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Abstract. The current hype of Artificial Intelligence (AI) mostly refers to the success of machine learning and its sub-domain
of deep learning. However, AI is also about other areas, such as Knowledge Representation and Reasoning, or Distributed AI,
i.e., areas that need to be combined to reach the level of intelligence initially envisioned in the 1950s. Explainable AI (XAI) now
refers to the core backup for industry to apply AI in products at scale, particularly for industries operating with critical systems.
This paper reviews XAI not only from a Machine Learning perspective, but also from the other AI research areas, such as AI
Planning or Constraint Satisfaction and Search. We expose the XAI challenges of AI fields, their existing approaches, limitations
and opportunities for Knowledge Graphs and their underlying technologies.
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1. Introduction

Artificial Intelligence (AI), as a discipline aiming
at building intelligent machines mimicking “cogni-
tive" functions that humans associate with other human
minds, such as “learning", “problem solving" [1], and
addresses intelligence for systems from a large variety
of facets. From Machine Learning (ML) to Knowledge
Representation and Reasoning (KRR), Game Theory,
Uncertainty in AI (UAI), Robotics, Multi-Agent Sys-
tems, Constraint Satisfaction and Search (CSS), Plan-
ning and Scheduling, Computer Vision, Natural Lan-
guage Processing, all are foundational pillars of AI as
we know it today. All latter sub-fields of AI have ma-
tured, specialized, and sometimes converged together
with the aim of accessing to General Artificial Intelli-
gence, i.e., the holy grail of AI.

Many research questions have been vertical to all
sub-fields of AI, such as decidability and complex-

ity from a theoretical perspective or scalability from
a more applied dimension. However, one is remaining
current, even getting more traction than others in the
new world of industrialized AI: explainability. Obtain-
ing explainable AI systems consists in addressing the
following question: “how to build intelligent systems
able to expose explanation in a human-comprehensible
way” for any of its AI decision. We will use the well-
adopted XAI term, standing for eXplainable AI, when
referencing to the explanation problem in AI. Answer-
ing this XAI question is far from trivial, and has been
studied for years in all subfields of AI, with no ex-
ception. Such problem has been tackled under differ-
ent names, concepts, definitions, with various require-
ments and objectives. For instance interpretation and
justification are terms coined in KRR, diagnostics in
UAI, debugging in robotics, constraints relaxation in
CSS, feature importance in ML, or feature attribution
for Neural Networks [2, 3].
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Despite a surge of innovation focusing on ML-based
AI systems such question of explainability has not
been deeply studied as much as in the other AI sub-
fields, such as KRR. However, answers to this question
of explainability and questions related to the respon-
sibility, validity (e.g., robustness), privacy-preserving
and more broadly trust of AI systems (Figure 1) will
be intrinsically connected to the adoption of AI in in-
dustry at scale, particularly in industries operating with
critical systems. Indeed explanation, which could be
used for debugging intelligent systems or deciding to
follow a recommendation in real-time, will increase
acceptance and user trust.

Trustable
AI

Valid
AI

Responsible
AI

Privacy-
preserving 

AI

Explainable 
AI

Human
Interpretable AI

Machine 
Interpretable AI

What is 
the 

rational?

Fig. 1. On the Combination of Valid, Responsible, Privacy-preserv-
ing and Explainable AI towards Trustable AI.

Unsurprisingly, the exact same research community,
from which the most successful ML-based AI systems
[4, 5] emerged, is now trying to fill the gap between
black-box ML systems [6] to more white-box ML sys-
tems. Some approaches are more successful than oth-
ers, but still the AI community is far from having self-
explainable AI systems which automatically adapt to
any (i) data, (ii) ML algorithm, (iii) model, (iv) user,
or (v) application and (v) context. Even more surpris-
ingly, only works in KRR and its subfields of Web
and AI, i.e., Semantic Web [7], Linked Data [8], and
more recently Knowledge Graphs [9], engaged in the
endeavour of explaining the broader family of ML-
based systems. However, KRR, the Semantic Web to-
gether with Knowledge Graphs, aiming at represent-
ing and reasoning over structured information [? ],
should be designed and armed to move XAI closer to
human comprehension. In the following we will refer
to Knowledge Graphs any graph structured knowledge
bases that store factual information in form of relation-
ships between entities [10] e.g., YAGO [11], DBpedia
[12], NELL [13], Freebase [9], and the Google Knowl-
edge Graph [14].

