A More Decentralized Vision for Linked Data

Axel Polleres a,b,*, Maulik Rajendra Kamdar c and Javier David Fernández a,b Tania Tudorache c
Mark Musen c

a Institute for Information Business, Vienna University of Economics and Business, Vienna, Austria
b Complexity Science Hub Vienna, Vienna, Austria
c Department first, University or Company name, Abbreviate US states, Country
E-mails: axel.polleres@wu.ac.at, javier.fernandez@wu.ac.at
tudorache@stanford.edu, musen@stanford.edu

Abstract. In this deliberately provocative position paper, we claim that more than ten years into Linked Data there are still (too?) many unresolved challenges towards arriving at a truly machine-readable and decentralized Web of data. We take a deeper look at key challenges in usage and adoption of Linked Data from the ever-present “LOD cloud” diagram. Herein, we try to highlight and exemplify both key technical and non-technical challenges to the success of LOD, and we outline potential solution strategies. We hope that this paper will serve as a discussion basis for a fresh start towards more actionable, truly decentralized Linked Data, and as a call to the community to join forces.

Keywords: Linked Data, Decentralization, Semantic Web

1. Decentralization Myths on the Semantic Web

Let us start with a rant, arguing that the Semantic Web may well be considered a story of failed promises with regards to decentralization:

– We had hopes (as a community) to revolutionize Social Networks in a way that every data subject owns and controls their social network data in decentralized FOAF [2] files published in their personal Web space – we got siloed, centralized social networks (Facebook, LinkedIn). Attempts to re-decentralize the Social Web, for instance, through the work of the W3C Social Web WG 3 appear not to have found major adoption at a level comparable with these siloed sites. 4

– We envisioned a decentralized network of ontologies on the Web that would enable smart agents to seamlessly talk to each other, and that would enable easy integration of data by following the guiding principles of ontology engineering and Gruber’s often cited vision of ontologies as shared conceptualizations [3]. 4 While there are indeed certain areas in which ontologies are used to share conceptualizations of a domain, mostly these are insular efforts that do the job well for a particular community. However, on Web scale, ontology and vocabulary reuse is still extremely limited. Instead, we got a main central schema (schema.org), and fast-growing community projects like Wikidata [4] refusing to buy the network effects that have drawn a critical mass of users to these siloed sites seems still far away.

4 or, as Dan Brickley, one of the inventors of FOAF stated slightly sarcastically in personal communication: “we took one useful feature of RDF/RDFS (fine grained vocabulary composition) and elevated it to a cult-like holy law, to the extent that anyone who created a useful RDF vocabulary and wanted to keep improving it, found themselves pushed instead into combining it with dozens of other half-finished, poorly documented efforts that weren’t really designed to fit together nicely.”

1570-0844/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved
into the need for re-using terms from other ontologies.\(^5\)

- We put a lot of effort into **formal semantics and clean axiomatization** of those ontologies – we got logical inconsistency.\(^6\) Whereas, serious attempts to apply such reasoning about Web Data in the wild have either had to restrict themselves to lightweight ontologies or have not been further developed in the past five years, with (a) the semantics of OWL \([\text{9}]\) and even parts of RDF(S) \([\text{10}]\) turning out to be too hard to grasp for normal Web users and developers to survive in the World Wild Web \([\text{11, 12}]\); and (b) the DL community mostly having turned their back to seriously taking the challenge of decentralized applications at Web scale.

- Berners-Lee et al. in their original Semantic Web article \([\text{13}]\) promised **Web-scale automation**: automated calendar synchronisation, personalised health care assistance, home automation – some of these applications are a reality now (Amazon Alexa’s home control, or Google’s and Apple’s widely used services), but rather than relying on a decentralized Semantic Web, use single companies’ curated knowledge bases – also now called “Knowledge Graphs” – that enhance these companies’ services’ backend systems.

- More specifically, we see **knowledge graphs** evolve and embrace them as a success story of the Semantic Web. Yet a good definition of what a Knowledge Graph is and what differentiates it from an “ontology” is still to be provided – apart from the single distinguishing feature that all known examples of knowledge graphs (Google’s, Bing’s, and Yahoo’s knowledge graphs as well as their open pendants DBpedia and Wikidata) are NOT decentralized.

