the ΠP

2 -complete cases), (4c) (cover-
ing all cases in ΣP3) as well as (Ic) (for the settings
of RDF-RULEMIN⊆,CQ in ΠP

2), (I.b) (for the set-
tings in ∆P

2 [log n]), and (II.b) (for the tractable case of
RDF-RULEMIN⊆,CQ) in Table 3. On the other hand,
for the hardness results it suffices to show hardness
for (9a) (covering all cases hard for ΣP3 where Q is
body-b-bounded or head-b-bounded, (11c) (covering
all ΣP3 -hard cases with arbitrary Q), (12c) (covering
all ΠP

2 -complete cases), (12b) (covering all ∆P
2 [log n]-

complete cases for head-b-boundedQ), (4a) (covering
all ∆P

2 [log n]-complete cases for body-b-bounded Q),
(11a) (covering all NP-complete settings), as well as
(II.c) (covering also (Ic)), (I.a) (covering also (Ib)), and
(II.b) (covering (Ib) as well).

The proofs of these results are given in Section 5.2
for the graph minimisation problem, and Section 5.3
for the rule minimisation problem. Before, in the re-
mainder of this subsection, an intuitive explanation of
the above results is given.

Starting with the membership results, note that for
the most general setting (1c), the algorithm used to
solve MINI-RDF⊆ can be adapted to compare the
results of the queries instead of the closures of the
graphs, without increasing its complexity: It suffices
to guess a subset G′ ⊂ G and check with ΠP

2 -
oracles if G′ satisfies C and if q(Ĝ) = q(Ĝ′), where
Ĝ = ClR(G), and Ĝ′ = ClR(G ′) (note that since
ClR(G) ⊆ AD3 , its size is polynomially bounded in
the input size).

18 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

Q body-bb (a) Q head-bb (b) Q arb. (c) MINI-RDF⊆

(1) R arb., C arb. ΣP
3 -complete ΣP

3 -complete ΣP
3 -complete ΣP

3 -complete

(2) R arb., C bb ∆P
2 [logn]-complete ∆P

2 [logn]-complete ΣP
3 -complete NP-complete

(3) R arb., C fixed ∆P
2 [logn]-complete ∆P

2 [logn]-complete ΣP
3 -complete NP-complete

(4) R arb., C = ∅ ∆P
2 [logn]-complete ∆P

2 [logn]-complete ΠP
2 -complete NP-complete

(5) R bb., C arb. ΣP
3 -complete ΣP

3 -complete ΣP
3 -complete ΣP

3 -complete

(6) R bb, C bb NP-complete ∆P
2 [logn]-complete ΣP

3 -complete NP-complete [19]

(7) R bb, C fixed NP-complete ∆P
2 [logn]-complete ΣP

3 -complete NP-complete

(8) R bb, C = ∅ in P ∆P
2 [logn]-complete ΠP

2 -complete in P

(9) R fixed, C arb. ΣP
3 -complete ΣP

3 -complete ΣP
3 -complete ΣP

3 -complete

(10) R fixed, C bb NP-complete ∆P
2 [logn]-complete ΣP

3 -complete NP-complete

(11) R fixed, C fixed NP-complete ∆P
2 [logn]-complete ΣP

3 -complete NP-complete

(12) R fixed, C = ∅ in P ∆P
2 [logn]-complete ΠP

2 -complete in P

(I.) R arb. ∆P
2 [logn]-complete ∆P

2 [logn]-complete ΠP
2 -complete ∆P

2 [logn]-complete

(II.) R bb. in P ∆P
2 [logn]-complete ΠP

2 -complete in P
Table 3

The complexity of MINI-RDF⊆,CQ (1-12) and RDF-RULEMIN⊆,CQ (I. - II.) w.r.t. input parameters (“bb” stands for “b-bounded”, and “arb.”
for “arbitrary”). The last column contains the results for MINI-RDF⊆ and RDF-RULEMIN⊆ from the previous sections for comparison.

The other columns contain potentially easier set-
tings because of the restrictions on the queries. In par-
ticular, when restricting Q to head-b-bounded CQs,
then there are at most polynomially many candidates
for answer-tuples for each query. Hence computing the
answers to a given query is now feasible in ∆P

2 [log n]
(note that it is still necessary to test an exponential
number of homomorphisms to decide for each candi-
date if it is indeed a solution). When Q is restricted to
body-b-bounded queries, all answers to a query over a
given RDF dataset can be computed efficiently.

On the other hand, the other rows contain potentially
easier settings because of restrictions on R and C. In
particular, already restrictingR to b-bounded rules al-
lows to compute the closure of a given graph in poly-
nomial time. Similarly, restricting C to b-bounded tgds
allow to test efficiently if C is satisfied by some RDF
graph. Further, if no constraints are present at all, it
suffices to check the “direct” subsets G′ = G \ {t}
for each t ∈ G. Thus the non-deterministic guess of
G′ ⊂ G is no longer needed. By the same token, rule
minimisation is not harder than ΠP

2 , since it suffices to
check the direct subsetsR′ = R \ {r}.

Turning to the lower bounds, the NP-hardness for
(11a) follows immediately from the above remark
that the hardness results of MINI-RDF⊆ carry over.
Concerning the ∆P

2 [log n]-complete settings, note that
in order to solve MINI-RDF⊆,CQ , one must make
sure to take indeed all answers to a query into ac-
count, and that these answers are indeed computed

over the closure of the current RDF dataset (com-
pared to MINI-RDF⊆, where it was sufficient to show
G ⊆ Ĝ′ where Ĝ′ ⊆ ClR(G ′), but not necessarily
Ĝ′ = ClR(G ′)). This introduces two different reasons
for the ∆P

2 [log n]-hardness. For arbitrary rules R the
problem is that testing if some triple is contained in the
closure is NP-hard, while testing if the closure does
not contain any more triples is coNP-hard (4a). Simi-
larly, for head-b-bounded queries it is NP-hard to de-
cide if a tuple belongs to the answers of a query, while
it is coNP-hard to decide if the set of answers is indeed
complete (12b). Combined with the other parameters
of the problem, one of these two reasons suffices for
MINI-RDF⊆,CQ to become ∆P

2 [log n]-hard.
The key observation for the hardness results for

(12c) and (11c) is that in these settings Q is capable
of defining quite powerful constraints on “valid” sub-
graphs of G. Seen from the perspective of the hard-
ness proof, this allows to “compensate” some of the
restrictions considered on C, such that (11c) still con-
tains the full ΣP3 -hardness. An important aspect of us-
ing Q to express constraints that cannot be defined
by b-bounded C is the possibility to use projection.
However, one big difference between C and Q seen as
constraints is that Q can only express monotone con-
straints: Whenever some subgraph G′ ⊂ G does not
return a certain answer, then it is ensured that also no
subgraph of G′ returns this answers. This is the reason
why (12c) becomes easier to solve.

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 19

For the rule minimisation, the reasons for the hard-
ness results are very similar to those for the corre-
sponding results of the graph minimisation problem.

Note that all of the membership results still hold
when allowing UCQs instead of CQs, and some of
them even hold for UCQs¬. Whenever this is easy to
see, the corresponding result is stated. However, a de-
tailed analysis of how the complexity is influenced by
replacing (U)CQs by (U)CQs¬ is left to future work.

5.2. Graph minimisation

This section in detail treats the results for the graph
minimisation problem with respect to a given set of
queries. For convenience, the observation that the
hardness results from Section 3 carry over, which was
already mentioned before, is stated formally.

Proposition 5.2. Let (G,R, C) be an arbitrary in-
stance of MINI-RDF⊆. Further consider the setQ = {
{S P O} → ans(S, P,O)} containing a single
query. Then (G,R, C) is a positive instance of MINI-
RDF⊆, iff (G,R, C,Q) is a positive instance of MINI-
RDF⊆,CQ .

5.2.1. Settings complete for ΣP3
The first result shows that for the those settings of

MINI-RDF⊆ considered in Section 3 that are already
ΣP3 -complete, the additional optimisation potential in-
troduced by MINI-RDF⊆,CQ does not further increase
the (already high) complexity of the problem. Even
when allowing for arbitrary conjunctive queries in ad-
dition to arbitrary rules and constraints, the problem
can still be solved in ΣP3 . The reason for this is that on
the one hand, deciding if some answers are lost over
some smaller graph is not harder than checking if this
smaller graph still satisfies all constraints. On the other
hand, these two problems do not introduce “orthogo-
nal” sources of complexity, but can be decided inde-
pendently of each other.

Lemma 5.3. MINI-RDF⊆,CQ(G,R, C,Q), for arbi-
trary sets R and C, where Q may contain arbitrary
CQs can be solved in ΣP3 . The problem remains in ΣP3
even if Q is a set of arbitrary UCQs¬.

Proof. The problem can be decided by the following
algorithm using a ΠP

2 -oracle:

1. Compute Ĝ = ClR(G)
2. Guess a G′ ⊂ G
3. Check if G′ satisfies C (otherwise return “no”)
4. Compute Ĝ′ = ClR(G ′)

5. For every q ∈ Q, check by a call to the oracle
whether for every homomorphism τ : body(q)→
Ĝ there exists an extension of τh to τ ′ (where
τh is τ restricted to head(q) and τ ′ : body(q)→
Ĝ ′) (i.e. whether every result in q(Ĝ) can be also
derived over Ĝ′)

The correctness of this algorithm follows immediately.
To see that this algorithm indeed runs in (nondetermin-
istic) polynomial time, note the following: Step (1) and
step (4) fit into ∆P

2 [log n] (cf. proof of Lemma 4.3).
Step (3) can be decided by a ΠP

2 -oracle ([10]), and also
step (5) can be obviously decided by a ΠP

2 -oracle.
It remains to show that the result still holds even if

Q is a set of UCQs¬. Towards this goal, first of all note
that the above algorithm can be extended to also work
for UCQs by replacing step (5) with

5. For every Q ∈ Q, check by a call to the oracle,
whether for every q ∈ Q and every homomor-
phism τ : body(q)→ Ĝ there exists a q′ ∈ Q and
an extension τ ′ of τh (where τh is defined as be-
fore) s.t. τ ′ : body(q′) → Ĝ′, (i.e. whether every
result in q(Ĝ) can be also derived over Ĝ′)

Obviously this step can still be decided by a ΠP
2 -

oracle: It suffices to just guess q ∈ Q together with the
homomorphism.

The extension to UCQs¬ requires two additional
steps. On the one hand, to decide step (5), for every
guessed homomorphism τ (resp. τ ′), it is now neces-
sary to check if τ(pos(q)) ⊆ Ĝ (resp. τ ′(pos(q′)) ⊆
Ĝ′) and τ(neg(q))∩ Ĝ = ∅ (resp. τ ′(neg(q′))∩ Ĝ′ =
∅). Finally, in an additional step, it must be checked
(analogously to step (5)) if all results in q(Ĝ′) can also
be derived over Ĝ.

It remains to show ΣP3 -hardness for two settings.
The first one follows immediately from Lemma 3.5
and Proposition 5.2.

Lemma 5.4. MINI-RDF⊆,CQ(G,R, C,Q), when R
is fixed, Q contains only body-b-bounded CQs but C
may contain arbitrary tgds is ΣP3 -hard, already if Q
contains a single CQ only.

The second case – (11c) in Table 3 – requires a more
involved proof, done by reduction from Q-3COL∃,3.
Informally, for an instance G = ((V,E), (V1, V2, V3))
of Q-3COL∃,3, the reduction defines an instance of
MINI-RDF⊆,CQ(G,R, C,Q) where Q contains a sin-
gle CQ q that returns over G an encoding of all pos-
sible 3-colorings of the vertices in V2. Further, the
rules, constraints, and q are defined in such a way that

20 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

“guessing a subset” of G has two effects. On the one
hand, it fixes a coloring on V1. On the other hand, q
only returns encodings of those colorings on V2 that
can be extended to V3 in such a way that the combina-
tion of the colorings on V1, V2, and V3 gives a valid 3-
coloring of V . Hence over every such subset of G, the
CQ q returns all possible colorings on V2 (and there-
fore the same answers as over G) iff there exists some
coloring on V1 (encoded by the selected subgraph of
G) such that for all colorings on V2 there exists a col-
oring on V3 (encoded by the fact that q still returns the
same answers) such that the combination of these col-
orings gives a valid 3-coloring of V .

Lemma 5.5. MINI-RDF⊆,CQ(G,R, C,Q), when both,
R and C are fixed but Q may contain arbitrary CQs
is ΣP3 -hard, already if Q contains a single CQ only. It
even remains ΣP3 -hard for the case whereR = ∅.

Proof. The proof is by reduction from Q-3COL∃,3.
Hence let G = ((V,E), (V1, V2, V3)) be an arbitrary
instance of Q-3COL∃,3 with V = {v1, . . . , vn} and
|V2| = p. Define an instance (G,R, C,Q) of MINI-
RDF⊆,CQ(G,R, C,Q) as follows. Let G = Gcols ∪
Gv1 ∪ Cc1 ∪Ge1 ∪Ge2 ∪Gneq where

Gcols = {0 iscol 0 . 1 iscol 1 . 2 iscol 2}
Gv1 = {vi v a | vi ∈ V1},
Gc1 = {vi c 0 . vi c 1 . vi c 2 | vi ∈ V1},
Ge1 = {0 e 0 . 1 e 1 . 2 e 2},
Ge2 = {0 e 2 . 0 e 1 . 1 e 2 . 1 e 0 . 2 e 0 . 2 e 1},
Gneq = {0 neq 2 . 0 neq 1 . 2 neq 0 . 2 neq 1 .

1 neq 2 . 1 neq 0},

and a new URI vi is introduced for every vi ∈ V (by
slight abuse of notation, let vi denote both, nodes in V
and URIs G). As claimed in the lemma, R = ∅, and C
contains three fixed tgds

C = { {X e X .C iscol C} ⇒ {C e C};
{X e X . Y v a . Z iscol Z} ⇒ {Y c Z}
{X v a .X c C1 . X c C2 . C1 neq C2}

⇒ {0 e 0}}.

Finally, define Q containing a single query q as

Q = { {vi c Ci | vi ∈ V1} ∪
{Ci iscol Ci | vi ∈ V2 ∪ V3} ∪
{Cα e Cβ | (vα, vβ) ∈ E} ∪
{X v a .C iscol C .D1 neq D2}

→ ans(C,X,D1, D2, Ci1 , . . . , Cip)}

where {C1, . . . , Cn} contains a new blank node Ci
for each vertex vi ∈ V and {Ci1 , . . . , Cip} ⊆
{C1, . . . , Cn} are those variables Ci ∈ {C1, . . . , Cn}
such that vi ∈ V2.

The reduction is obviously feasible in LOGSPACE.
Before showing its correctness, first its intuition is de-
scribed. The following three claims will prove useful
for both, sketching the intuition of the reduction as
well as proving its correctness.

Claim 1: Let G,G, and q as defined above. Consider
the following sets: C1 = {0, 1, 2}, X = {vi | vi ∈
V1}, D = {(D1, D2) | D1, D2 ∈ {0, 1, 2}, D1 6=
D2}, and C2 = {0, 1, 2}p. Then q(G) = C1 × X ×
D × C2.

Since the above claim follows immediately from the
definition of G and q the proof is omitted.

Claim 2: Consider G and C as defined by the reduc-
tion, and for vi ∈ V let Giv = {vi c 0 . vi c 0 . vi c 0}.
Then for every G′ ⊂ G that satisfies C, the following
two properties hold:

1. Ge1 ∩G′ = ∅,
2. |Giv ∩G′| ≤ 1 for every vi ∈ V

Proof of Claim 2: The proof is analogous to the
proofs of properties (iii) and (iv) in the proof of
Lemma 3.7.

Claim 3: Consider G and C as defined by the reduc-
tion, and let Giv be as defined in Claim 2. Then for ev-
ery G′ ⊂ G that satisfies q(G) = q(G′), the following
properties hold:

1. Gcols ∪Gv1 ∪Gneq ⊆ G′
2. |Giv ∩G′| ≥ 1 for every vi ∈ V1

Proof of Claim 3: Both properties follow immedi-
ately from Claim 1 and the assumption that q(G) =
q(G′).

