A Quality Assessment Approach for Evolving Knowledge Bases

Mohammad Rashid a,*, Marco Torchiano a, Giuseppe Rizzo b, Nandana Mihindukulasooriya c and Oscar Corcho c

a Politecnico di Torino, Italy
E-mail: mohammad.rashid@polito.it, marco.torchiano@polito.it

b Instituto Superiore Mario Boella
E-mail: giuseppe.rizzo@ismb.it

c Universidad Politecnica de Madrid, Spain
E-mail: nmihindu@fi.upm.es, ocorcho@fi.upm.es

Abstract

Knowledge bases are nowadays essential components for any task that requires automation with some degrees of intelligence. Assessing the quality of a Knowledge Base (KB) is a complex task as it often means measuring the quality of structured information, ontologies and vocabularies, and queryable endpoints. Popular knowledge bases such as DBpedia, YAGO2, and Wikidata have chosen the RDF data model to represent their data due to its capabilities for semantically rich knowledge representation. Despite its advantages, there are challenges in using RDF data model, for example, data quality assessment and validation. In this paper, we present a novel knowledge base quality assessment approach that relies on evolution analysis. The proposed approach uses data profiling on consecutive knowledge base releases to compute quality measures that allow detecting quality issues. In particular, we propose four quality characteristics: Persistency, Historical Persistency, Consistency, and Completeness. Persistency and historical persistency measures concern the degree of changes and lifespan of any entity type. Consistency and completeness measures identify properties with incomplete information and contradictory facts. The approach has been assessed both quantitatively and qualitatively on a series of releases from two knowledge bases, eleven releases of DBpedia and eight releases of 3cixty. In particular, a prototype tool has been implemented using the R statistical platform. The capability of Persistency and Consistency characteristics to detect quality issues varies significantly between the two case studies. Persistency measure gives observational results for evolving KBs. It is highly effective in case of KB with periodic updates such as 3cixty KB. The Completeness characteristic is extremely effective and was able to achieve 95% precision in error detection for both use cases. The measures are based on simple statistical operations that make the solution both flexible and scalable.

Keywords: Quality Assessment, Quality Issues, Temporal Analysis, Knowledge Base, Linked Data

1. Introduction

The Linked Data approach consists in exposing and connecting data from different sources on the Web by the means of semantic web technologies. Tim Berners-Lee1 refers to linked open data as a distributed model for the Semantic Web that allows any data provider to publish its data publicly, in a machine readable format, and to meaningfully link them with other information sources over the Web. This is leading to the creation of Linked Open Data (LOD) cloud hosting several Knowledge Bases (KBs) making available billions of RDF triples from different domains such as Geography, Government, Life Sciences, Media, Publication, Social Networking, User generated2.

1http://www.w3.org/DesignIssues/LinkedData.html
2http://lod-cloud.net
The knowledge bases are rapidly evolving since both data instances and ontologies are updated, extended, revised, and refactored [15] covering more and more topical domains. In particular, KB instances evolve over time given that new resources are added, old resources are removed, and links to resources are updated or deleted. For instance, DBpedia [2] has been available from the very beginning of the LOD movement and released various versions periodically. Along with each release, DBpedia proposes changes at both instance and schema level over time. In particular, the schema level changes involved classes, properties, axioms, and mappings to other ontologies [28]. Usually, instance-level changes include resources typing, property values, or identify links between resources.

KB evolution is important for a wide range of applications: effective caching, link maintenance, and versioning [20]. For the KB development and maintenance, data quality remains a critical aspect to obtain trust by the users. Data quality, in general, relates to the perception of the “fitness for use” in a given context [41]. Based on user requirements, poor data quality can be defined as the degree to which a set of characteristics of data does not fulfill the requirements [24]. The knowledge bases published in the LOD cloud are diverse because of different formats, structures, and vocabularies. Assessing data quality in KB development is a challenging task as data is derived from many autonomous, evolving, and increasingly large data sources. Example of such challenges includes lack of completeness, accuracy or consistency of data. One of the common preliminary tasks for data quality assessment is to perform a detailed data analysis. Data profiling is one of the most widely used techniques for data analysis [32]. Data profiling is the process of examining data to collect statistics and provide relevant metadata [30]. Based on data profiling we can thoroughly examine and understand each KB, its structure, and its properties before usage. In this context, monitoring KB evolution using data profiling can help to identify quality issues.

In general, KB evolution can be analyzed using fine-grained “change” detection or using “dynamics” of a dataset. Fine-grained changes of KB sources are analyzed with regard to their sets of triples, set of entities, or schema signatures [6,31]. For example, fine-grained analysis at the triple level between two snapshots of a KB can detect which triples from the previous snapshots have been preserved in the later snapshots. More specifically, it can detect which triple have been deleted, or which ones have been added. On the other hand, the dynamic feature of a dataset give insights into how it behaves and evolves over a certain period [31].

Ellefi et al. [7] explored the dynamic features for data profiling considering the use cases presented by Käfer et al. [20]. Temporal analysis using dynamic feature help to understand the changes applied to an entire KB or parts of it. It has multiple dimension regarding the dataset update behavior, such as frequency of change, changes pattern, changes impact and causes of change. More specifically, using dynamicity of a dataset, we can capture those changes that happen often; or changes that the curator wants to highlight because they are useful or interesting for a specific domain or application; or changes that indicate an abnormal situation or type of evolution [33,31].

We can thus detect changes that indicate an issue in data extraction or integration phase of a KB analyzing the history of changes, in other words analyzing the KB evolution. Based on the detected changes, we aim to analyze quality issues in any knowledge base. The main hypothesis that has guided our investigation is: Dynamic features from data profiling can help to identify quality issues.

In this paper, we address the challenges of quality measurements for evolving KB using dynamic features from data profiling. We propose a KB quality assessment approach using quality measures that are computed using a temporal analysis. We divide this research goal into three research questions:

RQ1: Which dynamic features can be used to assess KB quality characteristics?

We propose temporal measures that can be used to detect quality issues and address quality characteristics.

RQ2: Which quality assessment approach can be defined on top of the the temporal quality characteristics?

We propose an approach that profiles different releases of the same KB and measures automatically the quality of the data.

RQ3: How to validate the quality measures of a given KB?

We propose both quantitative and qualitative experimental analysis on two different KBs.

Traditional data quality is a largely investigated research field, and a large number of quality characteristics and measures is available. Zaveri et al. [44] present a comprehensive survey on Linked Open Data quality.
To identify a set of consistent quality characteristics to focus on in our approach, we explored the guidelines from two data quality standard, namely ISO/IEC 25024 [19] and W3C DQV [18]. Concerning the KBs evolution, we explore dynamic features on class level and property level. We thus defined four evolution-based quality characteristics based on dynamic features. We use basic statistics (i.e., counts, and diffs) over entities from various KB releases to measure the quality characteristics. More specifically, we compute the entity count and instance count of properties for a given entity type. Measurement functions are built using entity count and the amount of changes between pairs of KB releases. We performed an experimental analysis to validate our measures on two different KBs namely, 3cixty Nice KB [9] and DBpedia KB [2]. Furthermore, experimental analysis based on quantitative and qualitative approaches. We performed manual validation for qualitative analysis to compute precision by examining the results from the quantitative analysis.

The main contributions of this work are:

- We propose four quality characteristics based on change detection of a KB over various releases;
- We present an quality assessment method for analyzing quality issues using dynamic features over the different KB releases;
- We report about the experimentation of this approach on two KBs: DBpedia (encyclopedic data) and 3cixty (contextual tourist and cultural data).

This paper is organized as follows: Section 2, presents motivational examples that demonstrates important aspects of our quality assessment approach based coarse grain analysis. In Section 3, we present the related work focusing on Linked data dynamics and quality measurement of linked data. Section 4 contains definition of proposed temporal based quality characteristics and measurement functions. Section 5 describes our approach that relies on temporal analysis and generates automatic measures concerning the quality of a KB. In Section 6, we present our empirical evaluation conducted on two different KBs, namely DBpedia and 3cixty Nice KB. Section 7 discusses the initial hypothesis, research questions and insights gathered from the experimentation. We conclude in Section 8, by summarizing the main findings and outlining future research activities.

2. Background and Motivations

Resource Description Framework (RDF)\(^3\) is a graph-based data model which is the de facto standard in Semantic Web and Linked Data applications. RDF graphs can capture and represent domain information in a semantically rich manner using ontologies. An RDF KB is a well-defined RDF dataset that consists of RDF statements (triples) of the form \((subject, predicate, object)\). RDF Schema (RDFS)\(^4\) provides a data-modelling vocabulary for RDF data.

In our approach we used two KBs namely, 3cixty Nice KB and DBpedia KB. Here we report a few common prefixes used over the paper:

- DBpedia ontology URL\(^5\) prefix: dbo;
- DBpedia resource URL\(^6\) prefix: dbp;
- FOAF Vocabulary Specification URL\(^7\) prefix: foaf;
- Wikipedia URL\(^8\) prefix: wikipedia-en;
- 3cixty Nice event type URL\(^9\) prefix: lode;
- 3cixty Nice place type URL\(^10\) prefix: dul.

RDF has proven to be a good model for data integration, and there are several applications using RDF either for data storage or as an interoperability layer [33]. One of the drawbacks of RDF data model is the unavailability of explicit schema information that precisely defines the types of entities and their properties [31]. Furthermore, datasets in a KB are often inconsistent and lack metadata information. The main reason for this problem is that data have been extracted from unstructured datasets and their schema usually evolve. Within this context, our work explores two main areas: (1) evolution of resources and (2) impact of the unwanted removal of resources in a KB. In particular, in our approach the main use case for exploring KB evolution from data is quality assessment.

We explored the evolution of RDF(S) KBs based on the work presented by Papavileiou et al. [33]. They explore evolution of KB at low-level, using fine grained analysis, and at high-level, using coarse grained analysis. Furthermore, they explicitly state

\(^{3}\)https://www.w3.org/RDF
\(^{4}\)https://www.w3.org/TR/rdf-schema/
\(^{5}\)http://dbpedia.org/ontology/
\(^{6}\)http://xmlns.com/foaf/0.1/
\(^{7}\)https://en.wikipedia.org/wiki/
\(^{8}\)http://linkedevents.org/ontology
\(^{9}\)http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
that, the set of low-level changes can be uniquely partitioned into disjoint subsets, each corresponding to one high-level change.

Low-level changes are easy to define and have several interesting properties [33]. In general, low-level change detection compares the current with the previous dataset version and returns the delta containing the added or deleted entities. For example, two DBpedia versions – 201510 and 201604 – have the property \textit{dbo:areaTotal} in the domain of \textit{dbo:Place}. Low-level changes can help to detect added or deleted instances for \textit{dbo:Place} entity type. One of the main requirements for quality assessment would be to identify the completeness of \textit{dbo: Place} entity type with each KB releases. Low-level changes can help only to detect missing entities with each KB release. Such as those entities missing in the 201604 version (e.g. dbr:A_Rúa, dbr:Sandiás,dbr:Coles_Qurense). Furthermore, these instances are auto-generated from Wikipedia Infobox keys. We track the Wikipedia page from which statement was extracted in DBpedia. This instances are present in the Wikipedia Infobox as Keys but missing in the DBpedia 201604 release. Thus, for a large volume of the dataset, it is a tedious, time-consuming, and error-prone task to generate such quality assessment manually.

More specifically, the representation of changes at the low-level leads to a syntactic delta, which does not properly give insights to KB evolution to a human user. On the other hand, high-level changes can capture the changes that indicate an abnormal situation and generates results that are intuitive enough for the human user. High-level changes from the data can be detected using statistical profiling. For example, total entity count of \textit{dbo:Place} type for two DBpedia version – 201510 and 201604 – is 1,122,785 and 925,383 where the entity count of 201604 is lower than 201510. This could indicate an imbalance in the data extraction process without fine grain analysis. However, high-level changes require fixed set of requirements to understand underlying changes happen in the dataset. Such as, considering schema of a KB remains unchanged a set of low-level changes from data corresponds to one high-level change.

In our work, we analyze high-level changes to identify quality issues for evolving KBs. We defined a quality assessment method, which, given two entity type versions computes their difference and then based on detected changes identifies potential quality issues. In the ISO/IEC 25012 standard [19] define data quality as the degree to which a set of characteristics of data fulfills requirements. Such characteristics include completeness, accuracy or consistency of the data. Each of the quality characteristics identifies a specific set of quality issues. Data quality issues, are the specific problem instances that we can find issues based on quality characteristics and prevent data from being regarded as high quality [24]. Such as under the completeness characteristics we can find problems regarding missing information. In this paper, we focused on three main quality issues of a knowledge base: (i) Lack of consistency, (ii) Lack of completeness, and (iii) Lack of persistency.

\textbf{Lack of consistency} when a KB is inconsistent with the reality it represents. In particular, inconsistency relates to the presence of unexpected properties.

