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Abstract. Large software systems evolve rapidly and these evolutions are usually integrated directly into source code without
updating the conceptual model. As a consequence, implementation platforms evolve faster than business logic. Indeed, when
extracting knowledge to enrich or build an ontology, business logic is not always a complete data source. To solve this problem,
some authors have suggested to adopt an ontology learning approach in order to extract knowledge from the source code. In
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1. Introduction

The popularity of computer applications and the
huge growth of new software development technolo-
gies has brought about the development of many appli-
cations and services [1] such as e-epidemiology and e-
health platforms. Large software consist of many mod-
ules (small programs), possibly written by different
programmers [2] and allow a great community of peo-
ple to use and share a set of services [1]. To develop
them, one may follows an approach among the exist-
ing ones such as Waterfall, Iterative development, Pro-
totyping, Spiral and Rapid Application Development
(RAD) [3]. In these approaches, interrelated activities
are performed during the development process [3]. On
the one hand, in developing and using large software,
some problems could be encountered:

– Software requirements could be articulated on the
web through historical email messages, discus-
sion forums, etc. Once asserted, there is gener-

ally no "software requirements specification doc-
uments" [4]. In github for example, adding com-
ments and some code updates are not always done
in parallel with the updating of the conceptual
model.

– In some Open Source software with large com-
munities, many developers contribute to source
code with their own vocabularies [4].

– Sometimes, developers focus on coding features
rather than ensuring that they have a solid and
complete documentation that facilitates the inte-
gration of newcomers [4].

– Changing the needs during the development pro-
cess is still not managed by software process
models. As a consequence, software projects do
not always meet their expectations in terms of
functionality, cost and delivery schedule [4].

– Integrating the evolution of platforms directly
into source code can make new programmers take
too much time to grab the source code [4, 5].
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On the other hand, in using large software, some B2B
applications require an effective communication be-
tween machines and, between human and machines
[6]. For example, in epidemiological domain, one may
need in real time climatic data from an accessible data
source in order to explain the evolution of an outbreak.

In order to solve the above problems, one solution
consists in establishing a standard for software devel-
opment to ensure that every code submitted makes the
system coherent [4]. But this solution has at least two
limits: it requires the programmer to learn new sets of
standards before coding and, one must set new stan-
dards each time new technologies are integrated into
the project, and make it known to developers. These
constraints can slow the development process. To make
the source code coherent with the conceptual model
and the data sources to inter-operate, an ontology that
model the domain knowledge may be a good solution.

Studer and al. [7] defined an ontology as "a formal,
explicit specification of a shared conceptualization".
In the context of domain ontologies, conceptualization
refers to the abstract model of the domain which is ma-
chine readable, and where all the elements are explic-
itly defined and accepted by a group of domain expert.
Several domain ontologies define and organize rele-
vant knowledge about activities, processes, organiza-
tions and strategies, in order to facilitate information
exchange between machines and, between human and
machines [6].

Building domain ontologies require the access to
domain knowledge owned by domain experts or con-
tained in formalized data sources. There is a lot of
value in creating domain ontologies using existing
documents of the domain. In fact, the domain evolves,
experts are not easily accessible, the knowledge pro-
vided by domain experts is likely to be incomplete,
subjective and even obsolete.

Domain ontologies are usually constructed by either
using a top-down, middle-out, or bottom-up approach.
With the bottom-up approach, data sources are used to
build the ontology [6, 8]. Several types of data sources
can be used [9]: Texts (documents of the domain, spec-
ifications, analysis and designed documents, user man-
uals, information from forums and blogs) [1, 6, 8, 10–
13], databases [8, 11, 12, 14], XML files [8, 11] and
UML / Meta-model diagrams [8, 15].

Source code is rarely used. Whereas, names of class-
es/data structures and variables are generally close to
terms of the domain. On the other hand, the business
logic that can be difficult to represent in the conceptual
model may be directly put into the source code. More-

over, after initial analysis and design, further changes
are often reported directly into the source code without
updating conceptual models. Therefore, source code
may evolve over time. For example, github codes un-
dergo continuous modifications without appropriate
updates of conceptual model.

Source code files are sometimes in thousands, the
whole application can contain millions of lines of
code. Thus, it can be costly to extract knowledge from
these files manually. A solution to this problem con-
sists in designing a tool that automatically extracts
knowledge from the source code in order to build
and/or to update the domain ontology [1, 14, 16].

According to Unbehauen and al. [17] "Knowledge
Extraction is the creation of knowledge from struc-
tured (relational databases, XML) and unstructured
(text, documents, images) sources". To automatically
extract knowledge from data sources, there are sym-
bolic techniques and statistical techniques [12]. On-
tology learning applies statistical techniques, symbolic
techniques or the mix of two to (semi-)automatically
extract the ontological knowledge from data sources
and build an ontology. In symbolic techniques, the ex-
traction process consists in examining text fragments
that match some predefined rules, looking for lexico-
syntactic patterns corresponding for instance to taxo-
nomic relations or scanning for various types of tem-
plates related to ontology elements. Several symbolic
methods have been proposed in the literature to extract
ontological knowledge from source code: (1) Gana-
pathy and Sagayaraj [16] extract metadata (for con-
cepts and properties identification) using a tool called
QDox generator1. (2) Shuxin Zhao and al. [14] pro-
pose a rule-based approach to extract knowledge from
source code of Web applications. (3) Kalina Bontcheva
and Marta Sabou [1] construct an ontology from mul-
tiple data sources (discussion forums, documentation,
comments and source code) using the extraction tools
integrated in GATE2 software that are based on sym-
bolic approaches. Although very powerful for partic-
ular domains, these methods are inflexible because of
their strong dependency on the structure of the data.
Statistical techniques are more general [12] and can be
adapted for knowledge extraction from various source
codes.

In this paper, we tackle the problem of knowledge
extraction from source code written in Java program-

1https://github.com/paul-hammant/qdox
2https://gate.ac.uk/
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ming language. More precisely, we propose a method
based on Hidden Markov Models to extract relevant
knowledge.

The rest of this paper is organized as follows. In sec-
tion 2, we present an overview of ontology learning.
In section 3 we describe our approach. In section 4,
we experiment and evaluate the approach. Finally, in
section 5, we conclude and present future works.

2. Ontology Learning

Acquiring knowledge for building an ontology from
scratch, or for refining an existing ontology is costly
in time and resources. Ontology learning techniques
are used to reduce this cost during the knowledge ac-
quisition process. Ontology learning refers to the ex-
traction of ontological knowledge from unstructured,
semi-structured or fully structured data sources in or-
der to build an ontology from them with little human
intervention [6, 11, 12]. In this section, we present
the basic ontology components, data sources gener-
ally used for ontology learning, some ontology learn-
ing techniques and ontology learning evaluation.

2.1. Basic ontology components

An ontology is composed of different components
[6]:

– Concept is a collection of objects that have simi-
lar properties. For instance Health_ f acility is the
concept of all health facilities including health
centers and clinics.

– Property is used to describe the characteris-
tics of Individuals of a concept. They are com-
posed of attributes properties and relations. At-
tributes are properties whose values are data
types. For instance, age, of type Integer is the at-
tribute of concept Person. Relations are special
attributes whose values are individuals of con-
cepts. For instance, examined_in defines relation-
ship between the concept Person and the con-
cept Health_ f acility ("A person is examined in a
health facility").

– Axiom is used to model statements that are always
true. They cannot be simply described by existing
components. For example, the assertion "the con-
cepts Men and Women are disjoints" is an axiom.

– Rule is a statement in the form P1,...,Pn
P , this means

that if the statement P is true, then, the statements

P1, ..., Pn are true. Rules are used to infer new
knowledge.

– Individual is instance of concept and corresponds
to a concrete object. For example, from the con-
cept Person, Bob is an individual.

To identify these ontological components, terms (lin-
guistic realization of domain-specific concepts [13])
will be extracted from data sources.

2.2. Data sources for ontology learning

The process of developing an ontology requires
knowledge extraction from any relevant sources. There
are several possible sources of knowledge: domain ex-
perts or unstructured, semi-structured, and structured
sources [9].

2.2.1. Domain experts
A domain expert is a person knowledgeable about a

domain. To get the knowledge from domain experts, a
knowledge engineer conduct interviews. This process
might lead to knowledge loss or even worse, introduce
errors because misunderstandings frequently arise in
human communication. Additionally, domain evolves,
experts are not easily accessible and the knowledge
provide by domain experts is likely to be incomplete,
subjective and even obsolete [9].