The intuition of this reduction can be sketched as
follows: |Giv ∩G′| = 1 holds for every subgraph G′ ⊂
G that satisfies C and such that q(G) = q(G′). Then
the triples Gc1 ∩ G′ encode the required coloring on
V1. The idea is that every mapping µ : {C1, . . . , Cn}
that can be extended to µ′ on C,X,D1, D2 such that
µ′ is a homomorphism body(q) → G′ encodes a valid
3-coloring on V (since Ge1 ∩ G′ = ∅, every triple
Cα e Cβ representing an edge in E must be mapped
to a valid edge coloring in Ge2). Now G′ leaves only a
single possible mapping on the Ci’s encoding V1 and
every possible mapping on the Ci’s representing V2

must give a valid solution. Hence G′ encodes a col-
oring on V1 s.t. for every coloring of V2 there exists

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 21

a coloring on V3 such that these three colorings are a
valid 3-coloring of (V,E).

To conclude, the quantifier alternation of Q-3COL∃,3
is “encoded” via the single CQ as follows. Omitting
C,X,D1, D2 for the moment, the requirement that
{0, 1, 2}p ⊆ q(G′) can be read as for all mappings
µ : {Ci1 , . . . , Cip} → {0, 1, 2} there exists an exten-
sion µ′ : {Ci | vi ∈ V } → {0, 1, 2} of µ that is a
homomorphism from body(q) into G′ (which corre-
sponds to “for all colorings on V2, there exists a color-
ing on V1 ∪ V3”). The correct alternation is expressed
by the selection of G′: This selection provides only
a single possibility for µ′ to map {Ci | vi ∈ V1}
into {0, 1, 2}. Hence the requirement of q to return
{0, 1, 2}p over G′ can be read as “there exists a single
mapping on {Ci | vi ∈ V1} such that for all map-
pings on {Ci | vi ∈ V2} there exists a mapping on
{Ci | vi ∈ V3}.

The proof of the correctness of this reduction is
given in the appendix.

As already discussed in the previous subsection,
queries in Q can be seen as additional constraints that
must be satisfied by subgraphs ofG′ of the input graph
G, if they were already satisfied over G (note that un-
like the constraints in C, the “constraints” expressed by
Q need not be satisfied over G, i.e. the queries may re-
turn empty results). Intuitively, this shows that the in-
troduction of Q in combination with b-bounded con-
straints adds at least some of the expressibility that is
lost when restricting C to contain b-bounded tgds only.
The results in the next section show that this combi-
nation of C and Q is indeed necessary to obtain the
full hardness. Note that in the above reduction, Q is
used to express “positive” constraints, that is Q de-
fines which triples from G must still be contained in
every reduced subgraph. On the other hand, the tgds
in C were used to express “negative” constraints, that
is which triples from G must not be contained in valid
subgraphs G′ ⊂ G. To be a little bit more precise, tgds
in C allow to state constraints like “either all triples of
a certain kind are in G′, or none of them”. This is pos-
sible, since tgds may be violated by some RDF graph,
but satisfied by some proper RDF subgraph (that is ei-
ther if all triples of a certain set are in G or none).
However, this is not the case with queries in Q. If a
query does not return a certain answer over some RDF
graph, then this answer is also not returned over every
(proper) subgraph. This is going to be the key observa-
tion for the lower complexity discussed next.

5.2.2. Settings complete for ΠP
2

The reason for the settings with C = ∅ being eas-
ier than those with explicit constraints is the same that
was already observed in Section 3 for the cases with
b-bounded R and C = ∅ being tractable. Instead of
having to test every subset of a given RDF graph, it
suffices to just test every subset missing exactly one
triple.

Lemma 5.6. MINI-RDF⊆,CQ(G,R, C,Q), for arbi-
trary R, C = ∅ and where Q may contain arbitrary
CQs can be solved in ΠP

2 . The problem remains in ΠP
2

even if Q is a set of arbitrary UCQs¬.

Proof. The lemma is proven by devising a nondeter-
ministic algorithm that decides the co-problem (that is,
whetherG is already minimal with respect toR, C and
Q), using a coNP-oracle, in polynomial time. In the
following, let G = {t1, . . . , tn}, and for each i ∈ [n],
let Gi = G \ {ti}.

1. Compute Ĝ = ClR(G)
2. Compute Ĝi = ClR(Gi) for every i ∈ [n]
3. Guess n (not necessarily distinct) queries qi ∈ Q
4. Guess n homomorphisms τ1, . . . , τn with
τi : body(qi)→ Ĝ

5. Check for all i ∈ [n] by a coNP-oracle (i.e. using
n calls): τi(head(qi)) 6∈ qi(Ĝi).
I.e. check that for all homomorphisms
τ ′i : body(qi) → Ĝi with τ ′i(body(qi)) ⊆ Ĝi,
also τ ′i(head(qi)) 6= τ(head(qi))

6. G is minimal, iff all n oracle calls return “yes”

The intuition of this is as follows. After computing the
closure of G and all “candidates” Gi, guess for every
Gi some query qi and an answer over Ĝ to this query,
such that the answer cannot be created by qi over Ĝi.
If this is the case, G cannot be further minimised.

The correctness of this nondeterministic algorithm
follows immediately. Its polynomial runtime follows
from the facts that Ĝ and Ĝi can be computed in
∆P

2 [log n], and that the size of Ĝ (thus also of each Ĝi)
is at most polynomial in the size of the input (cf. proof
of Lemma 4.3).

Concerning an extension of this algorithm to UCQs,
it suffices to replace step (3) by

3. Guess Qi ∈ Q and qi ∈ Qi
and in step (5) to check that τi(head(qi)) 6∈ qi(Ĝ

′),
which means that in the coNP oracle one checks for
all q ∈ Q that q(Ĝ′) does not contain τi(head(qi)).
Again, this can either be done sequentially, for each

22 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

q ∈ Q after the other, or in parallel by first guessing
q ∈ Q and then the corresponding homomorphism.

Towards the extension to UCQs¬, first note that
there exist two possibilities why Qi(Ĝ) 6= Qi(Ĝ

′): Ei-
ther because of some s ∈ Qi(Ĝ) but s /∈ Qi(Ĝ′), or
because of some s ∈ Qi(Ĝ

′) but s /∈ Qi(Ĝ). This
can be taken care of by guessing in step (3) which of
the two cases applies, together with Qi and qi. Obvi-
ously, the verification of the guess in steps (4) and (5)
needs to be adapted accordingly. Besides considering
the additional guess on the kind of violation, step (5)
must be further adapted to also treat UCQs¬ correctly.
That is, for every guessed homomorphism τ from the
body of some query q into some graph Ḡ, instead of
just checking whether τ(pos(q)) ⊆ Ḡ, it is also neces-
sary to test that τ(neg(q)) ∩ Ḡ = ∅. However, this ad-
ditional check, just as the previous one, obviously fits
into polynomial time.

The corresponding hardness, presented in the next
lemma, is based on the possibility to require homo-
morphisms of unrestricted size that give rise to solu-
tions over the original graph to remain valid homomor-
phisms from the body of the query into the minimised
graph. In the special case of the reduction presented,
this will be used to enforce certain 3-colorings of a set
of nodes to be preserved. Exploiting projection, this
allows us to restrict the set of triples that may be re-
moved from the graph. The basic idea of the reduction
is the same as in the proof of Lemma 5.5. However,
without constraints it is now no longer possible to en-
force that allowed subsets of the RDF graph encode 3-
colorings of some node set. Therefore the correspond-
ing existential quantifier can no longer be expressed,
which only allows for a reduction from Q-3COL∀,2.

Lemma 5.7. MINI-RDF⊆,CQ(G,R, C,Q), when R
is fixed, C = ∅, and Q may contain arbitrary CQs is
ΠP

2 -hard, already if Q contains a single CQ only. The
problem remains ΠP

2 -hard, even if R = ∅ and G is a
fixed RDF graph.

Proof. The proof is by reduction from Q-3COL∀,2.
Hence let G = ((V,E), (V1, V2)) be an arbitrary in-
stance of Q-3COL∀,2 with V = {v1, . . . , vn} and
|V1| = p. Define an instance (G,R, C,Q) of MINI-
RDF⊆,CQ with R = C = ∅ as follows. Let G =
Gcols ∪Ge1 ∪Ge2 ∪Gr be an RDF graph where

Gcols = {0 iscol 0 . 1 iscol 1 . 2 iscol 2},
Ge1 = {0 e∗ 0 . 1 e∗ 1 . 2 e∗ 2 . 0 e∗ 1 .

0 e∗ 2 . 1 e∗ 2 . 1 e∗ 0 . 2 e∗ 0 . 2 e∗ 1},

Ge2 = {0 e 2 . 0 e 1 . 1 e 2 . 1 e 0 . 2 e 0 . 2 e 1}, and
Gr = {e s e . e∗ s e∗}.

Further, define Q containing a single query q as

Q = { {Ci iscol Ci | vi ∈ V } ∪
{Cα E Cβ | (vα, vβ) ∈ E} ∪
{X1 e X2 . X

∗
1 e
∗ X∗2} ∪

{E s E . e s e}
→ ans(X1, X2, X

∗
1 , X

∗
2 , Ci1 , . . . , Cip)}

where C1, . . . , Cn are new blank nodes for every vi ∈
V , and Ci1 , . . . , Cip are those Ci ∈ {C1, . . . , Cn}
such that vi ∈ V1. This reduction is obviously feasible
in LOGSPACE. To emphasize the main ideas of the re-
duction, it is convenient to consider the following two
claims (the corresponding proofs are given in the ap-
pendix):

Claim 1: Consider G, and q as defined above to-
gether with the following sets: ~X = {(x1, x2) |
x1, x2 ∈ {0, 1, 2}, x1 6= x2}, ~X∗ = {(x∗1, x∗2) |
x∗1, x

∗
2 ∈ {0, 1, 2}}, and C = {0, 1, 2}p. Then q(G) =

~X × ~X∗ × C.
Claim 2: LetG′ ⊂ G such that q(G′) = q(G). Then

G′ = G \ {e∗ s e∗}.
Hence the intuition of the reduction is as follows:

There exists a one-to-one correspondence between val-
ues on C1, . . . , Cn and colorings of V . If an answer
can be retrieved by mappingsE to e, then the values of
C1, . . . , Cn encode a valid 3-coloring of (V,E). Hence
if the triple e∗ s e∗ is redundant, this means that for
every possible coloring on V1, there exists an extension
to a valid 3-coloring of (V,E). In principle, the quan-
tifier alternation is expressed exactly as in the proof of
Lemma 5.5 except for the leading existential quantifi-
cation, which cannot be expressed here. Hence, it only
remains the possibility to say that for all mappings that
return a required result tuple, there exists an extension
to a homomorphism from the body of the query into
the RDF graph. The remaining proof that the reduc-
tion indeed satisfies this intution can be found in the
appendix.

5.2.3. Settings complete for ∆P
2 [log n]

The main reason why (most of) the settings with
head-b-bounded queries are computationally easier
than the corresponding settings with arbitrary queries
is that now the number of results of a query is poly-
nomially bounded in the size of the active domain. In
fact, note that for some query q, the set of possible re-
sults is AD |head(q)|. This allows us, given some RDF
graph G, a set of rules R, and query q, to compute

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 23

q(ClR(G)) in ∆P
2 [log n]. However, note that as long

as C 6= ∅, it is still necessary to check an exponential
number of subgraphs G′ ⊂ G. Hence computing for
each of these subsets G′ the result of q(ClR(G ′)) is
not feasible in ∆P

2 [log n]. However, it turns out that
for monotone queries Q, it suffices to only compute
ClR(G) explicitly, while this is not necessary for ev-
ery subgraph G′ ⊂ G. This is the main idea behind the
proof of the following lemma. Since it only works for
monotone queries, this is one of the results where there
is no obvious way to extend the membership proof
to UCQs¬. A complexity analysis of this setting for
CQs¬ and UCQs¬ is left to future work.

Lemma 5.8. MINI-RDF⊆,CQ(G,R, C,Q), for arbi-
trary R, b-bounded C, and where all CQs in Q have
bounded head arity can be solved in ∆P

2 [log n].

Proof. The proof of the lemma is by showing that the
following algorithm decides the problem in determin-
istic polynomial time with O(log n) calls to an NP-
oracle:

1. For every q ∈ Q, compute (and store) q(Ĝ) =
q(ClR(G))

2. Test if there existsG′ ⊂ G that satisfies C and s.t.
q(ClR(G ′)) = q(Ĝ).

Since the correctness of the algorithm follows imme-
diately, it only remains to show that it indeed fits into
the given time bound.

The first step can be computed as follows: For every
q ∈ Q, test for every tuple s ∈ AD |head(q)| by a call to
the NP-oracle if s ∈ q(Ĝ). If this is the case, add s to
q(Ĝ). If s is in q(Ĝ) can be decided in NP as follows:

1. Set Ĝ0 = G
2. For j = 1, . . . , k = |AD |3:

(a) Guess a rule r : Gi ⇒ {ti} fromR∪ {r0}
(b) Guess a mapping µ : Gi → Ĝj−1

(c) Check if µ is a homomorphism Gi → Ĝj−1

(d) If it is, set Ĝj = Ĝj−1 ∪ {µ(ti)}, otherwise
Ĝj = Ĝj−1

3. Guess an extension of the mapping defined as
τ(head(q)) = s to body(q)→ Ĝk

4. If τ(body(q)) ⊆ Ĝk, return “yes”, otherwise re-
turn “no”.

where r0 mimics some “do nothing rule” ∅ ⇒ ∅. The
algorithm is obviously correct (just note that for some
sequence of rule applications Ĝk = Ĝ holds), and
decides the problem in nondeterministic polynomial
time.

Also the second step can be solved by a single call to
an NP-oracle, namely by the following NP-algorithm:

1. Guess G′ ⊂ G
2. Test if G′ satisfies C, if not return “no”.
3. Guess Ĝ′ = ClR(G ′)
4. For every pair (q, s) where q ∈ Q and s ∈ q(Ĝ)

(a) For the homomorphism defined as
τ(head(q)) = s, guess an extension
τ ′ : body(q)→ Ĝ′

(b) Test if τ ′(body(q)) ⊆ Ĝ′. If not, return “no”

5. Return “yes”

Step (3) summarises the steps that are laid out in more
detail as step (2) in the previous algorithm. Again, the
correctness of the algorithm is immediate.

Towards the ∆P
2 [log n]-membership, just note that

since Q is assumed to be head-b-bounded, the size
of AD |head(q)| is polynomial in the input. Since triv-
ially |Q| is polynomially bounded in the input size,
overall there is only a polynomial number of oracle
calls of the first kind. Further, note that all these calls
are non-adaptive. Hence the computation of q(Ĝ) is in
∆P

2 [log n], that is it can be done in deterministic poly-
nomial time with O(log n) adaptive oracle calls. The
second step consists of a single oracle call, which de-
pends on the previous oracle calls. Now by the same
arguments as in Lemma 4.3, this shows ∆P

2 [log n]-
membership.

It remains to show that the result still holds for
UCQs. This is achieved analogously to the extensions
presented previously: Treating Q ∈ Q instead of CQs
q is done by computing Q(Ĝ) instead of q(Ĝ) in the
first step. This can be done by altering the first NP al-
gorithm to guess q ∈ Q together with τ . Also the NP
algorithm for the second step can be easily altered by
either guessing q ∈ Q together with τ ′, or by iterating
over all q ∈ Q.

It is now easy to see why the algorithm presented
above does not work for CQs¬ or UCQs¬. The “guess”
of ClR(G ′) forG′ ⊂ G is not guaranteed to indeed re-
turn ClR(G ′), but might only find a subset of the clo-
sure. This is no problem for monotone queries, since
every result retrieved over some subset of the closure
will also be an answer over the closure. Obviously, this
is not the case for nonmonotone queries. Finally, note
that testing if such a “guess” indeed returns the closure
would require a coNP-test.

Next, the two ∆P
2 [log n]-hardness results are pre-

sented. As already pointed out before, the reason for

24 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

the need of the NP-oracle (instead of just a single
NP algorithm), is that all answers to a query must be
found, in order to be sure that the sets of answers in-
deed coincide. Now there are two reasons why this
cannot be solved by a single NP algorithm. First, one
must be sure that for some query q and RDF graph G,
indeed all homomorphisms body(q) → G are found.
Second, one must be sure that G is indeed the closure
under some set of rules, that is that no more rule is
applicable.