So, here we are... however, there is one lighthouse project that clearly has implemented the vision of a decentralized Semantic Web, this single project that we, as a community, hinge upon and tend to accept as a clear success to wipe away all the failed promises mentioned above is: Linked Data \([\text{14}]\). The promise to be able to publish structured data in a truly decentralized fashion, with a couple of simple principles to enable the automatic retrieval and integration by just “following your nose”, i.e., dereferencing HTTP links. This principle is the most powerful promise that filled the community with new enthusiasm through the so-called “LOD cloud”, cf. Fig. 1. If we measure the number of datasets published according to the **four linked data principles** \([\text{15}]\) and that link to each other, we find evidence of growth and prosperity (cf. Fig. 2), and hope to finally make the vision of a decentralized Web of data come true. Meanwhile, indeed this “cloud” contains over 1,184 datasets, which should be considered good news.

However, as we will discuss in the present paper, there are still serious barriers to consume and use this data. Thus, we would like to take a step back and assess the situation. We will identify some serious challenges in consuming and using Linked Data from the “cloud”, wherein we have to question the usefulness of the current LOD cloud, and, finally, we call for a more principled and, in our opinion, more useful restart and for more collaboration and decentralization in the community itself.

Along these lines, in the remainder of this paper, we start with some background on the genesis of the cur-
Figure 2. The growth of the “LOD cloud” in number of datasets seems to indicate steady, while not rapid or even overwhelming adoption; we still have to view this as opposed to the probably much more rapid growth of other parts of the Web in the same time period [16].

2. Background: The genesis of the LOD Cloud

The creation of a complete Web index is a never-ending story. Since the early days of the Linked Data Web, several attempts have been created and failed to sustain exhaustive Linked Data Search engines, such as Sindice [17], SWSE [18], Watson [19], Swoogle [20], just to name a few. Typically based on bespoke, crawler-based architectures, these search engines relied on either (i) collecting data published under the Linked Data principles and particularly applying the “follow-your-nose” approach enabled through these principles (i.e., find more Linked Data by dereferencing links appearing in Linked Data), and sometimes (ii) relying on “registry” or “pingback” services to collect and advertise linked data assets, such as Semantic Pingback [21]. In the meantime, unfortunately all of these search engines have been discontinued, and we are not aware of any active, public Semantic Pingback services. As more recent efforts, the LOD-Laundromat project [22] offers an URL lookup service7 generated from/for the (accessible parts of) the LOD cloud, and also the LOD Cache by OpenLinkSW8 remain available for LOD entity lookups and SPARQL queries, although it does not provide a detailed specification of which datasets it indexes.

Both of these more recent efforts though, claim to refer to datasets in the LOD cloud: the LOD cloud diagram [1] took a different approach, that is, it has been generated from metadata provided by the community at a (CKAN-driven) Open Data portal, namely http://datahub.io. Interestingly, this is only confirmed for its prior version in August 2017, as references to datahub.io have been removed from current, later LOD diagram versions; also note that datahub.io has moved in the meantime and the “old” LOD-cloud dataset metadata descriptions are only available via the suggestively “deprecated” URL https://old.datahub.io/. While the LOD-cloud initiative itself seems to have been suffering from starvation as well, the current noble effort is depending on a few individuals, such as John McCrae et al. (the creators and maintainers of the LOD cloud diagram), which seems to put the initiative at risk; at least, there is recent active development, with regular at least bimonthly updates on the lod-cloud between April 2018 and April 2019. Still, the LOD-cloud at lod-cloud.net and the metadata at datahub.io seem to remain the single most popular entry points to Semantic Web data (with the exception of domain specific portals such as Bioportal [23]), and therefore a bottleneck.

The metadata the LOD cloud relies on, comprises metadata fields such as:9

- **tags**, where as a pre-filter, only those datasets are included in the cloud that have the tag “lod”,
- **link descriptions**, i.e. declarations of numbers of links to other datasets,
- **resources**, that is, URLs to access the dataset in the form of e.g. dumps, as SPARQL endpoints, or semantic descriptions (e.g. in the form of a VOID [24] descriptions) or an XML sitemap.

