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Abstract. This paper presents a new benchmark suite for SPARQL query processors. The benchmark is derived from workflows
established by the pharmacology community and exploits the fact that these workflows are not only applied to voluminous data,
but they are also equivalent to complex and challenging queries. The value of this queryset is that it realistically represents actual
community needs in a challenging domain, testing not only speed and robustness to large data volumes but also all features of
modern query processing systems. In addition, the natural partitioning of the data into meaningful datasets makes these workflows
ideal for benchmarking federated query processors. This emphasis on federated query processing drived complementing the
benchmark with an execution engine that can reproduce distributed and federated query processing experiments.
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1. Introduction

Performance benchmarks allow systems to be eval-
uated and compared, but designing such a benchmark
is subject to considerations that are difficult to satisfy
simultaneously. For query processing systems in par-
ticular, one such consideration is the selection of the
data that will be included in the benchmark and the
query workload that will be applied to this data. One
potential tension is the creation of a realistic bench-
mark that reflects workflows that occur commonly ver-
sus the creation of a generic and informative bench-
mark that tests as many characteristics of query pro-
cessing systems as possible. One would expect the for-
mer to be useful for selecting what query processing
infrastructure to use for specific domains and applica-
tions, and the latter to be a generic, multi-dimensional
tool for evaluating the technical quality of an infras-
tructure.

Most well-known benchmarks use natural datasets
but define an artificial queryset based on what techni-

cal characteristics should be tested [15,13], while some
benchmarks also provide synthetic data [9]. However,
considering the complex and multi-dimensional na-
ture of modern database systems, fine-tuning generic
benchmarks to specific applications can prove to be
too difficult and too prone to human bias: a database
system can be fine-tuned to perform well on a given
dataset and query load, in which case measuring per-
formance on an artificial problem is a lot less informa-
tive for deciding what infrastructure to use than mea-
suring performance on a natural problem. A promis-
ing compromise could be to design benchmarks that
are derived from realistic workflows, but preferring
among all possible workflows those that measure many
different technical aspects and functionalities of the
tested systems. The problem is that realistic workflows
are typically based on visual interfaces that are used
to fill the parameters of extremely simple query tem-
plates. Such queries could be used to measure robust-
ness and reactiveness on large data volumes, but are
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not very informative about the ability to optimize com-
plex queries.

The bio-medical domain is one exception where
complex queries occur naturally. Within this domain,
the Open PHACTS project [17] has put together the
datasets and workflows that aim to answer scientific
competency questions that were collected to repre-
sent standard use cases for drug discovery. The Open
PHACTS project has also developed visual tools that
allow domain experts to combine query templates in
non-trivial ways. Through these tools, domain ex-
perts have defined workflows that are equivalent to
technically challenging queries, as well as indepen-
dently motivated and representative of common and
frequently used workflows in a challenging domain.

In this article we will first briefly present the data
and the drug discovery questions that this data can
answer (Section 2). We then proceed to present the
translation of the Open PHACTS workflows that tar-
get these questions into SPARQL queries, together
with an analysis regarding the components and fea-
tures of federated query processors that these queries
test (Section 3). This static analysis is complemented
by using the Open PHACTS benchmark to evaluate
the state-of-the-art federated SPARQL query process-
ing systems and comparing the results against the re-
sults obtained by the same systems over prior bench-
mark suites (Section 5). Section 5 also describes the
experimental setup, including briefly introducing the
main features of the KOBE Benchmarking Engine
used to execute the experiments, with more technical
details about KOBE given in the appendix. The arti-
cle closes with a comparison with related benchmarks
(Section 6) and conclusions (Section 7).

2. The Open PHACTS platform and the ‘20
questions’ approach

The Open PHACTS initiative aims to integrate pub-
licly available data relevant for both academia and
the pharmaceutical industry. The core outcome of
Open PHACTS is the Open PHACTS Discovery Plat-
form (ODP) that provides an easy interface through
which researchers can consult the database without be-
ing confronted with the complexity of defining effi-
cient Linked Data queries. For the end-user, the plat-
form offers a set of services which are accessible via
a RESTful interface. The choice of the services is
based on consulting the domain experts among the
Open PHACTS project consortium on which questions

are most relevant to them when doing their daily re-
search tasks. Through this process, twenty key ques-
tions were identified [3] which combine four important
pharmacological concepts: compound, target, pathway
and disease. Compounds are usually small molecules
which can influence targets by activating or inhibit-
ing them (bioactivity). These targets (often proteins)
are important for many functions of organisms and
are often part of cellular pathways by interacting with
other entities (both molecules and targets). Errors in
the function of the targets can disturb cellular path-
ways and lead to diseases. The aim of a drug discov-
ery process is usually to identify a compound which
can be used as the active ingredient in drugs. These
can be used to restore the correct function of the tar-
gets with the aim to cure the disease or at least lower
its symptoms. For this, a good understanding of the
connections between the four concepts is necessary.

The Open PHACTS Discovery Platform provides an
interpretation of these questions as workflows that are
authored using visual tools. Workflows retrieve data
via API calls. These API calls correspond to SPARQL
query templates which are instantiated by the param-
eters of the API call [10]. The platform executes the
resulting instantiated queries at an endpoint that serves
relevant data [8,5].

Figure 1 depicts the relevant datasets and their inter-
connections. Each of the datasets adds a different per-
spective of data which is needed to answer the ques-
tions:

– UniProt collects sequence and functional data of
proteins, providing commonly used identifiers of
proteins through their accession codes.

– ChEMBL provides bioactivity data, which is
of high importance in many of the questions,
where literature is curated to collect activity of
molecules against targets (often proteins).

– DrugBank provides information on drug molecules,
such as the approval status for clinical trials.

– DisGeNET associates genes and diseases.
– WikiPathways is a collection of cellular pathways

which can be edited by the scientific community.
– Two ontologies, the Gene Ontology for proteins,

and ChEBI for compounds provide additional an-
notations of the respective entities.

Some of the datasets specifically focus on mapping en-
tities from different data sources:

– The OPS Chemical Registry standardizes molecules
from the different data sources in Open PHACTS,
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Fig. 1. Open PHACTS datasets and their linkage. Solid lines connect datasets that share common URIs. Solid lines with circle connect datasets
that are linked through linksets, with the circle showing which of the two datasets contains the linkset. Dashed lines connect datasets that are
linked through the Open PHACTS IMS.

to provide a single identifier if the structures are
identical.

– Similarly, ConceptWiki contains labels for entities
of the different datasets, allowing text searches in
the Open PHACTS Discovery Platform.