Hence the problem remains ∆P
2 [log n]-hard, as long

as either deciding if some triple is a solution to a
query or if some triple can be derived via some rule is
NP-hard. This is shown next by reduction from ODD
CLIQUE. The idea of both proofs is to define an in-
stance of MINI-RDF⊆,CQ(G,R, C,Q) where the an-
swers to some query q ∈ Q contain a special tuple if
there exists a clique of even size i and one of size i+1.
The test for the existence of such cliques is encoded ei-
ther in the bodies of the queries or rules, depending on
which of those are allowed to be unbounded. In the first
case, the answer tuple is created directly while in the
second case a rule application creates an intermediate
triple which is then output by a simple query. Further,
G is defined in such a way that it contains a certain
triple that allows the corresponding rules or queries to
fire whenever there exists a clique of even size i, inde-
pendent of the existence of a clique of size i + 1. Fi-
nally, it is made sure that if any other triple except for
this special triple is removed from G, then Q cannot
return the same answers over the corresponding sub-
graph as over G. Hence there exists a subgraph of G
that allows one to derive the same answers toQ as over
G iff this tuple is redundant which in turn is the case
iff the size of the biggest clique is odd.

The first hardness proof exploits the case that the
NP-hard test for the existence of a clique of a certain
size can be encoded in the bodies of the queries.

Lemma 5.9. MINI-RDF⊆,CQ(G,R, C,Q), when R
is fixed, C = ∅, and the CQs in Q may have arbitrary
BGPs in their bodies but have bounded head arity, is
∆P

2 [log n]-hard. The problem remains ∆P
2 [log n]-hard

even ifR = ∅.

Proof. The proof is by reduction from ODD CLIQUE.
Let (V,E) be an arbitrary instance of ODD CLIQUE
with V = {v1, . . . , vn}. Define an instance (G,R, C,
Q) of MINI-RDF⊆,CQ(G,R, C,Q) with C = R = ∅
as follows. Let G = Ge1 ∪Ge2 where

Ge1 = {vα e vβ | (vi, vj) ∈ E,
α = min(i, j), β = max(i, j)},

Ge2 = {vα e∗ vβ | (vi, vj) ∈ E,
α = min(i, j), β = max(i, j)} ∪

{0 e∗ 0},

and a new URI vi is introduced for every node vi ∈
V (by slight abuse of notation, vi is used to denote
both, URIs in G and nodes in V). Further, Q contains
the following queries: For every i ∈ {2, . . . , n}, if i
mod 2 = 0 then
qi = {Xr e Xs | 1 ≤ r < s ≤ i} ∪

{X ′r e∗ X ′s | 1 ≤ r < s ≤ i+ 1} → ans(oi+1).
Then Q is defined as

Q = {qi | 1 ≤ i ≤ n} ∪ {{Y1 e Y2 . Y1 e
∗ Y2}

→ ans(Y1, Y2)}

The reduction is obviously feasible in LOGSPACE. It
is convenient to summarise the main properties of the
instance of MINI-RDF⊆,CQ defined above in the fol-
lowing claims. Their correctness is shown in the ap-
pendix:

Claim 1: Let G′ ⊂ G such that q(G) = q(G′) for
every q ∈ Q. Then G′ = G \ {0 e∗ 0}.

Claim 2: Let m be the size of the biggest clique in
(V,E). If m is odd, then qi(G) = {(oi+1)} for i ∈
{2, 4, . . . ,m− 1} and qi(G) = ∅ for i ∈ {m+ 1,m+
3, . . . , n}. If m is even, then qi(G) = {(oi+1)} for
i ∈ {2, 4, . . . ,m} and qi(G) = ∅ for i ∈ {m+ 2,m+
4, . . . , n}.

From these claims, it is easy to see that the intuition
of the reduction is as described above: If the size of the
biggest clique in (V,E) is odd, then there still exists a
homomorphism from the body of the query qm−1 into
G′ = G \ {0 e∗ 0}, hence qm−1(G′) = {om}. On
the other hand, if m, the size of the biggest clique, is
even, then there does no longer exist a homomorphism
from the body of qm into G′, and therefore qm(G′) =
∅, while qm(G) = {om+1}. A formal proof of this
property is given in the appendix.

The next hardness result exploits the second reason
for ∆P

2 [log n]-hardness mentioned above. In the set-
ting considered in the next lemma, the set of answers
can be computed efficiently, but testing if some rule is
applicable is hard. Hence in the proof of the lemma,
the test for the existence of a clique of a certain size is
encoded in the bodies of the rules, instead of the bodies
of the queries.

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 25

Lemma 5.10. MINI-RDF⊆,CQ(G,R, C,Q), when
C = ∅, Q contains only body-b-bounded CQs but R
may contain arbitrary rules is ∆P

2 [log n]-hard. It re-
mains ∆P

2 [log n]-hard even if Q contains a single CQ
only.

Proof. The proof is by reduction from ODD CLIQUE,
hence let (V,E) be an arbitrary instance of ODD
CLIQUE with V = {v1, . . . , vn} and assume with-
out loss of generality that E 6= ∅. Define an instance
(G,R, C,Q) of MINI-RDF⊆,CQ(G,R, C,Q) as fol-
lows. Let G = Gord ∪Ge ∪Gc where

Gord = {i succ i+ 1 | 1 ≤ i ≤ n, i mod 2 = 0},
Ge = {vα e vβ | (vi, vj) ∈ E,

α = min(i, j), β = max(i, j)},
Gc = {c c c},

and a new URI vi is introduced for every node vi ∈ V
(by slight abuse of notation, vi is used to denote both,
nodes in V and URIs in G). Next, for i ∈ {2, . . . , n}
consider the following rules ri. If i mod 2 = 1, then
ri = {Xr e Xs | 1 ≤ r < s ≤ i} ⇒ {i clique i}
and if i mod 2 = 0 then
ri = {Xr e Xs | 1 ≤ r < s ≤ i} ∪ {c c c}

⇒ {i clique i}
Using these rules, defineR as

R = {ri | 1 ≤ i ≤ n} ∪
{{X succ Y . Y clique Y } ⇒ {X clique X}}

and finally, containing a single query q letQ be defined
as

Q = {{X succ Y . V1 e V2 . C clique C}
→ ans(X,Y, V1, V2, C)}

This reduction is obviously feasible in LOGSPACE. It
is again convenient to explicitly state two major prop-
erties of this reduction in the following claims, which
are proven in the appendix.

Claim 1: Let m be the size of the biggest clique in
(V,E). Then ClR(G) = G ∪ {i clique i | 2 ≤ i ≤
m}.

Claim 2: Assume G′ ⊂ G such that q(ClR(G ′)) =
q(ClR(G)). Then G \ G′ = ClR(G) \ ClR(G ′) =
{c c c}.

Concerning the intuition of the reduction, it follows
from Claim 1 that over G for every clique in (V,E)
of size i a triple i clique i is created by rule ri. How-
ever, over G′ = G \ {c c c} (by Claim 2 the subgraph
of G of interest), the triple i clique i can only be de-
rived from rule ri for odd values i. Now the additional
rule in R creates a triple j clique j only if there ex-

ists a triple j + 1 clique j + 1. Hence if the size of
the biggest clique in (V,E) is odd, then still all triples
i clique i can be derived. However, if the size m of
the biggest clique is even, then the triple m clique m
cannot be derived. A formal proof of this property (and
hence of the correctness of the reduction) is given in
the appendix.

Note that in the above case, the hardness is due to the
fact that the closure of the given graph must be com-
puted. To see that in the last setting, this was indeed the
source for the ∆P

2 [log n]-hardness, consider a slight
variation of the MINI-RDF⊆,CQ(G,R, C,Q) prob-
lem: Assume that it is guaranteed that G = ClR(G).
Then it is easy to see that the problem remains in NP,
even if R is allowed to contain arbitrary rules, C is
restricted to b-bounded constraints and Q to body-b-
bounded UCQs.

5.2.4. Settings complete for NP and tractable cases
It was already discussed above that only in set-

tings where both problems, computing the closure and
computing the set of answers to a query over some
RDF graph are tractable, MINI-RDF⊆,CQ is no longer
∆P

2 [log n]-hard. In fact, it can be quite easily seen that
in this case, the problem is in NP.

Lemma 5.11. MINI-RDF⊆,CQ(G,R, C,Q), whereR
and C are b-bounded andQ is body-b-bounded can be
solved in NP. The problem remains in NP even if Q is
a set of body-b-bounded UCQs¬.

Proof. The problem can be decided by the following
nondeterministic algorithm:

1. Compute Ĝ = ClR(G)
2. Guess a subset G′ ⊂ G
3. Check if G′ satisfies C (if not, return “no”)
4. Compute Ĝ′ = ClR(G ′)
5. For every q ∈ Q, test if q(Ĝ) = q(Ĝ′)

The correctness of the algorithm follows immediately.
Its polynomial runtime stems from the following facts:
By [19, Proposition 9], ClR(G) (and therefore also
ClR(G ′)) can be computed in polynomial time, and
step (3) according to [19, Proposition 3]. Step (2) intro-
duces the nondeterminism, and step (5) can be solved
even for UCQs¬ by performing the following steps for
each Q ∈ Q:

1. Set A = A′ = ∅
2. For every q ∈ Q and every homomorphism
τ : pos(q)→ Ĝ

26 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

(a) If for every t ∈ τ(neg(q)) : t 6∈ Ĝ : then set
A = A ∪ {τ(head(q))}

3. For every q ∈ Q and every homomorphism
τ : pos(q)→ Ĝ′

(a) If for every t ∈ τ(neg(q)) : t 6∈ Ĝ′ : then set
A′ = A′ ∪ {τ(head(q))}

4. If A 6= A′ return “no”
5. Test next Q. If none is left, return “yes”

The correctness follows immediately from the seman-
tics of UCQs¬. To see that this is indeed feasible in
polynomial time, note that the maximal number of ho-
momorphisms to be checked in steps (2) and (3) for
every q ∈ Q is |AD|3∗b, since the number of triples in
body(q) is bounded by some constant b.

Note that since in the above setting both, the closure
under R and the answers to Q can be computed effi-
ciently, membership even holds for UCQs¬. That is,
monotone queries are no longer necessary.

Since for these settings the complexity is not higher
than for MINI-RDF⊆, the hardness follows immedi-
ately from Proposition 5.2.

Corollary 5.12. MINI-RDF⊆,CQ(G,R, C,Q), when
both, R and C are fixed and Q contains only body-
b-bounded CQs is NP-hard, already if Q contains a
single CQ only.

The treatment of MINI-RDF⊆(G,R, C) is con-
cluded with a tractable case. Just as in Section 3, if
C = ∅ it suffices to check only a polynomial number
of subgraphsG′ ⊂ G, namely all those graphs missing
exactly one triple from G.

Lemma 5.13. MINI-RDF⊆,CQ(G,R, C,Q), for b-
bounded R, C = ∅, and body-b-bounded Q can be
solved in PTIME. The problem remains in PTIME even
if Q is a set of body-b-bounded UCQs¬.

Proof. The lemma follows immediately from the proof
of Lemma 5.11. The problem can be solved by almost
the same algorithm that was presented there, only that
it is not necessary in step (2) to “guess a subset”, but
instead it suffices to check all subsets of G missing
exactly one triple from G.

5.3. Rule minimisation

Like for the problem of graph minimisation, also
for the problem RDF-RULEMIN⊆,CQ the hardness re-
sults from Section 4 carry over. The reason is again that

RDF-RULEMIN⊆(G,R) is a special case of RDF-
RULEMIN⊆,CQ(G,R,Q). However, this can be used
in a single proof in this section only. All other results
have to be shown explicitly.

Lemma 5.14. RDF-RULEMIN⊆,CQ(G,R,Q), for
arbitrary R and where Q may contain arbitrary CQs
can be solved in ΠP

2 . The problem remains in ΠP
2 even

if Q is a set of arbitrary UCQs¬.

Proof. This result is proven by devising a nondeter-
ministic algorithm that, using a coNP-oracle, decides
the co-problem in polynomial time. That is, it shows
that the co-problem, hence deciding if R is already
minimal, is in ΣP2 .

1. Compute Ĝ = ClR(G)
2. For every r ∈ R:

(a) LetR′ = R \ {r}
(b) Compute Ĝ′ = ClR′(G)
(c) Guess q ∈ Q and homomorphism
τ : body(q)→ Ĝ

(d) Test if τ(head(q)) /∈ q(Ĝ′)
(e) If τ(head(q)) ∈ q(Ĝ′), return “no”

3. Return “yes”

Hence the algorithm proceeds as follows: First it com-
putes the closure of G under R. Then it verifies
that whatever rule r ∈ R is dropped, there exists
some query q ∈ Q such that at least one triple from
q(ClR(G)) is not in the answer of q over the closure of
G underR\{r}. It follows immediately that the algo-
rithm is indeed correct. Further, it is easy to see that it
runs in polynomial time on a nondeterministic Turing
machine with access to a coNP oracle. The only step
for which this is not trivial is step (2d). However, this
can be solved by a coNP oracle as follows:

1. Test for every mapping τ ′ : body(q) → Ĝ′ with
τ ′(body(q)) ⊆ Ĝ′, if τ ′(head(q)) 6= τ(head(q))

For how to compute the closure in ∆P
2 (even ∆P

2 [log n]),
see for example the proof of Lemma 4.3.

Finally, the extension to UCQs¬ is analogous to the
extension presented in the proof of Lemma 5.6.

The corresponding hardness proof, given next, is
very similar to the proof of Lemma 5.7. Recall that
the proof of Lemma 5.7 was by reduction from Q-
3COL∀,2. Given an instance ((V,E), (V1, V2)), the ba-
sic idea of the reduction was to define an RDF graph
G and a query q, such that q(G) contained an encod-
ing for every possible coloring of V1. The remaining

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 27

instance was defined in such a way that q(G′) (for
“valid” G′ ⊂ G) was able to return the same answer
only if each such coloring can be extended to a valid
3-coloring of (V,E). The idea of the following proof
is the same. The only difference is that now q(G) re-
turns only encodings of those colorings of V1 that can
be extended to valid 3-colorings of (V,E). In addition,
R contains a single rule such that q(ClR(G)) contains
encodings of all possible colorings of V1. Hence this
rule is only redundant iff all possible colorings V1 can
be extended to valid 3-colorings of (V,E). The formal
proof is given in the appendix.

Lemma 5.15. RDF-RULEMIN⊆,CQ(G,R,Q), where
R may contain arbitrary rules and Q may contain ar-
bitrary CQs, is ΠP

2 -hard. The problem remains ΠP
2 -

hard, even if R and Q each contain a single element
only.

Note that the following membership result even
holds in the presence of nonmonotone queries. The
reason for this is that to solve the rule minimisation
problem, it suffices to check only a polynomial number
of subsets. Hence it is feasible to first compute the clo-
sures under all these sets of rules, and then to explicitly
compute the set of answers over these closures (since
the queries are head-b-bounded, there are at most poly-
nomially many answers to each query).

Lemma 5.16. RDF-RULEMIN⊆,CQ(G,R,Q), for
arbitrary rules R and head-b-bounded CQs Q, can
be solved in ∆P

2 [log n]. The problem remains in
∆P

2 [log n] even if Q contains UCQs¬.

Proof. The proof is by devising a deterministic algo-
rithm that solves the problem in polynomial time with
at most O(log n) calls to an NP oracle. In the fol-
lowing, let R = {r1, . . . , rn}, and for i ∈ [n] let
Ri = R \ {ri}.

1. For every pair (q,R′) of q ∈ Q and R′ ∈ {R,
R1, . . . ,Rn}, compute (and store) q(ClR′(G))

2. Check if there exists Ri for i ∈ [n] s.t. for all
q ∈ Q : q(ClRi(G)) = q(ClR(G))

The correctness of the algorithm follows immediately.
Further, given the result of step (1), step (2) can be
decided in deterministic polynomial time. Hence it re-
mains to show that step (1) can be solved in polyno-
mial time with at most O(log n) calls to an NP or-
acle. To see that this is indeed the case, divide the
step into two sub-steps: First, compute ClR′(G) for
every R′ ∈ {R,R1, . . . ,Rn}. This is feasible in
PNP
‖ (cf. proof of Lemma 4.3). Next, given all these

closures, q(ClR′(G)) can be computed by deciding
for each s ∈ AD |head(q)| by a call to an NP oracle
if s ∈ q(ClR′(G)) (this can be decided by a simple
“guess and check” algorithm). This again requires only
a polynomial number of non-adaptive oracle calls (al-
though they depend on the oracle calls from the first
sub-step). Hence, both sub-steps of step (1) can be
solved in deterministic polynomial time with at most
O(log n) calls to an NP oracle. Therefore also the com-
plete step (1) can be solved within this time bound.