2.2.2. Unstructured data sources
Unstructured data sources contain data that do not

have a pre-defined organization. These are all kinds
of textual resources (Web pages, manuals, discussion
forum posting, specification, analysis and conception
document, source code comments) and multimedia
contents (videos, photos, audio files) [1, 9, 10, 12, 13].
Unstructured sources are the most numerous and can
make it possible to extract a more complete knowl-
edge. However, they are easily accessible to human
information processing only. For example, extracting
formal specification from arbitrary texts is still consid-
ered a hard problem because sentences might be am-
biguous and, in some cases, no unique correct syntac-
tic analysis is possible [9].

2.2.3. Structured data sources
Structured data sources contain data described by

a schema. The advantage of using these data sources
is that they contain directly accessible knowledge [9].
Some structured data sources include:

– Ontologies: Before constructing an ontology from
scratch, one may look at other ontologies that can
be (maybe partially) reused [6, 9, 12, 18];
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– knowledge base: In knowledge base, one can gen-
erate discovered rule as input to develop a domain
ontology [19];

– Database schema: Terms to be used to build an
ontology can be extracted from database schema
[14, 20, 21].

2.2.4. Semi-structured data sources
Semi-structured data sources contain data having a

structure that already reflect part of the semantic inter-
dependencies. This structure makes it easier to extract
a schema [9]. Semi-structured data sources are:

– Folksonomies/thesaurus: The advantage of using
folksonomies or/and thesaurus to build an ontol-
ogy is that, they reflect the vocabulary of their
users [22, 23].

– XML (Extensible Markup Language): The aim
of XML data conversion to ontologies is the in-
dexing, integration and enrichment of existing
ontologies with knowledge acquired from XML
documents [24].

– UML/meta-model: To learn an ontology from
UML or/and meta-model, one approach is to ex-
tract OWL class and properties from diagrams
or to use Ontology UML Profile (OUP) which,
together with Ontology Definition Meta-model
(ODM), enable the usage of Model Driven Archi-
tecture (MDA) standards in ontological engineer-
ing [15].

– Entity-relation diagram: They are used to de-
scribe the need and the type of information that
will be managed by the database. They can then
be used to learn ontologies [25].

– Source code [1, 14, 16]: Generally, in source
code, the names of data structures, variables,
functions are closed to the terms of the domain.

A lot of work has been done on ontology learning
from text, databases, XML files, vocabularies, and the
use of ontologies to build or enrich other ontologies.
This resulted in a wide range of models, techniques
and tools for the generation of knowledge structure
that can be considered as intermediate process when
constructing ontologies. However, we noted only three
works dealing with ontology learning from source
code [1, 14, 16].

2.3. Ontology learning techniques

To extract knowledge from data sources, many tech-
niques are used. Shamsfard and Barforoush proposed

a classification of learning techniques by considering
symbolic, statistics and multi-strategies [12].

2.3.1. Symbolic based techniques
A symbolic method can be rule based, linguistic

based or pattern based.

1. A rule-based model is represented as a set of
rules, where each rule consists of a condition and
an action [11].

(a) Logical-based rules: Learning methods may
discover new knowledge by deduction (de-
duce new knowledge from existing ones) or
induction (synthesize new knowledge from
experience). Inductive logic programming
can for example used to learn new concepts
from data [12, 13, 26].

(b) Association-based rules: Aim at finding cor-
relations between items in a dataset. This
technique is generally used to learn relations
between concepts [10, 12, 13] and can be
used to recognize a taxonomy of relations
or to discover gaps in conceptual definitions
[12, 13, 27].

2. Linguistic-based approaches (syntactic analysis,
morpho-syntactic analysis, lexico-syntactic pat-
tern parsing, semantic processing and text under-
standing) are used to derive knowledge from text
corpus. This technique can be used to derive an
intentional description of concepts in the form of
natural language description [27].

3. Pattern-based / Template-driven approach allows
to search for predefined keywords, templates or
patterns. Indeed, a large class of entity extraction
tasks can be accomplished by the use of carefully
constructed regular expressions (regex). But, ro-
bust extraction requires the use of complex ex-
pressions. This effort is generally reduced by reg-
ular expression learning. Yunyao [28] proposes a
method to learn and improve regex given an ini-
tial regex and labeled examples.

Symbolic techniques are precise and robust, but can be
complex to implement, and difficult to generalize [12].
Moreover, they can be costly to adapt from one source
code to another.

2.3.2. Statistic based techniques
Statistic analysis for ontology learning is performed

on data gathered from input, to build a statistical model
[11, 12]. Several statistical methods for extracting on-
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tological knowledge have been identified in the litera-
ture [11–13].

1. Co-occurrence and collocation analysis are re-
lated and can be defined as the occurrence of
some words in the same sentence, paragraph
or document. Such occurrences hint a poten-
tial direct relation between words. After extract-
ing terms from HTML documents, Brunzel and
Marko [29] used co-occurrence frequencies to
discover terms that are siblings to each other.

2. Clustering can be used to create groups of similar
words (clusters) which can be regarded as rep-
resenting concepts, and further hierarchically or-
ganize these clusters. This technique is generally
used for concept learning by considering clusters
of related terms as concepts, and learning of tax-
onomy relations by organizing these groups hier-
archically [13]. Ontology alignment can use ag-
glomerative clustering to find candidate groups
of similar entities in ontologies [27].

3. A Hidden Markov Model (HMM) defines a gen-
erative statistical model that is able to gener-
ate data sequences according to rather complex
probability distributions and that can be used
for classifying sequential patterns [30–32]. Zhou
and Su [33] used HMM for Named Entity Recog-
nition; Maedche and Staab [10] used the n-gram
models based on HMMs to process documents at
the morphological level before supplying them to
terms extraction tools.

Statistical methods are more computable, general, and
scalable [12]. Then, they are easy to adapt from one
source code to another.

2.3.3. Multi Strategy learning
Multi Strategy learning techniques leverage the

strengths of the above techniques to extract a wide
range of ontological knowledge from different types of
data sources [11, 12]. Maeche and Staab [10] present
for example, the use of clustering for concepts learning
and association rules to learn relations between these
concepts.

2.4. Ontology learning evaluation

Once the knowledge is extracted and the ontology is
built, the evaluation will make it possible to judge if the
ontology is good or not and conclude on the quality of
the approach. The evaluation of ontologies is coined by
several authors in the literature [6, 34–36]. Dellschaft

and Staab [34] proposed to consider structural evalu-
ation and functional evaluation and defined a scenario
for ontology evaluation.

2.4.1. Ontology learning evaluation scenario
There are 2 scenario to evaluate ontologies [34]:

– Quality Assurance During Ontology Engineer-
ing: This will evaluate the choice of the correct
corpus, the evaluation in the running application
or, the evaluation depending on certain desirable
criteria such as consistency, completeness, con-
ciseness.;

– Comparing ontology learning algorithms: It
consists of comparing ontology learning algo-
rithms with each other. It can be used to improve
existing learned algorithms or to find how chang-
ing the values of input parameters can change the
results produce by the algorithm.

For example, one may compare the ontology obtained
during the ontology learning process to a gold stan-
dard. The gold standard can be a corpus, a list of terms
(validated by a domain expert) or an ontology repre-
senting an idealized outcome of the learning algorithm
[34–36].

2.4.2. Structural evaluation of ontologies
The structural evaluation is related to the represen-

tation of an ontology as a graph. A gold standard can
be used here and the learning algorithm will be con-
sidered to be good when the structure of learned ontol-
ogy will have a high similarity with the structure of the
gold standard [34].

2.4.3. Functional evaluation of ontologies
The functional evaluation of an ontology is related

to its conceptualization [34]. For example, the qual-
ity assurance will evaluate if the ontology is consis-
tent, complete, concise, and expandable [6, 34–36].
To do this, one may check if the target domain of
the ontology is sufficiently modeled to fulfill the func-
tional requirements and/or whether the ontology helps
to improve the performance in the task for which it
is designed [34]. Corpus-based approaches are used to
check how far an ontology sufficiently covers a given
domain. To measure the quality of the learning tech-
nique, functional evaluation consist in looking at the
output (the learned ontology) and comparing it with
the input (the content of the corpus). There are 2 ways
to do this task [34–36]:

– Manual evaluation by human experts: Here, the
learned ontology is presented to one or more do-
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main experts who have to judge to what extend
the knowledge extracted is correct.

– Compare the ontology to the gold standard to en-
sure that the ontology covers the content of the
corpus.