Finally, the Open PHACTS Identity Mapping Service
(IMS) is a service that facilitate the mappings between
identifiers of the aforementioned datasets. Originally,
Open PHACTS IMS is offered as a service and not
as a materialized dataset. However, the IMS is in fact
based on a collection of different linksets and there-
fore we will treat it as a separate dataset that con-
tain solely triples with equivalence predicates such as
skos:exactMatch and owl:sameAs. The assumptions of
using the IMS as a dataset will be described in the Sec-
tion 3. Note how in Figure 1 the IMS is not shown as a
dataset but as a type of connection. This is both for vi-
sual clarity and also for emphasising that the IMS does
not contain any domain knowledge but only linksets.

Table 1 displays some basic statistics for each
dataset. Firstly, we display the total number of triples,
predicates, distinct subjects, distinct objects and classes.
These statistics, known as VoiD statistics [1], give
a rough idea about the size and the structure of the
dataset, and are generally exploited by SPARQL en-
gines in order to perform certain tasks, such as selec-
tion and optimization. Moreover, we have computed
the structuredness for each dataset [6], a metric that
shows whether the instances of a class contain triples
of all the properties of the class. Typically, artificial

datasets are highly structured while natural datasets
are less structured. The metric ranges in [0, 1] and a
smaller number means that a dataset is less structured.
The structuredness of a dataset is considered one of the
most important characteristics of a benchmark, which
is used especially for drawing comparisons between
benchmarks.

3. Deriving Queries from Workflows

The Open PHACTS initiative tried to answer the
twenty key questions by developing scientific work-
flows that access different datasets through API calls to
get intermediate results and then transform, filter, and
join these results into an answer to the question.

The questions that have been transformed into
SPARQL queries and included in the OPFBench, the
benchmark described here, are listed in Table 2. A de-
tailed explanation of the questions is available else-
where [3] and is outside the scope of this article. As
an example we will explain Q19, which searches for
compounds that hit most specifically the multiple tar-
gets in a given pathway (disease). In a biological path-
way, sometimes one target can take over the role of
another one. So even if a compound could effectively
inhibit a target in a disease pathway, there would be
no (or only minimal) biological effect in this case, as
the function is compensated by another target. So the
aim is to find compounds that can inhibit several tar-
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Table 1
Dataset statistics

Dataset #triples #subjects #predicates #objects #classes structuredness

Uniprot 1,131,186,434 235,053,262 122 322,660,114 126 0.391
ChEMBL 445,732,880 54,923,033 146 118,629,007 120 0.912
OPS Chemical Registry 241,986,722 38,555,884 18 89,882,844 27 0.896
DisGeNET 17,791,631 1,367,616 77 4,891,477 26 0.877
OPS Identity Mappings 14,431,716 5,254,745 71 10,874,931 27 0.387
WikiPathways 11,781,627 871,000 110 1,467,010 32 0.810
DrugBank 5,478,852 330,274 104 1,917,893 99 0.587
ConceptWiki 4,331,760 3,024,393 4 4,319,478 – –
Gene Ontology 1,366,494 234,770 45 430,020 7 0.547
ChEBI 1,012,056 113,446 22 651,682 5 0.816

Total 1,875,100,172 339,728,423 719 555,724,456 469 avg. 0.682

Table 2
Multi-domain drug-discovery questions expressed in natural language.

Query Question expressed in natural language

Q1 Give me all oxidoreductase inhibitors active <100 nM in human and mouse.
Q3 Given a target find me all actives against that target, and find and/or predict the polypharmacology of actives.
Q6 For a specific target family, retrieve all compounds in specific assays.
Q7 For a target, give me all active compounds with the relevant assay data.
Q8 Identify all known protein-protein interaction inhibitors.
Q9 For a given compound, give me the interaction profile with targets.
Q15 Which chemical series have been shown to be active against target X?

Q15b Which new targets have been associated with disease Y?
Q16 Targets in Parkinson’s disease or Alzheimer’s disease are activated by which compounds?
Q18 For pathway X, find compounds that agonize targets assayed in only functional assays with potency < 1µM.
Q19 For the targets in a given pathway, retrieve the compounds that are active with more than one target.

gets of the same pathway.1 To answer the above ques-
tion one must access the WikiPathways to retrieve the
connection between a disease pathway and a com-
pound and cross link it with the with the ChEMBL and
OPS Chemical Registry datasets to retrieve the targets
and their chemical representation for a certain com-
pound. Since ChEMBL and WikiPathways are not di-
rectly connected, the workflow must rely on the Open
PHACTS IMS service for the appropriate linkage be-
tween the compound identifiers. We will revisit Q19
later in this article as an example for demonstrating
technical points.

Although in principle Open PHACTS workflows are
more expressive than relational algebra, the workflows

1It should be noted that this is only one possible interpretation of
the original wording of Question 19, the interpretation that is implied
by the Open PHACTS workflow developed to answer Question 19.

actually defined for answering the pharmacology ques-
tions only use basic data processing and are within the
expressivity of relational algebra and SPARQL. For
OPFBench, the benchmark described here, ten work-
flows are expressed as single SPARQL queries (Ta-
ble 2). Similarly to Q19, almost all of the SPARQL
queries we have derived from the workflows involve
more than one dataset. The characteristics of each
query will be presented in Section 4.

There are two reasons why not all of the original 20
questions are included in the OPFBench queries: either
no corresponding workflow has been defined, or the
corresponding workflow uses dynamic API calls that
express relations beyond data access.

Regarding workflow availability, there are questions
that do not have a corresponding workflow because
they could not be answered from the original datasets
or the data was out of scope of the Open PHACTS
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project. Some datasets (e.g., on patents and pathway
interactions) are now included in the Open PHACTS
Discovery Platform, but have not been available when
the workflows were created. Workflows for some of
the missing questions (e.g., Q12 and Q17) are cur-
rently being considered under the light of the API calls
that have been developed since the inclusion of new
datasets. A second reason why a question has no corre-
sponding workflow defined by Open PHACTS is that
sometimes multiple questions are deemed to be suffi-
ciently addressed, at least for the time being, by the
same workflow. For example, the workflow that an-
swers question #7, also answers question #17 to some
extent.