This paper reviews XAI in the various fields of AI,
i.e., by first describing the main research question, its
XAI challenge, existing approaches, their limitations
and opportunities for Knowledge Graphs and their un-
derlying technologies.

2. Knowledge Graphs for XAI Methods

This section highlights the main research question in
major AI fields, their associated XAI challenge (Figure
2), together with existing approaches, their limitations
and opportunities for Semantic Web and Knowledge
Graphs technologies. AI areas are broken down fol-
lowing the AAAI taxonomy for research paper submis-
sion [15]. Although such a taxonomy has some limi-
tations e.g., questionable limit, natural intersection of
AI domains, at least it benefits from a well-accepted
list of fields in AI, which are well-represented in ma-
jor generalist AI conferences, such as IJCAI [16] and
ECAI [17].

2.1. Machine Learning (except Neural Netwok)

• Research Question: ML algorithms [18] aim at elab-
orating a mathematical model based on sample data,
known as“training data", in order to make predictions
or decisions on unseen data, known as “test data" with-
out being explicitly programmed to perform the task.
Five main tasks of learning are studied: (i) supervised
learning if data contains both input and labeled data,
(ii) unsupervised learning to derive some structures in
data if labels are not exposed, (iii) semi-supervised
learning if labelled data is small compared to unla-
belled data, (iv) distant learning [19] which exploits
relational data of unlabelled data from existing knowl-
edge bases, and (v) reinforcement learning if further
information could be captured through interaction with
the environment.
• XAI Challenge: All tasks of ML expose mathemat-
ical models through an appropriate, but somehow ab-
stract representation of data. XAI in ML [20] is about
explanation of (i) models, known as global explana-
tion, and (ii) a prediction, known as local explanation.
• Approaches: Some models are naturally designed
to explicit their rationale e.g., linear regression, deci-
sion trees, generalized linear (or additive), naive bayes
models. In case of more complex models, some of their
representative elements, such as feature importance,
partial dependency plot or individual conditional ex-
pectation can be used for capturing high level represen-
tation of the ML model for global explanation. State-
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How to summarize the reasons (motivation, 
justification, understanding) for an AI system 

behavior, and explain the causes of their 
decisions?

Which complex features are 
responsible of classification?

Which actions are 
responsible of a plan?

Which entity is responsible 
for classification?

Which combination 
of features is optimal?

Which constraints can be relaxed?

Which features are 
responsible of classification?

Machine 
Learning

Computer
Vision

Search

Artificial 
Intelligence

Planning

KRR

Robotics

NLP
Game 
Theory

DAI

• Which agent strategy & plan ?
• Which player contributes most?
• Why such a conversational flow?

• Which axiom is responsible of  
inference (e.g., classification)?

• Abduction/Diagnostic: Find the 
right root causes (abduction)?

Which decisions, combination of 
multimodal decisions  lead to an  action?

UAI

Uncertainty as 
an alternative 
to explanation

Fig. 2. XAI Challenges in Major AI Fields. (DAI: Distributed AI, UAI: Uncertainty in AI, KRR: Knowledge Representation and Reasoning,
NLP: Natural Language Processing)

of-the-art approaches [21, 22] go further by revisiting
feature importance for local explanation.

• Limitations: Most approaches limit explanation to
features involved in the data and model, or at best to
examples, prototypes [23] or counterfactuals [24]. Ex-
planation should go beyond correlation (which is what
feature importance is about) and numerical similarity
(which is what local explanation is about).

• Opportunity: Knowledge Graphs do encode con-
texts, do expose connections and relations, and sup-
port inference and causation natively. Existing XAI
approaches in ML consider a flat representation of
data, and context is out of the loop of the explana-
tion process. Knowledge Graphs could be used for en-
coding better representations of data, structuring an
ML model in a more interpretable way, adopt seman-
tic similarity for local explanation. For instance we
could envision linking knowledge graphs extracts to
input data of a Machine Learning task to solve some
distant learning tasks [19]. In addition we could envi-
sion approaches relying on Knowledge Graphs to com-
pact large trees in decisions trees or even random for-
est. For instance combinations of nodes could be cap-
tured as a unique (probabilistic) concept or property
in Knowledge Graphs. Machine Learning and Knowl-
edge Graphs have great potential to be combined, and
benefit from each other strength [25].

