Abstract. Stream reasoning is an emerging research area focused on providing continuous reasoning solutions for data streams. The exponential growth in the availability of streaming data on the Web has seriously hindered the applicability of state-of-the-art expressive reasoners to be applied to streaming information in a scalable way. However, we can leverage advances in continuous processing of Semantic Web streams to reduce the amount of data to reason upon at each iteration. Following this principle, in previous work we have combined semantic query processing and non-monotonic reasoning over data streams in the StreamRule system. We specifically focus on the scalability of a rule layer based on a fragment of Answer Set Programming (ASP). We recently expanded on this approach by designing an algorithm to analyse input dependency so as to enable parallel execution and combine the results. In this paper, we expand on this solution by providing i) a proof of correctness for the approach, ii) an extensive experimental evaluation for different levels of complexity of the input program, and iii) a clear characterization of all the algorithms involved in generating and splitting the graph and identifying heuristics for node duplication, as well as partitioning the reasoning process and combining the results.

Keywords: Semantic Web, stream reasoning, non-monotonic reasoning, Answer Set Programming, parallel reasoning, data partitioning, dependency graph

1. Introduction

The variety of real-world applications in several domains, such as the Internet of Things, Social Networks and Smart Cities, requires reasoning capabilities that can handle incomplete and potentially inconsistent input streams, and extract knowledge from them to support decision making. While semantic technologies for handling data streams focus on query pattern matching and have limited support for complex reasoning capabilities, logic-based non-monotonic reasoning approaches are very expressive but can be quite costly in terms of efficiency. Expressive stream reasoning for the Semantic Web explores advances in semantic stream processing technologies for representing and processing data streams on the one hand, and non-monotonic reasoning approaches for performing com-
plex rule-based inference on the other hand. This combination is based on the principle of having a 2-tier approach where: i) a semantic stream query processor is used to filter semantic data elements (typically RDF triples), and ii) a non-monotonic reasoner is used for computationally intensive tasks over the filtered data. Since the grounding phase in rule-based inference is responsible for the size of the program to be evaluated, such a combined approach improves the scalability of complex reasoning over Semantic Web streams by reducing the input to the non-monotonic reasoner.

Current expressive reasoning systems over RDF data streams, like ASR [11], EP-SPARQL [2], and StreamRule [19], support non-monotonic reasoning over data streams in different ways. In particular, ASR uses the DLVhex solver [13], EP-SPARQL uses ETALIS [3] which is implemented based on SWI-Prolog\(^1\), and StreamRule uses the Clingo solver [14] as a subprocess to infer new knowledge from data streams and a given rule set. SWI-Prolog is a Prolog engine which is built on SLD-resolution and unification as the basic mechanism to manipulate data structures while DLVhex and Clingo are ASP systems which is based on the stable model (answer set) semantics of logic programming [12].

In order to support these solvers for reasoning about RDF data streams, a middle layer is required for transformation between data formats. For example, the StreamRule system intercepts the output RDF stream query results filtered by the RDF Stream Processing (RSP) engine and translates them into ASP syntax before streaming them into the ASP reasoner Clingo. Given the data transformation overhead, performance of the reasoning subprocess should be measured by not only the processing time of the solver but also the time required for data transformation. Moreover, the reasoning component needs to return results faster than when the new input window arrives, in order to maintain the stability of the whole system. This requires optimization techniques that can further speed up the processing[16].

We address this scalability issue by an approach to parallelization based on splitting the input stream (not the problem) that we have first introduced in [22]. We extend our preliminary work from [22] in this paper with the following key contributions:

- we propose a better characterization of our formal algorithm for analyzing dependencies among input data based on the structure of a given logical program (a set of logical rules). This program is constructed under the stratified negation fragment of normal ASP [12], which ensures uniqueness of the solution; the algorithm characterizes different relationships between two predicates appearing in the input data in form of so-called input dependency graph;
- we provide a process that uses this input dependency graph to construct a plan for partitioning input data; when the graph is connected, it is decomposed into subgraphs such that the number of common nodes is as small as possible; this partitioning plan will guide the reasoning process to split input data on-the-fly;
- we fully implement our approach as an extension of StreamRule for validation and testing our algorithms;
- we provide a formal proof that the correctness for the approach under the stable model semantics of ASP is guaranteed;
- we conduct a detailed experimental evaluation on the effectiveness of our approach via experiments with different levels of expressivity of the logical program, namely: positive rules, recursive positive rules, and stratified negation. Results show that our approach can achieve higher expressivity and higher scalability compared to state-of-the-art stream processing engines.

The remainder of this paper is organized as follow. Section 2 provides the necessary preliminaries on ASP and the StreamRule idea and conceptual framework, and introduces our motivating example. Section 3 defines in details our input dependency analysis process, including the generation of the graph, the heuristics for node duplication and the process of building a partitioning plan. In Section 4, we report on the extension of the StreamRule system with components in charge of partitioning and combining the results of the inference process, and we provide a proof of correctness of the results for the proposed method. Section 5 provides an extensive evaluation of our approach through three different experiments. A comprehensive discussion of related work is given in Section 6, followed by concluding remarks and directions for future work in Section 7.

\(^1\)http://www.swi-prolog.org
2. Preliminaries & Motivating Example

2.1. Answer set programming

Answer Set Programming (ASP) is a declarative problem solving paradigm with a rich yet simple modeling language and high performance solving capabilities for computationally hard problems. ASP is rooted in deductive databases, logic programming and constraint solving[12]. For this paper, we focus on ASP with stratified negation.

Syntax.