Apart from the LOD cloud, a similar effort exists to collect and register Linked Data **vocabularies** and document their interconnections in the Linked Open

7http://lotus.lodlaundromat.org/
8lod.openlinksw.com/
9Disclaimer: Note that our observations base on metadata from datahub.io collected in April 2018; since then, lod-cloud.net has discontinued on datahub.io and now provides an own form-based submission system for metadata on its webpage.
3. Key Challenges in usage and adoption of Linked Data

Reasons for LOD not yet having reached its full potential are manifold and not simple, and we do not claim to be exhaustive herein; yet, we would like to provide a list from the experiences of the authors to help explain some major challenges in the current state of affairs around LOD. We have chosen to divide reasons into technical and non-technical underlying challenges.

3.1. Technical challenges

The current model of collection of LOD by metadata published once-off by the creators of datasets has lead to mainly a nice drawing, rather than making Linked Data accessible and usable. In fact, we see the following major challenges when attempting to use LOD, parts of which we underpin by some preliminary analyses on the metadata from old.datahub.io; we are obviously not the first ones to recognize these as such, wherefore we will accompany them with similar analyses and references where available. Yet, we focus on challenges which we believe to need a solution first, before we can dream about federated queries or optimizing query answering over linked data (which is what we do mostly in our research papers now — without practical applications over several datasets in real existing Linked Data).

3.1.1. Availability and resource limits.

As a result of a recent analysis we did over the metadata on datahub.io, we unfortunately confirmed a very low level of availability of resources, which was already identified as one of the main challenges in the biomedical domain: among the mentioned 5435 resources in the 1281 "LOD"-tagged datasets on datahub.io, there are only 1917 resources URLs that could be dereferenced. Among all the datasets only 646 dataset descriptions contain such dereferenceable (not counting links to PDF, CSV, TSV files) resource URLs; i.e., almost half, 635 dataset descriptions contain no dereferenceable resource URLs that would point to data at all. We applied a best effort here, that is dereferencing both HTTP and FTP URLs with a timeout of 10 seconds awaiting a potential response, counting all 2xx return codes for a HEAD request for HTTP (and following redirects), or, resp. LIST requests for the containing directory for FTP as positives. This confirms the similar experiments by Debattista in his thesis [26, Section 9] and in a more recent article [27]; many LOD cloud datasets are indeed not even being mentioned in his quality assessment framework[10], which only covers 130 accessible datasets.

We note that even a best effort of availability could be viewed as optimistic, if we look in a finer grained analysis of the different different formats in these URLs, cf. Figure 3, e.g. concerning SPARQL endpoints: indeed our small experiment reconfirms that, among the mentioned 444 potential SPARQL endpoint URLs in metadata, only 252 responded at all, and only 195 responded “true” to a simple ASK { ?S ?P ?O} query.11 Table 1 shows the numbers for re-

[11]Also, some endpoint implementations returned non-SPARQL-protocol-conformant results such as http://identifiers.org/services/
Outdated, as well as non-available data is worthless and the frustrating experiences of not finding half the resources when trying to retrieve Linked Data, rather jeopardizes the LOD initiative than inviting externals to our own close community to buy in to the ideas of Linked Data. That is, the LOD cloud itself needs to be “live” and providers that do not comply with minimal availability over a certain duration should be notified and removed. Also, notoriously outdated, stale data should not be listed.

3.1.2. Size and Scalability.

The situation in terms of dataset sizes have changed dramatically since the early days of semantic search engines, where relatively small amounts of triples could be feasibly managed in a single triple store: few datasets generated from big databases reach dramatic sizes. For instance, the latest edition of DBpedia (2016-10), consists of more than 13 billion triples, Wikidata comprises +5B triples and the whole LOD-Laundromat project, which attempts to process and cleanse the accessible part of the LOD cloud, reports at the moment 38.8B indexed triples.