2.2. Artificial (Deep) Neural Networks

• Research Question: Similarly to other ML ap-
proaches, Artificial Neural Networks (ANNs) aim at
learning representation. The main differentiator with
other approaches is its scalability and performance
with a high number of features and instances, which
better fit images and texts.
• XAI Challenge: Both local and global explanations
are a strong focus of the ANN community.
• Approaches: Contrary to other ML approaches, there
is no easy way around explanation of ANN models or
predictions. Existing techniques either encode feature
importance through attribution [2, 3], attention mech-
anism [26], or obtain a more interpretable approxima-
tion through surrogate models [27], such as decision
tree.
• Limitations: Explanations are artificially built, for
instance by forcing the network to focus on some
group of features or correlations at best. In addi-
tion they do not represent any logic of the learn-
ing task, making explanation a very difficult task to
achieve. The latter is due to the foundational theory
of ANN, which consists in deriving a mathematical
model through local optimizations.
• Opportunity: Novel ANN architectures need to be
designed to natively encode explanation. Some recent
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approaches which aim at capturing better model hierar-
chical relationships [28], or causality mechanism [29]
are promising. However, they could be polished fur-
ther by (i) adding logic representation layers in ANN,
such as [30] using network dissection approaches [31],
(ii) encoding the semantics of inputs, outputs and their
properties cf. Figure 3. Knowledge Graphs could play
a central role in such a new design, particularly as
novel architectures should embed causation and fea-
ture reasoning. This is the case of [32] which intro-
duced a layered graph model representation of (RDF-
type) graphs in the ANN architectures for reasoning
purpose. The layer is representing the semantics of
predicates in Knowledge Graphs, and is captured as
3D adjacency matrices. Other approaches from the
neural-symbolic reasoning community [33] are worth
investigating as they combine ANNs with probabilistic
logic [34] or first order fuzzy logic [35]. Knowledge
graph embeddings [36, 37] are also Machine Learn-
ing artifacts where explanations could be elaborated
their a latent representations. Such design could ad-
vance ANN further by supporting integration, discov-
ery, fragmentation, composition and even reasoning.

2.3. Computer Vision

• Research Question: Computer Vision relies on ANN
architectures due to the nature and size of its data.
Tasks range from semantic segmentation, object detec-
tion, scene reconstruction to visual question answer-
ing.
• XAI Challenge: The main XAI task in Computer Vi-
sion is identification of pixels, or group of pixels re-
sponsible for triggering a shape detection, an uncer-
tainty or an error. Explanation is often referred to as
visual inspection due to the nature of data processed.
• Approaches: Saliency maps [39] are classic method-
ologies in Computer Vision. They include many vari-
ants of gradient modification for capturing represen-
tative features. Network dissection [31] is another ap-
proach segmenting ANN to derive interpretable units
and layers.
• Limitations: Although saliency maps expose inter-
esting visualization artifacts, they do not capture any
semantics. At best those artifacts capture a disentan-
gled representation, which remain subject to human in-
terpretation. Knowledge Graphs could expose the se-
mantics of such disentangled representation. However,
integrating semantics in ANN, hidden units of feature
space remain open challenges.

• Opportunity: Adding semantics through context and
Knowledge Graphs could help answering open ques-
tions, such as: What is a disentangled representation,
and how can its factors be quantified and detected? Do
interpretable hidden units reflect a special alignment of
feature space, or are interpretations a chimera? All are
open questions discussed in [31], and not yet resolved.
Other open questions are: What conditions in state-of-
the-art training lead to representations with greater or
lesser entanglement? What is the semantics of a group
of hidden units in neural networks? Interesting avenues
aim at combining detection with reasoning to improve,
and potentially explain semantic segmentation [40].