As an example, let us consider DBpedia version 201510 where we can find the resource of type \textit{foaf:Person dbpedia:X. Henry Goodnough} that represent an entity. While we find (as expected) a \textit{dbo:birthDate} property for the entity, we unexpectedly find the property \textit{dbo:Infrastructure/length}. This is a clear inconsistency: in fact, if we look at the ontology, we can check that the latter property can be used for a resource of type \textit{dbo:Infrastructure}, not for a person.

![Figure 1. Example of inconsistent Wikipedia data.](image)

To better understand where the problem lies, we need to look at the corresponding Wikipedia page.
Even though the page reports the information about an engineer who graduated from Harvard, it contains an info-box, shown in Figure 1, that refers to a dam, the Good-nough Dike. The inconsistency issue derives from the data present in the source page that resulted into the resource being typed both as a person and as a piece of infrastructure. We can expect such kind of structure to be fairly rare – in fact the case we described is the only case of a person with a dbo:Infrastructure/length property – and can be potentially detected by looking at the frequency of the predicates within a type of resource. For instance, considering DBpedia version 201604, for the resources of type foaf:Person there are 1035 distinct predicates, among which 142 occur only once. Such anomalous predicates suggests the presence of consistency issues that can be located either in the original data source or – i.e. Wikipedia for this case – or in the lack of filtering in the data extraction procedure.

Lack of completeness relates to the resources or properties missing from a knowledge base. This happens when information is missing from one version of the KB because it has been removed at given point during KB’s evolution11. In general, causes of completeness issues are linked to errors in the data extraction pipeline. Such as missing instances in a KB that are auto generated from data sources. As an example, let us consider a DBpedia resource dbpedia:Abdul_Ahad_Mohmand of type dbo:Person/Astronauts. When looking at the source Wikipedia page wikipedia-en:Abdul_Ahad_Mohmand , we observe that the infobox shown in Figure 2 reports a “Time in space” datum. The DBpedia ontology includes a dbo:Astronaut/TimeInSpace and several other astronauts have that property, but the resource we consider is missing it.

While it is generally difficult to spot that kind of incompleteness, for the case under consideration it is easier because that property was present for the resource under consideration in the previous version of DBpedia, i.e. the 2015-10 release. That is an incompleteness introduced by the evolution of the knowledge base. It can be spotted by looking at the frequency of predicates inside a resource type. In particular, in the release of 2016-04 there are 419 occurrences of the dbo:Astronaut/TimeInSpace predicate over 634 astronaut resources (66%), while in the previous version they were 465 out of 650 astronauts (72%). Such a significant variation suggests the presence of a major problem in the data extraction procedure applied to the original source, i.e. Wikipedia.

Lack of persistency relates to unwanted removal of persistent resources that were present in a previous KB release but they disappeared. This happens when information has been removed. As an example let us consider a 3cixty Nice resource of type lode:Event that has as the label “Modéliser, piloter et valoriser les actifs des collectivités et d’un territoire grâce aux maquettes numériques: retours d’expériences et bonnes pratiques”12. This resource happened to be part of the 3cixty Nice KB since it has been created the first time, but in a release it got removed even though, according to the experts curating the KB, it should not have been removed.

This issue can be spotted by looking at the total frequency of entities of a given resource type. For example, lode:Event type two releases – 2016-06-15 and 2016-09-09 – total entity count 2,182 and 689. In particular in the investigated example we have observed an (unexpected) drop of resources of the type event between the previous release dated as 2016-06-15 and the considered released from 2016-09-09. Such count drop actually indicates a problem in the processing and integration of the primary sources that feed the KB.

Such problems are generally complex to be traced manually because they require a per-resource check over different releases. When possible, a detailed, low-level and automated analysis is computationally expensive and might result into a huge number of fine-grained issue notifications. Such amount of information might cause an information overload for the user.
Figure 3. Example of a 3cixty Nice KB resource that unexpectedly disappeared from the release of 2016-06-15 to the other 2016-09-09.

Table 1

<table>
<thead>
<tr>
<th>Analysis level</th>
<th>Detail</th>
<th>Volume</th>
<th>Stakeholder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-level</td>
<td>fine-grained</td>
<td>Large</td>
<td>Data end-user</td>
</tr>
<tr>
<td>High-level</td>
<td>coarse-grained</td>
<td>Small</td>
<td>Data Curator</td>
</tr>
</tbody>
</table>

of the notifications. However, provided they are filtered, such low-level notifications can be useful to KB end-users to assess the suitability for their purposes.

The proposed approach provides an assessment of the overall quality characteristic and is not aimed at pin pointing the individual issues in the KB but it aims to identify potential problems in the data processing pipeline. Such approach produces a smaller number of coarse-grained issue notifications that are directly manageable without any filtering and provide a useful feedback to data curators. Table 1 summarizes the features of the two types of analysis.

In Figure 4 we present an conceptual represent of our quality assessment procedure. We divide our quality assessment procedure into three steps:

(i) Requirements: When a data curator initiates a quality assessment procedure, it selects an entity type. Furthermore, it is essential to check chosen entity type present in all KB releases to verify schema consistency.

(ii) Coarse grain analysis: high-level changes help to identify more context dependent features such as dataset dynamicity, volume, the design decision. We used statistical profiling to detect high-level changes from dataset.

(iii) Fine grain analysis: in general, high-level changes, being coarse-grained, cannot capture all possible quality issues. However, it helps to identify common quality issues such as an error in data extraction and integration process. On the other hand, fine grained analysis helps to detect detailed changes. In our approach we propose coarse grained analysis using data profiling and evaluate our approach using fine grained analysis. We use manual validation for fine grained analysis.

3. Related Work

The research activities related to our approach fall into two main research areas: (i) Linked Data Dynamics, and (ii) Linked Data Quality Assessment.

3.1. Linked Data Dynamics

Various research endeavours focus on exploring dynamicities in linked data on various use-cases.

Umbrich et al. [42] present a comparative analysis on LOD datasets dynamics. In particular, they analyzed entity dynamics using a labeled directed graph based on LOD, where a node is an entity and an entity is represented by a subject.

Pernelle et al. [35] present an approach that detects and semantically represents data changes in RDF datasets. Klein et al. [21] analyze ontology versioning in the context of the Web. They look at the characteristics of the release relation between ontologies and at the identification of online ontologies. Then they describe a web-based system to help users to manage changes in ontologies.

Käfer et al. [20] present a design and results of the Dynamic Linked Data Observatory. They setup a long-term experiment to monitor the two-hop neighbourhood of a core set of eighty thousand diverse Linked Data documents on a weekly basis. They look at the estimated lifespan of the core documents, how often it goes on-line or offline, how often it changes as well as they further investigate domain-level trends. They explore the RDF content of the core documents across the weekly snapshots, examining the elements (i.e., triples, subjects, predicates, objects, classes) that are
most frequently added or removed. In particular, they investigate how the links between dereferenceable documents evolve over time in the two-hop neighborhood.

Papavasileiou et al. [33] address change management for RDF(S) data maintained by large communities, such as scientists, librarians, who act as curators to ensure high quality of data. Such curated KBs are constantly evolving for various reasons, such as the inclusion of new experimental evidence or observations, or the correction of erroneous conceptualizations. Managing such changes poses several research problems, including the problem of detecting the changes (delta) among versions of the same KB developed and maintained by different groups of curators, a crucial task for assisting them in understanding the involved changes. They addressed this problem by proposing a change language which allows the formulation of concise and intuitive deltas.

Gottron and Gottron [15] analyze the sensitivity of twelve prototypical Linked Data index models towards evolving data. They addressed the impact of evolving Linked Data on the accuracy of index models in providing reliable density estimations.

Ruan et al. [38] categorized quality assessment requirements into three layers: understanding the characteristics of data sets, comparing groups of data sets, and selecting data sets according to user perspectives. Based on this, they designed a tool – KBMetrics – to incorporate the above quality assessment purposes. In the tool, they focused to incorporate different kinds of metrics to characterize a data set, but it has also adopted ontology alignment mechanisms for comparison purposes.

Nishioka et al. [31] present a clustering technique over the dynamics of entities to determine common temporal patterns. The quality of the clustering is evaluated using entity features such as the entities’ properties, RDF types, and pay-level domain. In addition, they investigated to what extend entities that share a feature value change together over time.

3.2. Linked Data Quality Assessment

The majority of the related work on Linked Data quality assessment are focused on defining metrics to quantify the quality of data according to various quality dimensions and designing framework to provide tool support for computing such metrics.

Most early work on Linked Data quality were related to data trust. Gil and Arts [13] focus their work on the concept of reputation (trust) of web resources. The main sources of trust assessment according to the authors are direct experience and user opinions, which are expressed through reliability (based on credentials and performance of the resources) and credibility (users view of the truthfulness of information). The trust is represented with a web of trust, where nodes represent entities and edges are trust metrics that one entity has towards the other.

Gamble and Goble [12] also focus on evaluating trust of Linked Data datasets. Their approach is based on decision networks that allow modeling relationships between different variables based on probabilistic models. Furthermore, they discuss several dimensions of data quality: 1. Quality dimension, which is assessed against some quality standard and which intends to provide specific measures of quality; 2. Trust dimension, which is assessed independently of any standard and is intended to assess the reputation; 3. Utility dimension, which intends to assess whether data fits the purpose and satisfies users’ need.

Shekarpour and Katebi [40] focus on assessment of trust of a data source. They first discuss several models
of trust (centralized model, distributed model, global model and local model), and then develop a model for assessment of trust of a data source based on: 1. propagation of trust assessment from data source to triples, and 2. aggregation of all triple assessments.

Golbeck and Mannes [14] focus on trust in networks and their approach is based on the interchange of trust, provenance, and annotations. They have developed an algorithm for inferring trust and for computing personal recommendations using the provenance of already defined trust annotations. Furthermore, they apply the algorithm in two examples to compute the recommendations of movies and intelligent information.

Bonatti et al. [4] focus on data trust based on annotations. They identify several annotation dimensions: 1. Blacklisting, which is based on noise, on void values for inverse functional properties, and on errors in values; 2. Authoritativeness, which is based on cross-defined core terms that can change the inferences over those terms that are mandated by some authority (e.g., owl:Thing), and that can lead to creation of irrelevant data; 3. Linking, which is based on determining the existence of links from and to a source in a graph, with a premise that a source with higher number of links is more trustworthy and is characterized by higher quality of the data.

Later on, we can find research work focused on various other aspects of Linked Data quality such as accuracy, consistency, dynamicity, and assessibility. Furber and Hepp [11] focus on the assessment of accuracy, which includes both syntactic and semantic accuracy, timeliness, completeness, and uniqueness. One measure of accuracy consists of determining inaccurate values using functional dependence rules, while timeliness is measured with time validity intervals of instances and their expiry dates. Completeness deals with the assessment of the completeness of schema (representation of ontology elements), completeness of properties (represented by mandatory property and literal value rules), and completeness of population (representation of real world entities). Uniqueness refers to the assessment of redundancy, i.e., of duplicated instances.

Flemming [10] focuses on a number of measures for assessing the quality of Linked Data covering wide-range of different dimensions such as availability, accessibility, scalability, licensing, vocabulary reuse, and multilingualism. Hogan et al. [17] focus their work in assessment of mainly errors, noise and modeling issues. Lei et al. [25] focus on several types of quality problems related to accuracy. In particular, they evaluate incompleteness, existence of duplicate instances, ambiguity, inaccuracy of instance labels and classification.

Rula et al. [39] start from the premise of dynamicity of Linked Data and focus on assessment of timeliness in order to reduce errors related to outdated data. To measure timeliness, they define a currency metric which is calculated in terms of differences between the time of the observation of data (current time) and the time when the data was modified for the last time. Furthermore, they also take into account the difference between the time of data observation and the time of data creation.

Gueret et al. [16] define a set of network measures for the assessment of Linked Data mappings. These measures are: 1. Degree; 2. Clustering coefficient; 3. Centrality; 4. sameAs chains; 5. Descriptive richness.

Mendes et al. [26] developed a framework for Linked Data quality assessment. One of the peculiarities of this framework is to discover conflicts between values in different data sources. To achieve this, they propose a set of measures for Linked Data quality assessment, which include: 1. Intensional completeness; 2. Extensional completeness; 3. Recency and reputation; 4. Time since data modification; 5. Property completeness; 6. Property conciseness; 7. Property consistency.

Kontokostas et al. [23] developed a test-driven evaluation of Linked Data quality in which they focus on coverage and errors. The measures they use are the following: 1. Property domain coverage; 2. Property range coverage; 3. Class instance coverage; 4. Missing data; 5. Mistypes; 6. Correctness of the data.

Knuth et al. [22] identify the key challenges for Linked Data quality. As one of the key factors for Linked Data quality they outline validation which, in their opinion, has to be an integral part of Linked Data lifecycle. Additional factor for Linked Data quality is version management, which can create problems in provenance and tracking. Finally, as another important factor they outline the usage of popular vocabularies or manual creating of new correct vocabularies.