Besides missing workflows, there are also work-
flows that use external services such as Identity Map-
ping Service (IMS) and the Similarity and Structural
Search Service of the Open PHACTS Discovery Plat-
form. These services can in principle produce re-
sponses dynamically and therefore it is not straightfor-
ward how, and if, the responses can be mapped into a
materialized dataset. A notable exception is the Iden-
tity Mapping Service that is initialized by a collection
of known linksets. For the purposes of the benchmark
we have used those linksets to create a materialized
OPS Identity Mappings dataset (Table 1). We also pro-
duced and imported the transitive closure of the equiv-
alence triples, namely the triples that use the predi-
cates skos:exactMatch and owl:sameAs. On the other
hand we have excluded the workflows that make use of
the similarity and structural search service and we will
consider ways of materializing it in the future.

4. Query Characteristics

The queries derived from the scientific workflows
require multiple datasets to be accessed in order to
compute an answer and therefore it is natural to con-
sider using the selected queryset to evaluate federated
SPARQL query processing systems. Obviously this
does not exclude the benchmarking of triple stores. In
that case all the datasets should be loaded in the same
system organized in different graphs. However, we fo-
cus our attention to federated SPARQL query process-
ing systems and in this section we discuss the suitabil-
ity of the proposed queryset for such benchmarking.

The typical flow of a federated query processing
system consists of three phases, namely the source se-
lection, the query planning and lastly the query ex-
ecution. All the phases contribute to the overall effi-

ciency of the query processing system and it would be
desirable to have queries that will challenge all those
phases. Naturally, different characteristics of a query
will stress different phases of the federated query pro-
cessing system.

The proposed queries vary on complexity, on the
number of datasets that are involved and on the
SPARQL features needed. Table 3 and 4 collect the dif-
ferent characteristics of each query. Table 3 focuses on
the characteristics from a syntactic point of view (e.g.
number of triple patterns, types of SPARQL operators
etc.) while Table 4 focuses on statistics that have to do
with data-driven characteristics, such as the number of
expected results or the relevant sources for each query.

4.1. Source selection discussion

In the Open PHACTS Discovery Platform, all the
available datasets are loaded into a single triple store
and are originally organized in different named graphs.
In our setup, we have created one data source for each
graph. Since graph annotations directly map to data
sources, providing them trivializes the source selec-
tion phase. On the other hard, graph annotations are
meaningful restrictions: since some triple patterns suc-
ceed in more than one graph, dropping graph restric-
tions produces more results than intended. For this rea-
son, we decided to create two versions for each query,
the original one and one without graph annotations for
testing source selection. As expected, there are differ-
ences in the size of the resultset (ref. #results columns
in Table 4).

Every query involves between one and five datasets
to compute the result (ref. #sources columns in Ta-
ble 4, for each version of our queryset). This is rel-
evant for benchmarking if the source selection phase
prunes efficiently the irrelevant datasets. Unfortunately
most of the predicates used in the queries exist in
only one dataset and as a result in most cases they
uniquely identify the associated dataset if the source
selection exploits such relations [12]. On the other
hand, triples with common predicates exist in every
dataset (e.g. rdf:type) but will not be joinable with
any other dataset except the one that will be found. Ta-
ble 4 shows the number of sources that contain tuples
that potentially contribute to the resultset in #potential
sources column versus the number of source that really
contribute to the resultset. As this difference increases,
the significance of correctly identifying the irrelevant
sources also increases.
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Table 3
Structural characteristics of the OPFBench queryset

join vertices mean join
vertex
degreeQuery #patterns star chain sink hybrid total SPARQL Features

Q1 8 1 1 1 – 3 3.33 FILTER, UNION
Q3 15 2 2 1 2 7 3 BIND, DISTINCT, FILTER, VALUES
Q6 11 3 – 2 1 6 2.67 OPTIONAL
Q7 16 3 1 1 2 7 3.14 BIND, FILTER
Q8 9 2 1 1 1 5 2.6 FILTER
Q9 12 2 1 1 – 4 3.5 BIND, FILTER, VALUES

Q15 12 1 6 1 – 8 2.25 COUNT, GROUP BY, UNION
Q15b 6 1 1 – – 2 3 –
Q16 11 2 4 2 – 8 2.25 FILTER, VALUES
Q18 15 2 2 3 1 8 2.75 BIND, FILTER, OPTIONAL
Q19 16 3 2 3 2 10 2.5 COUNT, FILTER, GROUP BY, HAVING, REGEX

Table 4
Data-Driven characteristics of the OPFBench queryset

#potential
sources

#sources
span

with graphs without graphs mean triple
pattern

selectivityQuery #sources #results #sources #results

Q1 9 9 1 331,600 2 477,540 0.033
Q3 10 9 3 195 3 6,830 0.032
Q6 8 8 4 3,154,375 4 3,154,375 0.064
Q7 8 5 4 161 4 5,508 0.059
Q8 8 7 2 21,881 2 21,881 0.059
Q9 10 6 3 252 4 1,472 0.045

Q15 10 10 3 242 3 242 0.050
Q15b 5 1 1 164 1 164 0.036
Q16 3 3 3 6,317,773 3 6,317,773 0.024
Q18 8 6 3 18,298 4 36,596 0.020
Q19 8 7 4 6,073 4 6,155 0.039

4.2. Query planning discussion

Another characteristic of the proposed queries is
that they contain a large number of triple patterns in
order to retrieve the required information. The queries
contain up to 16 triple patterns per query (ref. #patterns
column in Table 3). This is commonly encountered in
SPARQL queries in contrast to SQL queries. Tradi-
tional join optimization techniques derived from rela-
tional databases cannot cope efficiently with a large
number of joined relations. Therefore, the large num-
ber of triple patterns will challenge the join optimiza-
tion phase of a federated query processing system.
Moreover, the queryset contains queries of various join
types. The types of joins are shown in Table 3. A com-
mon variable between two or more triple patterns is

sometimes referred as a join vertex. A join vertex is a
star if it appears only as a subject, a sink if it appears
only as an object, a chain if it appears only twice, once
as a subject and once as an object. If a join vertex ap-
pears both as a subject and as an object, but is not a
path, then it is referred as a hybrid vertex. Finally, the
parameter mean join vertex degree is the average of the
number of all triple patterns that a vertex participates.

Apart from the number of joined triple patterns, an-
other factor of optimization is the optimization of other
SPARQL operators such as left outer joins, unions,
groupings and orderings. Typically, query planners
consider only inner join optimizations since this op-
timization is considered the most impactful. This as-
sumption does not reflect always the reality and often
leads to physical plans that force these operators to be
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executed on the side of the federator than on the data
stores. Interestingly enough, the realistic queries that
have been derived make use of other SPARQL features
which are expected to challenge the query planners of
the query processing systems. The relevant operators
are listed in Table 3.