2.4. Constraint Satisfaction and Search

• Research Question: Constraint Satisfaction and
Search aims at finding a solution to a set of constraints
that impose conditions that the variables must satisfy.
A solution is a set of values for the variables that satis-
fies all constraints. Constraints are defined on a finite
domain.

• XAI Challenge: The main challenge is to identify
which constraints to relax for conflict resolutions. Ex-
planations are usually a subset of variables which sat-
isfies a set of constraints.

• Approaches: Constraint Satisfaction and Search
problems on finite domains are typically solved using a
form of search. Backtracking, constraint propagation,
local search are examples of such approaches. Even
though the problem is known to be an NP complete
problem with respect to the domain size, research has
shown a number of tractable sub-cases with promising
approaches [41, 42].

• Limitations: Even though optimal structures and
search spaces have been largely introduced in the com-
munity, complexity remains one of the main limita-
tions.

• Opportunity: It has been demonstrated that any
structure in problem representation has largely bene-
fited search [43]. We could envision more knowledge-
driven structure, inspired from Knowledge Graphs,
which could dynamically adapt to variables, con-
straints, search space. Knowledge Graphs could even
drive search through semantic and logical relations
among constraints, which could be modelled as enti-
ties in a graph. In such cases constraints will be aug-
mented with distant data from Knowledge Graphs.
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Fig. 3. On the Role of Knowledge Graphs for Explainable Artificial (Deep) Neural Networks. (What is the causal relationship between the input
/ output / training data?) - Extension of Figure 8 in [38] and https://fortune.com/longform/ai-artificial-intelligence-deep-machine-learning/.

2.5. Game Theory

• Research Question: Game Theory [44] is the study
of mathematical models of strategic interaction be-
tween rationale decision-makers. Examples of games
include zero-sum games [45], in which one person’s
gains result in losses for the other participants.
• XAI Challenge: Game Theory has been dealing with
XAI from its inception as one of its main challenge
is to identify and to understand the underlying math-
ematical model as well as its properties. Game the-
ory is applied to a wide range of behavioural relations,
and is now an umbrella term for the science of logical
decision making in humans, animals, and computers,
in which explanation is the core question driving the
modelling.
• Approaches: The Shapley value [46] is a solution
concept in game theory, which inspired recent research
in Machine Learning to address the problem of expla-
nation [22]. The Shapley value is characterized by a
collection of desirable properties, and is used to cap-
ture the influence of a player in a game settings (or a
feature in a machine learning setting). Such properties
characterize the explanation.

• Limitations: Similarly to the domain of Constraint
Satisfaction and Search, complexity is a challenge for
explainability in game theory. Only an approximate so-
lution is feasible, usually identified through some ran-
domization of coalition in feature values .
• Opportunity: As recently explored, structured repre-
sentation of the models as its features [47] has shown
better scalability, while not necessarily improving ex-
plainability. Knowledge Graphs could be considered
to better structure models, organize features, then re-
ducing the search space and potentially improve un-
derstanding and readability of explanation, particularly
when embedded in a structured set of connected en-
tities. Recent examples [48] have demonstrated that
graph structures do reduce the complexity of search.

2.6. Uncertainty in AI

• Research Question: The field of Uncertainty in AI is
at the frontier of various AI fields, namely knowledge
representation, learning and reasoning. Bayesian prob-
ability is one of the core fundamental, and Probabilis-
tic Graphical Models (PGMs) [49] are usually central
for representing and reasoning with uncertainty as they
encode probability distributions.

https://fortune.com/longform/ai-artificial-intelligence-deep-machine-learning/
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• XAI Challenge: Graphical models are often used to
model multivariate data, since they allow to represent
high-dimensional distributions compactly. The expla-
nations draw their attention on the compact distribu-
tions and their underlying data. Explanation is then
naturally embedded through those relationships, usu-
ally through interdependencies and decomposition in
data.
• Approaches: Some approaches [50] are formulat-
ing PGMs as weighted logical formulas [51] to tightly
decouple the constraints and dependencies from the
probabilistic parameters. Reasoning can then be per-
formed on the logic representations. Other approaches
analyzes latent spaces and its direct connections with
the underlying data [52]. The strength of existing ap-
proaches is the underlying reasoning capabilities that
PGMs and other probabilistic and logic systems offer.
• Limitations: Even though PGMs are appropriate rep-
resentations to connect inter-dependable data, depen-
dencies remains probabilistic. Therefore humans are
required to remain in the loop to interpret any depen-
dencies. Even embedded in logical formulas there is
little gained as we are still embedded in the framework
of standard probability theory.
• Opportunity: Semantic representations and connec-
tions through Knowledge Graphs could be used to dis-
ambiguate and force latent variables to represent inter-
pretable content. This is particularly relevant as PGMs
fit naturally in graph representations, in contextual in-
formation such as knowledge graphs could extend rea-
soning functionalities. Interesting avenues are Proba-
bilistic Knowledge Graphs [53] or knowledge expan-
sion over probabilistic knowledge bases [54].