Note that the same arguments used in the above
proof also allow one to show that MINI-RDF⊆,CQ can
be solved in ∆P

2 [log n] if R contains arbitrary rules,
C = ∅ and Q is a set of body-b-bounded UCQs¬.

Similarly to the graph minimisation problem, there
are again two sources for the ∆P

2 [log n]-hardness: On
the one hand it must be made sure that given some
RDF graph and a query, indeed all answers to a query
over this graph are computed. On the other hand, given
some RDF graph and a set of rules, it must be as-
sured that all rules were applied exhaustively before
the query answers are computed. The next hardness re-
sult considers the case where computing the answers
to the queries is hard.

Lemma 5.17. RDF-RULEMIN⊆,CQ(G,R,Q) is
∆P

2 [log n]-hard if all rules inR are b-bounded and Q
contains head-b-bounded CQs. The problem remains
∆P

2 [log n]-hard, even ifR contains a single, fixed rule.

Proof. The proof, done by reduction from the prob-
lem ODD CLIQUE, is a slight variation of the proof
of Lemma 5.9. Given an arbitrary instance of ODD
CLIQUE, denote with (G′, ∅, ∅,Q′) the instance of
MINI-RDF⊆,CQ defined by the reduction presented
there. Recall the basic idea of the reduction, which was
that the only triple t ∈ G′ that might be redundant
was t = 0 e∗ 0. Hence define an instance (G,R,Q)
of RDF-RULEMIN⊆,CQ(G,R,Q) as G = G′ \ {t},
R = {{S P O} ⇒ {0 e∗ 0}}, and Q = Q′. I.e.
instead of the triple t, now the only existing rule is re-
dundant iff the size of the biggest clique in the instance
of ODD CLIQUE is odd. The correctness follows im-
mediately from the correctness of the reduction in the
proof of Lemma 5.9.

The following hardness result, which follows imme-
diately from Lemma 4.3, considers the case where the
set of answers over an RDF graph can be computed ef-
ficiently, but it is intractable to compute the closure of
a graph with respect to a set of rules.

28 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

Lemma 5.18. RDF-RULEMIN⊆,CQ(G,R,Q) is
∆P

2 [log n]-hard if R contains arbitrary rules and Q
is restricted to body-b-bounded CQs. The problem re-
mains ∆P

2 [log n]-hard, even ifQ contains a single CQ
only.

Proof. To prove this result, note that (G,R, C) is a
positive instance of RDF-RULEMIN⊆(G,R) if and
only if (G,R, C,Q) is a positive instance of RDF-
RULEMIN⊆,CQ(G,R,Q), where Q = {q} with q =
{S P O} → ans(S, P,O). To see that this is indeed
the case, just note that q(ClR(G)) = q(ClR′(G)) iff
ClR(G) = ClR′(G), for everyR′ ⊂ R.

The lemma thus follows from Lemma 4.3.

The two results above show that for the prob-
lem RDF-RULEMIN⊆,CQ , the situation is very sim-
ilar to MINI-RDF⊆,CQ : As long as either comput-
ing the closure or the set of query answers is hard,
the problem is ∆P

2 [log n]-hard. The next result shows
yet another similarity between these two problems: If
both, the closure and the query answers can be com-
puted efficiently, and if it suffices to check a poly-
nomial number of subsets (which is always the case
for RDF-RULEMIN⊆,CQ), then the problem becomes
tractable.

Lemma 5.19. RDF-RULEMIN⊆,CQ(G,R,Q) where
R is a set of b-bounded rules andQ is a set of body-b-
bounded CQs can be decided in PTIME. The problem
even remains in PTIME ifQ is a set of body-b-bounded
UCQs¬.

Proof. The problem can be decided by the following
deterministic adaption of the nondeterministic algo-
rithm presented in the proof of Lemma 5.14.

1. Compute Ĝ = ClR(G)
2. For every r ∈ R:

(a) LetR′ = R \ {r}
(b) Compute Ĝ′ = ClR′(G)
(c) For every q ∈ Q, compute q(Ĝ) and q(Ĝ′),

and check if they are the same
(d) If this holds for all q ∈ Q, return “yes”, oth-

erwise try next r ∈ R

3. Return “no”

The correctness of the algorithm follows immedi-
ately. Just note that unlike the proof of Lemma 5.14,
the above algorithm solves RDF-RULEMIN⊆,CQ di-
rectly, and not the co-problem. Its polynomial runtime,
and also the extension to UCQs¬ follows for the same

reason as in Lemma 5.13 and Lemma 5.11, respec-
tively.

5.4. Beyond conjunctive queries – SPARQL

RDF minimization w.r.t. (unions of) conjunctive
queries can be extended to more expressive query lan-
guages. For example, some of the results above were
shown to hold even if the (U)CQs are allowed to
contain negation in the body. However, this was not
the case in all of the settings considered. Although a
deeper study of settings with UCQs¬ is left to future
work, it is to be expected that allowing for negation in-
creases the complexity of the problem (but not exceed-
ing ΣP3).

In general, it is to be expected that more expres-
sive query languages also increase the computational
complexity of the problems under consideration. For
example, when allowing non-recursive datalog queries
with negation (a query language which covers all of
SPARQL [2]), then it can be easily seen that the com-
plexity of the problems considered here will be domi-
nated by the complexity of query evaluation, which is
PSPACE-complete in this case.

The goal of this section is to initiate the study of
RDF minimisation w.r.t. SPARQL. Note das UCQs as
studied so far, but without projection (i.e. if adding
the requirement that all variables in the body of a
CQ also occur in its head) correspond to SPARQL
graph patterns consisting only of SPARQL triple pat-
terns, AND, and UNION. Further, CQs (again with-
out projection) correspond to the fragment of SPARQL
graph patterns built from SPARQL triple patterns us-
ing AND only. Note however that projection was an
important tool in most of the hardness proofs that made
use of the set of queries. Hence, the results presented
in this paper so far carry over to SPARQL queries built
from those kind of SPARQL graph patterns and pro-
jection. In addition, in Section 2 the body of CQs was
defined to be a FBGP. Hence those types of CQs also
cover certain SPARQL filter expressions, namely those
testing if a variable is bound to an uri, a literal or a
blank node, respectively. Hence the results immedi-
ately extend to settings allowing for SPARQL queries
built from those SPARQL graph patterns. Further, the
results can be easily shown to hold also when allowing
for equality as a filter expression.

However, when allowing in addition for the OPT-
operator, recall that given a SPARQL graph pattern
P and a mapping µ, deciding if µ ∈ JP KG holds
is PSPACE-complete [24]. The previous results there-

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 29

fore do not extend to arbitrary SPARQL graph pat-
terns. However, the OPT-operator implements a main
feature of SPARQL, namely to derive useful results
even in the case that not all parts of the query can be
answered. This is of great importance when querying
the web where incomplete data sources are common.
Hence, arbitrary SPARQL graph patterns are consid-
ered next. This gives the following result.

Theorem 5.20. Let G be an RDF graph, C a set of
tgds, and P a set of SPARQL graph patterns. Further,
assume that G satisfies C. Then deciding if there exists
G′ ⊂ G such that G′ satisfies C and JP KG = JP KG′

holds for all P ∈ P is PSPACE-complete.
The problem remains PSPACE-hard, even if all pat-

terns in P are constructed using AND, UNION, and
OPT only.

Proof. Membership is shown by the following algo-
rithm:

1. Guess a subgraph G′ ⊂ G
2. Check if G′ satisfies C
3. For every P ∈ P:

(a) For every µ ∈ JP KG, test if µ ∈ JP KG′

(b) For every µ ∈ JP KG′ , test if µ ∈ JP KG

The correctness of this algorithm follows immediately.
To see that it indeed solves the problem in PSPACE,
just note that both,G′ and each µ is of polynomial size.

For the hardness, consider the proof of [24, Theo-
rem 3.4]. This proof is by reduction from QSAT, that
is the problem of deciding if an arbitrary quantified
Boolean formula is valid, to the following problem:

– Given an RDF graph G, a graph pattern P and a
mapping µ, decide if µ ∈ JP KG.

Given an arbitrary quantified Boolean formula φ, the
reduction in [24] shows how to define a graph pattern
Pφ such that µ ∈ JPφKG iff φ is valid. Thereby G =
{a tv 0 . a tv 1 . a false 0 . a true 1}, and µ is defined
on a variable B0 only, with µ(B0) = 1. Further, Pφ
consists of AND, UNION, and OPT only.

Now define a reduction from this problem to the
problem mentioned in the theorem as follows: Define
an RDF graph Ĝ as

Ĝ = G ∪ {1 x 1 . c c c}.

Further, define the set C of constraints as

C = {{c c c} ⇒ Ĝ;
{1 x 1} ⇒ {c c c};
{S P O} ⇒ G}

Finally, define a SPARQL graph pattern Q as

Q = (B0 x B0 AND c c c) UNION Pφ.

It can now be easily checked that µ ∈ JQKĜ. Also,
an inspection of the reduction in [24] shows that the
additional two triples do not have any effect on the an-
swers of Pφ. Further, the only subgraph G′ ⊂ Ĝ that
satisfies C is G. Since J(B0 x B0 AND c c c)KG = ∅
and JPφKG = JPφKG′ , it follows that JQKG′=G =
JQKĜ iff µ ∈ JQKG, which concludes the proof.

Note that the previous result does not mention any
rules, in order to keep the discussion short. However,
it is easy to see that the algorithm can be adapted to
additionally compute the closures of G and G′ under a
given set of rules without changing its complexity.

In [24], it was shown that the high complexity of
evaluating SPARQL graph patterns arises from an un-
restricted use of the OPT-operator. In addition, the
same reason may lead to unintuitive results. As a so-
lution, the fragment of well-designed SPARQL pat-
terns was defiend in [24], that are defined as fol-
lows. First of all, note that every SPARQL graph
pattern P is equivalent to some pattern of the form
(P1 UNION P2 UNION . . . UNION Pn) where
each Pi (i ∈ [n]) is UNION-free [24, Proposition
3.8]. Patterns of this form are said to be in UNION-
normal form. Further, a UNION-free pattern P is
well-designed if on the one hand for every subpattern
(Q FILTER R) of P it holds that all variables oc-
curing in R occur also in Q, and on the other hand
for every subpattern P ′ = (P1 OPT P2) of P it
holds that every variable X that occurs both inside P2

and outside P ′ also occurs in P1. Finally a pattern in
UNION-normal form is well-designed if each of the
UNION-free patterns P1, . . . , Pn is well-designed. It
was shown that for a well-designed SPARQL graph
pattern P and a mapping µ, testing if µ ∈ JP KG is
coNP-complete [24], hence significantly lower than for
arbitrary SPARQL graph patterns. The following result
shows that also the complexity of RDF minimisation
decreases in the presence of well-designed SPARQL
graph patterns.

Theorem 5.21. Let G be an RDF graph, C a set of b-
bounded tgds, and P a set of well-designed SPARQL
graph patterns in UNION normal form. Further, as-
sume that G satisfies C. Then deciding if there exists
G′ ⊂ G such that G′ satisfies C and JP KG = JP KG′

holds for all P ∈ P is in ΣP3 and ΣP2 -hard.

30 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

Proof. The ΣP3 -membership is due to the following al-
gorithm:

1. Guess a subgraph G′ ⊂ G
2. Test if G′ satisfies C
3. Test if JP KG = JP KG′

The correctness of the algorithm is immediate. To see
that it indeed decides the problem in ΣP3 , note that
step (3) can be decided by a ΠP

2 -oracle, i.e., testing if
JP KG 6= JP KG′ is in ΣP2 : by [24, Theorem 4.9], for
this class of SPARQL graph patterns, deciding if some
mapping µ ∈ JP KG is coNP-complete. Hence to test
JP KG 6= JP KG′ , we first guess µ, and then decide by
two calls to an NP oracle if µ is contained in JP KG but
not in JP KG′ .

For the hardness, consider the following reduc-
tion from Q-3COL∃,2. Let G = ((V,E), (V1, V2))
be an arbitrary instance of Q-3COL∃,2 with V =
{v1, . . . , vn}. Then define an RDF graph G as G =
Gcols ∪Ge ∪Gv1 ∪Gcol1 ∪Gb where

Gcols = {0 iscol 0 . 1 iscol 1 . 1 iscol 1},
Ge = {0 e 1 . 0 e 2 . 1 e 0 . 1 e 2 . 2 e 0 . 2 e 1},
Gv1 = {vi v vi | vi ∈ V1},
Gcol1 = {vi a 0 . vi a 1 . vi a 2 . | vi ∈ V1},
Gb = {b b b},

and each vi is a new URI for each vi ∈ V1 (where
by slight abuse of notation, vi is used to denote both,
URIs in G and nodes in V). Further, define C as C =
Cbasic ∪ Ccol1 ∪ C0 ∪ C1 where

Cbasic = {{S P O} ⇒ Gcols ∪Ge ∪Gv1},
Ccol1 = {{b b b} ⇒ Gcol1},
C0 = {{X v X} ⇒ {X a Y }},
C1 = {{X a Y .X a Z . Y e Z} ⇒ {b b b}}.

Note that Cbasic and Ccol1 are not written as b-bounded
sets in order to increase their readability. However,
they could be easily by sets of b-bounded tgds. Finally,
let P contain a single SPARQL graph pattern P de-
fined as

P = (and({Ci iscol Ci | vi ∈ V2} ∪ {b b b})) UNION
(and({Ci iscol Ci | vi ∈ V })) UNION
(and({Ci iscol Ci | vi ∈ V2}) OPT
and({Ci iscol Ci | vi ∈ V1}∪

{Ci e Cj | (vi, vj) ∈ E}))

where and(T) for a set T = {t1, . . . , tn} of triple pat-
terns t1, . . . , tn denotes the graph pattern t1 AND . . .
AND tn, and a new variable Ci is introduced for
each vi ∈ V . The reduction is obviously feasible in

LOGSPACE. A detailed correctness proof is omitted,
but a few important properties are noted:

– Obviously, JP KG contains exactly all possible
mappings µ : {Ci | vi ∈ V2} → {0, 1, 2} (be-
cause of the part before the first UNION), and all
possible mappings µ : {Ci | vi ∈ V } → {0, 1, 2}
(because of the middle part).

– Every G′ ⊂ G that satisfies C contains Gcols ∪
Ge ∪Gv1, and for each vi ∈ V1 exactly one triple
from Gcol1. Further, it does not contain b b b.

– Hence JP KG′ still contains all mappings µ : {Ci |
vi ∈ V } → {0, 1, 2} due to the second UNION
part. However, the first part does not contribute
any mappings over G′.

– It can be easily checked that therefore JP KG′ =
JP KG if the coloring on V1 encoded by those
triples from Gcol1 that are contained in G′ can-
not be extended to a valid 3-coloring on V : In
this case, every possible mapping µ : {Ci | vi ∈
V2} → {0, 1, 2} cannot be extended to a mapping
that also maps the OPT part of the last part of the
query.

A complete and more fine-grained analysis of dif-
ferent fragments of SPARQL is left to future work.

6. Problem variations

The goal of this section is twofold. First, a varia-
tion of the graph minimisation problem is considered
that might be able to give more information about the
amount of redundancy in an RDF graph than the prob-
lems considered so far. Second, note that throughout
the paper the goal was not only to just classify the
problems according to their computational complex-
ity, but also to identify the reasons and sources of their
complexity. The remaining problems studied in this
section are thus thought to further pinpoint the source
of complexity of some of the settings studied previ-
ously.

6.1. Minimisation under size bounds

For the graph minimisation problems, the question
considered so far was if an RDF graph G contains at
least one redundant triple, with respect to the given set
of rules, constraints, and possibly queries. However,
this does not give much information about the amount

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 31

of redundancy in the data. An alternative question of
interest is thus if a graph can be reduced below some
predefined size, without losing any information. This
question is formalised as follows.

Definition 6.1. Let MINI-RDFcard(G,R, C, k) be the
following decision problem:
INPUT: An RDF graph G, a setR of RDF rules, a set
C of tgds (s.t. G satisfies C) and an integer k.
QUESTION: Does there exist a subgraphG′ ⊂ G with
|G′| ≤ k, s.t. G′ satisfies C and G ⊆ ClR(G ′)?