We also note that, to the best of our knowledge, current triple stores on commodity servers do not scale up to more than 50b triples, apart from lab experiments on hardware probably not yet available to most research labs in our community: AllegroGraph and Oracle triple stores have reported dealing with up to 1 trillion triples.\footnote{http://sparqles.ai.wu.ac.at/}

We already see sizes of triples reported on the LOD cloud diverging from what a simple \texttt{SELECT (COUNT (*) AS ?C) WHERE {?S ?P ?O}} to their respective endpoints reports in various examples, just to name some: the Pubmed-Bio2RDF endpoint\footnote{http://pubmed.bio2rdf.org/sparql}, reports 1.37B triples on the query above,\footnote{cf. https://www.w3.org/wiki/LargeTripleStores, last retrieved 2018-05-16, where we note that these experiments have been conducted on synthetic LUBM data, which does not necessarily reflect the characteristics of Linked Data “in the wild”.
} whereas the dump\footnote{The same number is returned on a query for quads, i.e. \texttt{SELECT (COUNT (*) AS ?C) WHERE {GRAPH ?G {?S ?P ?O ?T}}}, which is of course not necessarily the case for all SPARQL endpoints.} reports 1.8b triples. Yet again, on a side note, different to both of that, the metadata at datahub.io reports 5b triples for the same dataset,\footnote{http://download.bio2rdf.org/#/release/4/pubmed/}, where however it cannot be easily determined in how far these numbers refer to different versions or subsets of the...

Table 1

<table>
<thead>
<tr>
<th>query</th>
<th>conformant responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASK {?S ?P ?O}</td>
<td>195 (true) + 7 (false)</td>
</tr>
<tr>
<td>ASK {}</td>
<td>150 (true) + 7 (false)</td>
</tr>
<tr>
<td>ASK (GRAPH ?G {?S ?P ?O})</td>
<td>192 (true) + 9 (false)</td>
</tr>
<tr>
<td>ASK (GRAPH ?G {})</td>
<td>146 (true) + 11 (false)</td>
</tr>
<tr>
<td>SELECT (count(*) AS ?C) WHERE {?S ?P ?O}</td>
<td>143 (137 non-zero)</td>
</tr>
</tbody>
</table>

Figure 3. types of URLs in the “LOD cloud” guessed by declared metadata format and suffixes.
dataset. Likewise, Wikidata’s query service responds to the same query a number of 5.2b triples, which is significantly lower than the 5.7b triples we retrieved from the dump mentioned above.

In addition to that, it is mostly impossible to indeed retrieve all triples from a SPARQL endpoint, due to result size restrictions that many endpoints apply, either in the form of timeouts or only returning a certain maximum number of results/triples. For details, see also [30], which discusses some of these restrictions, and also explains, why in general they cannot be trivially circumvented, e.g. by “paging” results with LIMIT and OFFSET. As another example of related problems, Uniprot, reported to have +39b triples served on its public endpoint, cf. Footnote 14, times out on the simple query to count its triples mentioned above.

Another potential challenge in terms of size and scalability is the amount of duplicates in current dumps: as an example, the PubMed RDF dump from Bio2RDF we mentioned above, cf. Footnote 17, consists of +7.22b nquads spread over 1151 dump files.

A lot of triples are actually duplicated across these dump files from the same dataset; downloading all of these and de-duplicating them locally both wastes bandwidth and makes processing such dumps unnecessarily cumbersome.

Towards a solution path: It seems that in order to avoid both such discrepancies and bottlenecks for downloads and query processing, a combination of (i) dumps provided in HDT [31], a compressed and queryable RDF format, as well as (ii) Triple Pattern Fragments (TPF) endpoints [32] as the standard access method for Linked Datasets could alleviate some of these problems: the triple-patterns fragment interface – essentially limits queries to an endpoint to simple triple matching queries which offloads processing of complex joins and other operations to the client-side, while still not having to download complete dumps. HDT, on the other hand is an already compressed dump format that allows such triple pattern queries without decompression and also guarantees duplicate-freeness.

Notably, there are already several TPF endpoints available, most of them powered by HDT in the backend, thus creating a small server-footprint and -load, for either answering triple pattern queries or downloading the whole dump. HDT has also been recently extended to handle also quads besides RDF triple dumps, thus also being usable for datasets consisting of different (sub)graphs [33]; an analogous extension of the TPF interface to quads would be straightforward. Lastly, we note that e.g. the number of triples it encoded and stored during dump generation in the metadata header of HDT files, thus providing a single, reliable entry to the dataset size.