2.7. Robotics

• Research Question: Robotics is an interdisciplinary
branch of engineering and AI science, which deals
with the design, construction, operation, and use of
robots, as well as computer systems for their control,
sensory feedback, and information processing. The un-
derlying technologies are used to develop machines
that can replicate human actions. They usually com-
bine and integrate many of the technologies in the AI
field.
• XAI Challenge: XAI is required in Robotics mainly
for debugging and resolving discrepancy between a so-
lution and an expected answer. Some of the XAI chal-
lenges are (1) the rationale of coordination in multi-
robots Systems and swarms, (2) the fusion of explana-

tion coming from many underlying AI systems, such as
Planning and Scheduling, Computer Vision, or Knowl-
edge Representation and Reasoning. They are unique
challenges for robotics with many interesting opportu-
nities as explanation is multi-modal, could be comple-
mentary but also conflicting, is spatial and temporal, is
driven by goals but also initial conditions.
• Approaches: Narration of autonomous robot experi-
ence [55] together with approaches of summarization
[56] have been recently introduced as a succinct way
of presenting the decision process of robots. Various
levels of granularity in the decision process are pro-
vided. [57] combine a robotics ontology with linguistic
elements to expose the rational of robots’ actions.
• Limitations: Although the latter models extract in-
formation from a large poll of data, such systems do
not explain their actions and justify their decisions
[58]. Explanation is usually too fine-grained to be
properly integrated by humans. Seamless integration
of multi-modal explanation is also not addressed in the
literature.
• Opportunity: The level of abstraction in explanation
together with its multi-modal fusion are net opportu-
nities for Knowledge Graphs. Some semantics could
deeply support in exposing appropriate and personal-
ized representations of explanations while fusing ex-
planation content in a compact and comprehensible
representation [59]. Knowledge Graphs have been de-
signed to capture knowledge from heterogenous do-
mains, making them a great candidate to achieve ex-
planation per se in robotics.

2.8. Distributed AI

• Research Question: Distributed AI is the field of
AI dedicated to the development of distributed solu-
tions for problems. It is related to Multi-Agent Sys-
tems but also to any representation, structure, system
which could make AI scalable.
• XAI Challenge: Main XAI challenges are focusing
on explaining and resolving agent conflicts, based on
their intentions and beliefs [60]. State-of-the-art ap-
proaches aim at identifying the best strategy, through
explanation, to achieve a goal. More recent works fo-
cus on human comprehension of agent behaviour, its
strategy, and its convergence in case of conflicting in-
tentions and beliefs of agents [61, 62].
• Approaches: Approaches, such as [63] determines
the motivation for a decision by recalling the situation
in which the decision was made, and replaying the de-
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cision under variants of the original situation. In such
scenario they are able to discover what factors led to
the decisions, and what alternatives might have been
chosen had the situation been slightly different. Ap-
proaches tend to be very close to counterfactual [64]
and case-based reasoning [65].
• Limitations: Even though ontology is a core repre-
sentation layer for agents to communicate and nego-
tiate, it is rarely used for explaining agent behaviour,
its strategy and success. Lighter knowledge represen-
tations might be envisioned.
• Opportunity: The dynamics of agents interaction
should be captured more formally, and embedded with
broader common sense knowledge to identify human
interpretable explanation. Formalization does not need
to be complex. For instance some dedicated Knowl-
edge Graphs could be used to contextualize the agents
environment. Some recent works are going towards
this direction of formalizing agent interactions [66].