It can be easily verified that for all settings in Ta-
ble 1 that are at least NP-hard, the complexity of
MINI-RDFcard is the same as for MINI-RDF⊆. Intu-
itively, this is because the nondeterministic algorithms
(resp. the deterministic algorithms using NP oracles)
for solving these problems at some point all contain a
statement

– Guess a subgraph G′ ⊂ G.

Replacing this statement by

– Guess a subgraph G′ ⊂ G with |G′| ≤ k

immediately solves MINI-RDFcard. Therefore, the
only two interesting cases remaining are MINI-RDF⊆

with a b-bounded or fixed set R and no constraints,
as they can be decided in PTIME. The next theorem
shows that the tractability for deciding if G contains at
least one redundant triple does not carry over to check-
ing if there is a certain amount of triples redundant.
Intuitively, the reason for this is that it is no longer
sufficient to check a polynomial number of subgraphs.

Theorem 6.1. The problem MINI-RDFcard(G,R, C, k)
is NP-complete if C = ∅ andR is either considered as
fixed or a set of b-bounded rules (for fixed b).

Proof. Membership carries over from the NP member-
ship of MINI-RDFcard(G,R, C, k) discussed above
where C is a set of b-bounded tgds and R is a set of
arbitrary rules.

Hardness is shown by reduction from the well-
known NP-complete problem Vertex Cover on graphs.

Hence consider a fixed setR of rules:
R =

{
{V neighbour E . V v V } ⇒ {E e E};
{E e E .X in X .X succ E} ⇒ {E in E};
{E last E .E in E . V backupv V }

⇒ {V v V }
}

.
Now let an arbitrary instance of Vertex Cover be given
by a graph G = (V,E) and an integer k′, where
V = {v1, . . . , vn} and E = {e1, . . . , em}. With-
out loss of generality, assume G to contain no self-

loops, this means edges (vi, vi). Then define an in-
stance of MINI-RDFcard (Grdf ,R, C, k) as follows:
R is as defined above and C = ∅. For defining G,
assume an arbitrary order on the edges in E (i.e. let
E = (e1, . . . , em)). Then Grdf = Gv ∪Gnghb∪Gord,
where

Gnghb = {vi neighbour e` | vi ∈ V, e` ∈ E,
e` = (vi, vj)},

Gord = {ei succ ei+1 | i ∈ {1, . . . ,m− 1}} ∪
{em last em . e0 in e0 . e0 succ e1}, and

Gv = {vi v vi . vi backupv vi | vi ∈ V }.

Thereby introduce a new URI vi for ever vi ∈ V , a
new URI e` for every e` ∈ E (by slight abuse of no-
tation, let vi and e` denote both, the vertex or edge
in the input graph and the URI in G). Note that Gord
is defined according to the arbitrary order assumed on
E and e0 is some fresh URI, representing a “dummy”
edge. Finally, set k = 3 ∗m+ 2 + k′ + |V |.

The reduction is obviously feasible in LOGSPACE.
Before showing that it is indeed correct, its intuition is
sketched. Note that the only triples from Grdf that can
be derived by R are such of the from vi v vi. There-
fore the idea is that those triples with v on predicate
position remaining in some valid subgraph G′ encode
a valid vertex cover. To ensure this, the first rule in R
adds a triple ej e ej for every edge covered by G′.
The second rule adds ej in ej to G′ if all predeces-
sors of ej according to the assumed arbitrary order are
covered by G′. Hence if em in em can be derived for
the last edge em in this order, then all edges are indeed
covered. If this is the case, the last rule allows us to
re-insert again the triples vi v vi for all vertices not be-
ing part of the vertex cover, hence the complete graph
Grdf .

The proof of the correctness of this reduction can be
found in the appendix.

6.2. Minimising without rules

In the previous sections, for the settings where C
may contain arbitrary tgds, the complexity of MINI-
RDF|= and MINI-RDF⊆ was significantly higher than
for all other settings. Hence a natural question is
whether this higher complexity is due to the missing
restrictions on C only, or whether it arises from the in-
terplay of all components of the setting. The next the-
orem gives an answer to this question by showing that
already the question whether there exists some non-
empty subgraph that satisfies all constraints contains
the full hardness.

32 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

Theorem 6.2. Let G be an RDF graph and C a set
of tgds. Deciding whether there exists some subgraph
G′ ⊂ G (G′ 6= ∅) such that G′ satisfies C is ΣP3 -
complete.

The proof, which is provided in the appendix, is an
appropriate adaption of the proof of Lemma 3.5. Recall
that there certain triples must not be removed from G
since no rule was provided in order to recover them.
In contrast, all these triples are now explicitly required
to remain in any “valid” subgraph of G. This is done
by tgds of the form {S P O} ⇒ {t} that are satisfied
over any nonempty RDF graph iff t is contained in this
graph.

Next, recall that tgds generalise (safe) Datalog rules
by allowing existential quantification and conjunctions
in the head. In other words, Datalog rules are an impor-
tant special case of tgds – referred to as full tgds in the
information integration literature. While being less ex-
pressive than tgds, many reasoning tasks become eas-
ier (or decidable) in the presence of full tgds, com-
pared to arbitrary tgds. The next theorem shows that
this holds also true for the problems considered in this
paper. Restricting the constraints to full tgds pushes
the ΣP3 -completeness results from Theorems 3.1 and
Theorem 6.2 down to ΣP2 .

Theorem 6.3. The problems MINI-RDF|=(G,R, C)
and MINI-RDF⊆(G,R, C) are ΣP2 -complete if C is a
set of full tgds and R is a set of arbitrary rules. The
problem remains ΣP2 -complete even ifR is fixed.

Likewise, let G be an RDF graph and C a set of
full tgds. Deciding whether there exists some subgraph
G′ ⊂ G with G′ 6= ∅ such that G′ satisfies C is ΣP2 -
complete.

Recall from the ΣP3 -hardness proofs from Lemma 3.5
and Theorem 6.2 how the quantifier alternation was
encoded. The first existential quantifier block was en-
coded in the selection of the subgraph. The following
block of universal quantifiers was encoded in the an-
tecedent of one big tgd, and the last block of existen-
tial quantifier was encoded on its consequent. The re-
duction remains basically the same, only that because
of the missing existential quantifier in the consequent
of full tgds, the last quantifier block can no longer be
encoded. Hence instead a reduction from Q-3COL∃,3,
only a reduction from Q-3COL∃,2 is possible.

To conclude this subsection, note that just like The-
orem 6.2, a similar point can also be made for the NP-
complete settings in Theorem 3.1. From the proof of
Lemma 3.7, it already follows that for MINI-RDF|=,

one source of the NP-hardness is just to decide en-
tailment. However, there exists yet another source for
the NP-hardness of the settings allowing for at least b-
bounded tgds. In those cases, already testing for the ex-
istence of some subgraph that satisfies all constraints
is NP-hard. This is formalised in the next theorem.

Theorem 6.4. Let G be an RDF graph and C a set
of b-bounded tgds. Deciding whether there exists some
subgraph G′ ⊂ G such that G′ 6= ∅ and G′ satisfies C
is NP-complete.

Again, this theorem can be proved by a similar re-
duction as Lemma 3.7. Basically, all that needs to be
changed is instead of not providing rules to derive
triples that must not be removed from the RDF graph
to explicitly enforce them via tgds. The concrete re-
duction is given in the appendix.

Note that as a result, the set C is no longer fixed
(as it was in the reduction presented in the proof of
Lemma 3.7), but depends on (V,E).

6.3. General RDF rules vs. Datalog rules

This section is concluded by showing that the
complexity of the investigated problems remains un-
changed by allowing additional predicates uri(.),
blank(.), lit(.) to restrict the type of a value in a Data-
log rule, that is, allowing general RDF rules as defined
in Section 2. Note that for every x ∈ U ∪B ∪L occur-
ring in some RDF-graph G (i.e. for every element of
the active domain) it can be easily recognised whether
it belongs to U , B or L: This could be either decided
using syntactic criteria, or by a lookup in U , B and
L (although those sets are supposed to be countably
infinite, one can assume that UG, BG and LG, i.e. the
elements of the active domain, are the “first” elements
of these sets). Therefore, determining the type of some
element requires at most polynomial time in the size
of G. Therefore, for every element x of the active do-
main of G, we create a ground atom Bt(x), Ut(x) or
Lt(x), depending on the type of x. By encoding an
atom blank(X) as triple {X blank X} in G, we can
make this information available for rule application
without increasing the complexity of the problem.

The same argument allows us to overcome the prob-
lem that the closure with respect to a rule set R con-
tains invalid RDF triples (containing e.g. a blank node
in a predicate position). Depending on whether invalid
triples are allowed in intermediate results or not, we
can pursue one of the following two strategies: (i) in
a post-processing step, we can check for every triple

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 33

in R(G) whether it is valid or not. In the latter case,
it is removed; (ii) if invalid triples should also be ex-
cluded from any intermediate results, then the rules can
be (automatically) augmented by at most 2 additional
predicates in the rule body, urib(A) and uri(B), as-
suming that the rule head is {A B C}. The predicate
urib(.) can be easily defined from uri(.) and blank(.)
by e.g. {uri(X)} ⇒ {urib(X)} and {blank(X)} ⇒
{urib(X)}. This is similar to variations of rules (2)–
(4) in Section 1, where the filter conditions guaranteed
valid intermediate triples.

7. Conclusion and future work

In this paper, a collection of complexity results for
minimisation problems over RDF graphs was proved,
considering various restrictions on the rules and tgds.
One such restriction was b-boundedness [19]. Note
that this restriction can be relaxed by bounding not
necessarily the size of the rules (or tgds) but only the
maximal number of blank nodes occurring in the rules
(or tgds) — in the Datalog world, Vardi [30] showed
that such a restriction decreases complexity. Further, it
was discussed how the complexity of the problem in-
creases if one requires completeness only with respect
to a given set of conjunctive queries (CQs). Notably,
if the CQs are restricted to have bounded head arity,
while providing additional minimisation potential, the
problem becomes only mildly harder.

The minimisation problems considered here are
driven by practical needs to represent RDF data com-
pactly or tailor them to engines supporting different
rule sets. The results also provide a basis for eliminat-
ing redundancies in existing practically relevant rule
sets, such as OWL2RL [20]. We believe that our re-
sults will gain even more relevance with the advent of
novel standards such as the W3C rule interchange for-
mat (RIF) which will allow one to enrich RDFS and
OWL with Web-publishable custom rule sets [6].

Although in practice the interest lies rather on the
construction problem (i.e. computing a redundancy
free subgraph of a given RDF graph), this paper con-
centrates on the decision problem. The point of this
work is to provide foundational research towards re-
dundancy elimination in RDF graphs, aiming at a
deeper understanding of the different sources of com-
plexity of redundancy detection. For these tasks, the
decision problem is the more appropriate problem to
study. However, note that the complexity results for
the decision problems naturally carry over to the corre-

sponding construction problems. For example, the al-
gorithms presented in the membership proofs all work
by looking for a counter-example that witnesses the
non-minimality of the current instance. Hence a naive
algorithm for solving the construction problem would
be to just iteratively apply the decision algorithms on
these counter-examples until a minimal RDF graph is
found.

As future work, our investigations should be fur-
ther extended in several directions such as a more
fine-grained analysis of SPARQL fragments when re-
dundancy with respect to queries is considered. A
first step towards this direction was done by prov-
ing first bounds for the fragment of well-designed
SPARQL queries [24]. As a further step of future
work, the investigation of new query features in the up-
coming SPARQL1.1 version [13] such as aggregates,
path queries, and subqueries is on our agenda. It also
should be noted that our current observations based
on Datalog apply a set-based semantics, whereas the
SPARQL specification applies a bag (multiset) seman-
tics: as another direction of future work it would be
interesting to investigate redundancies under the point
of view whether they affect duplicate solutions under
SPARQL’s bag semantics.

Last, but not least, we plan to cast the obtained
results into practical algorithms to “compress” RDF
graphs and rule sets, investigate related relevant prob-
lems such as “trading” triples for rules, or vice versa,
and experimentally evaluating effects of such transfor-
mations on query answering with dynamic inference
such as sketched in [17].

Acknowledgements

The research was funded by the Austrian Science
Fund (FWF): P20704-N18, by the Vienna Science and
Technology Fund (WWTF): ICT08-032, and by Sci-
ence foundation Ireland (SFI) under grant SFI/08/-
CE/I1380 (Líon-2). We thank the anonymous review-
ers of the conference version and the reviewers of this
paper for their helpful comments.

References

[1] M. Ajtai, R. Fagin, and L. J. Stockmeyer. The closure of
monadic NP. Journal of Computer and System Sciences,
60(3):660–716, 2000.

34 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

[2] R. Angles and C. Gutierrez. The expressive power of SPARQL.
In The Semantic Web - ISWC 2008: 7th International Semantic
Web Conference, volume 5318 of Lecture Notes in Computer
Science, pages 114–129. Springer, 2008.

[3] D. Beckett and T. Berners-Lee. Turtle - terse RDF triple lan-
guage. W3C Team Submission, W3C, Jan. 2008. Available at
http://www.w3.org/TeamSubmission/turtle/.

[4] C. Beeri and M. Y. Vardi. A proof procedure for data depen-
dencies. Journal of the ACM, 31(4):718–741, 1984.

[5] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cy-
ganiak, and S. Hellmann. DBpedia - a crystallization point
for the web of data. Journal of Web Semantics, 7(3):154–165,
2009.

[6] J. de Bruijn. RIF RDF and OWL Compatibility. W3C
Proposed Recommendation, W3C, June 2010. Available at
http://www.w3.org/TR/rif-rdf-owl/.

[7] J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL−.
WSML Working Draft d20.1v0.2, WSML, May 2005. Fi-
nal draft, Available at http://www.wsmo.org/TR/d20/
d20.1/v0.2/.

[8] T. Eiter, W. Faber, M. Fink, and S. Woltran. Complexity re-
sults for answer set programming with bounded predicate ar-
ities and implications. Annals of Mathematics and Artificial
Intelligence, 51(2-4):123–165, 2007.

[9] T. Eiter, M. Fink, H. Tompits, P. Traxler, and S. Woltran.
Replacements in non-ground answer-set programming. In
Proceedings, Tenth International Conference on Principles of
Knowledge Representation and Reasoning (KR 2006), pages
340–351. AAAI, 2006.

[10] G. Gottlob and P. Senellart. Schema mapping discovery from
data instances. Journal of the ACM, 57(2), 2010.

[11] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Descrip-
tion logic programs: Combining logic programs with descrip-
tion logics. In WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 48–57, 2003.

[12] C. Gutierrez, C. A. Hurtado, A. O. Mendelzon, and J. Pérez.
Foundations of semantic web databases. Journal of Computer
and System Sciences, 77(3):520–541, 2011.

[13] S. Harris and A. Seaborne. SPARQL 1.1 Query Language.
W3C Working Draft, W3C, Jan. 2012. Available at http:
//www.w3.org/TR/sparql11-query/.

[14] P. Hayes. RDF semantics. W3C Recommendation, W3C, Feb.
2004. Available at http://www.w3.org/TR/rdf-mt/.

[15] A. Hogan and S. Decker. On the ostensibly silent ’W’ in OWL
2 RL. In Web Reasoning and Rule Systems - Third Interna-
tional Conference, RR 2009, volume 5837 of Lecture Notes in
Computer Science, pages 118–134. Springer, 2009.

[16] A. Hogan, A. Harth, and A. Polleres. Scalable authoritative
owl reasoning for the web. International Journal on Semantic
Web and Information Systems, 5(2):49–90, 2009.

[17] G. Ianni, T. Krennwallner, A. Martello, and A. Polleres. Dy-
namic querying of mass-storage RDF data with rule-based en-
tailment regimes. In The Semantic Web - ISWC 2009: 8th In-
ternational Semantic Web Conference, volume 5823 of Lecture
Notes in Computer Science, pages 310–327. Springer, 2009.

[18] G. Lausen, M. Meier, and M. Schmidt. SPARQLing constraints
for RDF. In EDBT ’08: Proceedings of the 11th international
conference on Extending database technology: Advances in
database technology, pages 499–509. ACM, 2008.

[19] M. Meier. Towards Rule-Based Minimization of RDF Graphs
under Constraints. In Web Reasoning and Rule Systems - Sec-

ond International Conference, RR 2008, volume 5341 of Lec-
ture Notes in Computer Science, pages 89–103. Springer, 2008.

[20] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and
C. Lutz. OWL 2 Web ontology language profiles. W3C Rec-
ommendation, W3C, Oct. 2009. Available at http://www.
w3.org/TR/owl2-profiles/.