In ASP, a variable or a constant is a term\(^2\). An atom is \(p(t_1, ..., t_n)\), where \(p\) is a predicate of arity \(n\) and \(t_1, ..., t_n\) are terms. A literal is either a positive literal \(p\) or a negative literal \(\neg p\), where \(p\) is an atom. Normal logic program is a program that consists of rules of the form:

\[
q \leftarrow p_1, ..., p_k, \neg p_{k+1}, ..., \neg p_m
\]

where \(q, p_1, ..., p_k, \neg p_{k+1}, ..., \neg p_m\) are atoms and \(n \geq 0, m \geq k \geq 0\).

Given a rule \(r\) as above, we define head of \(r\) as \(\{q\}\) as the head of \(r\), while body of \(r\) is \(\{p_1, ..., p_k, \neg p_{k+1}, ..., \neg p_m\}\) is the body of \(r\). body\(^+\) of \(r\) (respectively, body\(^-\) of \(r\)) denotes the set of atoms occurring positively (respectively, negatively) in body of \(r\). A rule without head literals is usually referred to as an integrity constraint. If the body is empty, it is called a fact. A term, an atom, a literal, a rule, a program is ground if no variable appears in it. Accordingly with the database terminology, a predicate occurring only in facts is referred to as an EDB (extensional database) predicate, all others as IDB (intensional database) predicates. EDB predicates are relations stored in database, while IDB ones are relations defined by one or more rules. Thus, an IDB predicate can appear in the body or head of a rule while an EDB predicate is only in the body. We only allow stratified negation to appear in a program, i.e. the program should contain no recursion through negation such as \(b \leftarrow \text{not} a, a \leftarrow \text{not} b\).

Semantics.

Let \(P\) be a program. The Herbrand Universe, \(U_P\), of \(P\) is a set of all constants appearing in \(P\). The Herbrand Base, \(B_P\), of \(P\) is a set of all ground atoms constructible from the predicate symbols appearing in \(P\) and the constants of \(U_P\). ground \(P\) denotes the set of all the ground instances of the rules occurring in \(P\). An interpretation, \(M\), for \(P\) is a subset of \(B_P\). A ground rule \(r\) is satisfied with respect to \(M\) if body\(^+\) of \(r\) \(\subseteq M\) and body\(^-\) of \(r\) \(\cap M = \emptyset\) only if head of \(r\) \(\cap M \neq \emptyset\). Furthermore, \(M\) is closed under a program \(P\) (or \(M\) is a model of \(P\)) if \(M\) satisfies all rules in \(P\), and \(M\) is logically closed if it is consistent or contains all literals. The reduct, \(P^M\), of \(P\) relative to \(M\) is given by [head of \(r\) \(\leftarrow\) body\(^+\) of \(r\)] \(r \in\) ground \(P\) and body\(^-\) of \(r\) \(\cap M = \emptyset\). \(M\) is an answer set of \(P\) if it is a minimal set that is both closed under \(P^M\) and logically closed. If \(P\) is stratified then \(M\) is a unique model of \(P\).

2.2. StreamRule

StreamRule is a framework that combines the latest advances in stream query processing for Semantic Web data, with non-monotonic stream reasoning. The approach is based on the assumption that not all raw data from the input stream might be relevant for complex reasoning, and the stream query processing can help to reduce the information load over the logic-based stream reasoner. The conceptual architecture of StreamRule is shown in Figure 1. Abstraction and filtering on raw streaming data are performed by a stream query processor using query patterns as filters. The filtered stream is processed by a data format processor and returned as input facts to a non-monotonic rule engine together with the declarative encoding of the problem at hand. The output of the rule engine, which we call solutions or answer sets, is fed into the data format processor for transformation to any other format (such as back to RDF triples) for further processing.

The main limitation of StreamRule is that the stability of the system depends on the ability of the reasoner to produce results faster than the next input window arrives. For this reason, as a first step in targeting the scalability challenge, we focused on a mechanism to enhance the processing time of the logic-based reasoner by designing a formal strategy for input dependency analysis, and using it to enable parallelism at the reasoning layer of StreamRule (the reasoner \(R\) in Fig-
Figure 1. A follow-up of the proposed approach is that we can gather information on the process at the reasoning layer that can potentially be used to dynamically adapt the parameters of the RSP engine for adaptive scalability management. We do not tackle this in this paper but it is part of our ongoing work as discussed in Section 7.

For the rest of the paper, we use RSP engine to refer to the semantic stream query processing engine (e.g., C-SPARQL), solver to refer to the non-monotonic rule engine (e.g., Clingo), reasoner R to refer to the subprocess in StreamRule which includes the solver and the data format processor (the dashed box in Figure 1), and reasoner PR (the grey box in Figure 6) to refer to optimized R with parallel approach that will be detailed in following sections. The logic program (or program) P is a set of rules (with stratified negation) in ASP. pre(P) denotes the set of predicates in P. inpre(P) denotes predicates of input data items of P. The reasoner R receives the input data items from the RSP engine. We assume that unrelated predicates are filtered out by the RSP engine through appropriate queries. In this way, inpre(P) ⊆ pre(P). An input window (or window), W, is a set of input data items that the reasoner R processes per computation. From the logical point of view, the data items in W can be referred to as ground atoms. pre(W) defines the set of predicates of ground atoms in W. Therefore, pre(W) ⊆ inpre(P).