4.3. Query execution discussion

There are cases where the transfer of large resultsets
over the network cannot be circumvented by any valid
plan optimization. In these cases, it is the efficiency of
the execution engine of the federated query processing
system (rather than the quality of the plan) that differ-
entiates systems. OPFBench includes queries that pro-
duce large resultsets and challenge query execution:
The size of the resultset of each query varies from as
small as 164 results to as large as 6M results, as shown
in Table 4.

Another relevant point for evaluating federated
query execution is their behaviour when a large num-
ber of remote endpoints must be accessed. The end-
points that should be accessed in the proposed query-
set vary between one to four (out of a total of ten). This
is one point where the current queries do not stress
the systems enough, but it should be noted that the
Open PHACTS queries were authored having in mind
the query processing state of the art. Further work will
identify use cases (including queries pulling data from
many different sources) that are relevant to the do-
main and challenging for query processing systems. It
is tempting to synthesise an artificial query which uses
almost all of the 10 endpoints, since this would cover
another relevant choke point. However, we decided not
to do this because it would defy our main purpose,
which is to provide a benchmark that contains queries
that are derived from a practical use case, and not to
use an artificially constructed queryset.

4.4. Characteristic example query

A characteristic SPARQL query to demonstrate the
points discussed in the previous sections is query
Q19 that is listed in Listing 1. Initially, the potential
sources for this query are nine, but eventually only
four datasets contribute to the final answer. The link-
age between the datasets is performed through the IMS
dataset that corresponds to the http://ims.openphacts.org

graph. The query is comprised of a large number of
joined triple patterns, specifically 16 triple patterns
joined in star, chain and sink formations.

One interesting aspect of this query is that it makes
use of grouping and of filtering on an aggregate value
of this grouping (lines 45–46). Even though the result-
set is reasonably small, the grouping operator almost
dictates that the grouping must be performed in the
federated query processing system due to the fact that
the grouping and the aggregating variables belong to
different datasets. Thus, the intermediate result must
be transferred over the network and the execution en-
gine must cope with its size.

5. Experiments

In this section we apply our benchmark to three
state-of-the-art federated SPARQL query processors in
order to understand whether, and how, the benchmark
challenges the state of the art.

We selected the FedX, SPLENDID, and Semagrow
systems for this comparison. FedX [16] relies on an ex-
tremely fast query executor and only applies minimal,
heuristic optimizations to prepare the query plan. Al-
though this approach often produces suboptimal plans,
it introduces minimal overhead to the query execu-
tion process and is very efficient in situations where
more sophisticated optimizations have little impact.
SPLENDID [7] features a slower query executor but
employs a more sophisticated (but time consuming)
planning algorithm to recover the planning overhead
and to counter the disadvantage of its slower execu-
tor. FedX is typically benchmarked as being faster,
as easier queries do not give SPLENDID an oppor-
tunity to recover the planning overheads and queries
that fetch voluminous results challenge SPLENDID’s
query executor, leaving SPLENDID a small winning
margin when smart optimization can greatly reduce
the effort need to process a query [14]. Finally, Sema-
grow combines sophisticated planning with a very
efficient non-blocking asynchronous stream process-
ing executor that clearly outperforms SPLENDID and
marginally outperforms FedX on the FedBench bench-
mark [4].

5.1. KOBE Benchmarking Engine

In order to execute the experiments on all federated
querying engines, we have generalized the driver re-
leased by FedBench [15] into a general purpose bench-
marking driver that can be configured for different
datasets, query loads, and querying scenarios. Further-
more, we have developed a federation composer that
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1 PREFIX chembl: <http://rdf.ebi.ac.uk/terms/chembl#>

2 PREFIX cheminf: <http://semanticscience.org/resource/>

3 PREFIX dc: <http://purl.org/dc/elements/1.1/>

4 PREFIX dcterms: <http://purl.org/dc/terms/>

5 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

6 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

7 PREFIX wp: <http://vocabularies.wikipathways.org/wp#>

8
9 SELECT ?smiles (COUNT(DISTINCT ?target) AS ?count)

10 {

11 GRAPH <http://www.wikipathways.org> {

12 ?rev dc:identifier <http://identifiers.org/wikipathways/WP382> .

13 ?rev dc:title ?title .

14 ?gene_product_internal dcterms:isPartOf ?rev .

15 ?gene_product_internal rdf:type ?type .

16 ?gene_product_internal dc:identifier ?gene_product .

17 FILTER (?type = wp:GeneProduct || ?type = wp:Protein) .

18 FILTER (!REGEX(?gene_product,"/DataNode/noIdentifier")) .

19 }

20
21 GRAPH <http://ims.openphacts.org/> {

22 ?item skos:relatedMatch ?gene_product.

23 }

24
25 GRAPH <http://www.ebi.ac.uk/chembl> {

26 ?targetComp chembl:targetCmptXref ?item .

27 ?target chembl:hasTargetComponent ?targetComp .

28 ?target dcterms:title ?target_name_chembl .

29 ?target chembl:organismName ?target_organism .

30 ?assay chembl:hasTarget ?target .

31 ?assay chembl:hasActivity ?act .

32 ?act chembl:hasMolecule ?compound .

33 ?act chembl:pChembl ?pChembl .

34 FILTER (?pChembl > 5).

35 }

36
37 GRAPH <http://ims.openphacts.org/> {

38 ?ocrs_compound skos:exactMatch ?compound .

39 }

40
41 GRAPH <http://ops.rsc.org> {

42 ?ocrs_compound cheminf:CHEMINF_000018 ?smiles .

43 }

44 }

45 GROUP BY ?smiles

46 HAVING(COUNT(DISTINCT ?target) > 1)

Listing 1: SPARQL query that answers Q19
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automates the process of deploying the SPARQL end-
points that made up the federation on computer clus-
ters. We are making this toolkit, the KOBE Bench-
marking Engine,2 publicly available as it can be more
generally useful besides the experiments described
here.

For these experiments, we have configured KOBE
to apply the FedBench, BigRDFBench [13], and
OPFBench benchmarks on all of Semagrow, FedX,
SPLENDID, and, for the purposes of comparison, on
a stand-alone Virtuoso database. The federations are
configured to deploy each dataset as a separate Vir-
tuoso endpoint; the stand-alone Virtuoso database has
each dataset loaded as a different graph in the same
one-node Virtuoso end-point. Deployment is done on
a cluster with 4 computation nodes, each having a 4-
core Intel(R) Xeon(R) CPU E31220 at 3.10GHz and
30 GB RAM.