[21] B. Motik, I. Horrocks, and U. Sattler. Bridging the gap between
owl and relational databases. In Proceedings of the Sixteenth
International World Wide Web Conference (WWW2007), pages
807–816. ACM, 2007.

[22] S. Muñoz, J. Pérez, and C. Gutiérrez. Minimal deductive sys-
tems for RDF. In The Semantic Web: Research and Applica-
tions, 4th European Semantic Web Conference, ESWC 2007,
volume 4519 of Lecture Notes in Computer Science, pages 53–
67. Springer, 2007.

[23] C. H. Papadimitriou. Computational complexity. Addison-
Wesley, 1994.

[24] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of SPARQL. ACM Transactions on Database Systems,
34(3), 2009.

[25] A. Pettorossi and M. Proietti. Transformation of logic pro-
grams. In Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 5, pages 697–787. Oxford Uni-
versity Press, 1998.

[26] R. Pichler, A. Polleres, S. Skritek, and S. Woltran. Redun-
dancy elimination on RDF graphs in the presence of rules, con-
straints, and queries. In Web Reasoning and Rule Systems -
Fourth International Conference, RR 2010, volume 6333 of
Lecture Notes in Computer Science, pages 133–148. Springer,
2010.

[27] E. Prud′hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, W3C,
Jan. 2008. Available at http://www.w3.org/TR/
rdf-sparql-query/.

[28] H. J. ter Horst. Completeness, decidability and complexity
of entailment for RDF Schema and a semantic extension in-
volving the OWL vocabulary. Journal of Web Semantics, 3(2-
3):79–115, 2005.

[29] J. D. Ullman. Principles of Database and Knowledge Base
Systems. Computer Science Press, New York, NY, USA, 1989.

[30] M. Vardi. On the complexity of bounded-variable queries.
In Proceedings of the Fourteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages
266–276. ACM, 1995.

[31] K. W. Wagner. Bounded query classes. SIAM Journal on Com-
puting, 19(5):833–846, 1990.

Appendix

A. Full proofs of Section 3

A.1. Proof of Lemma 3.5

Recall the reduction presented in Section 3. It re-
mains to show that it indeed satisfies the given intu-
ition, i.e. that G is a positive instance of Q-3COL∃,3
iff there exists G′ ⊂ G s.t. ClR(G) = ClR(G ′) and
G′ satisfies C. Before showing the both directions sep-

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 35

arately, in order to prove that the reduction indeed de-
fines a valid instance of MINI-RDF⊆, it is first shown
that G satisfies C: This trivially holds for Ccol1, and
can also easily be checked for C0. Finally, for CG , note
the following: every possible mapping µ : {Ci | vi ∈
V1∪V2} → {0, 1, 2} is a homomorphism fromG1∪G2

into G. However, every possible extension µ′ of µ to
{Ci | vi ∈ V3} with µ′ : {Ci | vi ∈ V } → {0, 1, 2} is
obviously a homomorphism G3 → G. However, since
G contains a triple with e on predicate position and ev-
ery possible combination of 0, 1, 2 on subject and ob-
ject position, also µ′(G4) ⊂ G, which proves the case.
In the following, by slight abuse of notation, the values
{0, 1, 2} of colorings for nodes vi ∈ V1 are identified
with the URIs {0, 1, 2} in G.

“if”-direction) Assume that there exists a subgraph
G′ ⊂ G such that (1) G′ satisfies C and (2) ClR(G) =
ClR(G ′) (or, equivalently, G ⊆ ClR(G ′)). Then it
must be shown that G is a positive instance of Q-
3COL∃,3, i.e. that there exists a coloring σ1 on V1 such
that for all colorings on V2 there exists a coloring σ3

on V3 such that σ1 ∪ σ2 ∪ σ3 is a valid 3-coloring of
(V,E).

It is convenient to start with the following observa-
tions on G′

(i) Gcols ∪Gv1 ∪Gcol2 ∪Ge2 ∪Gneq ⊆ G′
(ii) Ge1 ∩G′ = ∅
(iii) For vi ∈ V1, let Gicol1 = {vi a 0 . vi a 1 .
vi a 2} ⊆ Gcol1. Then |Gicol1∩G′| = 1 for every
vi ∈ V1.

Property (i) follows immediately from the observation
that R does not allow to derive triples with iscol , v,
c, or neq on predicate position (hence Gcols ∪ Gv1 ∪
Gcol2 ∪ Gneq ⊆ ClR(G ′) iff they are already con-
tained in G′) and further R does not allow to derive
triples with e on predicate position and different values
on subject and object position (hence Ge2 ⊆ ClR(G ′)
iff Ge2 ⊆ G′).
To see that also property (ii) holds, assume to the con-
trary that this is not the case, that is assume for some
t ∈ Ge1 also t ∈ G′. Then, since G′ satisfies C and
because of property (i), in order to satisfy the first tgd
in C0, it must be the case thatGe1 ⊆ G′. Further, again
because of property (i), in order to satisfy the second
tgd in C0 it is easy to check that also Gcol1 ⊆ G′. Thus
in order to satisfy C it must be the case that G′ = G,
which contradicts G′ ⊂ G.
Property (iii) holds because of two reasons: First of all,
for every vi ∈ V1 it must be the case that Gicol1∩G′ 6=

∅: It is easy to see that at least one triple in Gicol1
is needed to derive the two others by applying R (or
Rcol1, to be precise). Hence Gicol1 ∩ G′ = ∅ would
give a contradiction to G′ satisfying property (2). On
the other hand, if |Gicol1 ∩ G′| > 1, then because of
property (i) there exists a homomorphism from the an-
tecedent of the only tgd in Ccol1 to G′. Hence in order
to satisfy C0, G′ must contain the triple 0 e 0. How-
ever, this contradicts property (ii).

With these additional three properties at hand, given
G′, define a 3-coloring σ1 on V1 for every vi ∈ V1 as
σ1(v1) = α if the triple vi a α ∈ G′. By property (iii),
this 3-coloring is well defined. It remains to show that
σ1 is indeed the desired 3-coloring. Towards this goal,
consider an arbitrary 3-coloring σ2 on V2, and define a
mapping µ : {Ci | vi ∈ V1 ∪ V2} → {0, 1, 2} as fol-
lows: Let σ′ = σ1 ∪ σ2. Then µ(Ci) = σ′(vi). Now
it is easy to see that µ(G1 ∪ G2) ⊆ G′: µ(G1) ⊆ G′

follows from the definition of σ1, and µ(G2) ⊆ G′

holds because for every possible coloring α = σ2(vi)
for vi ∈ V2, the graph Gcol2 ⊆ G′ (Property (i))
contains a triple vi c α. Hence, since G′ satisfies
CG by assumption, there must exist an extension µ′

of µ to {Ci | vi ∈ V3} s.t. µ′(G3 ∪ G4) ⊆ G′.
From µ′, define the following 3-coloring σ3 on V3: for
vi ∈ V3, let σ3(vi) = µ′(Ci). Since it is easy to see
that µ(G3) ⊆ Gcol2, it follows that σ3 is indeed well
defined. Hence it remains to show that σ = σ1∪σ2∪σ3

is a valid 3-coloring for (V,E). This follows immedi-
ately from Property (ii), the definition of G4 and the
observation that µ′(Ci) = σ(vi) for all vi ∈ V : By
definition, G4 contains one triple for every edge in E.
Since by Property (ii) G′ contains no triple with e on
predicate position and the same value on subject and
predicate position, it must be the case µ′(vi) 6= µ′(vj)
for every triple vi e vj ∈ G4. Hence for every edge
(vi, vj) ∈ E it holds that σ(vi) 6= σ(vj), which proves
the case.

“only if”-direction) Assume that G is a positive in-
stance of Q-3COL∃,3, i.e. that there exists a coloring
σ1 on V1 such that for all colorings on V2 there ex-
ists a coloring σ3 on V3 such that σ1 ∪ σ2 ∪ σ3 is a
valid 3-coloring of (V,E). Then it must be shown that
there exists a subgraph G′ ⊂ G such that (1) G′ sat-
isfies C and (2) ClR(G) = ClR(G ′) (or, equivalently,
G ⊆ ClR(G ′)).

Towards this goal, define G′ ⊂ G as follows. Let
G′col1 = {vi a α | vi ∈ V1, α = σ1(vi)}. Then G′ =
Gcols ∪Gv1 ∪Gcol2 ∪Ge2 ∪Gneq ∪G′col1.

36 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

Now it is easy to see that G′ satisfies property (2):
Since obviously G \ G′ = Ge1 ∪ (Gcol1 \ G′col1), it
suffices to show that Gcol1 ⊆ ClR(G ′) and Ge1 ⊆
ClR(G ′). Now Ge1 ⊆ ClR(G ′) because of Re1 and
Gcols ⊂ G′. To see that also Gcol1 ⊂ ClR(G ′), first
note that G′col1 contains exactly one triple vi a σ1(vi)
for every vi ∈ V1, since σ1 assigns a color to every
vi ∈ V1. Hence, since also Gcols ⊂ G′, it is easy
to check that this allows to derive Gcol1 from G′ via
Rcol1.

It remains to show that G′ also satisfies C.
For the tgd in Ccol1, this is easy to see since by defini-
tion of G′col1, for every vi ∈ V1 the graph G′ contains
exactly one triple vi a α where α ∈ {0, 1, 2}. Hence
the antecedent of the tgd cannot be mapped into G′.
For the tgds in C0, it is again easy to see that the an-
tecedent cannot be mapped into G′: The only triples
t ∈ G with e on predicate position that have the same
value on subject and object position are the triples in
Ge1. Since Ge1 ∩G′ = ∅, the triple X e X cannot be
mapped into G′.
Finally consider the tgd ∀{Ci | vi ∈ V1 ∪ V2}G1 ∪
G2 ⇒ ∃{Ci | vi ∈ V3}G3 ∪G4, and let µ be an arbi-
trary homomorphism from G1 ∪G2 into G′. Then the
following claim holds on the relationship between σ1

and µ: For all vi ∈ V1, σ1(vi) = α iff µ(Ci) = α. This
is due to the construction of G′, since G′col1 contains
exactly that triple ti ∈ {vi a 0 . vi a 1 . vi a 2} with
ti = vi a α. Hence µ must map the triple vi a Ci onto
ti, and therefore µ(Ci) = α.

Next define a coloring σ2 on V2 from µ as fol-
lows: For every vi ∈ V2, let σ2(vi) = α where
α = µ(Ci). Since this obviously gives a coloring on
V2 (every vi ∈ V2 is assigned exactly one “color” from
{0, 1, 2}), by assumption there must exist a coloring
σ3 on V3 such that σ1 ∪ σ2 ∪ σ3 is a valid 3-coloring
on (V,E). From σ3, define the following extension µ′

of µ to {Ci | vi ∈ V3}: µ′(Ci) = σ3(vi). Obvi-
ously, µ′ is well-defined. Now the final claim is that
µ′(G3 ∪G4) ⊆ G′. To see this, first consider µ′(G3):
Since for every vi ∈ V3 we have σ3(vi) ∈ {0, 1, 2},
also vi c µ′(Ci) ∈ {vi c 0 . vi c 1 . vi c 2} ⊆
Gcol2 ⊆ G′. Hence µ′(G3) ⊆ G′. It therefore only re-
mains to show that also µ′(G4) ⊆ G′. To see this, let
σ = σ1 ∪ σ2 ∪ σ3 and note the following relationship
between µ′ and σ: For all vi ∈ V , µ′(Ci) = σ(vi).
This holds because of the corresponding relationship
between µ and σ1 and the fact that σ2 was defined from
µ and the extension of µ on {Ci | vi ∈ V3} to µ′ was
defined based on σ3. From this and the fact that σ is a
valid 3-coloring for (V,E) (that is there does not exist

an edge (vi, vj) ∈ E such that σ(vi) = σ(vj)) it fol-
lows immediately that µ′(Ci) e µ′(Cj) ∈ Ge2, hence
µ′(G4) ⊆ G′. This shows that G′ also satisfies CG .

Hence it was shown that G′ satisfies (1) and (2),
which concludes the proof.

So far the proof only showed hardness for MINI-
RDF⊆. However, note that G contains no blank nodes.
As all rules in R are save, also ClR(G) cannot con-
tain any blank node. Hence ClR(G ′) |= ClR(G) iff
ClR(G) ⊆ ClR(G ′). Therefore the above proof also
shows hardness for MINI-RDF|=.

A.2. Proof of Lemma 3.7

It only remains to show the correctness of the re-
duction. First of all, it can be easily checked that
G satisfies C. The first tgd is trivially satisfied since
0 neq 0 ∈ G. For the second and third tgd just note
that for all possible values µ(X) and µ(F) to which
X and F (resp. µ(C) and µ(D) for C and D) can be
mapped by a homomorphism µ from the antecedent
of the tgd to G, there exists a the corresponding triple
µ(X) a µ(F) (resp. µ(C) neq µ(D)) in G.

Next it must be shown that there exists a G′ ⊂ G
s.t. (1) G′ satisfies C and (2) ClR(G) = ClR(G ′) (or,
equivalently, G ⊆ ClR(G ′) iff Ĝ is a positive instance
of 3COL. In the following, both directions are shown
separately.

“if”-direction) Assume that Ĝ is a positive instance of
3COL, this means that there exists a valid 3-coloring
σ on V . Then it must be shown that there exists a sub-
graph G′ ⊂ G that satisfies (1) and (2).

Towards this goal, define G′ ⊂ G as follows: Let
G′v = {vi a σ(vi) | vi ∈ V }, and G′ = Gcols ∪
Ge ∪ Gneq ∪ G′v . It remains to show that G′ satisfies
the required properties (1) and (2).

First of all, it is easy to see that it satisfies (2): Since
Gcols ⊆ G′, the second rule inR allows to deriveGeq .
Further, note that by definition for every vi ∈ V the
graph G′v contains exactly one triple with vi at subject
and a on predicate position. Hence, because of this and
since Gcols ⊆ G, the first rule allows to derive Gv
from G′. This shows that G ⊆ ClR(G ′), and therefore
proves the case.

Hence it remains to show that G′ satisfies C.
Since 0 neq 0 /∈ G′, in order to satisfy the first
tgd, there must not be a homomorphism from the an-
tecedent into G′. Now since Geq ∩G′ = ∅, every such
homomorphism must mapC andD to different values.

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 37

However, as already stated above, by definition for ev-
ery vi ∈ V the graph G′v contains exactly one triple
with vi at subject and a on predicate position. Hence
such a homomorphism cannot exist.
For the second and third tgd, just note that since
Geq∩G′ = ∅ there cannot exist a homomorphism from
neither of the two antecedents into G′.
For the last tgd, assume an arbitrary homomorphism µ
from its antecedent into G′. Then (vi, vj) ∈ E holds
for vi = µ(X) and vj = µ(Y) by the definition of
Ge and the fact that µ must map the triple X e Y into
some triple of Ge. Further, by definition of G′v , it must
be the case that µ(C) = σ(vi) and µ(D) = σ(vj).
Hence µ(D), µ(C) ∈ {0, 1, 2} and µ(D) 6= µ(C).
Therefore the triple µ(C) neq µ(D) is obviously con-
tained in Gneq ⊆ G′. This shows that G′ satisfies also
the last tgd and therefore concludes the first direction
of the proof.

“only if”-direction) Assume that there exists a sub-
graphG′ ⊂ G that (1)G′ satisfies C and (2) ClR(G) =
ClR(G ′) (or, equivalently, G ⊆ ClR(G ′)). Then it
must be shown that Ĝ is a positive instance of 3COL,
that is that there exists a valid 3-coloring σ on V .

For vi ∈ V , let Giv = {vi a 0 . vi a 1 . vi a 2}. It is
convenient to start by observing the following proper-
ties of G′:

(i) Gcols ∪Ge ∪Gneq ⊆ G′
(ii) Giv ∩G′ 6= ∅ for every vi ∈ V .
(iii) Geq ∩G′ = ∅
(iv) |Giv ∩G′| = 1 for every vi ∈ V .