3. A HMM approach for knowledge extraction
from source code

Source code contains well-defined words in a lan-
guage that everyone understands (case of the elements
generally found on the user interface), some statements
which has a particular lexicon specific to the program-
ming language and to the programmer. For example, in
Java programming language, the term "class" is used
to define a class, the terms "if", "else", "switch", "case"
are used to define the business rules (candidate terms to
become the rules). Other term defined by the program-
mer such as "PatientTuberculeux" is used to define a
name of class (candidate term to be concept); the term
"examenATB" is used to define the relation (Object-
Property) with cardinality (candidate term to become
axiom) between the classes "PatientTuberculeux" and
"Examen"; and the group of terms "int agePatient" is
used to define a property (DataProperty) of the class
"PatientTuberculeux". However, the applications gen-
erally manage several dozen or even hundreds of files
(e.g. EPICAM has 7154 files) of different types (.txt,
.java, .properties, .html, etc.) containing millions of
lines of code (EPICAM contains 1326166 lines of
code). In addition, the software tends to evolve over
time (changing version, bugs correction) and related
conceptual models or specification documents are not
usually updated. It could be very costly to extract the
knowledge from source code manually. Therefore, we
propose to use Hidden Markov Models as an ontology
learning approach for automatic knowledge extraction
from source code.

3.1. Hidden Markov Models

Markov Chain is a random process having a fi-
nite set of states, and only the current state influence
where it goes next [30]. HMMs are particular types
of Markov Chain composed of a finite state automa-
ton with edges between any pair of states that are la-
beled with transition probabilities. It also describes
a 2-stage statistical process in which the behavior of
the process at a given time t is only dependent on
the immediate predecessor state. It is characterized by

the probability between states P(qt|q1, q2, ..., qt−1) =
P(qt|qt−1) and for every state at time t an output or
observation ot is generated. The associated probabil-
ity distribution is only dependent on the current state
qt and not on any previous states or observations:
P(ot|o1, ..., ot−1, q1, ..., qt) = P(ot|qt) [30, 31]. HMM
is generally used for pattern recognition, automatic
voice processing, automatic natural language process-
ing, character recognition [30, 32], musical genres
classification [37].

A first order HMM well described the source code
which is sequentially typed by the programmer and the
current word (corresponding to an assign hidden state)
depends on the previous word. In this HMM, the ob-
served symbol depends only on the current state [30–
32]. Formula 1 presents the joint probability of a se-
ries of observations O1:T given a series of hidden state
Q1:T .

P(O1:T ,Q1:T ) =

P(q1)P(o1|q1)
∏
t=2

P(qt|qt−1)P(ot|qt) (1)

Filtering, smoothing, prediction, and the most likely
explanation are three usages of HMM. In the most
likely explanation, the goal is to find the sequence of
hidden states that best explain the sequence of observa-
tions (formula 3) [30–32] . The probability that a string
X is emitted by an HMM M is calculated as the sum of
all possible paths by:

P(X | M) =

∑
q1,...,ql

l+1∏
k=1

P(qk−1 → qk)P(qk ↑ xk) (2)

Where q0 and ql+1 are limited to qI and qN respec-
tively and xl+1 is an end of word. The observable out-
put of the system is the sequence of symbols emitted
by the states, but the underlying state sequence itself is
hidden.

Before using the model, its parameters (transition
probability, emission probability and initial probabil-
ity) must be calculated from data or, in the case where
a model exist, by estimating them using Forward-
Backward algorithm, Baum-Welch algorithm, or Ex-
pectation-maximization algorithm [30, 32].
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It is common to search for a sequence of states
V(X | M) which has the greatest probability to pro-
duce an observation sequence [30–32]. For example,
in automatic translation, one may want the most prob-
able string sequence that corresponds to the string to
be translated. In this case, instead of taking the sum of
the probabilities, take the maximum (formula 3).

P(X | M) =

argMax q1...ql∈Ql

l+1∏
k=1

P(qk−1 → qk)P(qk ↑ xk)

(3)

The great popularity of this modeling technique re-
sults from its successful application in the field of auto-
matic speech recognition. In this area of research, hid-
den Markov models have effectively replaced all com-
peting approaches and constitute the dominant pro-
cessing paradigm. This success is due to their superior
ability to describe processes or signals evolving in time
[30].

3.2. Source code versus HMM

The source code is any fully executable description
of a software (in the form of texts as written by devel-
opers) designed for a specific domain such as e-health
or e-epidemiology. It can be used for the collection,
organization, storage and communication of informa-
tion. It is designed to facilitate repetitive tasks or to
process information quickly. To do this, it must cap-
ture a set of knowledge of the domain. For example,
EPICAM, an epidemiological surveillance platform3 4

allows health personnels to collect and share health in-
formation. Then, it captures knowledge of epidemio-
logical surveillance of tuberculosis.

Source code is generally written according to good
programming practices, including naming conventions
[38] (e.g. in [39], Oracle presents good practices of
Java programming). These practices tell programmers
how to name variables, organize and present the source
code. This organization can be used to model source
code using HMMs. For example, from the source code
of figure 1, we can say that at a time t, the programmer
enters a word (e.g. "public" at the beginning of a Java
source file). Thus, the key word "public" at time t con-

3www.epicam.cm
4http://github.com/UMMISCO/EPICAM

Fig. 1. Example of a JAVA source file

dition the next word at time t + dt which in this case
can be "class". We can say that PRE and T ARGET are
the hidden states and "public" and "class" are respec-
tively their observations states. Source code can then
be modeled using the HMM of figure 2.

3.3. Source code description

Source code contains several types of files: files de-
scribing data, files processing data, user interface files
and configuration files.

3.3.1. Files describing data
These files describe the data to be manipulated and

some constraints on this data (e.g. data types). In Java
EE for example, there are entities that will be trans-
formed into tables in the database. These files often
contain certain rules to verify the reliability of the data.
Thus, from these files, we can retrieve concepts, prop-
erties, axioms and rules.

www.epicam.cm
http://github.com/UMMISCO/EPICAM
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Fig. 2. HMM example

3.3.2. Files containing data processing
Located between user interfaces files and data de-

scription files, this part of source code contains data
processing, consisting in:

– Control: For example, restricting certain data to
certain users (only the attending physician has the
right to access to data), checking the validity of
a field (checking whether the data entered in an
"age" field is of integer type);

– Calculation: For example, converting a date of
birth into an age, determining the date of the next
appointment of a patient, calculating the body
mass index of a patient based on its weight and
height.

They are the algorithms implementing the business
rules to be applied to the data. They are thus good can-
didates for axioms and rules extraction.

3.3.3. User interfaces files
The User interfaces are composed of files which de-

scribe the information that will be presented to users
for data viewing or recording. Unlike the first three
files types, these files contain the words of a human-
readable vocabulary that can be found in a dictionary.
User interfaces usually provide:

– Translations allowing navigation from one lan-
guage to another, control for users to enter the
correct data;

– An aid allowing users to know for example the
role of a data entry field.

User Interfaces are therefore good candidates for con-
cepts and their definitions, properties, axioms and rules
extraction.

3.3.4. Configuration files
These files allow developers to specify certain infor-

mation such as the type and path of a data source, dif-

ferent languages used by users, etc. For instance, from
these files the languages labels (e.g. English, French,
Spanish) for terms can be extracted.

The files we just presented generally contain com-
ments that can be useful for knowledge extraction or
ontology documentation. Knowledge extraction from
user interfaces/web interfaces has already been ad-
dressed in [8, 14, 29], knowledge extraction from text
has been presented in [1, 10, 13, 40]. In this article,
we will focused on knowledge extraction from files de-
scribing data and their processing.

3.4. Knowledge extraction process

To extract knowledge from source code, we de-
signed a method divided into five main steps: data col-
lection, data preprocessing, entity labeling, formal lan-
guage translation, and expert validation.

3.4.1. Data collection
Data collection step consists of the extraction of a

dataset necessary for the next steps. In Java files, all
class names, class attributes, class methods, statements
containing the keywords "if", "else", "switch" are re-
tained. Instructions for importing third-party libraries
are ignored. To do this, we propose to define a regular
expression allowing to extract the data that we need.
This regular expression considers a source file as a sen-
tence with a beginning and an end. The beginning of
the sentence is marked with a set of alphabetic charac-
ters and the end is marked with an end character. Once
the sentences are identified, they are preprocessed to
identify relevant data.

3.4.2. Data preprocessing
The purpose of data preprocessing is to put data in

a form compatible with the tools to be used in the next
steps. During this phase, potentially relevant knowl-
edge will be identified and retrieved, some entities will
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be re-encoded. The problem of extracting knowledge
from the source code has been reduced to the prob-
lem of syntactic labeling. This is to determine the syn-
tactic label of the words of a text [32]. In our case, it
will be a matter of assigning a label to all the words
of the source code and extracting the words marked as
target word. This problem can be solved using HMM
[31, 32]. In the following paragraphs, we will first
present the HMM structure, then show how we learn
the HMM on a dataset and finally, how to use it to ex-
tract the knowledge.