2.3. Motivating Example

Consider the following example: A city manager wants to know real-time events happening in the city in order to make informed decisions on traffic management, reaction to vandalism/crime, management of congestions, reduction of risks for drivers/cyclists/pedestrians, and so on. To do that, he avails of an instance of the StreamRule system that integrates and filters relevant semantic streams from different sources (via RSP engine queries), and uses them to detect events of interest, such as traffic_jam and car_fire as defined in the logic program P in Listing 1. P is given as input to the solver in StreamRule, together with inpre(P) = {average_speed, car_number, traffic_light, car_in_smoke, car_speed, car_location}. The reasoner R is triggered whenever a new input window W arrives from the RSP engine.

As an illustrative example, assume at time t, a filtered input window (in ASP format) arrives as follows: W = {average_speed(newcastle, 10), car_number(newcastle, 55), traffic_light(newcastle), car_in_smoke(car1, high), car_speed(car1, 0), car_location(car1, dangan)}. This is probably not presenting issues in terms of performance, but as the number of cars, segments, traffic lights and other events increases, here is when the problem begins.

In order to process W faster, partitioning W randomly as in [16] could generate wrong results. For example W1 = \{average_speed(newcastle, 10), car_number(newcastle, 55), car_in_smoke(car1, high)\} and W2 = \{traffic_light(newcastle), car_speed(car1, 0), car_location(car1, dangan)\}. Reasoning in parallel over these two input partitions produces as a result the event traffic_jam(newscastle) and the action give_notification(newcastle) is triggered, which is not correct. The accurate answer is the event car_fire(dangan) detected and the notification about the dangan road segment. Partitioning randomly the input stream may reduce the processing time of a logic-based reasoner but we may lose the accuracy of the results in return. Therefore, the partitioning process should consider the relations between ground atoms in the input window, and distribute the computation accordingly across multiple instance of the rule-set (logic program). Note that this is a different approach than distributing the processing by splitting the rules, and it targets instead the input predicates. How this input analysis is done will be detailed in the following section.

3. Input Dependency Analysis

In this section, we discuss the problem of analysing dependency of input elements in a window W for the reasoner R with respect to a set of ASP rules in a program P with stratified negation. We first introduce the concept of input dependency graph that shows how input data items in W relate to each other with respect to the logic program P. Thereafter, we present a heuristic-based algorithm for creating a partitioning plan which is used to split streaming input data on the fly.

3.1. Input Dependency Graph

The concept of dependency graph has been widely used in ASP as a tool to analyse the structure of non-ground answer set programs [9, 21]. It has been efficiently used in a parallel instantiation algorithm that generates a much smaller ground program equivalent to a given logic program. Note that the compu-
tation of most ASP systems follows a two-phase approach: an instantiation (or grounding) phase generates a variable-free program which is then evaluated by propositional algorithms in the solving phase. The instantiation process in ASP is the most expensive from a computational viewpoint and the size of the ground program has huge effect on the performance of the solving process. As defined in [9], a dependency graph G is a directed graph where nodes are IDB predicates and arcs show the relationship between a positive IDB predicate in the body with a predicate in the head of a rule. This graph divides the input program P into subprograms, according to the dependencies among the IDB predicates of P, and identifies which of them can be grounded in parallel.

However, in this paper, we are not partitioning the logic program for the grounding process. We are focusing instead on partitioning the input on-the-fly and evaluating each partition in parallel with a copy of the whole program P. The reasons for us to follow the input partitioning approach are: (i) input data (or input facts) have a significant impact on reasoning performance in a streaming scenario and can affect results more than the complexity of the rules, and (ii) in the context of dynamic environments, the amount of input data at each execution varies in terms of rate and size, thus having different effects on performance. We assume that the input predicates can be either IDB or EDB predicates. Therefore, besides the dependencies among IDB predicates defined in the dependency graph, other relationships should be taken into account, such as between two EDB predicates, or between an IDB predicate and an EDB predicate.

In order to deal with this, we first define an extended dependency graph from the definition in [9]. This graph shows different types of dependency among predicates in P by considering: i) the (transitive) relation between two predicates (both IDB and EDB) in the body of a rule, ii) both positive and negative literals.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{dependency_graph.png}
\caption{Extended dependency graph G_{P}}
\end{figure}

Based on the extended dependency graph, we introduce the input dependency graph of P with respect to $\text{inpre}(\mathit{P})$. This input dependency graph describes how predicates in $\text{inpre}(\mathit{P})$ depend on each other. Below, we describe the meaning of direct path that is used to build the input dependency graph.

\begin{definition}
Let P be a logic program. The extended dependency graph of P is a graph $G_{\mathit{P}} = (N_{\mathit{P}}, E_{\mathit{P}})$, where:

i) N_{P} is a set of nodes, where each node represents a predicate in $\text{pre}(\mathit{P})$.
ii) $E_{\mathit{P}} = E_{\mathit{P}_1} \cup E_{\mathit{P}_2}$, where:

(a) E_{P_1} contains undirected edges $e_u = (p_u, q_u)$ if p_u and q_u occur in the body of a rule r in P. Moreover, $(p_u, p_u) \in E_{\mathit{P}_1}$ if $p_u \in \text{body}^{-1}(r)$.

(b) E_{P_2} contains directed edges $e_d = (p_d, q_d)$ if q_d occurs in the head of r and p_d occurs in the body of r.

Note that p_u, q_u, p_d, q_d can be either a positive or a negative literal.
\end{definition}

\begin{example}
Consider the program P in Listing 1. The extended dependency graph G_{P} illustrated in Figure 2 represents different relations among predicates in P including directed and undirected edges.