Emburi et al. [8] developed a framework for automatic crawling the Linked Data datasets and improving dataset quality. In their work, the quality is focused on errors in data and the purpose of developed framework is to automatically correct errors.

Assaf et al. [1] introduce a framework that handles issues related to incomplete and inconsistent metadata quality. They propose a scalable automatic approach
for extracting, validating, correcting and generating descriptive linked dataset profiles. This approach applies several techniques in order to check the validity of the metadata provided and to generate descriptive and statistical information for a particular dataset or for an entire data portal.

Debattista et al. [5] describes a conceptual methodology for assessing Linked Datasets, proposing Luzzu, a framework for Linked Data Quality Assessment. Luzzu is based on four major components: 1. An extensible interface for defining new quality metrics; 2. An interoperable, ontology-driven back-end for representing quality metadata and quality problems that can be re-used within different semantic frameworks; 3. Scalable dataset processors for data dumps, SPARQL endpoints, and big data infrastructures; 4. A customisable ranking algorithm taking into account user-defined weights.

Zaveri et al. [44] present a comprehensive systematic review of data quality assessment methodologies applied to LOD. They have extracted 26 quality dimensions and a total of 110 objective and subjective quality indicators. They organized linked data quality dimensions into following categories, 1. Contextual dimensions; 2. Trust dimensions; 3. Intrinsic dimensions; 4. Accessibility dimensions; 5. Representational dimensions; 6. Dataset dynamicity. They explored dataset dynamicity features based on three dimensions: 1. Currency (speed of information update regarding information changes); 2. Volatility (length of time which the data remains valid); 3. Timeliness (information is available in time to be useful). However, they didn’t considered the evolution of KB changes and aspects of temporal analysis.

Ellef et al. [7] present a comprehensive overview of the RDF dataset profiling feature, methods, tools, and vocabularies. They present dataset profiling in a taxonomy and illustrate the links between the dataset profiling and feature extraction approaches. They organized dataset profiling features into seven top-level categories: 1. General; 2. Qualitative; 3. Provenance; 4. Links; 5. Licensing; 6. Statistical; 7. Dynamics. In the qualitative features, they explored the data quality perspectives and presented four categories: 1. Trust (data trustworthiness); 2. Accessibility (process of accessing data); 3. Representative (analyze data quality issues); 4. Context/Task Specificity (data quality analysis with respect to a specific tasks). We used qualitative features to summarize linked data quality assessment studies and presented in Table 2.

There is a significant effort in the Semantic Web community to evaluate the quality of Linked Data. However, in the current state of the art, less focus has been given toward understanding knowledge base resource changes over time to detect anomalies over various releases, which is instead the main contribution of our approach.

4. Quality Characteristics and Evolution Analysis

The definition of our quality characteristics started with the exploration of two data quality standard reference frameworks: ISO/IEC 25012 [19] and W3C DQV [18]. ISO/IEC 25012 [19] defines a general data quality model for data retained in structured format within a computer system. This model defines the quality of a data product as the degree to which data satisfies the requirements set by the product owner organization. The W3C Data on the Web Best Practices Working Group has been chartered to create a vocabulary for expressing data quality\(^1\). The Data Quality Vocabulary (DQV) is an extension of the DCAT vocabulary\(^13\). It covers the quality of the data, how frequently is it updated, whether it accepts user corrections, and persistence commitments.

Besides, to further compare our proposed quality characteristics\(^14\) we explored the foundational work on the linked data quality by Zaveri et al. [44]. They surveyed existing literature and identified a total of 26 different data quality dimensions (criteria) applicable to linked data quality assessment.

Since the measurement terminology suggested in these two standards differs, we briefly summarize the one adopted in this paper and the relative mappings in Table 3.

4.1. Evolution Analysis

Large Knowledge Bases (KBs) are often maintained by communities that act as curators to ensure their quality [43]. KBs naturally evolve in time due to several causes: i) resource representations and links that are created, updated, and removed; ii) the entire graph can change or disappear [37]. The kind of evolution that a KB is subjected to depends on several factors, such as:

\(^1\)https://www.w3.org/TR/vocab-dcat/
\(^13\)In our work we will identify the quality aspects using the term quality characteristics from ISO-25012 [19] that corresponds to the term quality dimension from DQV [18].
Table 2
Summary of Linked Data Quality Assessment Approaches

<table>
<thead>
<tr>
<th>Paper</th>
<th>Degree of Automation</th>
<th>Dataset Feature</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gil and Arts [13]</td>
<td>Semi-Automatic</td>
<td>Trust</td>
<td>Focus their work on the concept of reputation (trust) of web resources</td>
</tr>
<tr>
<td>Shekarpour and Katebi [40]</td>
<td>Semi-Automatic</td>
<td>Trust</td>
<td>Focus on assessment of trust of a data source</td>
</tr>
<tr>
<td>Golbeck and Mannes [14]</td>
<td>Semi-Automatic</td>
<td>Trust</td>
<td>Focus on trust in networks and their approach is based on the interchange of trust, provenance, and annotations.</td>
</tr>
<tr>
<td>Bonatti et al. [4]</td>
<td>Semi-Automatic</td>
<td>Trust</td>
<td>Focus on data trust based on annotations such as Blacklisting, Authoritativeness and Linking</td>
</tr>
<tr>
<td>Flemming [10]</td>
<td>Semi-Automatic</td>
<td>Accessibility</td>
<td>Focuses on a number of measures for assessing the quality of Linked Data covering wide-range of different dimensions such as availability, accessibility, scalability, licensing, vocabulary reuse, and multilingualism.</td>
</tr>
<tr>
<td>Rula et al. [39]</td>
<td>Automatic</td>
<td>Context Specificity</td>
<td>Start from the premise of dynamicity of Linked Data and focus on assessment of timeliness in order to reduce errors related to outdated data.</td>
</tr>
<tr>
<td>Gueret et al. [16]</td>
<td>Automatic</td>
<td>Context Specificity</td>
<td>Define a set of network measures for the assessment of Linked Data mappings.</td>
</tr>
<tr>
<td>Mendes et al. [26]</td>
<td>Semi-Automatic</td>
<td>Representativity</td>
<td>Developed a framework for Linked Data quality assessment.</td>
</tr>
<tr>
<td>Knuth et al. [22]</td>
<td>Semi-Automatic</td>
<td>Qualitative</td>
<td>They outline validation which, in their opinion, has to be an integral part of Linked Data lifecycle.</td>
</tr>
<tr>
<td>Emburi et al. [8]</td>
<td>Automatic</td>
<td>Context Specificity</td>
<td>They developed a framework for automatic crawling the Linked Data datasets and improving dataset quality.</td>
</tr>
<tr>
<td>Assaf et al. [1]</td>
<td>Automatic</td>
<td>Representativity</td>
<td>They propose a framework that handles issues related to incomplete and inconsistent metadata quality.</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Definition</th>
<th>ISO 25012</th>
<th>W3C DQV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category of quality attributes</td>
<td>Characteristic</td>
<td>Dimension</td>
</tr>
<tr>
<td>Variable to which a value is assigned as the result of a measurement function applied to two or more measure elements</td>
<td>Measure</td>
<td>Metric</td>
</tr>
<tr>
<td>Variable defined in terms of an attribute and the elements for quantify the measurement method</td>
<td>Measure Element</td>
<td>-</td>
</tr>
<tr>
<td>Quality measurement results that characterize a quality feature</td>
<td>Numerical Value</td>
<td>Observation</td>
</tr>
<tr>
<td>Set of operations having the object of determining a value of a measure</td>
<td>Measurement</td>
<td>Measurement</td>
</tr>
</tbody>
</table>

- Frequency of update: KBs can be updated almost continuously (e.g. daily or weekly) or at long intervals (e.g. yearly);
- Domain area: depending on the specific domain, updates can be minor or substantial. For instance, social data is likely to be subject to wide fluctuations than encyclopedic data, which are likely to undergo smaller knowledge increments;
- Data acquisition: the process used to acquire the data to be stored in the KB and the characteristics of the sources may influence the evolution; for instance, updates on individual resources cause minor changes when compared to a complete reorganization of a data source’s infrastructure such as a change of the domain name;
- Link between data sources: when multiple sources are used for building a KB, the alignment and compatibility of such sources affect the overall KB evolution. The differences of KBs have been proved to play a crucial role in various curation tasks such as the synchronization of autonomously developed KB versions, or the visualization of the evolution history of a KB [33] for more user-friendly change management.

In this context, we focus on the aspects of data profiling for KB evolution analysis. According to Ellefi et al. [7], the dynamic features used in our approach are the following:

- **Lifespan**: Knowledge bases contain information about different real-world objects or concepts commonly referred as entities. Lifespan measures change patterns of a knowledge base. Change patterns help to understand the existence and kinds of categories of updates or change behavior. Also, lifespan represents the time period when a certain entity is available.
- **Stability**: It helps to understand to what extent the performed update impacts the overall state of the knowledge base. It measures the degree of Furthermore, the degree of changes helps to understand what are the causes for change triggers as well as the propagation effects.
- **Update history**: It contains basic measurement elements regarding the knowledge base update behavior such as frequency of change. The frequency of change measures the update frequency of a KB resource. For example, the instance count of an entity type for various versions.

4.2. Evolution-based Quality characteristics and Measures

In this section, we define four temporal quality characteristics that allow addressing the aforementioned issues.

Zaveri et al. [44] classified quality dimensions into four groups: i) intrinsic, those that are independent of the users context; ii) contextual, those that highly depend on the context of the task at hand, iii) representational, those that capture aspects related to the design of the data, and iv) accessibility, those that involve aspects related to the access, authenticity and retrieval of data obtain either the entire or some portion of the data (or from another source) for a particular use case. The quality dimensions we propose fall into the groups of intrinsic and representational.

In the context of RDF data model our approach focuses on two different types of elements in a KB: classes and properties. At triple level we only explored subjects and predicates thus disregarding the objects either resources or literals.

In order to measure to what extent a certain data quality characteristics is fulfilled for a given KB, each characteristics is formalized and expressed in terms of a measure with a value in the range [0..1].

4.2.1. Basic Measure Elements

The foundation of our approach is the change at the statistical level in terms of variation of absolute and relative frequency count of entities between pairs of KB versions.

In particular, we aim to detect variations of two basic statistical measures that can be evaluated with the
most simple and computationally inexpensive operation, i.e. counting. The computation is performed on the basis of the classes in a KB (V), i.e. given a class C we consider all the entities t of the type C:

$$\text{count}(C) = |\{s : \exists (s, \text{typeof}, C) \in V\}|$$

The count(C) measurement can be performed by means of a basic SPARQL query such as:

```
SELECT COUNT(DISTINCT ?s) AS ?COUNT
WHERE { ?s a <C> . }
```

The second measure element focuses on the frequency of the properties, within a class C. We define the frequency of a property (in the scope of class C) as:

$$\text{freq}(p, C) = |\{(s, p, o) \in V : \exists (s, \text{typeof}, C) \in V\}|$$

The freq(p, C) measurement can be performed by means of a simple SPARQL query having the following structure:

```
SELECT COUNT(*) AS ?FREQ
WHERE { ?s <p> ?o. ?s a <C>. }
```

There is an additional basic measure element that can be used to build derived measures: the number of properties present for the entity type C in the release i of the KB.

$$\text{NP}(C) = |\{p : \exists (s, p, o) \in V \land (s, \text{typeof}, C) \in V\}|$$

The NP(C) measure can be collected by means of a SPARQL query having the following structure:

```
SELECT COUNT(DISTINCT ?p) AS ?NP
WHERE { ?s ?p ?o. ?s a <C>. }
```

The essence of the proposed approach is the comparison of the measure across distinct releases of a KB. In the remainder, we will use a subscript to indicate the release the measure refers to. The releases are numbered progressively as integers starting from 1 and, by convention, the most recent release is n. So, for instance, \textit{count}_{n-1}(\textit{foaf:Person}) represents the count of resources typed with \textit{foaf:Person} in the last but one release of the knowledge base under consideration.

4.2.2. Persistency

We define the Persistency characteristics as the degree to which unexpected removal of information from current version may impact stability of the resources. Ellefi \textit{et al.} [7] present stability feature as an aggregation measure of the dataset dynamics. Persistency characteristics measures helps to understand stability feature. In particular, it provides insights into whether there are any missing resources in the last KB release.

An additional important feature to be considered when analyzing a knowledge base is that the information stored is expected to grow, either because of new facts appearing in the reality, as time passes by, or due to an extended scope coverage [42]. Persistency measures provide an indication of the adherence of a knowledge base to such continuous growth assumption. Using this quality measure, data curators can identify the classes for which the assumption is not verified.

The Persistency of a class C in a release $i : i > 1$ is defined as:

$$\text{Persistency}_i(C) = \begin{cases}
1 & \text{if } \text{count}_i(C) \geq \text{count}_{i-1}(C) \\
0 & \text{if } \text{count}_i(C) < \text{count}_{i-1}(C)
\end{cases}$$

the value is 1 if the count of subjects of type C is not decreasing, otherwise it is 0.