The performance of FedX, Semagrow, SPLENDID
Federations and the Virtuoso Store for each version of
our queryset is shown in Table 5 for the version query-
set that includes the graph annotations and in Table 6
for the version without graph annotations. We display
the cold (first run) and the average of two subsequent
runs (hot runs) for the Virtuoso Store, and one single
cold run for each of the federation engines.

In many cases, a runtime error (denoted as r/e in the
tables) has prevented some federators from producing
any results. Such errors may have occurred in the query
decomposition phase (for example, a case in which the
federator could not process the input query mostly due
to non-supported SPARQL operations), or in the query
execution phase (for example, a case in which a huge
resultset from an endpoint has caused a choke point in
the query execution engine of the federator). Finally,
some query evaluations were not completed due to a
timeout (denoted as t/o in the tables). Query evaluation
timeout is set at 1 hour. In the following paragraphs,
we will discuss those errors in a more detailed way.

5.2. Supported SPARQL Operators

Even before the source selection stage, the federa-
tion engine has to parse the input query and decide
whether the SPARQL operators that are present in the
query can be evaluated by the system. Our queries con-
tain many SPARQL operators, but not all of them are
supported by most state-of-the-art systems. For exam-

2See Appendix A for more technical details.

ple, all runtime errors for FedX that appear in Table 5
and all errors except Q1 in Table 6 are due to unsup-
ported SPARQL operations. In the case of Semagrow,
such an error occurs only in Q18 (in both versions of
the queryset). In the case of SPLENDID, such errors
occur in queries Q3, Q9 and Q16 in the version of
our queryset without graph annotations (Table 6). We
observed that the most important of the unsupported
SPARQL operations is the VALUES operator, which
cannot be processed by FedX and SPLENDID feder-
ations. In many cases it is possible that a query that
contain the VALUES keyword can be transformed into
an equivalent one which does not contain the VAL-
UES keyword. However, this transformation can be
problematic in some situations; for example Q3 con-
tains a VALUES clause with six bindings, and there-
fore an equivalent transformation would contain six
unions and the resulting query would be very large,
and probably difficult to be processed by a federation
engine. Since most state-of-the-art federation engines
implement bind join as the most common implemen-
tation of the join operation between triple patterns, it
would be helpful if the state-of-the-art started to em-
brace some easy to implement SPARQL 1.1 operators,
such as the VALUES one.

5.3. Source Selection

Usually, the first stage of an evaluation of a feder-
ated query is the source selection, in which a federation
engine selects the appropriate sources that contain data
for each triple pattern. In Table 7 we illustrate the num-
ber of the sources that are accessed from each query
execution plan. In most cases the federation engines
fail to prune the unwanted sources for triple patterns
that contain common predicates, such as rdf:type and
skos:exactMatch. This can be seen by comparing the
sources that are selected by the federators with those
that contain the actual data, which are shown in Ta-
ble 4. For example, consider the plan that is yielded by
FedX for query Q1 (Listing 2). In this plan, the pattern
in line 11 is evaluated in almost all sources, while in
fact it only contains joinable data in ChEMBL and in
Uniprot.

Regarding to the version of the queryset that con-
tains graph annotations, FedX ignores these annota-
tions, and therefore the plans and the execution are the
same in both cases. SPLENDID performs ASK queries
with syntax errors at the source selection phase and
therefore fail to produce a plan in all cases, hence all
runtime errors that occur in the queryset with graphs
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Table 5
Query execution times (msec) and number of results for queries with GRAPH annotations.

Virtuoso FedX Semagrow SPLENDID

Query cold hot #results cold #results cold #results cold #results

Q1 38,645 22,325 331,600 1,681,137 477,540 66,580 331,600 r/e –
Q3 17,983 874 195 r/e – r/e – r/e –
Q6 479,388 392,762 1,048,576 r/e – r/e – r/e –
Q7 11,273 988 161 r/e – t/o – r/e –
Q8 3,383 2,706 21,881 135,165 21,881 21,997 21,881 r/e –
Q9 2,135 828 252 r/e – 266,626 252 r/e –

Q15 6,251 733 242 r/e – 18,047 242 r/e –
Q15b 3,290 81 164 3,801 164 7,823 164 r/e –
Q16 117,649 49,753 1,048,576 r/e – r/e – r/e –
Q18 7,343 1,791 18,298 r/e – r/e – r/e –
Q19 28,598 18,738 6,073 r/e – r/e – r/e –

Table 6
Query execution times (msec) and number of results for queries without GRAPH annotations.

Virtuoso FedX Semagrow SPLENDID

Query cold hot #results cold #results cold #results cold #results

Q1 65,434 30,647 477,540 r/e – r/e – r/e –
Q3 62,775 5,381 6,830 r/e – r/e – r/e –
Q6 347,219 244,828 1,048,576 r/e – r/e – r/e –
Q7 45,105 4,647 5,508 r/e – t/o – r/e –
Q8 4,873 2,920 21,881 105,496 21,881 229,365 21,881 r/e –
Q9 3,853 1,127 1,472 r/e – 238,248 1,472 r/e –

Q15 8,022 1,132 242 r/e – r/e – r/e –
Q15b 5,070 245 164 2,956 164 7,506 164 r/e –
Q16 57,276 43,658 1,048,576 r/e – r/e – r/e –
Q18 6,468 2,770 36,596 r/e – r/e – r/e –
Q19 174,747 19,879 6,155 r/e – r/e – r/e –

for the SPLENDID case are due to source selection
errors. In contrast, Semagrow takes graph annotations
into consideration and manages to perform a more
complete pruning procedure in the case of the queryset
with graphs.

We have excluded in Table 7 the SPLENDID feder-
ator since it fails to produce any results for each one of
our queries. Except from taking the graph annotations
into consideration, the state-of-the-art should progress
by developing more elaborate source selectors.