To see that Property (i) holds note thatGcols∪Ge ⊆ G′
since R does not allow to derive triples with iscol or
e on predicate position. Further, Gneq ⊆ G′ since R
does not allow to derive triples with neq on predicate
position and two different values on subject and object
position.
Property (ii) follows from the easy observation that if
Giv∩G′ = ∅ for some vi ∈ V , thenGiv∩ClR(G ′) = ∅
as well, since the first rule requires at least one t ∈ Giv
to be contained in G′ in order to derive Giv .
For property (iii), assume to the contrary that for some
triple t ∈ Geq also t ∈ G′. Then because of Gcols ⊆
G′ (by Property (i)), also Geq ⊆ G′ in order to satisfy
the third tgd. Further, since Gcol ⊆ G′ and because of
Property (ii) also at least one triple from each Giv (for
vi ∈ V) is contained in G′, then Gv ⊆ G′ in order
to satisfy the second tgd. Hence G \ G′ = ∅ gives the
desired contradiction.
For Property (iv), |Giv∩G′| ≥ 1 follows from Property

(ii). Now assume |Giv ∩G′| ≥ 2. Then there obviously
exists a homomorphism from the antecedent of the first
tgd into G′. Hence in order to satisfy this constraint,
0 neq 0 ∈ G′ must hold, which contradicts Property
(iii), and therefore proves the case.

Having shown these properties, let a 3-coloring σ of
V on every vi ∈ V be defined as σ(vi) = α if the triple
vi a α is inG′. Since by Property (iv) for every vi ∈ V
there exists exactly one such triple in G′, obviously σ
is well defined. In order to see that σ is indeed a valid
3-coloring, consider an arbitrary edge (vi, vj) ∈ E.
Define a mapping µ on the antecedent of the fourth tgd
as follows: µ(X) = vi, µ(Y) = vj , µ(C) = α, and
µ(D) = β where α = σ(vi) and β = σ(vj). Now
obviously, µ is a homomorphism from the antecedent
of the fourth tgd into G′: Beside the triples vi a α and
vj a β, also vi e vj is contained in G′, since vi e vj ∈
Ge ⊆ G′. Since G′ satisfies C, G′ contains also the
triple µ(C) neq µ(D) = α neq β. Hence because of
Property (iii) it follows that α 6= β which proves the
case and concludes the proof.

B. Full proofs of Section 4

B.1. Proof of Lemma 4.3

First of all, the reduction presented in Section 4 is
obviously feasible in LOGSPACE. Next it remains to
show the correctness of the reduction. The structure
of this proof is as follows: First, the missing proof of
Claim 1 is given. After this, the remaining correctness
proof follows. In the following, denote with Gi the
graph Gi = {Xr E Xs | 1 ≤ r < s ≤ i}, contained
in the antecedent of each rule ri.

Claim 1: Let Ĝ be an arbitrary instance of ODD
CLIQUE and (G,R) be defined as above. Then none
of the rules ri ∈ R for i ∈ [n] is redundant.

Proof of Claim 1: To see that this claim is indeed
true, just note that for every i ∈ [n] the following map-
ping h is a homomorphism from the antecedent of ri
into G: h(E) = e∗, and h(Xj) = vj for j ∈ [i]. It
can be easily checked that h({E s E}) ⊆ Geh and
h({Xr E Xs}) ⊆ Ge2 for 1 ≤ r < s ≤ i. Hence
the triple e∗ oi e∗ respectively e∗ ei e∗ is contained in
ClR(G) for every i ∈ [n], depending of i being odd or
even. Now it is easy to check that ri is the only rule in
R that can derive a triple with e∗ on subject and object
position, and oi (resp. ei) on predicate position. This
concludes the proof.

38 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

Hence from the claim we know that if R contains
some redundant rule, then it is the last one. Therefore
the correctness of the proof comes down to showing
that this rules is redundant iff the size of the biggest
clique in the given graph is odd.

For the correctness proof, it is convenient to formu-
late a second claim:

Claim 2: For i ∈ {2, . . . , n}, there exists a homo-
morphism hi : Gi → Ge1 iff Ĝ contains a clique of
size i.

Proof of Clam 2: First, assume that there exists a
clique C = {vα1 , . . . , vαi} of size i. Then define hi
as hi(E) = e and hi(Xj) = vαj for j ∈ [i]. Since C
is a clique, (vαr , vαs) ∈ E for all 1 ≤ r < s ≤ i.
From this it is easy to see that hi is indeed a homomor-
phism. Next, assume that there exists a homomorphism
hi : Gi → Ge1. Then obviously hi(E) = e. Further,
let C ⊆ V be defined as C = {hi(X1), . . . , hi(Xi)}
(where by slight abuse of notation the nodes vi ∈ V
are identified with their corresponding URIs vi). To
see that C is a clique of size i, first note that for ev-
ery pair (Xr, Xs) of variables with 1 ≤ r < s ≤ i,
there exists a triple t = Xr E Xs in Gi. From
the fact that hi(t) ∈ Ge1, two observations follow:
First, for every pair (hi(Xr), hi(Xs)) ∈ C, there ex-
ists an edge (hi(Xr), hi(Xs)) ∈ E, hence C is in-
deed a clique. Second, since E does not contain self
loops, hi(Xs) 6= hi(Xr) holds by the definition of
Ge1. Hence C contains indeed i different nodes.

It remains to formally show the correctness of the
reduction, i.e. to show that the size of the biggest clique
in Ĝ is odd iff there exists a subset R′ ⊂ R such that
ClR(G) = ClR′(G).

It follows from Claim 1 that the only rule in R that
may be redundant is r = {E c O . e E e} ⇒ {e O e}.
Denote withR′ the setR′ = R\{r}. Hence it remains
to show that r is redundant iff the size of the biggest
clique in Ĝ is odd. Towards this goal, notice that rule
r is redundant iff for every triple e ei e in ClR′(G)
s.t. there exists a triple ei c oi+1 in G, also the triple
e oi+1 e is in ClR′(G). Hence it suffices to show that
this is the case iff the size of the biggest clique in Ĝ is
odd.

To see that this holds, note that by Claim 2 and the
definition of ri, the triple e ei e is in ClR′(G) iff Ĝ
contains a clique of size i (for i even). On the other
hand, the triple e oi e is in ClR′(G) iff Ĝ contains a
clique of size i (for i odd).

Next assume that the size of the biggest clique in Ĝ
is odd (say m). Since E 6= ∅ it follows that m ≥ 3.
Further, it follows from the arguments above that

ClR′(G) contains the triples {e om e . e om−2 e
e o3 e}. On the other hand, ClR′(G) does not con-
tain the triples {e em+1 e . e em+3 e}. Hence r is
indeed redundant.

Finally assume that the size of the biggest clique in
Ĝ is even (say m ≤ n). Since E 6= ∅, it follows that
2 ≤ m. Hence the triple e em e ∈ ClR′(G). But since
Ĝ does not contain a clique of size m + 1, the triple
e om+1 e is not in ClR′(G). However, since m ≤ n
and m is an even number, the triple em c om+1 is in
G, and therefore the triple e om+1 e can be derived
from ClR′(G) via r. Therefore r is not redundant. This
concludes the proof.

C. Full proofs of Section 5

C.1. Proof of Lemma 5.5

It remains to show that G is a positive instance of
Q-3COL3,∃ iff (G, ∅, C,Q) is a positive instance of
MINI-RDF⊆,CQ . In the following, both directions are
shown independently.

“If”-direction: Assume that there exists G′ ⊆ G that
satisfies C and such that q(G) = q(G′). Then define
a coloring σ1 of V1 as follows: For every vi ∈ V1,
let {vi c α} = Giv ∩ G′. Set σ1(vi) = α (by slight
abuse of notation, the possible colors {0, 1, 2} for V
and the URIs {0, 1, 2} in G are identified). Now let
σ2 be an arbitrary coloring of V2. Then define a map-
ping µ on Ci1 , . . . , Cip as µ(Ciβ) = σ(viβ). Since by
Claim 1 there exists at least one solution in q(G′) s.t.
C2 = (µ(Ci1), . . . , µ(Cip)), there must exist a exten-
sion µ′ of µ such that µ′(body(q)) ⊆ G′. Now con-
sider the coloring σ defined as σ(vi) = µ′(Ci) for all
vi ∈ V . It is easy to see that σ is a valid 3-coloring on
V : Consider an arbitrary edge (vi, vj) ∈ E. Then there
exists a triple Ci e Cj in body(q). Therefore µ′(Ci) 6=
µ′(Cj) sinceGe1∩G′ = ∅, hence σ(vi) 6= σ(vj). Fur-
ther note that it follows trivially that σ(vi) = σ1(vi)
for all vi ∈ V1 and σ(vi) = σ2(vi) for all vi ∈ V2.
Hence it was shown that there exists a coloring (σ1) on
V1 such that for all possible colorings on V2 there ex-
ists a coloring on V3 such that the combined coloring
gives a valid 3-coloring of (V,E), which proves the
case.

“Only if”-direction: Assume that there exists a color-
ing σ1 on V1 such that for every coloring σ2 on V2 there
exists a coloring σ3 on V3 such that σ = σ1 ∪ σ2 ∪ σ3

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 39

is a valid coloring of (V,E). Then consider a subgraph
G′ ⊂ G defined asG′ = Gcols∪Gv1∪Ge2∪Gneq∪Gc
where Gc = {v1 c σ1(vi) | vi ∈ V1} (note that again
colorings are identified with the URIs 0, 1, 2). Obvi-
ously, G′ ⊂ G, hence it remains to show that G′ satis-
fies C and that q(G) = q(G′).

It is easily checked that G′ indeed satisfies C: The
first tgd is satisfied since its body cannot be mapped
into G′ (since by definition Ge1 ∩ G′ = ∅). For the
second tgd just note that since the value of σ1(vi) is
uniquely defined, |Giv ∩ G′| = 1 for every vi ∈ V1,
hence there cannot exists a homomorphism from the
body of the second tgd into G′ neither.

It remains to show that q(G′) = q(G), with q(G) as
specified in Claim 1. Hence consider an arbitrary tuple
(µ(C), µ(X), µ(D1), µ(D2), µ(Ci1), . . . , µ(Cip)) ∈
q(G), and consider an extension µ′ of µ on {C1, . . . ,
Cn} \ {Ci1 , . . . , Cip} as follows: Let σ1 be the col-
oring from above, and define a coloring σ2 on V2 as
σ2(vi) = µ(Ci) for all vi ∈ V2. Now let σ3 be a the
coloring on V3 such that σ1 ∪ σ2 ∪ σ3 is a valid 3-
coloring of (V,E). By assumption, σ3 exists. Next de-
fine µ′(Ci) = σ1(vi) for all vi ∈ V1 and µ′(Ci) =
σ3(vi) for all vi ∈ V3. It can now be easily checked
that µ′(body(q)) ⊆ G′. The only non-trivial observa-
tion is that σ(vi) 6= σ(vj) for all (vi, vj) ∈ E, hence
every triple in {Cα e Cβ | (vα, vβ) ∈ E} is mapped
into Ge2 by µ′.

To conclude the proof, finally note that G trivially
satisfies C.

C.2. Proof of Lemma 5.7

First it remains to prove the two claims given as part
of the explanation of the intuition in Section 5.

Claim 1: Consider G, and q as defined by the reduc-
tion together with the following sets: ~X = {(x1, x2) |
x1, x2 ∈ {0, 1, 2}, x1 6= x2}, ~X∗ = {(x∗1, x∗2) |
x∗1, x

∗
2 ∈ {0, 1, 2}}, and C = {0, 1, 2}p. Then q(G) =

~X × ~X∗ × C.
Proof of Claim 1: The claim follows immediately

under the assumption that E is mapped to e∗.
Claim 2: LetG′ ⊂ G such that q(G′) = q(G). Then

G′ = G \ {e∗ s e∗}.
Proof of Claim 2: It is easy to see that if any other

triple is removed from G, then q(G′) cannot contain
all answers described in Claim 1: If Gcols * G′, then
some values on the Ci are missing. If Ge1 ∪ Ge2 *
G′ then some value on (X1, X2) or (X∗1 , X

∗
2) cannot

be retrieved over G′. Finally, if {e s e} * G′, then
q(G′) = ∅.

Finally it remains to show that (G, ∅, ∅,Q) is a pos-
itive instance of MINI-RDF⊆,CQ iff G is a positive in-
stance of Q-3COL2,∀. The two directions are shown
separately. In the following, colorings on nodes vi ∈ V
are identified with the URIs 0, 1, 2.

“If”-direction Assume that for every possible col-
oring σ1 on V1, there exists a coloring σ2 on V2

such that σ = σ1 ∪ σ2 is a valid 3-coloring of
(V,E). Then define G′ = G \ {e∗ s e∗}, and let
(µ(X1), µ(X2), µ(X∗1), µ(X∗2), µ(Ci1), . . . , µ(Cip))
be an arbitrary tuple in q(G). It must be shown that it
is also in q(G′). Towards this goal, define a coloring
σ1 on V1 as σ1(vi) = µ(Ci) for every vi ∈ V1 (hence
Ci ∈ {Ci1 , . . . , Cip}). Next let σ2 be a coloring on
V2 such that σ1 ∪ σ2 is a valid 3-coloring on (V,E).
Then µ′(body(q)) ⊆ G′ holds for the extension µ′ of
µ defined as µ′(E) = e and µ′(Ci) = σ2(vi) for all
vi ∈ V2. To see this, just note that σ(vi) 6= σ(vj) for
all (vi, vj) ∈ E. Hence µ′(Cα) 6= µ′(Cβ) for every
triple in {Cα E Cβ | (vα, vβ) ∈ E}. Therefore this
part of body(q) is mapped into Ge2 by µ′. From this
the result follows easily.

“Only if”-direction Assume that q(G′) = q(G) for
G′ = G\{e∗ s e∗}, and consider an arbitrary coloring
σ1 on V1. It follows from Claim 1 that there exists a
homomorphism µ : body(q)→ G′ s.t. µ(Ci) = σ1(vi)
for all vi ∈ V1. Since {e∗ s e∗} * G′, µ(E) = e.
Hence because of {Cα E Cβ | (vα, vβ) ∈ E} ⊆
body(q) and µ(E) = e, it must be the case that
µ(Cα) 6= µ(Cβ) for all (vα, vβ) ∈ E. It can therefore
be easily seen that σ = σ1 ∪ σ2 with σ2(vi) = µ(Ci)
for all vi ∈ V2 is a valid 3-coloring on (V,E). This
concludes the proof.

C.3. Proof of Lemma 5.9

As a first step, the two claims presented in Section 5
are shown.

Claim 1: Let G′ ⊂ G such that q(G) = q(G′) for
every q ∈ Q. Then G′ = G \ {0 e∗ 0}.

Proof of Claim 1: This observation follows imme-
diately from the query q : {Y1 e Y2 . Y1 e∗ Y2} →
ans(Y1, Y2)} in Q, since removing one triple from
Ge1 ∪ Ge2 would decrease the number of results in
q(G′).

Claim 2: Let m be the size of the biggest clique in
(V,E). If m is odd, then qi(G) = {(oi+1)} for i ∈
{2, 4, . . . ,m− 1} and qi(G) = ∅ for i ∈ {m+ 1,m+
3, . . . , n}. If m is even, then qi(G) = {(oi+1)} for

40 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

i ∈ {2, 4, . . . ,m} and qi(G) = ∅ for i ∈ {m+ 2,m+
4, . . . , n}.

Proof of Claim 2: First of all, note that mapping
X ′1, . . . , X

′
i+1 to 0 maps every triple X ′r e

∗ X ′s into
Ge2. Hence qi(G) = {(oi+1)} if the triples in body(qi)
containing X1, . . . , Xi can be mapped to Ge1, and
qi(G) = ∅ otherwise. Now it is easy to see that Ge1
encodes the edges in E, and that qi(G) 6= ∅ iff (V,E)
contains a clique of size i.

Using these claims, the correctness of the reduction
can be easily shown: Assume that the biggest clique
in (V,E) is indeed odd, say m. Hence by Claim 2,
qm−1(G) 6= ∅ but qm+1(G) = ∅. To see that this
holds for G′ = G \ {0 e∗ 0} as well, note that
Ge2 encodes a clique of size m. Hence there exists
a mapping τ : {X ′1, . . . , X ′m} ∪ {X1, . . . , Xm−1} →
{v1, . . . , vn} such that τ(body(qi)) ⊆ G′. Obviously,
the result of all other queries remains unchanged as
well.

Next, assume that q(G′) = q(G) for every q ∈ Q.
Then by Claim 1, G′ = G \ {0 e∗ 0}. Further, assume
to the contrary that the biggest clique in (V,E) is even,
say m. Then qm(G) 6= ∅. However, it can be easily
checked that qm(G′) = ∅. This gives a contradiction
and therefore concludes the proof.