3.1.3. Findability and (Meta-)Data Formats.

The current metadata available on the LOD cloud does not tell us a lot about how to access the single datasets.

Over time, various dataset description formats and mechanisms have been proposed, typically (i) VoID descriptions, (ii) (Semantic) Sitemaps, and (iii) SPARQL service endpoint descriptions. In the following, we analyze the current state of affairs in the LOD cloud.

The Vocabulary of Interlinked Datasets (VoID) had been designed as a minimalistic entry point for describing datasets and how to access them, containing properties for locating dumps (void:dataDump), finding SPARQL endpoints (void:sparqlEndpoint) or describing the size of the dataset in terms of numbers of triples (void:triples) and other structural statistics. In order to find the VoID description, it is suggested to place the dataset description under /.well-known/void in the root directory of a Webserver.

There are various problems with this approach: firstly, different datasets hosted under one common domain/server cannot provide different dataset descriptions; as illustration, obviously for Github hosted data, https://github.com/.well-known/void would not return a valid VoID description, although github is gaining popularity for hosting Linked Data sets. Secondly, even the “epicenter” of the LOD-cloud, dbpedia.org does not follow the rules and provides a VoID description at the non-obviously findable URL http://dbpedia.org/void/page/Dataset instead. Lastly, indeed, among all 881 hostnames mentioned in URLs in datahub.io’s metadata, 159 respond to an HTTP Get with this recipe, at least 75 of which though seem to be HTML responses, and only 56 valid RDF, without going into further detail, even if the HTML contained RDFa (which in the cases we inspected it did not), it seems that easy to parse RDF re-

19http://dhdt.org
20http://linkeddatafragments.org/
21We tested all hosts from the URLs that provided non-error results
results with valid VoID descriptions seem to be the exception.

(Semantic) Sitemaps XML Sitemaps \(^{22}\) seem to be a more commonly implemented pattern to discover data and pages accessible via an HTTP server, not least because of their recommendation by search engines. It is a simple XML format that should guide crawlers across sites, where Tummarello et al. had even proposed an extension of the Sitemaps protocol to link to RDF datasets specifically \(^{34}\), that has been implemented in Sindice \(^{17}\). Sitemaps are expected to be found under the root of a dataset’s directory on a host in a file called ‘sitemap.xml’, that is, not necessarily directly underneath root directory of the host address. datahub.io’s metadata contains hints (by filename) to such sitemaps for 57 datasets, 56 indeed returning valid sitemaps, and 55 of which indeed use the semantic sitemap extension \(^{34}\) (52 containing a sc:DataURL attribute and 53 containing a sc:spatialEndpoint field). So, overall, while semantic sitemaps are only used for a marginal 5% of the datasets in datahub.io, they seem to be fairly consistent.

SPARQL service endpoint descriptions according to the SPARQL1.1 specification, “SPARQL services made available via the SPARQL Protocol SHOULD return a service description document at the service endpoint when dereferenced using the HTTP GET operation without any query parameter strings provided. This service description MUST be made available in an RDF serialization, MAY be embedded in (X)HTML by way of RDFa [RDFA], and SHOULD use content negotiation [CONNEG] if available in other RDF representations.” Yet, out of the 251 potential respondent endpoint addresses mentioned above only 136 respond to this recipe, out of which in fact 63 return HTML (mostly query forms), even if attempting CONNEG.\(^{23}\)

We note that while some of these mentioned HTML responses might contain RDFa, it is still an extra step to extract and parse and each such extra step will bloat a potential consuming client unnecessarily. Similarly, when attempting to find data dumps, without a semantic sitemap or a VoID file in place, our best guess would be to guess and try parsers from “format” descriptors in the metadata or from filename suffixes.

An additional complication here are compressed formats, where attempting different decompression formats (gzip, bzip, tar, zip, just to name a few), sometimes even used in combination, further complicate accessibility. Some of the the guessed formats we found in all URLs are listed again in Fig. 3 above.

We also note that by manual inspection, some endpoint addresses or accessibility of datasets could be recovered, but since we herein would like to emphasize on machine accessibility, manual “recovery” seems an undesirable option.