5.4. Query Planning

Another challenging factor of this benchmark is that
at least half of the queries contain up to 16 statement
patterns and only 3 queries contain less than 10. The

set of all possible plans is exponential the total num-
ber of predicates. As a result, a dynamic-programming
based decomposer (such as the decomposition compo-
nent of Semagrow and SPLENDID) which perform an
exhaustive search over the set of all possible execu-
tion plans, will need much time to provide a resulting
plan. In Table 7 we illustrate the query planning time
for each query for the Semagrow and FedX federators.
Notice that in the case of Semagrow, exhaustive search
results in a very high planning time and in many cases
it even uses more than half of the total query evaluation
time (eg. Q8, Q9, Q19 etc). In Q3, the query evalua-
tion resulted in a timeout before even a plan was pro-
duced. FedX, on the other hand uses a greedy planner,
and the high number of triple patterns of our queries
does not affect the query planning time as much. How-
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Table 7
Source Selection and Planning for FedX and Semagrow federations.

with GRAPH annotations without GRAPH annotations

Semagrow FedX Semagrow FedX

Query
planning time

(in ms) #sources planning time
(in ms) #sources planning time

(in ms) #sources planning time
(in ms) #sources

Q1 7,061 1 676 9 13,537 9 r/e –
Q3 811,000 3 r/e – 747,428 10 r/e –
Q6 33,549 4 r/e – 33,185 8 r/e –
Q7 t/o – r/e – t/o – r/e –
Q8 6,406 3 428 8 24,132 8 2,511 8
Q9 259,729 3 r/e – 220,535 9 r/e –
Q15 15,014 3 r/e – 11,596 10 r/e –

Q15b 2,787 1 265 5 2,687 5 178 5
Q16 54,595 3 r/e – 59,348 3 r/e –
Q18 r/e – r/e – r/e – r/e –
Q19 1,394,556 4 r/e – 2,127,269 8 r/e –

1 SELECT ?target ?compound

2 WHERE {

3 { ?item rdf:type chembl:Activity .

4 ?item chembl:hasMolecule ?compound .

5 ?item chembl:pChembl ?pChembl .

6 FILTER (?pChembl > 7) .

7 ?item chembl:hasAssay ?assay_uri .

8 ?assay_uri chembl:hasTarget ?target .

9 } @ChEMBL

10 .

11 { ?target rdf:type ?target_type .

12 } @Uniprot,ChEMBL,OPS-rc,DisGeNET,

13 OPS-ims,WikiPathways,DrugBank,ChEBI

14 .

15 { ?target

16 chembl:organismName "Homo sapiens"

17 } @ChEMBL

18 UNION

19 { ?target

20 chembl:organismName "Mus musculus"

21 } @ChEMBL .

22 }

Listing 2: FedX execution plan for Q1

ever, a greedy planner may yield a not so efficient plan.
For example, the query execution time (that is the time
taken to execute the plan i.e. the total query evaluation
time minus the query planning time) of Q8 is much

lower in the case of Semagrow, even where the total
query evaluation time is similar in both federation en-
gines. In the case of SPLENDID, the planning phase
resulted to runtime errors in queries Q1, Q7, Q8, in the
queryset without graphs.

5.5. Query Execution

The query execution step is the final stage of a fed-
erated query evaluation, in which a query execution
plan produced by the planner is executed. The remain-
ing runtime errors that are not covered in the previous
paragraphs (i.e. Q1 in Table 6 for the FedX case, Q3-
Q7 and Q16-Q17 in both tables and Q1 and Q15 in
Table 6 for Semagrow and also Q16, Q15, Q15b, Q18
and Q19 in Table 6 for SPLENDID) are due to errors
in the query execution phase. Moreover, in all cases
where the returned results are less than expected, an er-
ror on the execution phase has occurred, but the query
execution component manages to recover from the er-
ror and continues with the evaluation of the query. In
order to categorize those errors in the query execution
phase, we can divide them in two families; firstly, an
overflow or a similar error that occurs in the internal
buffers of the federator itself (e.g. Q6 in Semagrow,
or Q15, Q15b in SPLENDID); or secondly, a runtime
error or an exception thrown by the source endpoint,
which is a Virtuoso 40001 Error or a HTTP 404 Not
Found Error, which is a known Virtuoso issue in the
case of a heavy query load. Although the first family of
errors seem to be of an engineering nature, the latter,
though is a more complex issue. Since most federation
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engines try to minimize query evaluation time, query
executors tend to issue the queries in the source end-
points as quicker as possible, and this in bigger scale
queries will definitely result in response failures. As a
result, the state-of-the-art should progress by develop-
ing more reactive query execution strategies in order to
prevent these errors.

5.6. Completeness of the Result Set

In order to draw further performance comparisons
between two federators, we must make sure that both
systems return the same results. However, we notice
that no system managed to return all results in all
queries of our benchmark. In the case of Virtuoso Store
which contains all datasets (and that we included in
our tables for reference reasons) the correct number of
results was returned in all cases except Q6 and Q16. In
these situations, a maximum of 1,048,576 results are
returned. This happens because in Virtuoso the size of
the maximum results per query is configurable but it
cannot exceed a maximum of 1M results. SPLENDID
couldn’t evaluate any of our queries. FedX managed to
evaluate only three of the queries, but since it ignores
GRAPH annotations, it did not return the correct num-
ber of results in the version of the queryset with graph
annotations. Semagrow manages to return the correct
number of results in 5 queries from the queryset with
graph annotations and in 3 queries from the queryset
without graph annotations.

5.7. Query Evaluation Time

The most obvious and common way to compare
two querying systems is the overall query evaluation
time (with the fastest system being the best one), even
though as we saw previously, this approach may lead
to various problems (such as response failures). In gen-
eral, we notice that for Virtuoso and Semagrow the
queryset without graphs is evaluated faster than those
that the graph annotations are contained. This differ-
ence in query execution time is due to the difference
in the cardinality of the resultset and the difference
in the number of the relevant sources/graphs. In FedX
though, the query execution is similar in both cases
since FedX ignores the graph annotations.

Also, as we noted in the previous subsection, a com-
parison between two systems makes sense only if they
return the same number of results for the test situation.
The only queries for which FedX, Semagrow and Vir-
tuoso return the same results are Q8 and Q15b. Since

the query execution plan of Q15b for all systems in-
volves a small number of sources and results (the exe-
cution plans of the federators make use of almost only
the DisGeNet source), we notice that all systems per-
form in a similar evaluation time. This is not the case
for Q8 though, which uses more datasets, and as a re-
sult the execution times differ. Semagrow uses a more
efficient plan than FedX, and as a result Semagrow is
faster by an order of magnitude, but it is much slower
that the standalone Virtuoso. The differences between
a federation engine and a standalone can be huge (no-
tice the difference between Virtuoso and Semagrow in
Q9).

6. Related Benchmarks

FedBench [15] is a popular suite for benchmark-
ing federated SPARQL query processing systems. It
is comprised from three data collections, two of them
using real datasets and focused on domain-specific
queries and one collection that contains synthetic data.
The first, named Cross-Domain collection refers to
datasets of general interest and federate 6 datasets
including DBpedia, Geonames and LinkedMDB; the
second, called Life-Science considers queries that
combine data from datasets from the drug discovery
domain, such as ChEBI, Drugbank and KEGG. The
queries proposed are considered to be typical scenarios
for combining those datasets and are selected in such
a way as to measure basic query characteristics of a
federation engine, but are not produced from a realistic
workflows that are typical for that domain. However,
the complexity of queries is low using mainly inner
joins of triple patterns.