Persistency at the knowledge base level – i.e. when all classes are considered – can be computed as the proportion of persistent classes:

$$\text{Persistency}_i(KB) = \frac{\sum_{j=1}^{NC_i} \text{Persistency}_i(C_j)}{NC_i}$$

where NC_i is the number of classes analyzed where i is the release of the KB.

4.2.3. Historical Persistency

Historical persistency is a derived measurement function based on persistency. It captures the whole lifespan of a KB with the goal of detect quality issues, in several release, for a specific entity-type [7]. It considers all entities presented in a KB and provides an
overview of the whole KB. It helps data curators to decide which knowledge base release can be used for future data management tasks. The Historical Persistency measure is computed as the average of the pairwise persistency measures for all releases.

\[
H_{\text{Persistency}}(C) = \frac{\sum_{i=2}^{n} \text{Persistency}_i(C)}{n - 1}
\]

Similarly to Persistency, it is possible to compute Historical Persistency at the KB level:

\[
H_{\text{Persistency}}(KB) = \frac{\sum_{i=2}^{n} \text{Persistency}_i}{n - 1}
\]

4.2.4. Consistency

Consistency checks whether inconsistent facts are included in the KB. This quality characteristic relates to the Consistency quality characteristic defined in the ISO/IEC 25012 standard. The standard defines it as the “degree to which data has attributes that are free from contradiction and are coherent with other data in a specific context of use. It can be either or both among data regarding one entity and across similar data for comparable entities” [19]. Zaveri et al. also explored the Consistency characteristics. A knowledge base is defined to be consistent if it does not contain conflicting or contradictory fact.

We assume that extremely rare predicates are potentially inconsistent, see e.g. the dbo:Infrastructure/length property discussed in the example presented in Section 2. We can evaluate the consistency of a predicate on the basis of the frequency basic measure.

We define the consistency of a property \(p \) in the scope of a class \(C \):

\[
\text{Consistency}_i(p, C) = \begin{cases}
1 & \text{if } \text{freq}_i(p, C) \geq T \\
0 & \text{if } \text{freq}_i(p, C) < T
\end{cases}
\]

Where \(T \) is a threshold that can be either a KB-dependent constant or can defined on the basis of the count of the scope class. Paulheim and Bizer [34] explore the problem of consistency of RDF statement using SDValidate approach. Their work is based on the observation that RDF statements with a frequent predicate/object combination are more likely to be correct than a small number of “outlier” statements with an infrequent predicate/object combination. We used a similar approach to derive our threshold value. In our approach, we count the properties with low instance count for all KB releases. Similar to the SDValidate approach we assume that properties with low relative frequency more error-prone and applicable to all KB releases. We applied a heuristic approach based on lowest relative frequency with maximum size to derive our threshold value. However, the number of instances varies with each KB release. In our approach instead of one version, we evaluate multiple releases to determine a common threshold value. More specifically, we explored three low relative frequency and we checked number of instance present for each distribution. Hence, we decided to select the lowest relative frequency as a threshold value, which is optimal for the knowledge bases we studied.

4.2.5. Completeness

ISO/IEC 25012 defines the Completeness quality characteristic as the “degree to which subject data associated with an entity has values for all expected attributes and related entity instances in a specific context of use” [19].

In Zaveri et al., Completeness consists in the degree to which all required information is present in a particular dataset. In terms of Linked Data, completeness comprises the following aspects: i) Schema completeness, the degree to which the classes and properties of an ontology are represented, thus can be called “ontology completeness”; ii) Property completeness, measure of the missing values for a specific property, iii) Population completeness is the percentage of all real-world objects of a particular type that are represented in the datasets, and iv) Interlinking completeness, which has to be considered especially in Linked Data, refers to the degree to which instances in the dataset are interlinked.

Temporal-based completeness focuses on the removal of information as a negative effect of the KB evolution. It is based on the continuous growth assumption as well; as a consequence we expect properties of subjects should not be removed as the KB evolves (e.g. dbo:Astronaut/TimeInSpace property described in the example presented in Section 2).

The basic measure we use is the frequency of predicates, in particular, since the variation in the number of subjects can affect the frequency, we introduce a normalized frequency as:
\[NF_i(p, C) = \frac{freq_i(p, C)}{count_i(C)} \]

On the basis of this derived measure we can thus define completeness of a property \(p \) in the scope of a class \(C \) as:

\[Completeness_i(p, C) = \begin{cases} 1, & NF_i(p, C) \geq NF_{i-1}(p, C) \\ 0, & NF_i(p, C) < NF_{i-1}(p, C) \end{cases} \]

At the class level the completeness is the proportion of complete predicates and can be computed as:

\[Completeness_i(C) = \frac{\sum_{k=1}^{NP_i(C)} Completeness_i(p_k, C)}{NP_i(C)} \]

where \(NP_i(C) \) is the number of properties present for class \(C \) in the release \(i \) of the knowledge base, and \(p_k \).

5. Evolution-based Quality Assessment Approach

The Data Life Cycle (DLC) provides a high level overview of the stages involved in a successful management and preservation of data for any use and reuse process. In particular, several versions of data life cycles exist with differences attributable to variation in practices across domains or communities [3]. Data quality life cycle generally includes the identification of quality requirements and relevant metrics, quality assessment, and quality improvement [5,29]. Debatista et al. [5] present a data quality life cycle that covers the phases from the assessment of data, to cleaning and storing. They show that in the lifecycle quality assessment and improvement of Linked Data is a continuous process. However, we explored the features of quality assessment based on KB evolution. Our reference Data Life Cycle is defined by the international standard ISO 25024 [19]. We extend the reference DLC to integrate a quality assessment phase along with the data collection, data integration, and external data acquisition phase. This phase ensures data quality for the data processing stage. The extended DLC is reported in Figure 5. The first step in building the quality assessment approach was to identify the quality characteristics.

Based on the quality characteristics presented in Section 4.2, we proposed a KB quality assessment approach. In particular, our temporal quality assessment approach computes statistical distributions of KB elements from different KB releases and detects anomalies based on evolution patterns. Figure 6 illustrates the workflow based on the quality assessment procedure we outlined in Section 2 and framed as a three-stage process: (1) input data (multiple releases of a knowledge base), (2) quality evaluation process, and (3) quality reporting. We implemented a prototype using the R statistical package that we share as open source in order to foster reproducibility of the experiments\(^\text{15}\). The stages are explained in detail below.

5.1. Input data

In our approach, we considered an entity type and history of KB releases as an input. The acquisition of KB releases can be performed by querying multiple SPARQL endpoints (assuming each release of the KB is accessible through a different endpoint) or by loading data dumps. The stored dataset can be organized based on the entity type and KB release. We thereby build an intermediate data structure constituting an entity type and KB release. We used this intermediate data structure as an input to the next step. Figure 7 reports the intermediary data structure that is used in the following stage.

In our implementation, we created a data extraction module that extend Loupe [27], an online tool that can be used to inspect and to extract automatically statistics about the entities, vocabularies used (classes, and properties), and frequent triple patterns of a KB. We used SPARQL endpoint as an input and save the results extracted from the SPARQL endpoints into CSV files. We named each CSV file based on the knowledge base release and class name. In Figure 8, we illustrate the entity type base grouping of extracted CSV files for all DBpedia KB releases. For instance, we extracted all triples of the 11 DBpedia KB releases belonging to the class \texttt{foaf:Person} and saved them into CSV files named with the names of the DBpedia releases.

\(^{15}\)https://github.com/rifat963/KBQ
5.2. Quality Evaluation Process

We argue that anomalies can be identified using a combination of data profiling and statistical analysis techniques. We adopt a data-driven measurements of changes over time in different releases. The knowledge base quality is performed based on quality character-
istics presented in Section 4.2. Each quality characteristic corresponds to a specific quality measure. Firstly, the quality characteristic measurement is done by examining a KB release, then, quality assessment consists in a record of quality information for each assessed knowledge base release. This generates a quality problem report that can be as detailed as pinpointing specific issues at the level of individual triples, although specific issues can all be traced back to a common problem that can be more easily identified starting from a high level report.

The evaluation process includes the following three steps:

1. **Schema Profiler:** First, we perform a schema consistency check to identify those entity types that are present in all the analyzed KB releases. Papavasileiou et al. [33] present KB changes at low-level and high-level where low-level changes such as additions and deletions are the essential building blocks for higher level changes that in turn are more schema-specific and dependent on semantics or curator-based human interpretation. The higher the level of changes, the more context-dependent the issue becomes, as it is tied with factors such as the domain at hand, the design decisions, the underlying data, data volume, dataset dynamicity and so on [31]. Therefore, it is necessary only to consider those properties and classes present in all KB releases. In particular, schema profiler uses availability of data instance to check particular classes or properties present in all the KB releases. We thereby performed following two tasks: i) select only those classes presents in all the KB releases; ii) for each class, select only those properties presents in all the KB releases.

In our implementation we chose 3cixty Nice lode: event and dul: place class. These two classes remain unchanged for all the KB releases. Similarly, in case of the DBpedia KB, we chose those classes present in all the DBpedia KB releases such as foaf:person. Furthermore, we checked schema consistency based on any data present for the property. In particular, we removed those properties with instance count of 0 in any KB releases. Such as, property dbo:distributor for foaf:person class has instance count of 0 for releases 201604 and 201510 therefore we discarded it for quality profiling.

2. **Statistical Profiler:** Then, in order to identify the dynamic feature of the sequence of KB releases, we compute the following key statistics using basic statistical operations: i) number of distinct predicates; ii) number of distinct subjects; iii) number of distinct entities per class; iv) frequency of predicates per entity.

To identify the KB release changes, we count the frequency of property values for a specific class. Also, we consider the distinct entity count for a specific class that we presented as measurement elements in Section 4.2.1. We compute change detection between two KB releases by observing the variation of key statistics. We divided our quality characteristics in class and property level. For class level quality characteristics, we considered entity count as the basic measurement elements for change detection. For a particular class, we measure the property level quality characteristics using frequency of properties as basic measurement elements for change detection.

For example, in our implementation we collected the distinct total entity count for the lode: Event class of the 8 releases of the 3cixty Nice KB. For instance, of lode: Event-type in the 2016-09-09 release we count 689 distinct entities. In the evaluation process, the statistical profiler outputs are used by the quality profiler as inputs.

3. **Quality Profiler:** Data profiling is defined as the process of creating descriptive information and collect statistics about the data [1]. It summarizes the dataset without inspecting the raw data. We used the approach of data profiling together with quality measure to profile quality issues. We used the statistical profiler to analyze the KB releases. For analyzing the KB datasets, we used four quality characteristics presented in Section 4.2. Quality profiler includes descriptive as well as measure values based on the quality characteristics.

More in detail, this component does the following tasks: i) it provides statistical information about KB releases and patterns in the dataset (e.g. properties distribution, number of entities and RDF triples); ii) it provides general information about the KB release, such as dataset description of class and properties, release or update dates; iii) it provides quality information about the vector of KB releases, such as quality measure values, list of erroneous analysed triples.
5.3. Quality Problem Report

We generate a quality report based on the quality assessment results. The reports contain quality measure computation results as well as summary statistics for each class. The quality problem report provides detailed information about erroneous classes and properties. Also, the quality measurement results can be used for cataloging and preservation of the knowledge base for future data curation tasks. In particular, the Quality Problem Reporting enables, then, a fine-grained description of quality problems found while assessing a knowledge base. We implemented the quality problem report visualization using R markdown documents. R markdown documents are fully reproducible and easy to perform analyses that include graphs and tables. We presents an example of Quality problem report in the github repository15.

6. Experimental Assessment

This section reports an experimental assessment of our approach that has been conducted on two KBs, namely DBpedia and 3cixty Nice. The analysis is based on the quality characteristics and measures described in Section 5, the measurement has been conducted by means of a prototype implementation of a tool as described in Section 5. Table 4 reports the interpretation criteria we adopted for each quality characteristic measure. We first present the experimental setting of the implementation and then we report the results of both i) a quantitative and ii) a qualitative validation.

6.1. Experimental Settings

In our experiments, we selected two KBs according to three main criteria: i) popularity and representativeness in their domain: DBpedia for the encyclopedic domain, and 3cixty Nice for the tourist and cultural domain; ii) heterogeneity in terms of content being hosted, iii) diversity in the update strategy: incremental and usually as batch for DBpedia, continuous update for 3cixty Nice. More in detail:

- **DBpedia**16 is among the most popular knowledge bases in the LOD cloud. This knowledge base is the output of the DBpedia project that was initiated by researchers from the Free University of Berlin and the University of Leipzig, in collaboration with OpenLink Software. DBpedia is roughly updated every year since the first public release in 2007. DBpedia is created from automatically-extracted structured information contained in Wikipedia17, such as infobox tables, categorization information, geo-coordinates, and external links.