Listing 1: Sample rules for detecting events

$$(r_1) \text{ v_slow_speed} (X) :- \text{avg_speed} (X,Y), Y < 20.$$
$$(r_2) \text{ many_cars} (X) :- \text{car_number} (X,Y), Y > 40.$$
$$(r_3) \text{ traffic_jam} (X) :- \text{v_slow_speed} (X), \text{many_cars} (X), \text{not traffic_light} (X).$$
$$(r_4) \text{ car_fire} (X) :- \text{car_in_smoke} (C, \text{high}), \text{car_speed} (C, 0), \text{car_location} (C, X).$$
$$(r_5) \text{ give_notification} (X) :- \text{traffic_jam} (X).$$
$$(r_6) \text{ give_notification} (X) :- \text{car_fire} (X).$$

\end{example}
Definition 2. A directed path from node \(p_1 \) to node \(p_n \) is a sequence of nodes \(p_1, p_2, \ldots, p_n \) such that \((p_1, q_2), (p_2, q_3), \ldots, (p_{n-1}, q_n) \) are edges.

Definition 3. Let \(P \) be a logic program and \(\text{inpre}(P) \) be a set of input predicates of \(P \). The input dependency graph \(G \) with respect to \(\text{inpre}(P) \) is an undirected graph \(G_{\text{inpre}(P)} = (N_{\text{inpre}(P)}, E_{\text{inpre}(P)}) \), where \(N_{\text{inpre}(P)} \) is a set of nodes and \(E_{\text{inpre}(P)} \) is a set of edges. \(N_{\text{inpre}(P)} \) contains a node for each predicate in \(\text{inpre}(P) \), and \(\forall p, q \in N_{\text{inpre}(P)}, (p, q) \in E_{\text{inpre}(P)} \) if one of the following conditions is satisfied:

i) \(p \neq q \) and there is a sequence of nodes \(p_1, p_2, \ldots, p_n (n > 1), p_1 = p, p_n = q \) such that \(\exists i \in [1, n), (p_i, p_{i+1}) \in E \), and there are two directed paths: one is from \(p_1 \) to \(p_i \) if \(p_i \neq p_1 \), and the other is from \(p_n \) to \(p_{i+1} \) if \(p_n \neq p_{i+1} \).

ii) \(p = q \) and \((p, p) \in E \), or \(\exists u \in N, (u, u) \in E \).

Example 2. Consider the extended dependency graph \(G \) in Example 1 with the input predicates \(\{\text{average_speed, car_number, traffic_light, car_in_smoke, car_speed, car_location}\} \). The input dependency graph \(G_{\text{inpre}(P)} \) is shown in Figure 3.

Definition 4. Predicates \(p, q \in \text{inpre}(P) \) depend on each other if there is an edge \((p, q)\) in the input dependency graph \(G_{\text{inpre}(P)} \).

In Definition 3, the first condition represents dependency among input predicates. In the second condition, each predicate in \(\text{inpre}(P) \) has a node. A directed path is established between two predicates if there is a directed path connecting two predicates. This path is established in Definition 3 in line 2. Each vertex is checked to see if it depends on other vertex with respect to conditions defined in Definition 3. In line 5-9, the algorithm checks condition (i) in Definition 4 by calling the underlying function CheckDependency which is detailed in Algorithm 2. Line 10-17 create a self-loop for a vertex if condition (ii) in Definition 4 holds. First, it simply takes a self-loop in \(E \) that is related to the current vertex (Line 10-12). Then, it creates a self-loop for a vertex if this vertex implies another self-loop vertex (Line 13-17).

Algorithm 1 Creating input dependency graph

Input: an extended dependency graph \(G \) and a set of input predicates \(\text{inpre}(P) \)

Output: an input dependency graph \(G_{\text{inpre}(P)} \)

1: procedure IDG(\(G \), \(\text{inpre}(P) \))
2: \(N_{\text{inpre}(P)} \leftarrow \text{inpre}(P) \)
3: \(E_{\text{inpre}(P)} \leftarrow \{ \} \)
4: for \(v_1 \in N_{\text{inpre}(P)} \) do
5: for \(v_2 \in N_{\text{inpre}(P)} \) do
6: if CheckDependency(\(v_1, v_2, G \)) then
7: \(E_{\text{inpre}(P)} = E_{\text{inpre}(P)} \cup \{ (v_1, v_2) \} \)
8: end if
9: end for
10: if \((v_1, v_1) \in E \) then
11: \(E_{\text{inpre}(P)} = E_{\text{inpre}(P)} \cup \{ (v_1, v_1) \} \)
12: end if
13: for \(v \in N \) do
14: if \((v, v) \in E \) & \((v_1, v) \in E \) then
15: \(E_{\text{inpre}(P)} = E_{\text{inpre}(P)} \cup \{ (v_1, v) \} \)
16: end if
17: end for
18: end for
19: \(G_{\text{inpre}(P)} = (N_{\text{inpre}(P)}, E_{\text{inpre}(P)}) \)
20: end procedure
Algorithm 2 Check dependency between 2 vertexes

Input: two vertexes \(v_1, v_2\) and an extended dependency graph \(G_P\)

Output: true/false

1: procedure CHECK_DEPENDENCY\((v_1, v_2, G_P)\)
2: queue\(V_1\) ← \([v_1]\)
3: queue\(V_2\) ← \([v_2]\)
4: checked ← \{
5: while queue\(V_2\) ≠ \(\emptyset\) do
6: temp\(V_2\) ← queue\(V_2\).remove(0)
7: while queue\(V_1\) ≠ \(\emptyset\) do
8: temp\(V_1\) ← queue\(V_1\).remove(0)
9: if \((\text{temp}\(V_1\), temp\(V_2\)) ∈ \text{checked}\) then continued
10: end if
11: if \((\text{temp}\(V_1\), temp\(V_2\)) ∈ E_{P_1}\) then return true
12: end if
13: Add child vertexes of temp\(V_1\) into queue\(V_1\)
14: end if
15: Add \((\text{temp}\(V_1\), temp\(V_2\))\) into checked
16: end while
17: Add \(v_1\) into queue\(V_1\)
18: Add child vertexes of temp\(V_2\) into queue\(V_2\)
19: end procedure

3.2. Partitioning Plan

In this section, we show how to use the input dependency graph for building a plan to partition streaming data on the fly. The input dependency graph is treated as an undirected graph. Therefore, we consider separately two cases of the graph: not connected and connected 3.