HMMs structure definition To define the structure
of the HMMs, we manually studied the organization
of the source code of Java language. Generally, data
structures, attributes, conditions are surrounded by one
or more specific words. Some of these words are pre-
defined in advance in the programming language. To
label the source code, we have defined four labels, cor-
responding to four hidden states of the HMM:

– PRE: Corresponding to the preamble of the
knowledge. This preamble is usually defined in
advance;

– TARGET: The target, (i.e. the knowledge sought)
may be preceded by one or more words belong-
ing to the PRE set. The knowledge we are look-
ing for are the names of "classes", the attributes,
the classes methods, some relationships between
"class". They are usually preceded by a metadata
which describes them. For example, the metadata
"class" allows to identify a class;

– POST: Any information that follows the knowl-
edge sought. In some cases, POST is a punctua-
tion character or a braces;

– OTHER: Any other word in the vocabulary
that neither precedes nor follows the knowledge
sought.

An example of HMM annotated with labels is given
in figure 2. Concepts, properties, axioms, and rules
are usually arranged differently in the source code.
We propose to define two HMMs allowing to identify
them: one to identify concepts, properties, axioms and
another to identify rules.

Learning Model on Data There are several tech-
niques to determine the parameters of a HMM: Sta-
tistical learning on data, Forward-Backward, Baum-
Welch, Expectation-maximization algorithms [30, 32].
In this article, we used statistical learning on existing
data. Then, once the model structure has been defined,
the parameters of the transition and emission models
are calculated from the training data. To do this, we as-

sume that we have access to T source code files labeled
ft knowing that ft is not just a sequence of words, but
a sequence of words pairs with the word and its label
as presented by the figure 2. To train the model, we
assume that we can define the order in which the dif-
ferent words are entered by the programmer. We as-
sume that before entering the first word, the program-
mer reflects on the label of that word and as a func-
tion of it, defines the label of the next word and so on.
For example, before entering the word public, the pro-
grammer knows that its label is PRE and that the label
of the next word is T ARGET . Thus, the current word
depends only on the current label, the following label
depends on the previous label, and so on. The process
continues until the end of the file. We model this situ-
ation by the equation 4.

ft = [(wt
1, e

t
1), ..., (w

t
d, e

t
d)],

words( ft) = [wt
t, ...,w

t
d],

labels( ft) = [et
1, ..., e

t
d].

(4)

Where wi and ei are words and labels of fi files re-
spectively. In practice, wi are words that can label
the classes, attributes, relations and methods, or set of
words that make up rules. When they are classes, they
are composed of attributes and semantic relations with
other classes. They are then labeled by ei and, repre-
sent the hidden states of the HMM.

From the training data, we can extract statistics for
each HMM on:

– The first label: P(q1) given by the formula 5. A
priori probability that the first label is equal to ′a′

is the number of times the first label in the source
code is the word ′a′ divided by the number of
source code files.

P(Q1 = a) =
∑

t f req(et
1 = a, ft)

T
(5)

– The relation between a word and its label P(S k |
qk) (formula 6). Conditional probability that the
kth word is ′w′, knowing that the label is ′b′ cor-
respond to the number of times I saw the word
′w′ associated with the label ′b′ in the source code
file ft normalized with the fact that I saw the la-
bel ′b′ associated with any other word in ft source
code. For example, "Patient" can be a concept, an
attribute, but cannot be a rule.
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Table 1
The initial vector: probability to have a state as the first label

f(PRE) f(TARGET) f(POST) f(OTHER)

P(S k = w | qk = b) =

α+
∑

t f req((w, b), ft)
β+

∑
t f req((′∗, b), ft)

(6)

To avoid zero probabilities for observations that
do not occur in the training data, we added a
smoothing terms (α and β).

– The relation between the adjacent syntactic label
P(qk | qk+1) (formula 7). The probability that
qk+1 is equal to label ′a′ knowing that qk is equal
to label ′b′ (previous hidden state) is the number
of times ′a′ follows ′b′ in the source code of the
training data divided by the number of times that
′b′ is followed by any other label.

P(qk+1 = a | qk = b) =

α+
∑

t f req(b, a), label( ft)
β+

∑
t f req(b, ∗′), label( ft)

(7)

To avoid zero probabilities for transitions that do not
occur in the training data, we added a smoothing terms
(α and β).

Let us consider the HMM of figure 2. Then, train-
ing corpus to identify concepts and attributes would
be: [("public", PRE), ("class", TARGET), ("Patient",
TARGET), ("extends", TARGET), ("ImogEntityImpl",
TARGET), ("{", OTHER), (...), ("int", TARGET),
("age", TARGET), ...]. The table 2 presents the calcu-
lation of the frequencies that a state follows another
state, table 3 presents the calculation of the frequencies
that a state emits an observation and table 1 present
the initial vector, which is the probability that the first
label is PRE, TARGET, POST, and OTHER.

Knowledge extraction Once the model is defined,
we can apply it to any Java source code. It will be to
find from the files f1, ..., fn, a sequence of states q1, ...,
qn that is plausible. For this, the formula 3 will be used
to determine the most plausible string sequence. From
this string, the hidden states will be identified and
the targets (labeled T ARGET ) will be extracted. The
Viterbi algorithm provides an efficient way of finding
the most plausible sequence of hidden states [30–32].
Any source code can then be submitted to the HMM
trained and a table similar to 3 containing the probabil-
ity for the hidden states to emit a word from the source
code is built.

Recoding variables Programmers usually use ex-
pressions made up of words from a specific lexicon,
sometimes encoded with "ad hoc" expressions, requir-
ing specific processing to assign a new name or a label
understandable by human before using. These words
are divided into words or groups of words according to
the naming conventions of the programming language.
For example, we can have "PatientTuberculeux" →
"Patient tuberculeux", "agePatient" → "Age Patient",
"listeExamens"→ "liste examens", etc. Therefore, we
separate different names extracted to find their real
sense in human understandable language.

3.4.3. Entities labelling
The extraction of relevant terms has yielded data

and metadata. These data and metadata will allow to
identify to which ontology components they may be-
long to. For example, the code: "class Patient extends
Person int age", submitted to a trained HMM to iden-
tify concepts and relations will identify three meta-
data ("class", "extends" and "int") that will then be
used to identify two concepts (Patient and Person),
one attribute of type integer and a hierarchical relation
between "Patient" and "Person". From the extracted
knowledge, two candidate terms to be concepts are re-
lated if one is declared in the structure of the other. One
may identify three types of relations:

– Association (ObjectProperty): If two classes ’A’
and ’B’ are candidate terms to be concepts and
class ’B’ is declared as attribute of class ’A’, then
classes ’A’ and ’B’ are related. Class ’A’ is the
domain, class ’B’ the range and the cardinality of
the association will be used to express relations of
higher arity.

– Taxonomy (subClassOf): If two classes ’A’ and
’B’ are candidates terms to be concepts and class
’B’ extends the class ’A’ (in Java, the keyword
"extends" is used), then, one can define a taxo-
nomic relation between the classes ’B’ and ’A’.

– Attribute (DatatypeProperty): If a class ’A’ is a
candidate term to be a concept and contains the
attributes ’a’ and ’b’ of basic data types (inte-
gers, string, boolean, etc.), then, ’a’ and ’b’ are
attributes of class ’A’.

3.4.4. Translation in a formal language
Once all relevant data is identified in the previous

phase, they are automatically translated in a machine
readable language. We use OWL language to represent
concepts, properties and axioms and SWRL for rules.
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Table 2
Example of a table presenting the frequency to move from one state to another

States PRE TARGET POST OTHER

PRE f(PRE,PRE) f(PRE,TARGET) f(PRE,POST) f(PRE,OTHER)
TARGET f(TARGET,PRE) f(TARGET,TARGET) f(TARGET,POST) f(TARGET,OTHER)
POST f(POST,PRE) f(POST,TARGET) f(POST,POST) f(POST,OTHER)
OTHER f(OTHER,PRE) f(OTHER,TARGET) f(OTHER,POST) f(OTHER,OTHER)

Table 3
Example of a table presenting the frequency for different states to emit an observation

package pac ; public class patient ...