BigRDFBench [13] extends FedBench by introduc-
ing additional large-scale real datasets to the federation
and by proposing more complex queries that make use
of various SPARQL operators. The benchmark splits
the queries into two collections. The Complex collec-
tion which contains queries of increased complexity
and the Big Data collection which contains queries that
require processing of large intermediate results. The
total federation consists of 13 datasets that contain in
total one billion triples.

In the remaining section we will compare our bench-
mark with FedBench and BigRDFBench benchmarks.
Table 8 draws a comparison between the datasets of
the benchmarks, Table 10 compares them in terms of
query characteristics while Table 9 collects the avail-
able SPARQL features. According to previous works
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Table 8
Comparison of SPARQL features.

FedBench BigRDFBench OPFBench

#datasets 10 13 10
#triples 164,816,689 1,003,960,176 1,875,100,172
#subjects 18,143,974 165,785,212 339,728,423
#predicates 1,659 2,160 719
#objects 54,129,688 326,209,517 555,724,456
#classes 431 459 469
struct. 0.616 0.658 0.682

Table 9
Comparison of SPARQL features.

FedBench BigRDFBench OPFBench

BIND – – 1/11
COUNT – – 2/11
DISTINCT – 9/32 1/11
FILTER 1/14 10/32 9/11
GROUP BY – – 2/11
LIMIT – 4/32 –
OPTIONAL 1/14 8/32 12/11
ORDER BY – 3/32 –
HAVING – – 1/11
REGEX – 1/32 1/11
UNION 3/14 6/32 2/11
VALUES – – 3/11

Table 10
Comparison of benchmarks.

FedBench BigRDFBench OPFBench

#patterns 4.3 6.7 11.9

#join vertices 2.6 3.4 6.2

star 49% 38% 32%

chain 32% 36% 31%

hybrid 5% 14% 24%

sink 14% 12% 13%
mean join

vertex degree 2.1 2.6 2.8

#sources
span 3.3 3.6 6.5

#results 907 59,754 233,162
mean triple

pattern selectivity 0.057 0.102 0.042

[2,13], these characteristics are the most important
ones in order to draw quantitative comparisons be-
tween benchmarks.

Regarding to the dataset statistics, we notice that
FedBench contains 165M triples, BigRDFBench 1B
triples, while our benchmark contains more than 1.8B
triples. Despite the larger number of triples in our
benchmark datasets, the total number of predicates
is lower than FedBench. The number of classes are
similar in all three dataset collections. We also no-
tice that the average structuredness is slightly higher in
our case. Even though Linked Data in general are less
structured [15], it seems that the datasets used in the
pharmaceutical domain are more structured and con-
tain a relatively high number of triples and entities,
however organized via a relatively small number of
predicates.

All queries provided by the in all three benchmarks
are SELECT queries, typically conjunctively joining
multiple triple patterns. All three benchmarks also use
the UNION operator in about 1/5 of the queries. Fed-
Bench queries are more simple with respect to the
SPARQL operators that are featured. Except from the
queries that use unions, there exists only one query
that uses a filtering operation and a left join opera-
tion. On the contrary, BigRDFBench and OPFBench
feature more SPARQL operators. There are differ-
ences between the operators offered in each query-
set. OPFBench uses COUNT, GROUP BY, HAVING,
BIND and VALUES operators while this is not the
case of BigRDFBench. In contrast, LIMIT and OR-
DER BY operators are used by BigRDFBench and not
by OPFBench. From the common operators, BigRDF-
Bench queries make less use of the DISTINCT oper-
ator, while OPFBench make much use of the filtering
operation (more than 80% of the queries use this oper-
ator).

In Table 10 we present a comparison of the query
characteristics. We present the average of each charac-
teristic shown in Section 3 (Table 3 and Table 4) per
query for OPFBench, FedBench and BigRDFBench.
We notice that our queries feature more triple patterns,
join vertices (almost twice the size). Also, our query-
set focus more in hybrid vertices, and the average re-
sultset cardinality is greater by more than one order of
magnitude from the other two benchmarks.

The sources span of a query is the number of data
sources that contain at least one triple that matches any
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of the query’s patterns.3 Sources span indicates the ef-
fect that non-trivial query selection can have on elim-
inating sources to be considered: A higher span will
make more visible the effect of sophisticated source
selection that eliminates sources that superficially ap-
pear to have relevant data. The #sources span column
in Table 4 gives the sources span for each query in
OPFBench. As can been seen in Table 10, OPFBench
queries have a considerably higher average span than
FedBench and BigRDFBench.

FedBench and BigRDFBench are using real-world
datasets but are using an artificial queryset, while OPF-
Bench uses not only real-world datasets but also a real-
istic queryset. Furthermore, the size of the OPFBench
datasets is larger, and the queries are more difficult in
terms of their syntactic characteristics, resultset cardi-
nality, and SPARQL operators.

7. Conclusion

In this article we present OPFBench, a new SPARQL
query processing benchmark that comprises data from
the pharmacology domain and a queryset that is de-
rived from workflows established by the pharmacol-
ogy community. The natural segmentation of the data
into ten datasets, each containing information about
different kinds of entities or from a different perspec-
tive or linksets between the former, OPFBench is par-
ticularly suited for benchmarking federated querying
of heterogeneous data.

Although pharmacology, and the life sciences in
general, have been used in prominent SPARQL bench-
marks before (such as FedBench and BigRDFBench),
synthesised querysets were used. OPFBench is the first
benchmark where the query set is challenging and
based on actual practice, giving us a more realistic per-
spective of the features and capabilities that matter the
most for data analysis practitioners; and especially in
the life sciences, a challenging domain for data man-
agement and analysis technologies.

To understand what insights can be gained by this
new benchmark and how these can drive research in
federated query processing, we have analysed OPF-
Bench both statically and also by using it to test the
current state of the art in federated query processing.
We have made several interesting observations that
point to future development in federated query pro-

3Excluding from the coubt sources that contribute to the result for
only one triple pattern.

cessing. From the static analysis, for example, we see
that the ORDER BY/LIMIT construction is not used in
the Open PHACTS workflows which prefer receiving
all matching results. On the other hand, the GROUP
BY/COUNT construction is used to compute aggre-
gates in two OPFBench queries (Q15 and Q19), and
performance on this construction is not tested by either
FedBench or BigRDFBench (Table 9). The relevance
of this finding for future development is corroborated
by the experimental analysis, where all three federated
query processors failed on Q19 and FedX and SPLEN-
DID failed on Q15, demonstrating the challenge pre-
sented by the need to aggregate voluminous intermedi-
ate results even if the final resultset is relatively small
(Tables 5 and 6).