2.9. Automated Planning and Scheduling

• Research Question: Automated Planning and Schedul-
ing [67] is a branch of Artificial Intelligence that
is about the realization of strategies or action se-
quences, typically for execution by intelligent agents,
autonomous robots and unmanned vehicles. Unlike
classical control and classification problems, the so-
lutions are complex and must be discovered and op-
timized in multi-dimensional space. It could be done
in real-time, i.e., on-line, or at design-time, i.e., off-
line. Solutions usually resort to iterative trial and error
processes.
• XAI Challenge: XAI challenges in AI planning [68]
are as follows: explaining (i) causal relationships of
actions, (ii) why some actions are chosen in particu-
lar situations, (iii) why plans are better than some, (iv)
why plans could not be computed, (v) why replanning
might be required.
• Approaches: Past work on explanations primarily in-
volved the AI system explaining the correctness of its
plan and the rationale for its decision in terms of its
own model [69].
• Limitations: Existing approaches fail in exposing
human-understandable explanation, as it is usually
limited to the planner’s domain e.g., in term of actions
and initial situation. This strongly limits the compre-
hension to experts in the given tasks.
• Opportunity: Knowledge Graphs could be a way for-
ward to better contextualize complex terms, and even

better summarize complex actions in more succinct
and meaningful way.

2.10. Natural Language Processing

• Research Question: Natural Language Processing
is concerned with the interactions between comput-
ers and human (natural) languages, in particular how
to program computers to process and analyze large
amounts of natural language data. Research questions
includes (visual [70], multi-turn [71]) question answer-
ing [72], conversational agents with broader questions
related to Speech Recognition, Natural Language Un-
derstanding and Generation.
• XAI Challenge: Similarly to machine learning, iden-
tifying importance of feature or entity is critical, as it
aims at identifying which part of speech is driving the
most relevant information. Other core XAI tasks in-
clude: explaining the rationale of questions sequencing
in dialogue, debugging a plan-based dialogue system
[73] or explaining the utterances which were intended
to achieve [74]
• Approaches: The problem of identifying the most
representative entities in a text classification task is ad-
dressed by [21] with many variants. Some works [75]
extract plan-based model to understand intention and
explain rationale of the discourse.
• Limitations: On the one hand ML-based approaches,
which focus on important entities in text, suffer from
having statistics-based explanation only, i.e., mainly
based on co-occurrence and correlation. Pioneering
work [76], relying on tree like structure in form of de-
pendency trees, have been first steps towards structur-
ing text processing tasks. On the other hand plan-based
models have not been deeply explored, and many re-
search questions related to their representation, ratio-
nale in questions sequencing remain open.
• Opportunity: Semantic descriptions, exposing mean-
ingful representations, have demonstrated to have a
positive impact on tasks such as relation extraction
[77, 78], event extraction [79] or text classification
[80]. Similar representations, inspired from Knowl-
edge Graphs could provide the semantic layer miss-
ing from brute-force machine learning approaches on
text, aiming at exposing explanation [81]. They could
also drive or at least guide sequencing of questions by
refining, abstracting or instantiating obscure terms in
questions. Challenges and approaches from neural lan-
guage models for the semantic web are also interesting
avenues of exploration [82].
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3. Conclusion

Despite a surge of innovation focusing on ML-based
AI systems, industry is facing the dilemma of apply-
ing in products at scale, particularly for industries op-
erating with critical systems. Trust, and trust in AI has
been revelled as the one term coining industry needs
to move to the next step. Trustable AI is about re-
sponsibility validity, privacy-preserving modelling and
also explainability. Explanation, which could be used
for debugging intelligent systems or deciding to fol-
low a recommendation in real-time, will increase ac-
ceptance and user trust. Explanation in AI has different
open questions, meaning, definitions and approaches,
depending on which AI fields is touching the question.
Although various solutions have been introduced, the
question remain open in all areas of AI. We presented
their challenges in more details, some of their exist-
ing approaches, their limitations and opportunities for
Knowledge Graphs to bring explainable AI to the right
level of semantics and interpretability. Indeed signifi-
cant progress in complex AI tasks, such as explainable
AI could only be achieved through combinations with
semantic layers, empowering explanation of complex
AI systems.
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