PRE f(PRE,package) f(PRE, pac) f(PRE,;) f(PRE,public) f(PRE,class) f(PRE,patient) ...
TARGET f(TARGET,package) f(TARGET, pac) f(TARGET,;) f(TARGET,class) f(TARGET,patient) ...
POST f(POST,package) f(POST, pac) f(POST,;) f(POST,public) f(POST,class) f(POST,patient) ...
OTHER f(OTHER,package) f(OTHER, pac) f(OTHER,;) f(OTHER,public) f(OTHER,class) f(OTHER,patient) ...

3.4.5. Validation by an expert
The method we have just presented does not aim

at extracting a perfect knowledge model, but to help
knowledge engineers to identify the knowledge arti-
facts from the source code. This help is particularly
useful in our case because software has knowledge dis-
tributed in several files making millions of lines of
source code. Thus, validation will make it possible to
select the most important knowledge from the candi-
dates and present them in a way that they could be eas-
ily exploitable by domain experts.

4. Experiment, results and evaluation

In this section, we will present the experiments con-
ducted on EPICAM platform and GeoServer devel-
oped in Java. All our algorithms have been coded in
Java5 and, during the experiments, we extracted the
candidate terms to be concepts, properties, axioms and
rules. In the following paragraphs, we will first present
EPICAM platform, the experiments of the approach
on EPICAM source code, the results and evaluation of
knowledge extracted from the source code of this plat-
form and, finally, we will present the experiments con-
ducted on GeoServer.

4.1. EPICAM platform

The EPICAM platform6,7 is an Open Source plat-
form for epidemiological surveillance of tuberculo-

5The whole source code is available on https://github.com/
jiofidelus/knowExtractionSC

6www.epicam.cm
7http://github.com/UMMISCO/EPICAM

sis based on Imogene editor8. It was developed us-
ing the MDA (Model Driven Architecture) approach
[15]. Thus, a meta-model was used to model tuberculo-
sis surveillance. The applications have been generated,
additional classes and some business constraints (form
control, data access control) have been integrated man-
ually in the source code. EPICAM helps health per-
sonnels to collect data in hospitals and these data are
recorded in a postgresQL database. Once the data is in
the database server, different users of different levels
(Hospitals, Districts, Regions and Central) and differ-
ent profiles (health professionals, district, regional and
central officials) can view them (patient data, statis-
tics) according to their rights. There is usually a need
to inter-operate this information with other informa-
tion to explain some phenomenon. For example, en-
vironmental data in conjunction with epidemiological
data can be used to identify the source of an epidemic.
In addition, adding new information into source code
must be done with updating the conceptual model. For
this to happen, we must put in place an ontology that
models the domain knowledge and allows knowledge
in conceptual model and source code to be coherent,
different data sources to be integrated and the various
stakeholders to communicate. Though EPICAM is de-
veloped in JAVA, we will exploit the structure of the
JAVA source code [39] to extract knowledge in order
to build this ontology.

8https://github.com/medes-imps/imogene/wiki

https://github.com/jiofidelus/knowExtractionSC
https://github.com/jiofidelus/knowExtractionSC
www.epicam.cm
http://github.com/UMMISCO/EPICAM
https://github.com/medes-imps/imogene/wiki
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4.2. Knowledge extraction from EPICAM source code

To extract the knowledge from EPICAM source
code, we simply proceed step by step the method we
presented in section 3.

4.2.1. Data collection
The source files of EPICAM platform are composed

of statements, importing libraries and comments. Data
collection involves removing the importing libraries
and comments. To do this, we have defined a regular
expression to identify them. Once identified, we wrote
the code (see the listing 1) to delete them.

Listing 1: A part of source code for data collection
...
import java.util.regex.Pattern;
...
//Take a file and remove importing libraries and comments
private static String exp = "^import|^/\\*\\*|.\\*/|^\\s\\*

|^\\s//";
public static String getDataFromFile(String fileName){
String data = "";
pattern = Pattern.compile(exp);
FileReader fr;
BufferedReader br;
try {
fr = new FileReader(fileName);
br = new BufferedReader(fr);
for(String line; (line=br.readLine())!=null;){
matcher = pattern.matcher(line);
if(!matcher.find()){

data+=line;
}

}
} catch (IOException e) {...}

4.2.2. Data preprocessing
Data preprocessing consists of extracting the ele-

ments likely to be relevant from the source code and
recoding them. To do this, the HMMs are defined man-
ually, trained automatically on data, used to extract the
knowledge, and the knowledge extracted is recoded if
necessary. To extract knowledge from EPICAM, we
distinguished two HMMs: a HMM for concepts, prop-
erties, and axioms identification and a HMM for rules
identification.

1. Definition of the HMM structure for concepts,
properties and axioms The HMM used to iden-
tify concepts, properties and axioms is defined
by:

(a) PRE = {public, private, protected, static,
f inal}, the set of words that precedes TAR-
GET;

(b) T ARGET = {package, class, inter f ace,
extends, implements, abstract, enum,wi},
∀i,wi−1 ∈ PRE || wi−2 ∈ PRE ∧ wi−1 ∈
PRE, the set of all words that we are seeking;

(c) OT HER = {”; ”, ””, ””,wi},wi /∈ PRE ∧
wi /∈ T ARGET , the set of all other words.

Each HMM state emitted a term correspond-
ing to a word from the source code. We have
seen that the observation emitted by the PRE set
can be enumerated. However, the observation of
T ARGET and OT HER sets cannot be enumer-
ated because they depend on the programmer.
Then, we have designated by data all the obser-
vation emitted by by T ARGET and by other all
the observation emitted by OT HER. We thus ob-
tained the HMM presented by the initial vector
(table 4) the transition model (table 5), and the
observation model (table 6).

2. Defining the HMM structure for rules Rules
can be contained in conditions. Then, we will
exploit the structure of source code to extract
the rules. For example, the portion of code (if
(agePatient> 21) {Patient = Adult}) is a rule de-
termining whether a patient is an adult or not. It
must therefore be extracted.
The HMM to identify the rules is composed of:

(a) PRE = {”}”, ”; ”, ”{”}, the set of words
that precedes one or many TARGET;

(b) T ARGET = {i f , else, switch,wi} | ∃k, r ∈
N | wi−k ∈ PRE ∧ wi + r ∈ POS T : the
set of all words that follow PRE and precedes
POST;

(c) POS T = {”}”}, the end of the condition;
(d) OT HER = {wi} | wi /∈ PRE,T ARGET,

POS T : the set of all other words.

Unlike the HMM of concepts, we can identify
the beginning and the end of a condition rep-
resented here by the sets PRE and POS T re-
spectively. Note that all the observation emitted
by T ARGET and OT HER sets cannot be fully
enumerated. Then, we have designated by data
all the observation emitted by T ARGET , and by
other all the observation emitted by OT HER. We
then obtained the HMM presented by the initial
vector (table 7), the transition model (table 8) and
the observation model (table 9).

3. Training the HMMs There are several meth-
ods to determine the parameters of a HMM:
statistical learning on data, Baum-Welch algo-
rithm, Expectation-maximization algorithm, etc.
[30, 32]. In the training step, since it is possi-
ble to retrieve some source code on Internet, we
automatically assigned parameters to the HMMs
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(using statistical learning on data) by defining
an algorithm which, based on some source code
downloaded on Internet, constructs the transi-
tion model between hidden states and observa-
tion model between hidden states and observa-
tion states. The listing 2 is a part of the source
code that permit to calculate the PRE vector
which shows the probability to go from the PRE
state to another state, and the listing 3 presents
a part of the source code that permit to calcu-
late the probability that the PRE state emit some
observation states. A set of JAVA source codes
(composed of 59 files and 2663 statements) were
downloaded from github9 and from these source
codes, we trained the HMMs. Tables 4, 5, 6, 7, 8,
9 present the models obtained after the training
step.