Towards a solution path: We feel that as for automatic findability, Semantic Sitemaps with pointers to a VoID description, with concrete pointers to primarily a dump, preferably in HDT as well as (optionally) a pointer to a SPARQL endpoint (or TPF endpoint) should be the commonly to be agreed upon practice. We note here, that the use of HDT makes this task even simpler, as indeed the Header part of an HDT dump file holds a place for metadata descriptions about the dataset readily.\(^{24}\) Also, SPARQL endpoints should provide service descriptions in easily accessible RDF (not RDFa) available via CONNEG, where again these SPARQL service descriptions should describe service limitations (such as e.g. result size limits or connection limits and timeouts). Also, the service description should declare potential differences between the data in the dump and in the endpoint, if any. We emphasize here, that to the best of our knowledge there is no agreed upon vocabulary for SPARQL endpoint restrictions and capabilities.

3.1.4. “RDF Data Quality” of Datasets and the “Semantics of Links”.

The linked data principles define rough guidelines on dereferenceability and linkage of datasets, yet in order for RDF datasets, once downloaded, to be truly machine-processable and being able to traverse and interpret those links fruitfully, more detailed guidelines seem to be indispensable: in an early approach, Hogan et al. proposed the “Pedantic Web”\(^{35}\) alongside with an in the meanwhile discontinued tool, RDFAlerts, to check and assess the quality, dereferenceability, and finally syntactical (e.g. use of ill-defined literals) log-

\(^{22}\)https://www.sitemaps.org/protocol.html

\(^{23}\)with sending an ‘Accept: text/turtle, application/n-triples, application/trig, application/n-quads, application/rdf+xml, * header.

\(^{24}\)In fact, some automatically computable VoID properties are already computed and included in HDT’s header per default, and it is well possible to add additional properties such as pointers to (SPARQL or Linked Data fragments) endpoints, or used namespaces within this header, as a single point of access through an HDT dump file.
In this case, what is the namespace prefix? It seems intuitive that this URI minting scheme is referring to UNIPROT which indeed means the dereferenceable URL

Now, at a closer look this example\(^{25}\) illustrates several problems at once:

- it is unclear which prefix denotes the “namespace”: http://bioonto.de/sbml.owl# or rather http://bioonto.de/sbml.owl#Uniprot:?
- the same entities exist in the LOD cloud under different, disconnected namespace prefixes, such as the Uniprot identifier Q9UJX6, the “official” prefix (as per the authoritative pay-level-domain uniprot.org) of which is http://purl.uniprot.org/uniprot/Q9UJX6.
- likewise, the overall “#namespace” http://bioonto.de/sbml.owl# does not refer to a dereferenceable URI; the data itself comes in fact from a dataset dump in an old version of bioporal, that has been fixed in the meantime, but nonetheless it serves for illustration; a detailed analysis of present such quality issues in the LOD-cloud is still on our agenda, but we have reason to believe that many such issues still persist also in the current LOD cloud. In fact, the example BIOMODELS ontology dataset now exists on different places in the LOD cloud, within BIO2RDF, within BIOPORTAL, but also as an RDF dataset directly published by EBI\(^{26}\) in three different “RDF exports” of the same database.

While – depending on the serialisation – namespaces could be filtered out based on being explicitly represented (e.g. marked with XML namespaces in RDF/XML or by @prefix declaration in Turtle, respectively), this seems not to be a reliable way of recognizing all used namespaces within an RDF datadump in a declarative machine-readable manner. Plus, as the example illustrates, even if we had all namespaces occurring within a dataset, various URL schemes used refer to either non-dereferenceable or non-RDF publishing third-party namespaces, that cannot be simple assigned to “belonging” to a single dataset. More issues about

\(^{25}\) which is one of many, we emphasize it is not our intention to point fingers to anyone!

\(^{26}\) at ftp://ftp.ebi.ac.uk/pub/databases/RDF/biomeorgs/
URI schemes and namespaces and term (non-)re-use have been described in [36] and [37].

Last, but not least, as an open problem, links in one dataset always refer to a particular version of the linked dataset, which if not archived cannot be guaranteed to persist or being dereferenceable in the future. For a more sustainable version of Linked Open Data, we therefore deem versioned Linked Data as well as archives a necessity.