- **3cixty Nice** is a knowledge base describing cultural and tourist information concerning the city of Nice. This knowledge base was initially developed within the 3cixty project18, which aimed to develop a semantic web platform to build real-world and comprehensive knowledge bases in the domain of culture and tourism for cities. The entire approach has been tested first in the occasion of the Expo Milano 2015 [9], where a specific knowledge base for the city of Milan was developed, and has now been refined with the development of knowledge bases for the cities of Nice, London, Singapore, and Madeira island. They contain descriptions of events, places (sights and businesses), transportation facilities and social activities, collected from numerous static, near and real-time local and global data providers, including Expo Milano 2015 official services in the case of Milan, and numerous social media platforms. The generation of each city-driven 3cixty KB follows a strict data integration pipeline, that ranges from the definition of the data model, the selection of the primary sources used to populate the knowledge base, till the data reconciliation used for generating the final stream of cleaned data that is then presented to the users via multi-platform user interfaces. The quality of the data is today enforced through a continuous integration system that only verifies the integrity of the data semantics [29].

We present a detailed summary of extracted datasets for each KB.

- **3cixty Nice** : We used public SPARQL endpoint of the 3cixty Nice KB in our data extraction module. As schema in 3cixty KB remains unchanged, we used the same SPARQL endpoint for 8 different releases of 3cixty Nice KB. In particular, we

15http://wiki.dbpedia.org

16http://wiki.dbpedia.org

17https://www.wikipedia.org

18https://www.3cixty.com
Table 4

<table>
<thead>
<tr>
<th>Quality Characteristics</th>
<th>Measure Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistency</td>
<td>Persistency measure values [0,1]</td>
</tr>
<tr>
<td></td>
<td>The value of 1 implies no persistency issue present in the class. The value of 0 indicates persistency issues found in the class.</td>
</tr>
<tr>
<td>Historical Persistency</td>
<td>Percentage (%) of historical persistency</td>
</tr>
<tr>
<td></td>
<td>High % presents an estimation of fewer issues, and lower % entail more issues present in KB releases.</td>
</tr>
<tr>
<td>Completeness</td>
<td>List of properties with completeness measures weighted value [0,1]</td>
</tr>
<tr>
<td></td>
<td>The value of 1 implies no completeness issue present in the property. The value of 0 indicates completeness issues found in the property.</td>
</tr>
<tr>
<td>Consistency</td>
<td>List of properties with consistency measures value [0,1]</td>
</tr>
<tr>
<td></td>
<td>The value of 1 implies no completeness issue present in the property. The value of 0 indicates completeness issues found in the property.</td>
</tr>
</tbody>
</table>

considered eight different releases of the 3cixty Nice KB: from 2016-03-11 to 2016-09-09. We considered those instances having the `rdf:type` of `lode:Event` and `dul:Place`. The distinct instance count for each class is presented in Table 5. The variation of `count` in the dataset and the observed history is presented in Figure 9. From the 3cixty Nice KB, we collected a total of 149 distinct properties for the `lode:Event` typed entities and 192 distinct properties for the `dul:Place` typed entities across eight different releases.

- **DBpedia**: In our data extraction module, we directly used services provided by Loupe to access multiple DBpedia KB releases SPARQL endpoint to extract all triples for the selected ten classes. In the case of DBpedia, we considered ten classes: `dbo:Animal`, `dbo:Artist`, `dbo:Athlete`, `dbo:Film`, `dbo:MusicalWork`, `dbo:Organisation`, `dbo:Place`, `dbo:Species`, `dbo:Work`, `foaf:Person`. The above entity types are the most common according to the total number of entities. A total of 11 DBpedia releases have been considered for this analysis. We extracted 4477 unique properties from DBpedia. Table 6 presents the breakdown of frequency per class.

Table 5

<table>
<thead>
<tr>
<th>Releases</th>
<th>lode:Event</th>
<th>dul:Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-03-11</td>
<td>605</td>
<td>20,692</td>
</tr>
<tr>
<td>2016-03-22</td>
<td>605</td>
<td>20,692</td>
</tr>
<tr>
<td>2016-04-09</td>
<td>1,301</td>
<td>27,858</td>
</tr>
<tr>
<td>2016-05-03</td>
<td>1,301</td>
<td>26,066</td>
</tr>
<tr>
<td>2016-05-13</td>
<td>1,409</td>
<td>26,827</td>
</tr>
<tr>
<td>2016-05-27</td>
<td>1,883</td>
<td>25,828</td>
</tr>
<tr>
<td>2016-06-15</td>
<td>2,182</td>
<td>41,018</td>
</tr>
<tr>
<td>2016-09-09</td>
<td>689</td>
<td>44,968</td>
</tr>
</tbody>
</table>

6.2. Quantitative Analysis

We applied our quantitative analysis approach based on proposed quality characteristics. In particular, we analyzed selected classes from the two KBs to investigate persistency, historical persistency, consistency, and completeness quality characteristics. The goal was to identify any classes and properties affected by quality issues. In Table 4, we present the interpretation criteria for each quality characteristic measure. We discuss in this section the quality characteristic analysis performed on each knowledge base.
Table 6

DBpedia 10 Classes entity count (all classes have dbo: prefix except the last one.

<table>
<thead>
<tr>
<th>Version</th>
<th>Animal</th>
<th>Artist</th>
<th>Athlete</th>
<th>Film</th>
<th>MusicalWork</th>
<th>Organisation</th>
<th>Place</th>
<th>Species</th>
<th>Work</th>
<th>foaf:Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>51,809</td>
<td>65,109</td>
<td>95,964</td>
<td>40,310</td>
<td>113,329</td>
<td>113,329</td>
<td>31,801</td>
<td>11,804</td>
<td>29,498</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>87,543</td>
<td>71,789</td>
<td>113,389</td>
<td>44,706</td>
<td>120,068</td>
<td>120,068</td>
<td>337,551</td>
<td>130,466</td>
<td>229,152</td>
<td>30,860</td>
</tr>
<tr>
<td>3.5</td>
<td>96,534</td>
<td>73,721</td>
<td>73,721</td>
<td>49,182</td>
<td>131,040</td>
<td>131,040</td>
<td>413,423</td>
<td>146,082</td>
<td>320,054</td>
<td>48,692</td>
</tr>
<tr>
<td>3.6</td>
<td>116,528</td>
<td>83,847</td>
<td>133,156</td>
<td>53,619</td>
<td>138,921</td>
<td>138,921</td>
<td>413,423</td>
<td>168,575</td>
<td>355,100</td>
<td>296,595</td>
</tr>
<tr>
<td>3.7</td>
<td>129,027</td>
<td>57,772</td>
<td>150,978</td>
<td>60,194</td>
<td>138,921</td>
<td>110,515</td>
<td>525,786</td>
<td>182,848</td>
<td>262,662</td>
<td>825,566</td>
</tr>
<tr>
<td>3.8</td>
<td>145,909</td>
<td>61,073</td>
<td>185,126</td>
<td>71,715</td>
<td>159,071</td>
<td>159,071</td>
<td>512,728</td>
<td>202,848</td>
<td>333,270</td>
<td>1,266,984</td>
</tr>
<tr>
<td>3.9</td>
<td>178,289</td>
<td>93,532</td>
<td>313,730</td>
<td>77,794</td>
<td>198,516</td>
<td>178,516</td>
<td>754,415</td>
<td>245,044</td>
<td>1,650,315</td>
<td>1,650,315</td>
</tr>
</tbody>
</table>

2014 195,176 96,300 336,091 87,285 193,205 193,205 816,837 239,194 425,044 1,650,315

201504 214,106 175,881 335,978 171,272 163,958 163,958 943,799 285,320 588,205 2,137,101

201510 232,019 184,371 434,609 177,989 213,785 213,785 1,122,785 305,378 683,923 1,840,598

201604 227,963 145,879 371,804 146,449 203,392 203,392 925,383 301,715 571,847 2,703,493

6.2.1. Persistency

3cixty. Table 5 reports the count measure; in particular we highlight the latest two releases that are those to be considered in computing Persistency according to the definition (Section 4.2). In case of lode:Event instances, we can observe that \(\text{count}_n = 689 \) and \(\text{count}_{n-1} = 2182 \), where \(n = 8 \). Since \(\text{count}_n < \text{count}_{n-1} \), the value of Persistency(lode:Event) = 0. That indicates persistency issues in the last KB release for the lode:Event class.

Similarly, concerning dul:Place instances, from the dataset we can see that \(\text{count}_n = 44,968 \) and \(\text{count}_{n-1} = 41,018 \), therefore the value of Persistency(dul:Place) = 1. Thus, no persistency issue is identified.

We computed 3cixty Nice KB percentage of persistency based on lode:Events and dul:Places class persistency measure value of \([0..1]\). The 3cixty Nice KB percentage of Persistency \(\% = \left(\frac{\text{No. of classes with issues}}{\text{Total no. of classes}} \right)\) \(\times 100 = \left(\frac{1}{2} \right) \times 10 = 50\%\).

DBpedia. We compare the last two releases (201510, 201604) in terms of entity counts for ten classes; the two releases are highlighted in Table 6. The resulting Persistency measure values are reported in Table 7. The foaf:Person entity counts for the two releases (201510, 201604) are respectively (1, 840, 598 < 2, 703, 493), thus we find no persistency issue. However, Persistency for the remaining nine classes is 0 since the entity counts in version 201604 are consistently lower than in version 201510. This implies that when DBpedia was updated from version 201510 to 201604, Persistency issues appeared in the DBpedia for nine classes, the exception being only foaf:Person.

Table 7

<table>
<thead>
<tr>
<th>Class</th>
<th>Persistency latest release</th>
<th>Releases with Persistency = 0</th>
<th>Historical Persistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbo:Animal</td>
<td>0</td>
<td>[201604]</td>
<td>89%</td>
</tr>
<tr>
<td>dbo:Artist</td>
<td>0</td>
<td>[3.7, 201604]</td>
<td>78%</td>
</tr>
<tr>
<td>dbo:Athlete</td>
<td>0</td>
<td>[201504, 3.5, 201604]</td>
<td>67%</td>
</tr>
<tr>
<td>dbo:Film</td>
<td>0</td>
<td>[201604]</td>
<td>89%</td>
</tr>
<tr>
<td>dbo:MusicalWork</td>
<td>0</td>
<td>[3.7, 2014, 201504, 201604]</td>
<td>56%</td>
</tr>
<tr>
<td>dbo:Organisation</td>
<td>0</td>
<td>[2014, 201604]</td>
<td>78%</td>
</tr>
<tr>
<td>dbo:Place</td>
<td>0</td>
<td>[201604]</td>
<td>89%</td>
</tr>
<tr>
<td>dbo:Species</td>
<td>0</td>
<td>[201604]</td>
<td>89%</td>
</tr>
<tr>
<td>dbo:Work</td>
<td>0</td>
<td>[3.7, 201604]</td>
<td>78%</td>
</tr>
<tr>
<td>foaf:Person</td>
<td>1</td>
<td>[201510]</td>
<td>89%</td>
</tr>
</tbody>
</table>

Discussion

According to the interpretation criteria reported in Table 4 we summarize our findings:

- In case of 3cixty Nice KB, lode:Event class, Persistency = 0. More in detail, if we consider the two latest releases (i.e. 2016-06-15, 2016-09-09) of the KB and we filter by the type lode:Event, the distinct entity counts are equal to 2182 and 689 respectively. Apparently more than 1400 events disappeared in the 2016-09-09 re-
lease: this indicates a potential error in the 3cixty Nice KB. For both investigated types, the percentage of knowledge base Persistency is 50%, which triggers a warning concerning a potential persistency issue existing in the latest (2016-09-09) KB release.

– In case of DBpedia KB, the analysis conducted using the persistency measure, only the foaf:Person class has persistency measure value of 1 indicating no issue. Conversely, all the remaining nine classes show persistency issues as indicated by a measure value of 0. The DBpedia version with the highest number of inconsistent classes is 201604, with a percentage of persistency is equal to 10%.

– The Persistency measure is an observational measure. It only provides an overview of the KB degree of changes. It is effective in case of rapid changes such as lode:Event class.

6.2.2. Historical Persistency

It focuses on the variations observed across all KB releases.

3cixty The variations of persistency measure are considered between the 2016-06-15 and the 2016-09-09 releases. The computation starts from the persistency measures presented in Table 5. For lode:Event-type entities the number of persistency variations with value of 1 is = 6.

Therefore, concerning the lode:Event-type the percentage of historical persistency measure value $= \left(\frac{6}{7} \right) \times 100 = 85.71\%$.

Similarly, for dul:Place, the number of persistency variation with value of 1 present over 8 releases $= 5$. In particular, persistency measure value of 0 presented among four releases, (2016-04-09, 2016-05-3) and (2016-5-13, 2016-05-27). So, for the dul:Place-type the historical persistency measure assumes the value $= \left(\frac{5}{7} \right) \times 100 = 71.42\%$.