Listing 2: A part of source code that permit to
calculate the PRE transition vector: defined the
probability to move from the PRE state to the
others states
public static void preTransition(List<String>

listSouceCode, HMMConcept hmmConcept) {
//Initialization by the smothing term
double nbPre = 4, double nbPrePre = 1, double

nbPreTarget = 1, double nbPreOther = 1;
List<String> PRE = hmmConcept.getPreObservation();
String[] tmp;
for (String doc : listSouceCode) {
tmp=doc.split(" ");
for (int i = 0; i < tmp.length; i++) {
//Number of PRE in the document
if(Helper.belongs2Array(tmp[i], PRE)) {
nbPre++;
}

//Number of times that a PRE is followed by another
PRE

if(i<tmp.length &&
Helper.belongs2Array(tmp[i], PRE) &&
Helper.belongs2Array(tmp[i+1], PRE)) {
nbPrePre++;

}
//Number of times that a PRE is followed by a TARGET
if(i<tmp.length &&
Helper.belongs2Array(tmp[i], PRE) &&
!Helper.belongs2Array(tmp[i+1], PRE)) {
nbPreTarget++;
}

}
}
Transition prePre = hmmConcept.getPrePreTransition();
Transition preTarget =

hmmConcept.getPreTargetTransition();
Transition preOther =

hmmConcept.getPreOtherTransition();
prePre.setTransitionValue(nbPrePre/nbPre);
preTarget.setTransitionValue(nbPreTarget/nbPre);
preOther.setTransitionValue(nbPreOther/nbPre);
hmmConcept.setPrePreTransition(prePre);
hmmConcept.setPreTargetTransition(preTarget);
hmmConcept.setPreOtherTransition(preOther);

}

9https://github.com/mafudge/LearnJava

Listing 3: A part of source code that permit to
calculate the PRE observation vector: defined the
probability to emit observations

public static double[] getObservPre(List<String>
listDocs){

//Initialization by the smothing term
double nbPublic=1, nbPrivate=1, nbProtected=1,

nbStatic=1, nbFinal=1, nbPre=1;
double publicPre=1, privatePre=1, protectedPre=1,

staticPre=1, finalPre=1;
String[] tmp;
for (String doc : listDocs) {

tmp = helper.removeSpaces(doc.split(" "));
for (int i = 0; i < tmp.length; i++) {
//Counting the number of times the PRE state emit

the observation: public, private, etc.
if(tmp[i].trim().equals("public")) nbPublic++;
if(tmp[i].trim().equals("private")) nbPrivate++;
if(tmp[i].trim().equals("protected"))

nbProtected++;
if(tmp[i].trim().equals("static")) nbStatic++;
if(tmp[i].trim().equals("final")) nbFinal++;
//The number of times we have PRE in a document
if(helper.belongs2Array(tmp[i], PRE))

nbPre++;
}

}
double[] preObservMod = {nbPublic/nbPre,

nbPrivate/nbPre, nbProtected/nbPre,
nbStatic/nbPre, nbFinal/nbPre};

return preObservMod;
}

For the initial probability, we consider that all the
times, after the data collection step, we have a
TARGET state that is the package declaration at
the beginning of all the files.

Table 4
The initial vector for HMM concepts, properties and axioms

PRE TARGET POST OTHER

0 1 0 0

Table 5
Transition model for HMM concepts, properties and axioms

PRE TARGET OTHER

PRE 0.1598 0.8376 0.0026
TARGET 0.0013 0.7561 0.2426
OTHER 0.0667 0.0008 0.9325

https://github.com/mafudge/LearnJava
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Table 6
Observation model for HMM concepts, properties and axioms

public private protected static final

PRE 0.6692 0.1589 0.0026 0.1026 0.0667
TARGET 0 0 0 0 0
OTHER 0 0 0 0 0

; { } other package

PRE 0 0 0 0 0
TARGET 0 0 0 0 0.0684
OTHER 0.2716 0.1332 0.1186 0.4766 0

class extends interface implements

PRE 0 0 0 0
TARGET 0.0112 0.0076 0.0012 0.0087
OTHER 0 0 0 0

abstract enum data

PRE 0 0 0
TARGET 0.0012 0.0025 0.8992
OTHER 0 0 0

Table 7
The initial vector for HMM rule

PRE TARGET POST OTHER

0 0 0 1

Table 8
Transition model for HMM rule

PRE TARGET POST OTHER

PRE 0.0667 0.7999 0.0667 0.0667
TARGET 0.0010 0.9321 0.0659 0.0010
POST 0.0172 0.0172 0.0172 0.9484
OTHER 0.0072 0.0001 0.0001 0.9926

Table 9
Observation model for HMM rule

{ } ; if else

PRE 0.8462 0.0769 0.0769 0 0
TARGET 0 0 0 0.0185 0.0031
POST 0 1 0 0 0
OTHER 0 0 0 0 0

switch data other

PRE 0 0 0
TARGET 0.0010 0.9774 0
POST 0 0 0
OTHER 0 0 1

4. Knowledge extraction Once the HMMs are
built, we can apply them to the source code of

any Java applications in order to extract knowl-
edge. Then, we will use them for knowledge ex-
traction from the source code of EPICAM plat-
form by calculating-giving this source code the
most likely state sequence (formula 3) that pro-
duce it. To do this, we have implemented the
Viterbi algorithm [30–32] in Java. In fact, we
have exploited the structure of the HMM in the
context of dynamic programming. It consists to
break down the calculations into intermediate
calculations which we structured in a table (see
table 10). Every element of the table is being
calculated using the previous ones. The different
steps are as follow:

– Step 1: The definition of the elements of the
table that we called α(i, t):
α(i, t) = P(W1:t = w1:t,Q1:t−1 = q1:t−1,Qt =
i). Where W1:t is the set of observations from
time 1 to time t; Q1:t−1 the set of optimal val-
ues stored in the table from time 1 to time t−1.

– Step 2: Decomposition into intermediate cal-
culations:
α(i, t + 1) = Max jP(W1:t+1 = w1:t+1,Q1:t =
q1:t,Qt = j,Qt+1 = i)
= Max jP(Wt+1 = wt+1|Qt+1 = i)P(Qt+1 =
i|Qt = j)P(W1:t = w1:t,Qt−1 = Qt−1,Qt =
j)
= P(Wt+1 = wt+1|Qt+1 = i)Max jP(Qt+1 =
i|Qt = j)α( j, t)

– Step 3: Fill the table given the HMM and the
source code as input:

∗ Calculate the elements of the first column
(composed of three frames) of the table:
α(i, 1) = P(W1 = package|Q1 = i)P(Q1 =
i)
α(PRE, 1) = P(W1 = package|Q1 =
PRE)P(Q1 = PRE) = 0
α(T ARGET, 1) = P(W1 = package|Q1 =
T ARGET )P(Q1 = T ARGET ) = 1
α(OT HER, 1) = P(W1 = package|Q1 =
OT HER)P(Q1 = OT HER) = 0

∗ Calculate the elements of others frames
given the elements of the previous frames.
For example, for the fourth column, calcu-
late:
α(i, 4) = P(W4 = public|Q4 = i)Max j

P(Q4 = i|Q3 = j)α( j, 4)
α(PRE, 4) = P(W4 = public|Q4 =
PRE)Max jP(Q4 = i|Q3 = j)α( j, 3)
α(T ARGET, 4) = P(W4 = public|Q4 =
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i)Max jP(Q4 = i|Q3 = j)α( j, 3)
α(OT HER, 4) = P(W4 = public|Q4 =
i)Max jP(Q4 = i|Q3 = j)α( j, 4)

We obtain the dynamic programming table given
by the table 10. Once the table is built, we find
the Viterbi path by getting the frame that has
the most greatest probability in the last column
and given this frame, find all the frames that
was used to build it. Listing 4 presents a part of
source code used to build the dynamic program-
ming table and the listing 5 presents a part of
the source code used to extract the most likely
states sequence based on the source code. Once
the Viterbi path is identified, all the elements la-
beled TARGET are extracted.

Listing 4: The α table
public static List<Column>

fillAlphaStartTable4Concepts (HMMConcept
hmmConcept, String sourceFile) {

List<Column> alphaTable = new ArrayList<>();
String[]tmp=sourceFile.split(" ");

//Table initialization
Column column = new Column();
//The creation of the frames of the first column.