Towards a solution path: We feel that in order to avoid such issues, to be established best practices for Linked Data publishing would need to provide more guidelines for URL minting and reuse. Namespace and ID minting should probably be restricted to machine-recognizable patterns (such as strict adherence to ‘/’ and ‘#’-namespaces), with dereferenceable namespace URLs. Ownership of a namespace could – for instance – be restricted to pay-level-domain, that is, definition of namespaces being restricted to the own pay-level domain, and URL and namespace schemas given a clear machine-readable ownership relation. We leave a concrete definition of such a machine-readable and assessable ownership open for now, but refer to similar concepts and thoughts about URI “authority” having been discussed before in the context of ontological inference by Hogan in his thesis [38, Section 5] as a potential starting point. Hogan’s thesis also contains some details on scalable implementations of the above-mentioned checks that have been described in RDFAlerts [35] earlier, which we believe could be implemented directly and efficiently on top of indexed compressed formats HDT, which we leave to future work on our agenda for now.

As for archiving and versions, we refer to [39] and references therein in terms of starting points; although no single agreed proposal exists at this point for how to publish versioned RDF archives we again refer to possible HDT-based solutions, particularly enabled through the recent extension of HDT to handle quads [33].

3.2. Non-Technical Challenges

Even if we will be able to solve all the above technical challenges, there are several pertinent issues that are in the critical path to the success of LOD. That is, we also see many non-technical challenges that should be fixed in order to stimulate adoption of linked data, a non-exhaustive list of which we briefly describe hereafter.

3.2.1. Completeness/Consistency.

Several well-known and important RDF datasets are missing in the LOD cloud, e.g., EBI RDF is not there (plus various other well-known data bases from the biomedical and life sciences domain), which have gone through the effort of publishing RDF, but not taken the additional hurdle of manually adding and updating their metadata in yet another centralized catalog such as datahub.io. For similar reasons, e.g., Wikidata is not a dataset in the LOD cloud, although it is clearly linked well with several datasets present.

Overall, the burden of manually and pro-actively needing to provide and maintain LOD cloud metadata on the publisher-side has proven unsustainable.

3.2.2. Trust.

Besides the pervasive issues of availability and reliability, developers are rightfully worried that the published data in the cloud is not kept up to date, and as such the technical issues mentioned above might overall give rise to (or have already given rise to, possibly) doubts on the technology and principles of Linked Data. Stale datasets, while still available, but with outdated, once-off RDF exports of in the meantime evolved databases, likewise raise trustworthiness issues in Linked Data.

While it seems to have been a sufficient incentive to “appear” in the LOD cloud to publish datasets adhering to Linked Data principles, a similarly strong incentive to sustain and maintain quality of published datasets seems to be missing.

It is therefore important for us as a community to keep this project up and alive, by creating sustainable publishing and monitoring processes.27

3.2.3. Governance.

We note that not only trust in the LOD cloud itself, but also mutual trust between LOD providers may be a problem that is difficult to circumvent. For instance the presence of various different unlinked “RDF dumps” or LOD datasets that actually arise from exports of the same legacy database (BIOMODELS given as one illustrative example of many above) could be potentially related to many of our exports and datasets having been created in isolation, by closed groups, without inviting collaboration or being based on infrastructures to share and evolve those exports jointly. We feel that

27Of course, with the alternative to eventually re-brand it under a different name after survival of an “LOD winter” from unfulfilled expectations)
this issue can only be solved by a more collaborative, and truly open governance.

3.2.4. Documentation and Usability.

Besides the technical accessibility discussed above, usability issues and documentation standards have been long overlooked in many Linked Data projects. Industry-strength tools to consume and use Linked Data with sufficient documentation are still underdeveloped.

We believe this issue can be ameliorated by: (1) better metadata for describing the datasets; (2) better documentation for using the datasets, including sample queries; (3) better tool support for enabling reuse of existing vocabularies; and (4) Supporting and promoting the use of developer-friendly formats, such as JSON-LD.

In addition, in terms of positive examples, we would again like to name the aforementioned HDT and TPF projects, as well as useful SPARQL query editing tools such as YASGUI [40] or Wikidata’s query interface, which have appeared in the last two years; we need more tools like those.