The input dependency graph \(G_p^{\text{inpre}(P)}\) that is not connected induces naturally a subdivision of \(\text{inpre}(P)\) into several connected components (or components). A connected component of an undirected graph is a maximal connected subgraph of the graph. For instance, \(G_p^{\text{inpre}(P)}\) in Figure 3 decomposes \(\text{inpre}(P)\) into two components \{\text{average_speed, traffic_light, car_number}\} and \{\text{car_in_smoke, car_speed, car_location}\}. These components are used as a partitioning plan in the partitioning process for splitting ground atoms in a window on-the-fly.

However, there are some cases where the input dependency graph \(G_p^{\text{inpre}(P')}\) is connected so that it is not straightforward to create connected components of \(\text{inpre}(P)\). For example, consider the logic program \(P'\) which includes \(P\) in Listing 1 and the following rule:

\[
(r_7) \text{traffic} _ \text{jam}(X) : - \text{car} _ \text{fire}(X), \text{many} _ \text{cars}(X).
\]

Assume that \(\text{inpre}(P') = \text{inpre}(P)\). The input dependency graph \(G_p^{\text{inpre}(P')}\) is shown in Figure 4. This graph is connected. Our data partitioning approach can not be applied if the input dependency graph can not be decomposed as in this case. To cope with this issue, we introduce the decomposing process to divide the graph by duplicating some common nodes. Algorithm 3 describe this process. The algorithm has two main steps: (1) finding all maximal cliques of the graph, (2) (heuristic) merge two cliques for which the ratio between common vertexes and different vertexes is bigger than 0.5 (Line 8). A clique \(C\) is a subset of the node set of a graph, such that there exists an edge between each pair of nodes in \(C\). A maximal clique is a clique that cannot be extended by adding more nodes. Line 2 computes all maximal cliques of the input dependency graph by using a function supported in the Toolkit class of the graphstream package 4. After that, the algorithm checks for each pair of cliques whether they can be merged together. This algorithm always terminates when it can not find any pair of cliques that verify the condition in Line 8.

\[
\begin{align*}
\text{average_speed} & \text{traffic_light} \\
\text{car_number} & \text{car_speed} \\
\text{car_in_smoke} & \text{car_location}
\end{align*}
\]

Fig. 3. Input dependency graph \(G_p^{\text{inpre}(P)}\)

Example 3. Consider the input dependency graph \(G_p^{\text{inpre}(P')}\) in Figure 4. Step 1 of the Algorithm 3 finds two maximal cliques \(C_1 = \{\text{traffic_light, average_speed, car_number}\}\) and \(C_2 = \{\text{car_in_smoke, car_location}\}\).

3 An undirected graph is connected if for every pair of vertices, there is a path in the graph between those vertices.

4 http://graphstream-project.org
Different predicates is merged since the rate between common predicates and car_speed, car_location}. These two cliques are not considered as two components in the partitioning plan.

Algorithm 3 Decomposing process

Input: input dependency graph \(G_L^{\text{inpre}}(P) \)
Output: Partitioning plan

1: procedure DECOMPOSE\(G_L^{\text{inpre}}(P)\)
2: cliques ← getMaximalClique\(s(G_L^{\text{inpre}}(P))\)
3: while true do
4: flag ← false
5: for each \(C_1 \neq C_2 \) ∈ cliques do
6: nCNodes ← intersection\(C_1, C_2\)
7: nDNodes ← \(|C_1| + |C_2| - 2\times nCNodes\)
8: if nCNodes/nDNodes > 0.5 then
9: Add merge\((C_1, C_2)\) into cliques
10: Remove \(C_1, C_2 \) from cliques
11: flag ← true;
12: break
13: end if
14: end for
15: if !flag then
16: break
17: end if
18: end while
19: return cliques
20: end procedure

(see Figure 5), which guides the parallel reasoning process.

4. Parallel Reasoning in StreamRule

4.1. Implementation

The StreamRule framework extended with the partitioning process described in this paper is shown in Figure 6. The extension consists of the partitioning handler and the combining handler in the reasoning layer. The partitioning handler splits an input window \(W \) coming from the RSP engine into several sub-windows taking into account the input dependency. The combining handler combines outputs from parallel instances of the reasoner. For the realization of the partitioning process, the analysis of input dependency is made available within the framework initially at design time.

To achieve this, a logic program and a set of input predicates are given in advance in order to build an input dependency graph as defined in Definition 3. Then the graph decomposing process (see Section 3.2) builds a partitioning plan by decomposing this graph into several components with their duplicated predicates.

The partitioning handler. At run-time, the partitioning handler starts to split an input window on-the-fly by using the partitioning plan provided at design-time. Algorithm 4 shows the partitioning process. First, the group() method classifies items in the window by their predicates (Line 3). For each group of items, the algorithm identifies a set of communities’ IDs that group belongs to based on the partitioning plan (Line 5). Finally, it adds that group into the proper partitions corresponding to those IDs.