To avoid infinitesimal numbers, we multiply
by 1.0E300 at the beginning of the algorithm

Frame framePRE0 = new Frame(tmp[0], "PRE", 0);
Frame frameTARGET0 = new Frame(tmp[0], "TARGET",

1.0E300);
Frame frameOTHER0 = new Frame(tmp[0], "OTHER", 0);
//Add the first frames to the column
column.setPreFrame(framePRE0);
column.setTargetFrame(frameTARGET0);
column.setOtherFrame(frameOTHER0);
//Add the first column to the table
alphaTable.add(column);

...
for (int i = 1; i <tmp.length; i++) {
...
//Get the last element of the list
column = alphaTable.get(alphaTable.size()-1);
//Return the column of the last index with

the state label PRE. e.g. alpha(PRE,
2), alpha(TARGET, 2)

framePRE = column.getPreFrame();
frameTARGET = column.getTargetFrame();
frameOTHER = column.getOtherFrame();
//Calculate the PRE state
frameUsed = getMaxFramePre (framePRE,

frameTARGET, frameOTHER,
prePreTransitionValue,
targetPreTransitionValue,
otherPreTransitonValue);

//The value of the probability that is
calculated

calculPre = Math.max (Math.max
(prePreTransitionValue *
framePRE.getProbabilityValue(),
targetPreTransitionValue *
frameTARGET.getProbabilityValue()),
otherPreTransitonValue *
frameOTHER.getProbabilityValue());

//Get the observation probability
if(Helper.belongs2Array(tmp[i],

hmmConcept.getPreObservation())) {
preEmission = preEmissionProbability(tmp[i],

hmmConcept);
}

//Create the new frame for PRE state and add
to the colum (argMax \multiply
observation probability)

frameTMP = new Frame (tmp[i], "PRE",
calculPre * preEmission, frameUsed);

columnTMP.setPreFrame (frameTMP);
//Calculation for the TARGET and OTHER state
...
alphaTable.add(columnTMP);
}
return alphaTable;

}

Listing 5: Extraction of words labelled TARGET

...
public static String knowledgeExtraction(List<Column>

alphaTable) {
...
//Get the last colum of the alphaTable

Column lasColumn =
alphaTable.get(alphaTable.size()-1);

//Get the last frame which has the greatest
probability

frame = mostGreatestFrameProba(lasColumn);
//Get the frames that permit to have the above frame

List<Frame> mostLikelyFrames = new ArrayList<>();
mostLikelyFrames.add(frame);

//Browse the frame list to get the most likely frame
for (int i = alphaTableSize; i > 0; i--) {

frame = frame.getFrameBuilder();
mostLikelyFrames.add(frame);

}
//Extract the knowledge from the above frame which

hidden state is TARGET
for (int i = mostLikelyFrames.size()-1; i>=0; i--) {

if(mostLikelyFrames.get(i).getStateLabel().equals
("TARGET")&&

StringUtils.indexOfAny
(mostLikelyFrames.get(i).getObservedLabel(),
falsePositive)==-1) {

nbTarget++;
label =

mostLikelyFrames.get(i).getObservedLabel();
mostLikelyExplanation+=label+"\n";

}
if(mostLikelyFrames.get(i).getStateLabel().equals

("TARGET")&&
StringUtils.indexOfAny

(mostLikelyFrames.get(i).getObservedLabel(),
falsePositive)!=-1) nbFalsePositive++;

}
return mostLikelyExplanation;

}

The extraction of candidate terms from the above
mentioned models gave a set of terms (figures 3
and 4), but also false positives (table 11 presents
the statistics). The false positives consist of the
set of terms that belongs to the PRE, POST or
OTHER sets that normally should not be ex-
tracted as observations of TARGET. We have
identified and deleted them automatically during
the term extraction (see listing 4.2). It can be
noted that the data extracted also contains meta-
data (e.g. "class", "if" or "boolean") which will
be very useful in the entity identification phase.
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Table 10
The dynamic programming table (α table) built using EPICAM source code

package org.epicam ; public ... }
PRE 0 α(PRE, 2) α(PRE, 3) α(PRE, 4) ... α(PRE, t)

TARGET 1 α(T ARGET, 2) α(T ARGET, 3) α(T ARGET, 4) ... α(T ARGET, t)

OTHER 0 α(OT HER, 2) α(OT HER, 3) α(OT HER, 4) ... α(OT HER, t)

if (AccessManager.canDirectAccessPatient()&&AccessManager.canReadPatient())
{Commandcommand=newCommand(){publicvoidexecute()
{LocalSession.get().setSearchCriterions(null,null);History.newItem(TokenHelper.TK_LIST+"/patient/",tr
ue);

If(AccessManager.canDirectAccessCasTuberculose()&&AccessManager.canReadCasTuberculose())
{Commandcommand=newCommand(){publicvoidexecute()
{LocalSession.get().setSearchCriterions(null,null);History.newItem(TokenHelper.TK_LIST+"/castubercu
lose/",true);

if(AccessManager.canDirectAccessExamenATB()&&AccessManager.canReadExamenATB())
{Commandcommand=newCommand(){publicvoidexecute()
{LocalSession.get().setSearchCriterions(null,null);History.newItem(TokenHelper.TK_LIST+"/examenatb
/",true);

if(AccessManager.canCreatePatient()&&AccessManager.canEditPatient())patient=newImogMultiRelati
onBox<PatientProxy>(patientDataProvider,EpicamRenderer.get(),null);
else patient = 
newImogMultiRelationBox<PatientProxy>(false,patientDataProvider,EpicamRenderer.get(),null);

if(poidsMin.getValueWithoutParseException()==null&&poidsMin.isValid())delegate.recordError(BaseNL
S.messages().error_required(),null,"poidsMin");//poidsMinshallbesuperiororequalto'0'

switch(typeCAs){case0:nouveauCas+
+;LOGGER.debug("xxxxxxxxxNombredenouveauxcas:"+nouveauCas);break;case1:repriseTrait+
+;LOGGER.debug("xxxxxxxxxNombrederetraitementcas:"+repriseTrait);break;case2:echecs+
+;break;case3:rechuttes++;break;default:break;

Fig. 3. Screen capture of some terms extracted for rules identification

5. Recoding terms and rules To recode the terms
extracted, we used JAVA naming convention and
ontoEPICAM (an ontology of epidemiological
surveillance developed with the help of domain
expert - see paragraph 4.4.1 for more details).
All the terms was browsed, comparing them to
the terms of ontoEPICAM. When we noticed a
term close to a term of ontoEPICAM, we ver-
ify if by removing the keywords of the languages
we will have the same name. If yes, the key-
words are removed and the term is retained. For
example, if we consider the term CasTubercu-
loseEditorWorkflow that was extracted from the
source code, then, CasTuberculose is a term that
we have in ontoEPICAM, the terms Editor and
Workflow are keywords of Google Web Toolkit -
the technology used to built the EPICAM plat-
form. Then, the terms Editor and Workflow are
removed and the term CasTuberculose is re-
tained. The terms that were not found in on-
toEPICAM (e.g., the term AccessPolicyFactory)
were separated using JAVA naming convention
(in our case, we obtain AccessPolicy Factory)
and the keyword(s) were removed. The term ob-
tained was submitted to domain expert for vali-
dation. Rules have also been validated by domain
experts and many of them were improved and re-

injected into the source code. After the recoding,
we move to the next step which is the translation
into formal language.

4.2.3. Extraction of entities and translation into a
formal language

After the data preprocessing phase, we obtained
files containing only the metadata (e.g "package",
"class", "extends", "if", "switch") and data (e.g "pa-
tientManagement.Patient", "Patient" or "serology").
A simple algorithm makes it possible to browse
these data in order to identify the knowledge that
may be useful. Metadata allowed the identification
of the candidates terms as concepts, properties and
axioms. For example, if we have extracted "package
minHealth.Region.District.hospitals.patientRecord ...
class Patient extends Person ... int age ... List<Exam>
listExam", then, a simple algorithm can be used to
identify every element:

– "package minHealth.Region.District.hospitals.
patientRecord:" This is used to identify the class
hierarchy;

– "class Patient extends Person": This expression
means that "Patient" and "Person" are candidate
terms that will become concepts and there is a
hierarchical relation between concepts labeled as
"Patient" and "Person";

– "int age; List <Exam> listExam": This expres-
sion means that "age" and "listExam" are proper-
ties of the concept "Patient";

– "List<Exam> listExamen": This allows to de-
fine an axiom because it can be translated by: "a
patient has one or more exams".

After the identification of entities, we wrote a code that
automatically translated them to an OWL ontology.
The listing 6 presents a method which transform a term
to an OWL class, and listing 7 presents a method which
based on two terms, creates an OWL object property
domain.