3.2.5. Funding & Competition.

Last, but not least, while the EU and other funding agencies have supported our endeavor to create a Web of data greatly, we also feel that there are problematic side effects which need discussion and counter-strategies:

- cross-continental research initiatives are not being funded
- EU project consortia are typically being judged by complementary partner expertise

Both these factors, which prevent research groups working on overlapping topics from collaboration, and rather stimulate an environment of isolated closed research than open collaboration to jointly address the issues mentioned so far.

Lack of collaboration may in other cases also just be caused by the disconnect of research communities: this is for instance exemplified by the Semantic Web in Life Sciences community, for instance seemingly having recently started efforts very similar to SPARQLES [28] in building up a completely independent SPARQL endpoint monitoring framework [41], not even citing SPARQLES (sic!), which seems unnecessarily duplicating efforts instead of collaboratively developing and maintaining such services.

4. Conclusions and Next Steps

So, is Linked Data doomed to fail? In this paper we did not present a lot of new insights, but our deliberatively provocative articulation of rethinking Linked Open Data and its principles. It is not too late to counteract and join forces. We hope that our summary of problems and challenges, reminders of valuable past attempts to address them, and outline of potential solution strategies can serve as a discussion basis for a fresh starts ahead towards more actionable Linked Data.

On the bright side, specific communities, such as the biomedical community have been very successful in using OWL and Semantic Web technologies for the management of large biomedical vocabularies and ontologies, for a detailed overview of successes in this area we refer to [42]. Main factors for success projects are: (1) Having a dedicated and very active development team behind it with continuous funding over several years; (2) Actively building a strong community of domain users from different areas, and using their needs as the driver for the ontology development; (3) Having an exemplary documentation, about both ontology, but also about how to use Linked Data in applications targeted to domain users, as well as documentation about the processes for building and maintaining collaboratively generated Linked Data sources; (4) Using a principled approach for developing the underlying ontology and maintaining the vocabularies used; (5) Using automated pipelines to check and ensure data and vocabulary quality.

Our hope is that the Linked Data community can learn from such specific projects, and that it will try to apply some of the same approaches that proved to be so successful. We believe the community needs to work on those by joining forces, rather than by competition. We also argued that HDT, a compressed and queryable dump format for Linked Datasets, could play a central role as a starting point to address some (but not all) of the technical challenges we have outlined, i.e., implicitly suggesting a “fifth Linked Data principle” [15].

5. Publish your dataset as an HDT dump, including VoID metadata as part of its header and declaring (i) the (authoritatively) owned namespaces, (ii) links to previous and most current versions of the dataset, (iii) and – whenever you use namespaces owned by other datasets or ontologies – the links to specific versions of these other datasets.

In fact, we would argue that more principled Linked Data publishing could allow to auto-generate LOD clouds from a set of such HDT dumps, which to demonstrate is on our agenda for future work.

Apart from technical challenges, other issues arose, that seem equally important, such as the establishment of collaborative and shared research infrastructures to guarantee sustainable funding and persistence of Linked Data assets, as we have seen many promising efforts and initiatives mentioned in this paper having discontinued unfortunately. In the meanwhile, we also emphasize that initiatives like the recently US-founded “Open Knowledge Network”29 initiative or Dagstuhl seminar on “New Directions for Knowledge Representation on the Semantic Web”30 have provided platforms to openly discuss such a fresh start, in the context of new trends and efforts around Knowledge Graphs [43] and the FAIR principles [44], that parallel and complement the Linked Data movement.

Acknowledgements

A preliminary version of this position paper [45] was presented at the DESEMWEB2018 workshop, where we gained some valuable feedback from the participants. We thank Dan Brickley, Sarven Capadisli, and Denny Vrandečić for comments on the first revision of this paper [46]. Axel Polleres’ work was supported under Stanford University’s Distinguished Visiting Austrian Chair program. Javier Fernández’ work was supported by the EC under the H2020 project SPECIAL and by the Austrian Research Promotion Agency (FFG) under the project “CitySpin”.

References

29http://ichs.ucsf.edu/open-knowledge-network/
[22] W. Beeck, L. Rietveld, H.R. Bazoo and J. Wilemaker and S. Schlobach, LOD laundromat: a uniform way of publishing other people’s dirty data, in: Proceedings of the Inter-