The combining handler. Given a stratified negation program \(P \) and an input window \(W \), the answers provided by \(R \) over \(P \) and \(W \) (notated as \(\text{Ans}_P(W) \)) are computed as:

\[
\text{Ans}_P(W) = \bigcup_{i=1}^{n} \text{Ans}_P(W_i)
\]
Where \(W_i (i = 1..n) \) is a partition of \(W \) provided by the partitioning handler.

Algorithm 4 Partitioning method

Input: a partitioning plan \(\rho \) and an input window \(W \)

Output: sub-windows of \(W \)

1: procedure PARTITION(\(\rho \), \(W \))
2: Partitions \(\leftarrow \{ \} \)
3: \(G \leftarrow \text{group}(W) \)
4: for \(g \in G \) do
5: \(C \leftarrow \text{findCommunities}(\rho, g, \text{predicate}) \)
6: for \(c \in C \) do
7: Add \(g \text{.items} \) into \(\text{Partitions}[c] \)
8: end for
9: end for
10: return Partitions;
11: end procedure

4.2. Correctness

In order to ensure our approach provides all and only the expected results when the input is split and processed in parallel, we sketch a correctness proof in this section.

Proposition 1. Given \(G_p^{\text{inpre}(P)} \) that is not connected and \(W \) is an input window such that \(\text{pre}(W) \subseteq \text{inpre}(P) \):

\[
\text{Ans}_p(W) = \bigcup_{i=1}^{n} \text{Ans}_p(W_i)
\]

where \(W = \bigcup_{i=1}^{n} W_i \) and \(\text{pre}(W_i) \) are connected components of \(G_p^{\text{inpre}(P)} \).

Proof. Assume that \(\text{Ans}_p(W) \neq \bigcup_{i=1}^{n} \text{Ans}_p(W_i) \). This can be the case only if one of the two conditions holds:

i) \(\exists a \in \text{Ans}_p(W) \) such that \(a \notin \bigcup_{i=1}^{n} \text{Ans}_p(W_i) \)

ii) \(\exists a \in \bigcup_{i=1}^{n} \text{Ans}_p(W_i) \) such that \(a \notin \text{Ans}_p(W) \)

where \(a \) is a new fact inferred from the reasoning process.

If the condition (i) holds then there is at least one fact \(a \) that is missing after parallel reasoning over \(W_i, i \in [1..n] \). This can happen either because \(a \) is inferred from a recursive rule, or it is inferred from one or more predicates. If \(a \) is created by firing a recursive rule with a self-loop (eg. \(a(...) : -a(...) \)), then it is impossible to have \(a \) missing when reasoning in parallel, since the parallel procedure is based on splitting at predicate level, not at ground atom level. Therefore, all ground versions of predicate \(a \) are treated together. When \(a \) is inferred based on one predicate only, this predicate must be in at least one of the \(W_i \)s, and therefore it will be in the union. When \(a \) is inferred from at least two predicates \(p \) and \(q \) where \(p \neq q \), \(p \) and \(q \) can either depend on each other via one rule or via multiple rules. In both cases there is a link between \(p \) and \(q \) in \(G_p^{\text{inpre}(P)} \). Then condition (i) would hold only when \(p \in W_i \) and \(q \in W_j \) such that \(W_i \neq W_j \). This invalidates the hypotheses that \(G_p^{\text{inpre}(P)} \) is not connected and \(\text{pre}(W_i) \) are connected components of \(G_p^{\text{inpre}(P)} \).

If condition (ii) holds, that means the parallel reasoning produces more inferred results than reasoning on whole window \(W \). This can only be the case due to the presence of negation-as-failure in a rule. Given the way self-loops are created for a predicate with negation-as-failure as per Definition 1, all of the ground atoms of that predicate are going to be processed together, which would not be the case when condition (ii) holds.

Proposition 2. Given \(G_p^{\text{inpre}(P)} \) that is connected and \(W \) is an input window such that \(\text{pre}(W) \subseteq \text{inpre}(P) \):

\[
\text{Ans}_p(W) = \bigcup_{i=1}^{n} \text{Ans}_p(W_i)
\]

where \(W = \bigcup_{i=1}^{n} W_i \) and \(\text{pre}(W_i) \) are computed by Algorithm 3.

Proof. When \(G_p^{\text{inpre}(P)} \) is connected, for any two components \(\text{pre}(W_i) \) and \(\text{pre}(W_j) \) \((i \neq j)\) that have some links connecting them, Algorithm 3 makes them “disconnected” by duplicating common predicates that needed to be present in two components. In this way, all ground atoms of that common predicate will appear in both \(W_i \) and \(W_j \). Therefore, the correctness of the parallel reasoning process is maintained as proved in Proposition 1.

5. Evaluation

We evaluate the performance of our proposed reasoner \(PR \) on input programs with different levels of expressivity: positive rules (experiment 1), positive recursive rules (experiment 2), and stratified negative rules (experiment 3). In each experiment, we compare the performance against state-of-the-art engines.
supporting the same level of expressivity with respect to two metrics: latency and memory consumption. Latency refers to the time consumed by the engines between the input arrival and output generation while memory consumption reflects the usage of system memory during execution. The experiments were conducted on a machine with 24-core Intel(R) Xeon(R) 2.40 Ghz and 96G RAM. We used Java 1.8 with heap size from 5GB to 20GB for C-SPAQRQL and Clingo 4.5.4. The experiments code and data is available at https://github.com/ThuLePham/SR_Experiments.