DBpedia. Figure 10 reports the evolution of the 10 classes over the 11 DBpedia releases investigated in our analysis; the diagram highlights the area corresponding to the latest two versions (201510, 201604). The measurement values are reported in Table 7 in the rightmost column. The results of dbo:Animal, dbo:Film, dbo:Place and foaf:Person classes show only one persistency drop over all the releases. However, dbo:MusicalWork has four persistency value of 0 over all releases. The dbo:MusicalWork class has the highest number of variations over the release which leads to a low historical persistency value of $\left(\frac{5}{7} \right) \times 100 = 55.55\%$.

Discussion

The Historical Persistency quality measure provides an overview of the different KB releases. It identifies those versions with persistency issues along the different KB releases. To recap:

– In the case of the 3cixty Nice KB, the lode:Event class has one drop (2016-06-15, 2016-09-09) and dul:Place class has two (2016-04-09, 2016-05-3), (2016-5-13, 2016-05-27). Thus, overall historical persistency measure of lode:Event class higher than dul:Place class.

– In case of DBpedia KB, looking at the Historical Persistency results, foaf:Person has persistency value of 0 over the releases of 201504 and
201510. Such values may represent a warning to any data curator interested in the past evolution of the KB. From the release 3.3 to 201604, *dbo:MusicalWork* shows the lowest values of persistency as a result the historical persistence is 55.55%.

- **Historical Persistency** is mainly an observational measure and it gives insights on lifespan of a KB. Using this measure value, a data curators can study the behaviour of the KB over the different releases. An ideal example is represented by the *foaf:Person* class. From the results, we observe that for the last two releases (201510, 201604) *foaf:Person* is the only class without persistency issues.

6.2.3. Consistency

This measure identifies the properties with consistency issues for any knowledge base release.

Threshold Value In this experiment, we used last three releases to identify the threshold value. In general, we considered the lowest relative frequency as the threshold value considering maximum no. of instances. For example, 3cixty Nice *lode:Event*-type releases (2016-05-27,2016-06-15,2016-06-09) relative frequency value of 0.20 has (21,23,15) properties, 0.10 has (12,15,10) properties and 0.05 has (2,6,3) properties. Similarly, for DBpedia KB *foaf:Person*-type releases (201504,201510,201604) cumulative distribution of 0.20 has (223,265,219) properties, 0.10 has (163,178,158) properties, and 0.05 has (59,57,58) properties. From the three different distributions value of 0.05 has lower number of instances where value of 0.20 has increasing number of instances. Therefore, we considered 0.10 as threshold value considering numbers of instances.

3cixty Here we focus on the latest release (2016-09-09) of the 3cixty Nice KB. We analyzed *lode:Event*-type and *dul:Place*-type instances. Based on a fixed threshold values of 0.10, we measured the consistency for *lode:Event* and *dul:Place*-type. From the *lode:Event*-type resources, by applying the consistency analysis, we found for the 10 properties reported below a fixed threshold. Similarly, for *dul:Place*-type resources we found for the 12 properties below a threshold value.

DBpedia Table 8 reports, for the DBpedia ten class, the total number of properties, the consistent properties – i.e. those with consistency value = 0 –, and the consistent properties – consistency value = 1. The values are based on the latest two releases, 201510 and 201604. We measured the consistency identifying those properties with the frequency lower than the threshold value $T = 0.10$. For example, *foaf:Person* has a total of 436 properties over the 201510 and 201604 releases. We found 158 inconsistent properties, i.e. properties whose frequency is lower than the threshold.

Discussion

The consistency measure identifies only those properties whose frequency is below a given threshold. The main findings are:

- The Consistency measure identifies only those properties whose frequency is below the thresh-
old value, which triggers a warning to a data curator concerning a potential consistency issue exist.
– In the 3cixty Nice KB latest release (2016-09-09), we only found ten properties for lode:Event-type and twelve for dul:Place-type resources. We further investigate this output in the qualitative analysis.
– In the latest two releases of the DBpedia KB (201510,201604) we identified consistent properties for 10 classes. Consistency measure results present in Table 8. For example foaf:Person class has 198 inconsistent properties. We further investigate this measure through manual evaluation for class foaf:Person.

6.2.4. Completeness

3cixty. The measure has been computed based on the last two KB releases, namely 2016-05-15 and 2016-09-09. Based on the definition (Sec 4.2), for the lode:Event, the number of predicates in the last two releases = 21 and the number of predicates with completeness issues (value of 0) = 8. In Figure 11, we report the measure of completeness for the lode:events-type where we only present those properties with issues (value of 0).

The percentage of completeness for lode:Event class \(\frac{21}{21} \times 100 = 62\% \). Similarly for dul:Place, the number of predicates in the last two releases = 28 and the number of predicates with completeness issue (value of 0) = 14. In Figure 12, we present dul:Place class completeness measure results of those properties with completeness issue (value of 0).

The percentage of completeness for the dul:Place-type is equal to \((1 - \frac{14}{28}) \times 100 = 50\% \).

DBpedia. Table 9 reports the results of the completeness based on the latest two releases of DBpedia 201510 and 201604. The Completeness measure was applied only to the consistent properties, i.e. properties having a Consistency measure = 1. The table reports, for each class, the total number of properties, the consistent properties – which were considered for completeness computation –, the complete properties, the incomplete properties, and the percentage of complete properties (w.r.t. the consistent ones).

For example, foaf:Person has a total of 436 properties over the two considered versions. The number of consistent properties is 238. We computed the completeness measures over those 238 properties and identified 50 properties with completeness measure value of 0 (incomplete). The remaining 188 properties can be considered as complete. The percentage of complete properties can be computed as \(\frac{188}{238} \times 100 = 79.0\% \).

Discussion The Completeness metric is based on a pairwise comparison of releases. Below we summarize our findings:
– Looking at the two latest releases (2016-06-15, 2016-09-09) of the 3cixty Nice KB, we have identified those properties with completeness value of 0 as issue indicator. The total number of properties of the latest two versions are 21 excluding those properties not presented in both releases. For instance, the lode:Event class property lode:atPlace exhibits an observed frequency of 1632 in release 2016-06-15, while it is 424 in release 2016-09-09. As a consequence the Completeness measure evaluates to 0, thus it indicates an issue of completeness in the KB. In 3cixty, the dul:Place percentage of completeness is 50%, such a figure indicates a high number of incomplete predicates in the latest version (2016-09-09).
– For DBpedia KB looking at the last two releases (201510,201604) we identified incomplete properties for 10 classes. Completeness measure results are listed in Table 9. For instance, we identified a total of 50 incomplete properties for foaf:Person class. The foaf:Person class property

<table>
<thead>
<tr>
<th>Class</th>
<th>Total</th>
<th>Inconsistent</th>
<th>Consistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbo:Animal</td>
<td>174</td>
<td>38</td>
<td>138</td>
</tr>
<tr>
<td>dbo:Artist</td>
<td>442</td>
<td>83</td>
<td>359</td>
</tr>
<tr>
<td>dbo:Athlete</td>
<td>447</td>
<td>142</td>
<td>305</td>
</tr>
<tr>
<td>dbo:Film</td>
<td>508</td>
<td>89</td>
<td>419</td>
</tr>
<tr>
<td>dbo:MusicalWork</td>
<td>344</td>
<td>97</td>
<td>247</td>
</tr>
<tr>
<td>dbo:Organisation</td>
<td>1,143</td>
<td>173</td>
<td>970</td>
</tr>
<tr>
<td>dbo:Place</td>
<td>1,194</td>
<td>114</td>
<td>1080</td>
</tr>
<tr>
<td>dbo:Species</td>
<td>183</td>
<td>39</td>
<td>144</td>
</tr>
<tr>
<td>dbo:Work</td>
<td>964</td>
<td>110</td>
<td>854</td>
</tr>
<tr>
<td>foaf:Person</td>
<td>436</td>
<td>158</td>
<td>278</td>
</tr>
</tbody>
</table>

Table 8 Properties for the DBpedia classes and Consistency measures. Results are based on Version 201510 & 201604 with threshold T=0.10.
Figure 11. 3cixty lode:Event completeness measure results

Table 9
DBpedia 10 class Completeness measure results based on release 201510 and 201604

<table>
<thead>
<tr>
<th>Class</th>
<th>Properties</th>
<th>Consistent</th>
<th>Incomplete</th>
<th>Complete</th>
<th>Complete (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbo:Animal</td>
<td>174</td>
<td>138</td>
<td>37</td>
<td>101</td>
<td>73.1%</td>
</tr>
<tr>
<td>dbo:Artist</td>
<td>442</td>
<td>359</td>
<td>79</td>
<td>280</td>
<td>77.9%</td>
</tr>
<tr>
<td>dbo:Athlete</td>
<td>447</td>
<td>305</td>
<td>124</td>
<td>181</td>
<td>59.3%</td>
</tr>
<tr>
<td>dbo:Film</td>
<td>508</td>
<td>419</td>
<td>114</td>
<td>305</td>
<td>72.6%</td>
</tr>
<tr>
<td>dbo:MusicalWork</td>
<td>344</td>
<td>247</td>
<td>97</td>
<td>150</td>
<td>63.0%</td>
</tr>
<tr>
<td>dbo:Organisation</td>
<td>1,143</td>
<td>970</td>
<td>334</td>
<td>636</td>
<td>65.5%</td>
</tr>
<tr>
<td>dbo:Place</td>
<td>1,194</td>
<td>1080</td>
<td>437</td>
<td>643</td>
<td>59.5%</td>
</tr>
<tr>
<td>dbo:Species</td>
<td>183</td>
<td>144</td>
<td>42</td>
<td>102</td>
<td>70.8%</td>
</tr>
<tr>
<td>dbo:Work</td>
<td>964</td>
<td>854</td>
<td>241</td>
<td>613</td>
<td>71.7%</td>
</tr>
<tr>
<td>foaf:Person</td>
<td>436</td>
<td>238</td>
<td>50</td>
<td>188</td>
<td>79.0%</td>
</tr>
</tbody>
</table>

dbo:firstRace exhibits an observed frequency of 796 in release 201510, while it is 788 in release 201604. As a consequence the Completeness measure evaluated to 0, thus it indicates an issue of completeness in the KB. We further validate our results through manual inspection. In DBpedia, the (dbo:Place) percentage of completeness is 59.5%, such figure indicates a high
6.3. Qualitative Analysis

The general goal of our study is to verify how the evolution analysis of the changes observed in a set of KB releases helps in quality issue detection. In the quantitative analysis, we identified classes and properties with quality issues. We, then, summarize on the qualitative analysis based on the results of the quantitative analysis.

Given the large number of resources and properties, we considered just a few classes and a portion of the entities and properties belonging to those classes in order to keep the amount of manual work to a feasible level. The selection has been performed in a total random fashion to preserve the representativeness of the experimental data. In particular we considered a random subset of entities. We focused on the effectiveness of the quality measures. A measure is considered effective when it is able to detect an actual problem in the KB. A quality issue identifies a potential error in the KB.

In this step, the goal is to extract, inspect, and perform a manual validation of detected quality issues. More in detail, manual validation tasks based on the following four steps:

1. Incomplete properties: select a list of properties from quantitative analysis with quality issues for validation tasks.

2. Instances: quality profiling is done based on summary statistics. To extract the missing instances of a property, the instance extraction tasks performs comparison between the list of instances from the last two KB releases.

3. Inspections: after the instance extraction is performed, we select each instance for inspection and report. In general, KBs use automatic approach to extract data from structure or unstructured data sources. For instance, the construction of the DBpedia KB uses an automatic extraction process of data instances from Wikipedia Infoboxes. Therefore, with the approach presented in this paper we perform validation using data sources for each instances with quality issues. We manually check if the information is present in the data sources but missing in the KB.
iv) Report: validation result of of a instance is reported as true positive (the subject presents an issue, and an actual problem was detected) or false positive (the item presents a possible issue, but none actual problem is found).

In particular, using the interpretation criteria reported in Table 4, from the measure value we can identify a quality issue. The results are a set of potential problems, part of them are accurate – they point to actual problems –, while others are not – they point to false problems.

We decided to measure the precision for evaluating the effectiveness of our approach. Precision is defined as the proportion of accurate results of a quality measure over the total results. More in detail, for a given quality measure, we define an item – either a class or a property – as true positive (TP) if, according to the interpretation criteria, the item presents an issue and an actual problem was detected in the KB. An item represents a false positive (FP) if the interpretation identifies a possible issue but none actual problem is found. The precision can be computed as follows:

\[p = \frac{TP}{TP + FP}. \]

(1)

We evaluated the precision manually by inspecting the results marked as issues from the completeness and consistency measures. Persistency and historical persistency we only investigate subset of dataset to detect the causes of quality issues for a entity type. Historical persistency is a derived measures from persistency therefore we only performed the validation for persistency.