Listing 6: Method which transform a term to an OWL
class
public String genClassDeclarations(final String entity){
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Fig. 4. Screen capture of some terms extracted for concepts, properties and axioms identification

String class2Add = "";
class2Add = (class2Add + "\n<Declaration>");
class2Add = (((((class2Add + "\n\t <Class IRI=") + "\"#")

+ entity) + "\"") + "/>");
class2Add = (class2Add + "\n</Declaration>");
return class2Add;

}

Listing 7: Method which create an object property
from two terms
//Generate all object properties domain
public String genObjectPropertiesDomain(String

relationField, String entity){
String objectProperty="";
objectProperty = objectProperty +

"\n<ObjectPropertyDomain>";
objectProperty = objectProperty+"\n\t <ObjectProperty

IRI="+"\"#"+relationField+"\"/>";
objectProperty = objectProperty+"\n\t <Class

IRI="+"\"#"+entity+"\"/>";
objectProperty = objectProperty +

"\n</ObjectPropertyDomain>";
return objectProperty;

}

Rules were also translated into formal language (we
have used SWRL language). An example of rule spec-
ifying the rights of a doctor on patient data is given by:

doctorsRule = "Personnel (?pers) ∧ personnel_login
(?pers, login) ∧ personnel_passwd (?pers, passwd) ∧
Patient (?p) ∧ RendezVous (?rdv) ∧ hasRDV (?rdv,
?p) ∧ patient_nom (?p, ?nom) ∧ patient_age (?p, ?age)
∧ patient_sexe (?p, ?sexe) ∧ patient_telephoneUn (?p,
?telephone) ∧ rendezVous_dat eRendezVous (?rdv,
?datardv) ∧ rendezVous_honore (?rdv, ?honore) ∧ ren-
dezVous_honore (?rdv, Non) → sqwrl:select (?nom,
?age, ?sexe, ?telephone, ?datardv, ?honore)";

4.3. Results

From EPICAM source code, we have extracted
60363 candidates terms/group of terms to be concepts,
properties and axioms (the group of terms for ax-
ioms identification describe the cardinalities between
classes). From these terms, we found 4796 false posi-
tives (precision=92.05%). We also found that the num-
ber of TARGET in the source code is 76934-the num-
ber of false negative is 21367 (recall=72.22%). Table
11 presents the statistics of candidates terms/group of
terms that were extracted. We have identified automat-
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ically the false positives in the terms extracted and we
deleted them. After the deletion, we obtain different
types of terms/group of terms:

– Irrelevant terms/group of terms: These are util-
ities classes and temporary variables. Utilities
classes are classes that the programmer defines
to perform certain operations (these classes usu-
ally contain constants and methods). The names
of these classes are usually not related to the do-
main. Temporary variables (e.g., the variable used
in a loop) are used temporary in the source code
and are not related to the domain.

– Relevant terms/group of terms: These are can-
didates terms found. These terms are composed
of synonyms (terms of identical meaning) and re-
dundancies (terms that come up several times). A
simple algorithm enable to remove redundancies
terms automatically.

We have also extracted 18816 candidates condi-
tions to be rules and 1182 false positives (preci-
sion=94.09%). The false positives were mainly the
terms labeled OTHER that were extracted. We have
also counted the conditions that the EPICAM source
code normally contains (using a regular expression)
and we found that it contains 21961 conditions (re-
call=85.68%). From these conditions, we found:

– Irrelevant conditions: These are conditions that
are not really important. For example, testing
whether a temporary variable is positive or is
equal to certain value. These conditions were the
most numerous;

– Relevant conditions: Conditions corresponding
to a business rule (e.g., testing if a user has the
right to access to certain data).

Once translated into OWL and SWRL, the knowl-
edge obtained was opened in Protege to facilitate their
visualization and evaluation by domain experts.

Table 11
Statistics on terms/group of terms extracted

Candidates terms Relevant Irrelevant
Concepts 1840 (72.87%) 685 (27.13%)

Properties 38355 (81.44%) 38741 (18.59%)

Axioms 3397 (83.22%) 685 (16.78%)

Rules 1484 (07,89%) 17332 (92.11%)

4.4. Evaluation

The evaluation permit to judge if the knowledge ex-
tracted is good or not. Because these knowledge can
be used to build or enrich a domain ontology, we will
use the ontology evaluation techniques to evaluate it.
Therefore, we have defined a gold standard for the
structural and the functional evaluation (see section
2.4).

4.4.1. The gold standard
Before the proposition of the HMM-based ap-

proach for knowledge extraction from source code,
we have built a basic ontology for the epidemiologi-
cal surveillance of tuberculosis (ontoEPICAM) from
the database schema and meta-model of the EPICAM
platform. Figure 5 presents a screen capture of some
concepts and properties. We have in this ontology 97
concepts, 159 properties and 68 axioms. This ontology
has been validated by domain experts. In the next para-
graphs, we will consider this ontology as the gold stan-
dard for the evaluation of the relevance of the knowl-
edge extracted by our HMMs.

4.4.2. Functional evaluation
Functional evaluation was done at two levels:

1. Concepts, properties and axioms evaluation:
The candidates terms were compared to the gold
standard and we found that all extracted terms
were in the gold standard. We also found that
16,18%, 7,43%, 13,94% of all candidates ex-
tracted to be concepts, properties, and axioms re-
spectively were new terms and were validated by
domain experts.

2. Rules evaluation: Rules extracted were vali-
dated by domain experts. Some of them, particu-
larly those concerning user access to patient data
have been better improved by domain experts
during the validation. Then, these improvements
were re-injected into the source code.

At the end of this evaluation, we found that from
source code, we can recover all the terms contained in
the gold standard. Moreover, we have found new con-
cepts, properties, axioms and rules. Thus, we can con-
clude that source code may contain more knowledge
than the meta-model and database and must be consid-
ered when building or enriching a domain ontology.

4.4.3. Structural evaluation
Our technique allows us to extract terms composed

of metadata and data. In the structural evaluation, the
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Fig. 5. ontoEPICAM: Terms extracted from database and meta-model and validated by domain experts

quantity and the quality of the metadata were veri-
fied by comparing the candidate terms-concepts, prop-
erties to those of the gold standard. In fact, the ex-
tracted metadata make it possible to describe the data,
their structure and, to indicate to which ontological
knowledge each extracted term belongs. At the end of
this evaluation, we found that the terms extracted from
source code have the same structure as ontoEPICAM.
Then, from the source code, a graph structure can be
extracted that can be used to build an ontology.

4.5. Knowledge extraction from GeoServer source
code

GeoServer is an Open Source map server devel-
oped in Java10. It allows users to edit, process and
share geospatial data. The source code downloaded
from github11 contains 13038 files and 2150161 in-
structions. The HMMs we have built was used to ex-
tract the candidate to be concepts, properties, axioms
and rules from GeoServer source code. About 178757
candidates terms have been extracted to become con-
cepts, properties and axioms with 15787 false positives
(precision 91.17%, recall=65.72%) and 38519 candi-
dates conditions to become rules (precision 95.69%,
recall=86.14%).

4.6. Advantages of the approach

To show the benefits of our approach, we compare
it to a parser-based approach. To do it, we defined four
comparison criteria:

10http://geoserver.org/
11https://github.com/geoserver/geoserver

– Genericity: Our approach uses a set of simple
keywords to identify terms in the source code in
order to train the model. This makes it possible
to extract any type of terms from any type of
source code. With the parser approach, there are
two possibilities: define a generic parser that uses
a regular expression to identify terms or develop
a parser for each programming language. In both
cases, this work is not obvious for a knowledge
engineer who does not always have the knowl-
edge on programming or on the definition of reg-
ular expressions (the syntax is less intuitive than
what we propose).

– Ease to use: With our approach, to extract an-
other type of elements, the knowledge engineer
modifies the sets PRE, POS T , OT HER, which is
less difficult than to define/modify a regular ex-
pression or to modify the source code of a parser.

– Difficulties in the implementation: The devel-
opment of a tool based on our approach is more
difficult than the development of a parser because
there are many libraries allowing the development
of the parsers. However, once the tool based on
our approach is developed, it is easy to use.

– Performance: Unlike parsers, with our approach,
one may have false positives when extracting
knowledge. However, by training correctly the
model, one may have good performances [30]. In
addition, the number of terms redundancies that
generally occurs in the source code makes that all
the candidate terms can be extracted.

http://geoserver.org/
https://github.com/geoserver/geoserver
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5. Conclusion and future work

In this paper, we are proposing an approach for
knowledge extraction from JAVA source code. This ap-
proach consists of the definition of a Hidden Markov
Model by providing PRE, POS T , and OT HER sets,
training the HMM and using trained HMM to ex-
tract the knowledge from any JAVA source code. We
experimented this approach by extracting knowledge
from EPICAM-an epidemiological surveillance plat-
form developed in JAVA and, GeoServer-an Open
Source map server. We evaluated the knowledge ex-
tracted from EPICAM source code using a gold stan-
dard we built with domain experts. However, on one
hand, structural evaluation shows that source code can
be used to extract an ontological structure while on the
other hand, functional evaluation shows that the source
code is a more complete data source than the combina-
tion of the meta-model and the database. With the ap-
proach presented in this paper, by modifying the PRE,
POS T and OT HER sets, one can build a model for
knowledge extraction from any other typed program-
ming language.

Our approach has been tested for Java language hav-
ing a particular structure. It would be interesting to
generalize it for knowledge extraction from other pro-
gramming languages having different programming
paradigm. In fact, all programming languages have a
structure making it possible to define PRE, POS T and
OT HER sets.
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