5.1. Experiment 1: Positive rules

In this experiment, we selected C_SPARQL as a comparable system to handle positive rules. We did not consider CQELS because its processing mode does not allow certain positive rules to be expressed: both PR and C_SPARQL process streaming data in batches while CQELS processes every new data item immediately and therefore cannot reason about elements appearing in the same window. We compare PR against C_SPARQL by using the well-known stream processing benchmark CityBench[1]. In particular we use query Q1, Q2, and Q10 as a representative sample in terms of number of query patterns and presence of join operators. Details of those queries are available at CityBench github.

To make sure that both engines return the same result format (triple) for a fair comparison, we modify the SELECT statement in both queries to a CONSTRUCT statement, and we refer to them as to Q1C, Q2C, and Q10C respectively. We translate queries Q1C, Q2C, and Q10C into ASP positive rulesets for PR. We refer to those ruleset as R1C, R2C, and R10C respectively. Listing 2 shows the rule set obtained by translating Q1C. We evaluate latency and memory consumption of the two engines by increasing the input streaming rate. The streaming rate can be changed by changing the frequency parameter in the CityBench configuration. We stream data for 10 minutes with two different frequencies, \(f = 1 \) and \(f = 2 \). Results shown in Figure 7 and Figure 9 indicate that the latency for PR is minimal compared to C_SPARQL in both frequencies. Also, it is noticeable that the memory consumption of PR is less than a half of C_SPARQL memory consumption (see Figure 8 and Figure 10). Notice that with those queries in CityBench, the input dependency graph is strongly connected (there is an edge between two vertexes), therefore the parallel optimization cannot be exploited.

5.2. Experiment 2: Recursive positive rules

For the experiment with recursive positive rules that are not supported by C_SPARQL, we compare PR against R and Jena reasoners by using a widely used benchmark for reasoning systems, the Lehigh University Benchmark (LUBM[18]). We select different benchmark for the experiment 2 due to limitations regarding expressivity of rules in CityBench. In order to evaluate these engines, we create a set of rules as in Listing 3 which includes 4 recursive rules over 14

\[\text{rules. We use Univ-Bench Artificial Data Generator} \]

to generate and stream data to the engines. Due to the fact that the Jena reasoner does not support data stream processing, we run this experiment in two settings: static and streaming.

Static setting. In this setting, we evaluate PR, R and Jena reasoners with different sizes of input data from 5k to 100k (k = 1000) triples. We trigger each engine 3 times per each input data size and take the average. Figure 11 and Figure 12 show the effect over latency and memory consumption with increasing number of triples for the three engines. A closer look at the results in Figure 11 reveals that PR outperforms R over subsequent increase from 10k to 100k (R can not process 60k and 100k triples). Compare to Jena, PR is slightly slower when the input size is smaller than 30k. However, PR is considerably faster than Jena when the number of triples is bigger than 30k. For memory consumption, Figure 12 shows that all engines have increasing memory consumption issue but Jena seems to be better at memory management when increasing the number of input triples.

Streaming setting. In the streaming setting, we trigger PR and R by streaming triples for 10 minutes with various rates from 1k to 5k triples/second (k = 1000). We use the time-based window size of 3 seconds with sliding step of 2 seconds. Figure 13 reports latency observed from PR and R. It shows that PR performs as R at streaming rate 1k triples/second. The reason for this is that the number of input triples is small enough and the Clingo solver does not suffer from exponential grounding. However, we observe a benefit of parallel optimisation in PR at the streaming rates 3k and

5https://github.com/CityBench/Benchmark

6https://jena.apache.org/documentation/inference/

7https://github.com/rvesse/lubm-uba
observerBy(ObId) :- ssn_observedBy(ObId, "_AarhusTrafficData182955").
observerBy(ObId) :- ssn_observedBy(ObId, "_AarhusTrafficData158505").
_result(ObId, V) :- observerBy(ObId), sao_hasValue(ObId, V),
 ssn_observedProperty(ObId, P), rdf_type(P, "ct_CongestionLevel").

Listing 2: Rules translated from query Q1 in CityBench

5k triples/second when PR is much faster than R. For memory consumption that is illustrated in Figure 14, PR consumes slightly less memory than R. The figures also show that there is a considerably increase in memory consumption when streaming rate increases from 1k to 5k triples/seconds.
Listing 3: A set of ASP rules inspired from LUBM

5.3. Experiment 3: Stratified negation rules

We now focus on a ruleset which has stratified negations. We modify rules \(r_5, r_11 \) and \(r_{14} \) in the ruleset of experiment 2 with 3 negation-as-failure atoms as in Listing 4. As a result the experimental ruleset now includes 4 recursive rules and 3 negation-as-failure rules over 14 rules. We compare \(PR \) against \(R \) only since the Jena reasoner does not support negation-as-failure. Similar to experiment 2, we evaluate two engines for 10 minutes with various streaming rates from 1k to 5k triples/second. Figure 15 and Figure 16 illustrate a similar pattern in latency and memory consumption as observed in the experiment 2. \(PR \) has faster reasoning time at streaming rates 3k and 5k triples/second, but consumes slightly higher memory compared to \(R \) at 5k triples/seconds.

6. Related Works

Parallel strategies were important features of database technology in the nineties in order to speeding up the execution of complex queries [8]. In Semantic Web, the parallelism in reasoning has been studied in [20, 23–25] where a set of machines is assigned a partition of the parallel computation. [20] has a distributed process over large amounts of RDF data us-
Listing 4: Negation as failure rules

\(r_5 \) canBecomeHeadOf(\(X, D \)): \(\neg \) uniben_worksFor(\(X, D \)), uniben_headOf(\(Z, D \)), not commonResearchInterests(\(X, Z \)).