We considered the results obtained by the quantitative analysis for the entities types and properties attached to the class lode:Event for the 3cixty Nice KB; we considered entities and properties related to the classes dbo:Species and foaf:Person for the DBpedia KB. We designed a set of experiments to measure the precision as well as to verify quality characteristics. In Table 10, we present an overview of our selected classes and properties along with the experiments and, in Table 11, we summarize the manual evaluation results.

Persistency & Historical Persistency We evaluated persistency measures based on the number of entity counts for lode:Event between two different KB releases (2016-06-15, 2016-09-09) of the 3cixty Nice KB. From the quantitative analysis, we detected lode:Event has persistency issue with measure value of 0.

For what concerns DBpedia, out of the ten classes under investigation, nine of them have persistency value of 0, which implies that they have persistency issue. We investigated dbo:Species and dbo:Film that shows issues.

Historical persistency is derived from persistency characteristic. It evaluates the percentage of persistency issues present over all KB releases. We argue that by persistency measure validation we also verified historical persistency results.

- **lode:Event**: From the extracted KB release on 2016-06-15, there are 2,182 distinct entities of type lode:Event. However, in the 2016-09-09 release, that figure falls down to 689 distinct entities. We perform a comparison between the two releases to identify the missing entities. As a result we identified a total of 1911 entities missing in the newest release: this is an actual error. After a further investigation with the curators of the KB we found that this is due to an error in the reconciliation framework caused by a problem of overfitting. The error present in the 2016-09-09
Table 11
Summary of manual validation results

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>3cixty Nice</th>
<th>DBpedia</th>
<th>Causes of quality issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistency</td>
<td>True positive: lode:Event entities missing due to algorithm error</td>
<td>False positive; dbo:Species and dbo:Film class quality issues fixed in current version;</td>
<td>3cixty due to an error in the reconciliation framework caused by a problem of overfitting. DBpedia schema inconsistency present in 201510 has been fixed resulting a false positive.</td>
</tr>
<tr>
<td>Historical Persistency</td>
<td></td>
<td></td>
<td>3cixty Schema remains consistent no real variation presents in the conceptualization of properties. DBpedia due to schema update there present erroneous conceptualization in the properties.</td>
</tr>
<tr>
<td>Consistency</td>
<td>False Positive: lode:Event properties 2016-09-09 release we did not find any error</td>
<td>True positive : foaf:Person and dbo:Place class on 201604 version we identify properties with consistency issue. Based on the threshold value of 0.10 it has a precision of 68% and 76%.</td>
<td>3cixty and DBpedia completeness issues due to data source extraction error. In particular, completeness issues due to missing field values for auto generated data extraction process.</td>
</tr>
<tr>
<td>Completeness</td>
<td>True positive: lode:Event properties missing due to algorithm error. Over 5 properties we computed Precision of 95%</td>
<td>True positive: foaf:Person properties missing due to completeness issue. Over 50 properties we computed Precision of 94%. For dbo:Place over 50 properties we computed precision of 86%.</td>
<td></td>
</tr>
</tbody>
</table>

release is a true positive identified by the Persistency measure.

- dbo:Species: We analyzed entity counts of class dbo:Species for the latest two releases of DBpedia (201510 and 201604). The counts are 305, 378 and 301, 715 respectively. We performed a comparison between the two releases to identify the missing entities; we found 12, 791 entities that are no more present in the latest release.

We investigate in detail the first six missing entities. For example, the entity AIDS II in 201510 was classified with type dbo:Article as well as dbo:Species. However, in 201604 it has been updated with a new type and the type dbo:Species was removed. There was clearly an error in the previous version that has been fixed in the latest, however, from the point of view of the latest release this is a false positive.

- dbo:Film: We performed fine grain analysis based on subset of entity type dbo:Film for the latest two releases of DBpedia (201510 and 201604). The counts are 177, 989 and 146, 449 respectively. We performed a comparison between the two releases to identify the missing entities; we found 49, 112 entities that are no more present in the latest release. We investigate in more detail the first six missing entities. For example, the subject dbpedia:$9.99 in 201510 was classified with type dbo:Work as well as dbo:Film. However, in 201604 it has been removed from both dbo:Work and dbo:Film was removed. We further explore the Wikipedia page and film exists. It is clearly an error in the data extraction in 201604 release.

Consistency We computed the consistency measure values using the threshold \(T = 0.10 \). Properties with consistency = 0 were considered as potential quality issues. We considered the properties attached to entities typed lode:Event for the 2016-09-09 3cixty Nice KB. For the DBpedia KB, we considered the properties attached to the entities of type foaf:Person and dbo:Place from the 201604 release.

- lode:Event properties: We found only 10 inconsistent properties. After a manual inspection of those properties we were unable to identify any actual error in the resources, so we classified all of the issues as false positives.

- foaf:Person properties: We extracted all the properties attached to entities of type foaf:Person and we identified 158 inconsistent properties. From

21 [http://dbpedia.org/page/AIDS_(computer_virus)]
the properties list, we inspected each of the property resources in detail. From the initial inspection, we observe that properties with low frequency contain actual consistency problems. For example, the property dbo:Lake present in the class foaf:Person has a property frequency of 1. From further investigations, this page relates to X. Henry Goodnough an engineer and chief advocate for the creation of the Quabbin Reservoir project. However, the property relates to a person definition. This indicates an error presents due to the wrong Wikipedia infobox extraction. From the manual validation, the precision of the identification of issues using the consistency measure accounts to 68%.

- dbo:Place properties: We identified total 114 properties with consistency issues for dbo:Place class. We extracted all the data instances for the properties with consistency issues. From the manual inspection in dbo:Place class we identify data instances with erroneous conceptualization. For example, the property dbo:weight has 4 data instances mapped with dbo:Place type. We further investigate each of this data instances and corresponding Wikipedia pages. From manual investigation we can identify dbo:weight property erroneously mapped with dbo:Place type. Such as, one of the data instance wikipedia-en:Nokia_X5 is about mobile devices is mapped with dbo:Place type. This is indicates an inconsistency issues due to wrong schema presentation. Based on the manual validation results we evaluate precision of 76% for dbo:Place class.

Completeness For the of 3cixty KB we analyzed the 2016-06-06 and 2016-09-09 releases, we observed the properties attached to lode:Event entities. DBpedia KB entity type of foaf:Person and dbo:Place in 201510 and 201604 releases has 50 and 437 properties with completeness issues. For manual validation we manually inspected whether they are real issues.

- lode:Event properties: From the analysis of the 2016-06-06 and 2016-09-09 releases of the 3cixty KB releases, we found eight properties showing completeness issues. Based on the eight lode:Event class properties, we investigated all entities and attached properties. We first investigated five instances for each property, manually inspecting 40 different entities. From the investigation we observed that those entities that are presents in 2016-06-06 are missing in 2016-09-09 that leads to a completeness issue. Entities are missing in the 2016-09-09 release due to an error of the reconciliation algorithm. Based on this manual investigation, the completeness measure generates an output that has a precision of 95%.

- foaf:Person properties: Based on the 50 properties from foaf:Person class identified by the completeness measure in the quantitative experiment, we investigated the subject of each property. We first checked five subjects for manual evaluation. For DBpedia, we checked a total of 250 entities. For example, we identified that the property bnfId has completeness issue. We extracted all the subjects for the releases of 201510 and 201610.

In detail, the property dbo:bnfId for version 201604 has only 16 instances and for version 201510 has 217 instances. We performed a entities comparison between these two releases to identify the missing instances of the given property dbo:bnfId in the 201604 release. After a comparison between the two releases, we found 204 distinct instances missing in 201610 version of DBpedia. We perform a further manual investigation on instances to verify the result.

One of the results of the analysis is John_Hartley_(academic) who is available in the 201510 release. However, it is not found in 201604 release of DBpedia. To further validate such an output, we checked the source Wikipedia page using foaf:primaryTopic about John Hartley (academic). In the Wikipedia page BNF ID is present as linked to external source. In DBpedia from 201510 version to 201604 version update, this entity has been removed for the property dbo:bnfId. This example clearly shows a completeness issue presents in the 201604 release of DBpedia for property dbo:bnfId. Based on the investigation over the property values, we compute our completeness measure has the precision of 94%.

- dbo:Place properties: From the 437 incomplete properties from from dbo:Place class we randomly selected 50 properties. We checked first five entities for manual evaluation. For dbo:Place class, we checked a total of 250 entities. For ex-

\(^{23}\)http://dbpedia.org/page/John_Hartley_ (academic)

\(^{24}\)https://en.wikipedia.org/wiki/John_ Hartley_(academic)
In this paper, we have proposed an approach to detect quality issues leveraging four quality characteristics derived by KB evolution analysis. In this section, we first summarize our findings and then we discuss the limitations that we have identified and have led the planning of future activities.

7.1. Evolution Analysis to Drive Quality Assessment

Similarly to Radulovic et al. [36], we present a discussion of our approach with respect to the following four criteria:

Conformance provides insights to what extent a quality framework and characteristics meet established standards. In fact, among the four proposed quality characteristics we have proposed two characteristics—completeness and consistency—from the ISO 25012 standard. On the other hand, we followed the study presented by Ellefi et al. [7] to propose persistency and historical persistency quality characteristics.

Applicability implies the practical aspects of the quality assessment approach. Coarse-grained analysis significantly improves data analysis space and time complexity. We envision that our approach can be automated using daily snapshot generations and automatically creating periodic reports. We experimented with two different KBs and verified our hypothesis for both KBs. Our implementation follows a simple structure and it can scalable to KBs with a large number of entities and properties.

Causes of Quality Issues provides insights regarding detected issues using our approach. In our approach, we identified two types of quality issues: i) errors in the data source extraction process, and ii) erroneous schema presentation. In case of 3cixty Nice KB, we only found issues based on the data source extraction process. Such as we found significant no. of resources missing in lode:Event class last release due to algorithmic error. On the other hand, 3cixty Nice KB schema remains unchanged in all the KB releases. More specifically, we didn’t found any real issues based on schema presentation in case of consistency measure which leads to false positive results. We found both types of quality issues for DBpedia KB. For example, entities missing in foaf:Person class due to incorrect mapping of field values in the data extraction process. Also, we identified significant no. of issues due to wrong schema presentation for DBpedia KB. Such as property dbo:Lake mapped with foaf:Person type due to automatic mapping with wrong Wikipedia infobox keys. Based on the two use cases, our approach has proven highly efficient to identify quality issues in the data extraction and integration process.

Performance We evaluated our quality assessment approach in terms of precision through manual evaluation. We present persistency measure only to monitor the stability of a class instead of fine-grain analysis on the entities. In particular, quality characteristics measures at the class level such as persistency, we only investigate the detected quality issues is true positive(TP) or false positive(FP). Based on the qualitative analysis, persistency measure for 3cixty Nice KB has TP results, and DBpedia KB has FP results. We evaluated precision based on completeness measure for the 3cixty and DBpedia KBs. The computed precision of completeness measure in our quality assessment approach is: i) 94% for foaf:Person-type entities of DBpedia KB; ii) 86% for dbo:Place-type entities of DBpedia KB, and iii) 95% for the lode:Event-type entities of the 3cixty Nice KB. However, the capability of Consistency characteristics to detect quality issues varies significantly between the two case studies. We only identify Consistency issue in case of DBpedia and computed precision of 68% through manual evaluation for foaf:Person-type entities and 76% for dbo:Place-type entities.
7.2. Frequency of Knowledge Base Changes

KBs can be classified according to application areas, schema changes, and frequency of data updates. The two KB we analyzed, namely 3cixty Nice and DBpedia, fall into two distinct categories: i) continuously changing KB with high frequency updates (daily updates), and ii) KB with low frequency updates (monthly or yearly updates).

i) KBs continuously grow because of an increase in the number of instances and predicates, while they preserve a fixed schema level (T-Box). These KBs are usually available via a public endpoint. For example, DBpedia Live and 3cixty Nice KB falls in this category. In fact, the overall ontology remains the same but new triples are added as effect of new information being generated and added to the KB. In our analysis, we collected batches of data at nearly fixed time intervals for 8 months.

ii) KBs grow at intervals since the changes can be observed only when a new release is deployed. DBpedia is a prime example of KBs with a history of releases. DBpedia consists of incremental versions of the same KB where instances and properties can be both added or removed and the schema is subjected to changes. In our approach we only considered subject changes in a KB over all the releases. In particular, we only considered those triples \(T \) from common classes \((c_1...c_i) \) or properties \((p_1...p_i) \) presented in all releases \((V_1....Vn) \) of the same KB.

7.3. Quality Assessment over Literal Values

We performed experimental analysis based on each quality characteristics. From the quantitative analysis, we identified properties with quality issues from consistency and completeness measures. We validated the observed results through manually investigating each properties value. From our investigation, we perceive that those properties that have quality issues may contain an error in literal values. We then further investigated our assumption in the case of DBpedia. We choose one random property of the foaf:Person-type entities. We finally examined the literal values to identify any error present.