C.4. Proof of Lemma 5.10

In Section 5 it was left open to prove the two
claims stating the two major properties of the reduc-
tion. These proofs are given first. Then, using these
properties, the correctness of the reduction is shown.

Claim 1: Let m be the size of the biggest clique in
(V,E). Then ClR(G) = G ∪ {i clique i | 2 ≤ i ≤
m}.

Proof of Claim 1: It can be easily verified that over
G, each rule ri (for i ∈ {2, . . . , n}) is applicable iff
(V,E) contains a clique of size i, since this allows to
find a homomorphism from {Xr e Xs | 1 ≤ r < s ≤
i} into Ge.

Claim 2: Assume G′ ⊂ G such that q(ClR(G ′)) =
q(ClR(G)). Then G \ G′ = ClR(G) \ ClR(G ′) =
{c c c}.

Proof of Claim 2: It can be easily verified that
q(ClR(G ′)) = q(ClR(G)) cannot hold if a single
triple from Gord ∪ Ge ∪ {i clique i | 2 ≤ i ≤ m}
(where m is the size of the biggest clique) is not
in ClR(G ′). From this it follows immediately that
Gord ∪Ge = G′.

To prove the correctness of the reduction, first
assume that the size of the biggest clique is odd,

say m. Then let G′ = G \ {c c c}, and s =
(µ(X), µ(Y), µ(V1), µ(V2), µ(C)) ∈ q(ClR(G)). If
µ(C) is odd, then obviously µ(C) clique µ(C) is still
contained in ClR(G ′), hence s ∈ q(ClR(G ′)). On the
other hand, if µ(C) is even, then µ(C) clique µ(C)
can no longer be derived from G′ via rµ(C). How-
ever, since the size of the biggest clique in (V,E)
is odd, there exists a clique of size µ(C) + 1 in
(V,E). Therefore the triple µ(C) + 1 clique µ(C) + 1
is in ClR(G ′). Since G′ further contains the triple
µ(C) succ µ(C) + 1, the triple µ(C) clique µ(C) can
be obtained by the rule {X succ Y . Y clique Y } ⇒
{X clique X}. Therefore s ∈ q(ClR(G ′)).

Now assume that q(ClR(G ′)) = q(ClR(G)) for
G′ = G \ {c c c}, and consider s = (µ(X), µ(Y),
µ(V1), µ(V2), µ(C)) ∈ q(ClR(G)) such that µ(C) =
m takes the value of the size of the largest clique
in (V,E). Then µ(C) is odd: Assume to the con-
trary that µ(C) is even. Then, since rm for even
m is not applicable on G′, the only way for the
triple m clique m to be in ClR(G ′) is because
of some triple m + 1 clique m + 1 and the rule
{X succ Y . Y clique Y } ⇒ {X clique X} in R.
Since m + 1 clique m + 1 is in ClR(G ′) iff (V,E)
contains a clique of size m + 1, this gives the desired
contradiction.

C.5. Proof of Lemma 5.15

The proof is by reduction from Q-3COL∀,2. Hence
let G = ((V,E), (V1, V2)) be an arbitrary instance of
Q-3COL∀,2 with V = {v1, . . . , vn} and |V1| = p. De-
fine an instance (G,R,Q) of RDF-RULEMIN⊆,CQ(G,R,Q)
as follows. Let G = Gcols ∪Ge where

Gcols = {0 iscol 0 . 1 iscol 1 . 2 iscol 2}, and
Ge = {0 e 2 . 0 e 1 . 1 e 2 . 1 e 0 . 2 e 0 . 2 e 1}.

Further,R contains a single (fixed) rule r

R = {{X iscol X} ⇒ {X e X}}

and Q contains the single query q

Q = { {Ci iscol Ci | vi ∈ V } ∪
{Ci e Cj | {vi, vj} ∈ E}

→ ans(Ci1 , . . . , Cip) }

where C1, . . . , Cn are new variables, one for each
vi ∈ V andCi1 , . . . , Cip are thoseCi ∈ {C1, . . . , Cn}
such that vi ∈ V1. Obviously, this reduction is feasible
in LOGSPACE. The crucial observation towards the
correctness of the reduction is formalised in Claim 1

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 41

and follows immediately from the obvious fact that
{0 e 0 . 1 e 1 . 2 e 2} ⊆ ClR(G).

Claim 1: q(ClR(G)) = {0 , 1 , 2}p .
Hence let s ∈ {0, 1, 2}p. Then s ∈ q(Cl∅(G)) =

q(G) iff G is a positive instance of Q-3COL∀,2. This
can be shown by establishing a one-to-one corre-
spondence between coloring on V1 and mappings
{Ci1 , . . . , Cip} → {0, 1, 2} on the one hand and be-
tween colorings on V2 and mappings {C1, . . . , Cn} \
{Ci1 , . . . , Cip} → {0, 1, 2} on the other hand. Since
the proof is very similar to the proof of Lemma 5.7, its
details are omitted.

D. Full proofs of Section 6

D.1. Proof of Theorem 6.1

In the proof of Theorem 6.1 it was left open to show
that the presented reduction is indeed correct, i.e. that
there exists a vertex cover of size k′ iff there exists a
subgraph G′ containing 3 ∗m + 2 + k′ + |V | triples,
s.t. Grdf ⊆ ClR(G ′) and |G′| = k. Before showing
the two directions separately, first consider the size of
Grdf , which is 2 ∗ m + |V | + |V | + 2 + m, where
m = |E|. This number is derived as follows: Because
every edge connects two different nodes (recall that
G is assumed to contain no selfloops), Grdf contains
2 ∗ m triples of the form {vi neighbour ek}. It fur-
ther contains |V | triples of the form {vi backupv vi},
|V | triples of the form {vi v vi}, the two triples
{em last em . e0 in e0}, and m triples {ei succ ei+1}
(for i ∈ {0, . . . ,m− 1}).

“If” direction) Assume that such aG′ exists. It must
be shown that then there exists a vertex cover of size
k′. First note that the only triples that can be removed
from Grdf such that Grdf ⊆ ClR(G ′) holds are triples
of the form vi v vi. Denoting the number of such
triples that remain in G′ with r, the size of G′ is ob-
viously 2 ∗m + |V | + 2 + m + r. (I.e. G′ differs by
|V | − r triples of the form vi v vi from Grdf .)

Now define a vertex cover of G to contain exactly
those nodes whose corresponding triples vi v vi are in
G′, i.e. VC = {vi | vi v vi ∈ G′}. As by assumption
|G′| = k = 3∗m+2+k′+ |V |, it follows that k′ = r,
hence VC has the required size. It remains to show
that VC is indeed a valid vertex cover: Because G′

satisfies Grdf ⊆ ClR(G ′), the third rule is applicable,
hence em in em ∈ ClR(G ′) (remember the assumed
arbitrary ordering onE). By induction along this order,
it is easy to check that ej in ej ∈ ClR(G ′) only holds

if VC covers all edges e` ≤ ej (again ≤ with respect
to the the ordering on E). To see this, just note that
e` in e` ∈ ClR(G ′) iff {e`−1 in e`−1 . e` e e`} ⊂
ClR(G ′), and that for every e` the triple e` e e` is in
ClR(G ′) only if for a vertex vi adjacent to e`, vi v vi
is in G′. Therefore, since {em in em} ⊂ ClR(G ′) it
follows that VC indeed covers all ej ∈ E.

“Only-if” direction) Assume that there exists a Ver-
tex Cover VC ⊆ V with |VC | ≤ k′. It must be shown
that then there exists a subgraph G′ of size k such that
Grdf ⊆ ClR(G ′) holds (as C = ∅ is trivially satis-
fied). Towards this goal, let G′ = Grdf \ {vi v vi |
vi ∈ V \ VC}. Now the claim is that G′ is the de-
sired subgraph: Since VC is a valid vertex cover, for
every edge at least one of its endpoints lies in VC , say
vi. Hence vi v vi ∈ G′. Therefore {e` e e` | e` ∈
E} ⊂ ClR(G ′), by the first rule. Because of this, also
{e` in e` | e` ∈ E} ⊂ ClR(G ′), which finally allows
us to conclude {vi v vi | vi ∈ V } ⊂ ClR(G ′), which
proves the case. The size |G′| = 3m + 2 + |V | + k′

follows trivially from the definition of G′ and the size
of Grdf .

D.2. Proof of Theorem 6.2

Membership follows immediately from Theorem 3.1.
Hardness is shown by an appropriate adaption of the

proof of Lemma 3.5. That is, let G = ((V,E), (V1, V2, V3))
be an arbitrary instance of Q-3COL∃,3 with V =
{v1, . . . , vn}. Define an RDF graph G and a set C
of constraints as follows. Let G = Gcols ∪ Gv1 ∪
Gcol1 ∪ Gcol2 ∪ Ge1 ∪ Ge2 ∪ Gneq be defined as
in the proof of Lemma 3.5, and C be defined as
C = Cbasic ∪ Ccol1 ∪ C0 ∪ CG where

Cbasic = {{S P O} ⇒ Gcols ∪Gv1 ∪Gcol2 ∪
Ge2 ∪Gneq},

Ccol1 = {{X v X} ⇒ {C iscol C .X a C};
{X a C1 . X a C2 . C1 neq C2}

⇒ {0 e 0}},

and C0 and CG are defined as in the proof of Lemma 3.5.
Again, introducing new URIs vi for each vi ∈ V , by
slight abuse of notation vi is used to denote both, ver-
tices in V and URIs in G.

Obviously, the reduction is feasible in LOGSPACE.
The idea of the reduction is almost the same as that of
the reduction used to prove Lemma 3.5. The only dif-
ference is that in the aforementioned proof the triples
that must not be removed from G were defined implic-
itly by not providing rules to recover them. In contrast,

42 Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries

now all these triples are explicitly required to remain
in G by Cbasic ∪ Ccol1.

Due to the close similarity to Lemma 3.5, the de-
tails of the correctness proof are omitted, apart from
the following two notes:

– If G is a positive instance of Q-3COL∃,3, then a
subgraph G′ ⊂ G that satisfies C is defined the
same way as described in the “only if”-direction
in the proof of Lemma 3.5.

– Let G′ ⊂ G such that G′ satisfies G. Then it sat-
isfies the properties (i) – (iii) stated in the “if”-
direction in the proof of Lemma 3.5.

D.3. Proof of Theorem 6.3

Membership can be established by the same algo-
rithm as in the proof of Lemma 3.4: Recall the al-
gorithm presented there, and note that in step 2, for
every constraint c ∈ C a call to a ΠP

2 -oracle was
used to check if subgraph G′ still satisfies c. This test
was done by verifying that for every homomorphism
h : body(c) → G′ there exists an extension h′ of h
that is a homomorphism h′ : head(c) → G′. Now
replacing tgds by full tgds, this check no longer re-
quires an ΠP

2 oracle, but a coNP-oracle suffices: One
only has to check for every c ∈ C if every homo-
morphism h : body(c) → G′ is also a homomorphism
head(c)→ G′.

Hardness is shown for the second case described in
the theorem, i.e. for the problem of deciding if there
exists some G′ ⊂ G with G′ 6= ∅ such that G′ sat-
isfies C. The proof is by reduction from Q-3COL∃,2.
Hence let G = ((V,E), (V1, V2)) be an arbitrary in-
stance of Q-3COL∃,2, with V = {v1, . . . , vn}. Define
an instance (G, C) of the above problem as follows.
Let G = Gcols ∪Gv1 ∪Gcol1 ∪Gcol2 ∪Ge1 ∪Ge2 ∪
Gneg ∪Gc where

Gcols = {0 iscol 0 . 1 iscol 1 . 2 iscol 2},
Gv1 = {vi v vi | vi ∈ V1},
Gcol1 = {vi a 0 . vi a 1 . vi a 2 | vi ∈ V1},
Gcol2 = {vi b 0 . vi b 1 . vi b 2 | vi ∈ V2},
Ge1 = {0 e 0 . 1 e 1 . 2 e 2},
Ge2 = {0 e 2 . 0 e 1 . 2 e 0 . 2 e 1 . 1 e 2 . 1 e 0},
Gneq = {0 neq 2 . 0 neq 1 . 2 neq 0 . 2 neq 1 .

1 neq 2 . 1 neq 0},

and every vi is a new URI for some vi ∈ V (by slight
abuse of notation, let vi denote both, nodes vi ∈ V and
URIs in G). Finally, the set C of constraints is defined
as C = Cbasic ∪ Cv1 ∪ Ccol1 ∪ C0 ∪ CG where

Cbasic = {{S P O}
⇒ Gcols ∪Gv1 ∪Gcol2 ∪Ge2 ∪Gneq},

Cv1 = {{X v X} ⇒ {C iscol C .X a C}},
Ccol1 = {{X a C .X a D .C neq D} ⇒ {0 e 0},
C0 = {{X e X . Y iscol Y } ⇒ {Y e Y };

{Z e Z .X v X . Y iscol Y } ⇒ {X a Y }}
CG = {{vi a Ci | vi ∈ V1} ∪ {vi b Ci | vi ∈ V2} ∪

{Cα e Cβ | (ei, ej) ∈ E,α = min(i, j),
β = max(i, j)} ⇒ {0 e 0}}.

Obviously, this reduction is feasible in LOGSPACE.
Towards both, its correctness and intuition, consider
the following claim, which is left without proof.

Claim 1: Let G′ ⊂ G with ∅ 6= G′ and such that G′

satisfies C. Then Gcols∪Gv1∪Gcol2∪Ge2∪Gneq ⊆ G′,
and G′ ∩ Ge1 = ∅. Further, |Gicol1 ∩ G′| = 1 where
Gicol1 is as defined in the proof of Lemma 3.5.

Since the correctness proof is analogous to that of
Lemma 3.5, it is omitted. Instead only some important
properties are stated:

– If G is a positive instance of Q-3COL∃,2, then
G′ ⊂ G can be defined from the coloring σ1 on
V1 as G′ = Gcols ∪Gv1 ∪Gcol2 ∪Ge2 ∪Gneq ∪
{vi a σ1(vi) | vi ∈ V1}

– If G′ ⊂ G with ∅ 6= G′ and such that G′ satisfies
C, then

∗ Gcol1 ∩G′ encodes a coloring σ1 on V1.
∗ Every homomorphism τ : body(c)\{Cα e Cβ |

(vα, vβ) ∈ E} → G′ (where c is the only tgd
in CG) encodes a coloring σ on V such that
σ(vi) = σ1(vi) for all vi ∈ V1.

∗ Since 0 e 0 /∈ G′, the only way to satisfy c is
that none of the homomorphisms τ from above
also maps {Cα e Cβ | (vα, vβ) ∈ E} into G′.

∗ This is exactly the case if none of these homo-
morphisms encodes a valid 3-coloring of V .

D.4. Proof of Theorem 6.4

Membership follows immediately from Theorem 3.1.
Hardness can be shown by adapting the reduction
presented in the proof of Lemma 3.7, similar as the
adaption of the proof of Lemma 3.5 above. Recall
the reduction from 3COL used to prove Lemma 3.7.
Given an instance (V,E) of 3COL, let (G,R, C) be
the instance of MINI-RDF⊆ as defined in the proof
of Lemma 3.7. An instance (Ĝ, Ĉ) of the problem
under consideration is then defined as follows: Ĝ =
G ∪ {vi v vi | vi ∈ V1}, and Ĉ = C ∪ Cbasic ∪ Cv1

where

Pichler et al. / Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries 43

Cbasic ={{S P O} ⇒ Gcols ∪Ge ∪Gneq},
Cv1 ={{X v X} ⇒ {Y iscol Y .X a Y }}
Obviously, this reduction is feasible in LOGSPACE.
The idea of the reduction remains unchanged, only that
instead of expressing implicitly which triples must be
contained in every “valid” G′ ⊂ G (by not defining
rules to derive them), these triples are now explicitly
listed by Cbasic and Cv1. Due to the close similarity to
the proof of Lemma 3.7, the details of the correctness
proof are omitted, apart from the following two notes:

– Given a valid 3-coloring of (V,E), a subgraph
G′ ⊂ Ĝ that satisfies Ĉ can be derived just
as defined in the “if”-direction of the proof of
Lemma 3.7.

– Let G′ ⊂ Ĝ that satisfies Ĉ. Then G′ satisfies the
properties (i) – (iv) stated in the “only-if” direc-
tion of the proof of Lemma 3.7.