\(r_{11} \) cannotRequestRecommendationLetter(\(X, Z \)): teaches(\(Z, X \)), not uniben_advisor(\(X, Z \)).

\(r_{14} \) suggestAdvisor(\(X, Y \)): teaches(\(Y, X \)), not uniben_advisor(\(X, Z \)).

Fig. 15. Latency (recursive and stratified negation rules)

Fig. 16. Memory consumption (recursive and stratified negation rules)

In ASP, several works about parallel techniques for the evaluation of a logic program have been proposed [4, 9, 15, 17, 21], focusing on both phases of the ASP computation, namely grounding and solving. Concerning the parallelisation of the grounding phase, the work in [4] is applicable only to a subset of the program rules. Therefore, in general, this work is unable to exploit parallelism fruitfully in the case of programs with a small number of rules. [9] explores some structural properties of the input program via the defined dependency graph in order to detect subprograms that can be evaluated in parallel. [21] extends this work with parallelism in three different steps of the grounding process: components, rules, and single rule level. The first level divides the input program into subprograms, according to the dependency graph among IDB predicates of that program. The second level allows for concurrently evaluating the rules within each subprogram. The third level partitions the extension of a single rule literal into a number of subsets. This step is especially efficient when the input program consists of few rules and two first levels have no effects on the evaluation of the program. For the solving step which is carried out after the grounding step, [17] proposes a generic approach to distribute the searching space in order to find the answer sets, which permits exploitation of the increasing availability of clustered and/or multiprocessor machines. [15] introduces a conflict-driven algorithm to compute the answer sets based on constraint processing and satisfiability checking. In short, [4, 9, 21] focus on parallel instantiation by splitting a logic program in order to obtain a smaller ground program, [15, 17] compute the answer sets from that ground program in parallel. These approaches have been implemented in state-of-the-art ASP solvers such as Clingo and DLV. In this paper, we are not partitioning the logic program. We are focusing instead on partitioning the input and evaluating each partition on a different copy of the whole program with the intuition that this approach is data-driven and can result in a faster run-time analysis since it does not to consider the whole program anyway, but only the rules that are triggered based on the (partitioned) streaming input.
7. Conclusion and Future Work

Scalability is a key challenge for the applicability of reasoning techniques to rapidly changing information. In this paper we consider the challenge of creating new semantic knowledge from diverse and dynamic data for complex problem solving, and doing that in a scalable way. To address this challenge, we focus on an approach that leverages semantic technologies to integrate and pre-process RDF streams on one side, and expressive inference enhanced with parallel execution on the other side.

Building upon our previous work, and following up on our initial investigation of the trade-off between scalability and expressivity of rule-based reasoning over streaming RDF data, in this paper we provided a clear characterization and formal definition of our approach to parallelization of stream reasoning by input dependency analysis (both at the predicate and at the atom level) that was first introduced in [22]. We implemented the proposed approach as an extension of the StreamRule reasoner, and provided a proof of correctness under the assumption that no recursion through negation is present in the rules, thus guaranteeing the uniqueness of the solution. Furthermore, we considered the different levels of expressivity that are supported by the reasoning layer of our prototype implementation, and conducted a detailed experimental evaluation by comparison with different systems based on their expressivity.

Our performance evaluation demonstrates that the combination of RDF Stream Processing and ASP-based reasoning for heterogeneous and highly dynamic data is possible and promising, even when recursion and default negation are used, and that the performance does not degrade for simpler tasks, thus being comparable with alternative systems.

Stream reasoning is a new and active area of research within the Semantic Web community and the Knowledge Representation and Reasoning community in general, and there are many open questions and interesting directions for investigation that we are currently working on as next steps, as discussed in the remainder of this section.

In order to avail of the full power of ASP-based reasoning, the ability to generate multiple solutions is key, but this requires a deeper investigation on how correctness can be maintained when partitioning and merging results in the presence of multiple answer sets. This is a key step we are currently investigating to exploit the full expressivity of ASP-based reasoning for semantic streams.

Another direction for investigation is related to the definition of multiple heuristics for splitting the graph and duplicating node. Our current solution is based on finding and merging cliques based on a threshold score on the ratio between common and different vertexes, to decide where to split and duplicate. Different heuristics that also consider the size of the cliques and that are used at load balancing would contribute to the overall performance of the system. Leveraging information about the distribution of ground atoms across the different predicates could also be a good information to design better heuristics and for load balancing. This could also inform the current partitioning function so that the splitting process does not rely on predicate-level analysis only. We believe this can have an important effect on computation time that needs to be further investigated.

In terms of comparison with similar systems, we recently became aware of two engines for complex stream reasoning we didn’t know about at the time the paper was written and the experiments performed. Ticker [7] relies on incremental Answer Set Programming and has some support for non-stratified programs, while Laser [5] is an engine that implements a fragment of the LARS framework [6] and it also relies on incrementality. Ticker focuses on enhancing the ability of ASP-based reasoning to be applied to streams, and therefore is evaluated against the non-incremental version of the state-of-the-art ASP solver Clingo. Laser instead is a new implementation based on the LARS framework, which is aimed at capturing stream reasoning in general and is therefore compared against state-of-the-art RSP engines for performance.

Despite incremental evaluation and parallel execution are different ways of tackling the scalability issue, we believe a comparison with these systems in terms of expressivity vs. scalability trade-off will enable us to share important insights for future work and advances in the Stream Reasoning field, and is therefore part of our ongoing work.

References