From our quantitative analysis on the completeness characteristics of DBpedia, we detected the property bnfId \(^{26}\) triggered a completeness issue. Only 16 resources in DBpedia 201604 version had such an issue, while 217 resources in 201510 version. We, therefore, further investigated the property bnfId in details on the 201604 release. We explored the property description that leads to Wikidata link \(^{27}\) and examined how BnF ID is defined. It is an identifier for the subject issued by BNF (Bibliothèque nationale de France). It is formed by 8 digits followed by a check digit or letter. In Table 12, we present 6 subjects and objects of 207 bnfId property where each object follows the formatting structure. However, the literal value for subject Quincy_Davis_(musician)\(^{28}\) contains a “/” between the digits “12148” and “cb16520477z”, which does not follow standard formatting structure issued by BNF (Bibliothèque nationale de France). It clearly points to an error for the subject Quincy_Davis_(musician).

From the initial inspection, we assume that it can be possible to identify an error in any literal value using our approach. However, to detect errors in literal values, we need to extend our quality assessment framework to inspect literal values computationally. We considered this extension of literal value analysis as a future research endeavour.

Table 12

<table>
<thead>
<tr>
<th>Subject Object</th>
<th>Subject Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbp:Tom_Morello “14051227k”</td>
<td>dbp:David_Kherdian “14812877”</td>
</tr>
<tr>
<td>dbp:David_Kherdian “14812877”</td>
<td>dbp:Andre_Trocmé “cb12500614n”</td>
</tr>
<tr>
<td>dbp:Andre_Trocmé “cb12500614n”</td>
<td>dbp:Quincy_Davis_(musician) “12148/cb16520477z”</td>
</tr>
<tr>
<td>dbp:Quincy_Davis_(musician) “12148/cb16520477z”</td>
<td>dbp:Charles_S._Belden “cb140782417”</td>
</tr>
<tr>
<td>dbp:Julien_Durand_(politician) “cb158043617”</td>
<td></td>
</tr>
</tbody>
</table>

7.4. Lifespan analysis of Evolving KBs

On the basis of the dynamic feature [7], a further conjecture poses that the growth of the knowledge in a mature KB ought to be stable. From our analysis on the 3cixty Nice and DBpedia KB, we observed that variations in the knowledge base growth can affect qual-

\(^{26}\)http://dbpedia.org/ontology/bnfId

\(^{27}\)https://www.wikidata.org/wiki/Property:P268

\(^{28}\)http://dbpedia.org/resource/Quincy_Davis_(musician)
ity issues. Furthermore, we argue that quality issues can be identified through monitoring lifespan of a RDF KBs.

We can measure growth level of KB resources (instances) by measuring changes over the different releases. In particular, knowledge base growth can be measured by detecting the changes over KB releases utilizing trend analysis such as the use of simple linear regression. Based on the comparison between observed and predicted values, we can detect the trend in the KB resources, thus detecting anomalies over KB releases if the resources have a downward trend over the releases. Following, we derive KB lifespan analysis regarding change patterns over time as well as experiments on the 3cixty Nice KB and DBpedia KB. To measure KB growth, we applied linear regression analysis of entity counts over KB releases. In the regression analysis, we checked the latest release to measure the normalized distance between an actual and a predicted value. In particular, in the linear regression we used entity count (\(y\)) as dependent variable and time period \(t\) as independent variable. Here, \(n = total\ number\ of\ KB\ releases\) and \(i = 1...n\) present as time period.

We start with a linear regression fitting the count measure of the class \((C)\):

\[
y = at + b
\]

The residual can be defined as:

\[
residual_i(C) = a \cdot t_i + b - count_i(C)
\]

We define the normalized distance as:

\[
ND(C) = \frac{residual_i(C)}{mean(|residual_i(C)|)}
\]

Based on the normalized distance, we can measure KB growth of a class \(C\) as:

\[
KBgrowth(C) = \begin{cases} 1 & \text{if } ND(C) \geq 1 \\ 0 & \text{if } ND(C) < 1 \end{cases}
\]

the value is 1 if the normalized distance between actual value is higher than predicted value of type \(C\), otherwise it is 0. In particular, if the KB growth measure has value of 1 then the KB may have unexpected growth with unwanted entities otherwise KB remains stable.

3cixty Nice case study The experimental data is reported in Table 5. We applied the linear regression over the eight releases for the lode:Event-type and dul:Place-type entities. We present the regression line in Figure 13a and 13b.

From the linear regression, the 3cixty Nice has a total of \(n = 8\) releases where the \(8^{th}\) predicted value for lode:Event \(y'_{events} = 3511.548\) while the actual value=689. Similarly, for dul:Place \(y'_{places} = 47941.57\) and the actual value=44968.

The residuals, \(e_{events} = [689 - 3511.548] = 2822.545\) and \(e_{places} = [44968 - 47941.57] = 2973.566\). The mean of the residuals, \(e_{event} = 125.1784\) and \(e_{place} = 3159.551\), where \(i = 1...n - 1\).

So the normalized distance for, \(8^{th}\) lode:Event entity \(ND_{event} = 2822.545/\sqrt{125.1784} = 22.54818\) and dul:Place entity \(ND_{place} = 3159.551/\sqrt{3159.551} = 0.9411357\).

For the lode:Event class \(ND_{events} \geq 1\) so the KB growth measure value = 1. However the for dul:Place, \(ND_{places} < 1\) so the KB growth measure value = 0.

In case of the 3cixty Nice KB the lode:Event class clearly presents anomalies as the number of distinct entities drops significantly on the last release. In Figure 13a, the lode:Event class growth remains constant until it has errors in the last release. It has higher distance between actual and predicted value of lode:Event-type entity count. However, in the case of dul:Place-type, the actual entity count in the last release is near to the predicted value. We can assume that on the last release the 3cixty Nice KB has improved the quality of data generation matching the expected growth.

DBpedia Case study The experimental data is reported in Table 6. Based on the KB growth measure definition, we measured the normalized distance for each class (Table 13). We compared with the number of entities from the last release (201604) actual value and predicted value from linear regression to measure the normalized distance.

From the results observed for dbo:Artist, dbo:Film and dbo:MusicalWork, the normalized distance is near the regression line with, and \(ND < 1\). In Figure 14, we present the DBpedia 10 classes KB growth measure value and we can observe that there is no issue in the KB.

For instance while inspecting the different trends over the KB releases and calculating the normalized distance, we identified that foaf:Person-type last release (201604) entity count has a higher growth (over the expected). Such as foaf:Person has KB growth measure of 1 where normalized distance, \(ND = 2.08\). From this measure we can implies that in foaf:Person there is persistency issue. We can imply that additions
in a KB can also be an issue. It can include unwanted subjects or predicates.

<table>
<thead>
<tr>
<th>Class</th>
<th>Normalized Distance(ND)</th>
<th>KB Growth measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbo:Animal</td>
<td>3.05</td>
<td>1</td>
</tr>
<tr>
<td>dbo:Artist</td>
<td>0.66</td>
<td>0</td>
</tr>
<tr>
<td>dbo:Athlete</td>
<td>2.03</td>
<td>1</td>
</tr>
<tr>
<td>dbo:Film</td>
<td>0.91</td>
<td>0</td>
</tr>
<tr>
<td>dbo:MusicalWork</td>
<td>0.56</td>
<td>0</td>
</tr>
<tr>
<td>dbo:Organisation</td>
<td>2.02</td>
<td>1</td>
</tr>
<tr>
<td>dbo:Place</td>
<td>5.03</td>
<td>1</td>
</tr>
<tr>
<td>dbo:Species</td>
<td>5.87</td>
<td>1</td>
</tr>
<tr>
<td>dbo:Work</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>foaf:Person</td>
<td>2.08</td>
<td>1</td>
</tr>
</tbody>
</table>

We define this KB growth measure as **stability characteristic**. A simple interpretation of the stability of a KB is monitoring the dynamics of knowledge base changes. This measure could be useful to understand changes in a KB growth patterns over time. Data curators can identify persistency issues in KB resources using lifespan analysis. However, a further exploration of the KB lifespan analysis is needed and we consider this as future research activity. In particular, we want to explore further (i) which factors are affecting KB growth and (ii) validating the stability measure.

7.5. Limitations

We have identified the following two limitations. First, as a basic measurement element, we only considered aggregated measures data from statistical profiling such as frequency of properties in a class. For quantitative analysis, we considered raw knowledge base differences among releases. In order to be able to detect actual differences, we would need to store two releases of a KB in a single graph to compute the set differences required to detect such changes. We performed manual validation by inspecting data sources. However, this approach has several drawbacks from a technical point of view. Furthermore, regardless of the technical details, the set difference operation is, computationally-wise, extremely expensive. As a future work, we plan to extend our manual validation approach by cross-referencing GitHub issues or mail lists.

Second, KBs are growing over time with new resources that are added or deleted. In this study we only considered negative impact of deletion of resources. As a future work, we plan to investigate negative impact of unwanted addition of resources in the KBs.

8. Conclusion and Future Work

The main motivation for the work presented in this paper is rooted in the concepts of Linked data dynam-
ics on the one side and knowledge base quality on the other side. Knowledge about Linked Data dynamics is

https://www.w3.org/wiki/DatasetDynamics
essential for a broad range of applications such as effective caching, link maintenance, and versioning [20].

However, less focus has been given toward understanding knowledge base resource changes over time to detect anomalies over various releases. In particular, we explored the idea of monitoring KB changes as the premise of this work. We assumed that KB evolution analysis of the changes observed in different releases might lead to detecting issues and measuring quality. To verify our assumption, we proposed four quality characteristics, based on the evolution analysis. We designed a quality assessment approach by profiling quality issues using different Knowledge Base (KB) releases.

One of the core ideas in this work is to use dynamic features from data profiling results for analyzing the Knowledge Base evolutions. In particular, we explored the benefits of aggregated measures using quality profiling. The advantage of our approach lies in the fact that it captures anomalies in for an evolving KB that can trigger alerts to curators or quality repair processes. More specifically, we consider coarse-grained analysis as an essential requirement to capture any quality issues for an evolving KB. Although coarse-grained analysis cannot capture all possible quality issues, it helps to identify common quality issues such as systematic errors in data extraction and integration processes. Such as for periodic automated updates of KBs, if the schema remains unchanged and at a certain time significant no. of resources is missing then it can lead to potential completeness issues for a KB. Moreover, the drawback of fine grain analysis using raw change detection is the significant space and time complexity.

In this paper, we proposed completeness and consistency quality characteristics form the ISO 25012 standard. Also, we proposed persistency and historical persistency quality characteristics based dynamics features presented by Ellefi et al. [7]. We defined a KB quality assessment approach that explores the KB changes over various releases of the same KB. The proposed approach is able to provide a quality problem report to KB curators.

To assess our approach, we performed an experimental analysis based on quantitative and qualitative procedures. The assessment was conducted on two knowledge bases, namely DBpedia and 3cixty Nice. For the quantitative analysis, we applied our quality characteristics over eight releases of the 3cixty Nice KB and 11 releases of the DBpedia KB. Furthermore, we applied a qualitative analysis technique to validate the effectiveness of the approach. We can summarize the main findings of our work as follows:

– The analysis of Persistency and Historical Persistency on the 3cixty KB shows that KB changes over the releases could lead to detecting missing values. Missing values could happen due to algorithm error as in the case of the 3cixty Nice KB lode:Event class. However, in the case of DBpedia Persistency issues do not always indicate actual errors. We observed that dbo:Species subjects with the wrong type in version 201510 fixed in version 201610.

– From the quantitative and qualitative analysis of consistency measure, we only identify issues in case of DBpedia KB. We did not find any consistency issue for 3cixty Nice KB. We observe that continuously changing KBs with high-frequency updates (daily updates) such as 3cixty Nice KB tends to remain stable in case of the consistency issue. On the other hand, KB with low-frequency updates (monthly or yearly updates) such as DBpedia KB tends to have inconsistency.

– We observed extremely good performances of the completeness characteristics for both 3cixty Nice and DBpedia KB. The Completeness measure was able to detect actual issues with very high precision – 95% for the 3cixty Nice KB lode:Event class and 94% for the DBpedia foaf:Person class.

The future research activities we envision are as follows:

– We plan to expand our evolution based quality analysis approach by analyzing other quality characteristics presented in literature such as Za- veri et al. [44]. Also, we intend to apply our approach to KBs in other domain to further verify our assumption;

– A limitation of the current approach is that we only considered negative impact of deletion of resources. We plan to study how we can dynamically adapt impact of addition of resources in a KB;

– From the initial experiments, we assume that it can be possible to identify an error in literal value using our approach. We want to extend our quality assessment approach to inspect literal values;

– We argue that quality issues can be identified through monitoring lifespan of a KB. This has led to conceptualize the Stability quality characteris-
tics meant to identify anomalies in a KB. We plan to monitor various KB growth rates to validate this assumption.

References