Through these examples, we show that the conclu-
sions drawn by benchmarking on OPFBench are both
technically interesting and not previously observed by
benchmarking on FedBench and BigRDFBench. Nat-
urally, one cannot argue that life sciences benchmarks
(a challenging data analysis domain as it may be) suf-
fice to prioritize research plans or to compare systems
as fit for applications in any domain. What we do ar-
gue for, is that using real workflows has shown that at-
tention on robustly computing the GROUP BY opera-
tor should take priority over ORDER BY, at least for
pharmacology applications.

To be able safely generalize about the impact of re-
search on SPARQL query optimization and execution,
we need a battery of benchmarks derived from dif-
ferent domains and applications. Especially those do-
mains where, like pharmacology, the need for com-
plex, non-trivial queries exists and where the culture
and tools are in place to have domain experts define
challenging queries as a matter of their daily work,
without having these queries manually optimized by
database experts. And we also need the mechanisms
that allow us to easily and reproducibly execute such
complex experiments, involving multiple engines and
multiple benchmark suites. The KOBE Benchmarking
Engine, the second contribution of the work described
here, moves towards this direction by generalizing a
benchmark executor into an open source, generic, con-
figurable tool for deploying SPARQL endpoint feder-
ations and applying a query load to them.

Our future work on OPFBench and KOBE will
move in two directions. Firstly, we will follow closely
ongoing research by the Open PHACTS Foundation on
using data on patent and pathway interactions to an-
swer the questions that were not addressed by the cur-
rently released workflows. Besides the general bene-
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fits to the benchmark from the increased size of the
data and the queryset, we also expect that this will
address joining data from a large number of differ-
ent endpoints. The current queryset needs to involve at
most four datasets out of the ten datasets in the suit,
and the queries on patent and pathway interactions are
expected to involve more datasets.

The second direction of future work on OPFBench
and KOBE will allow testing engines on realistic query
loads instead of sets of isolated queries. This kind of
benchmarking is even more specifically tied to individ-
ual applications and less indicative of overall quality,
but there are several features than can only be tested
by query loads and not query sets, such as caching and
prefetching. Again, ideally we will need to collect a
varied collection of query loads to be able to safely
generalize. And, based on the experiences and conclu-
sions above, we advocate that if we can collect such a
varied collection of real query loads, we will phenom-
ena and choke points that will not be present in syn-
thetic query loads, since the latter only test what we
already suspect to be an issue.
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Appendix

A. The KOBE Benchmarking Engine

The KOBE Benchmarking Engine (KOBE) auto-
mates the process of deploying the SPARQL endpoints
that made up a federation, applying the query load,
and collecting the results. KOBE is an open-source
software that can be configured to different datasets,
query loads, querying scenarios, and federated query
processing systems.4

4See https://github.com/semagrow/kobe

KOBE is organized around datasets and the SPARQL
endpoints that expose them, federations of such end-
points, and experiments. In order to provide an easy
way to redistribute in multiple platforms we have
packaged all these KOBE components as Docker im-
ages [11]. This enables us to provide a highly con-
figurable benchmarking environment where different
datasets and federation engines can be easily deployed
and different benchmark query loads and scenarios can
be easily applied to any deployment.

A.1. Datasource endpoints and federation engines

Data can be served from any public or local SPARQL
endpoint, but KOBE also includes Docker images
for all datasets in the OPFBench, FedBench, and Bi-
gRDFBench suites. These images have Debian 8.5
and Virtuoso 7 pre-loaded and each image also exe-
cutes the commands needed to download from a pub-
lic location one dataset dump, carry out any necessary
pre-processing (e.g., convert from RDF/XML to N-
TRIPLES), and bulk-load the dump into its Virtuoso
instance.

The federation engines are also deployed in sepa-
rate Docker containers. Each federation engine has its
own configuration mechanism for declaring the data
sources that it federates, and KOBE provides Docker
images for each of Semagrow, FedX and SPLENDID
pre-configured to federate the data sources needed
for OPFBench and FedBench. It should be noted that
Semagrow and SPLENDID also need dataset statistics
as part of their configuration. These statistics are pro-
vided for the OPFBench and FedBench datasets, but
can also be easily prepared for any new dataset using
our scraper that computes it from RDF dumps.5 Using
the current images as templates and the scraper to pre-
pare the configuartion files, it is straightforward for the
experimenter to prepare new Docker images for Sema-
grow and SPLENDID federations of any mixture of
datasets.

A.2. Workload Generation

After defining the federation that will be bench-
marked, the next step is to configure the our bench-
marking engine to generate the query load for an ex-
periment. An experiment can be configured with the
use of simple configuration files for benchmark set-
tings (query sets, number of runs per query, execu-

5See https://github.com/semagrow/sevod-scraper

https://www.big-data-europe.eu
https://github.com/semagrow/kobe
https://github.com/semagrow/sevod-scraper
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tion timeout). The configuration files for executing the
OPFBench and FedBench suites are included in the
current KOBE distribution.

The driver can connect to the specific federation en-
gine via the SPARQL protocol, and all the federation
engines can access the data sources via the SPARQL
protocol as well. At each step of the experiment, all
queries from the given queryset are executed one time
and in subsequent runs, and then this step is repeated a
desired number of times. This process allows us to dis-
tinguish between the performance of cold runs and hot
runs, and therefore to exclude (if wanted) the effect of
cold starts in our measurements. This distinction may
be useful since in many situations the execution time
of the first stage of the experiment is much larger than
the following stages, usually due to cashing and meta-
data loading.

The output of the experiment is written on a CSV
file which contains information about each query. An
example from the output file is the following:

Query;run1;run2;run3;avg;numResults;minRes;maxRes;

SQ1;793;148;117;352;1159;1159;1159;

SQ2;707;472;383;520;333;333;333;

In this example, we have executed a workload which
executes SQ2 after SQ1 six times. For each query, we
display the query execution time for each run, the aver-
age execution time for all runs, and the minimum, the
maximum and the average number of results that were
returned by the federation engine. In the case that a
federation engine failed to process the request, or some
other error occurred, a negative number is inserted in
the corresponding line of the CSV file. The error itself
is displayed in the log file.

A.3. Setting up an experiment

Setting up and executing an experiment is a com-
plex process that requires a number of datasource end-
points, a number of federations and a process where
a driver connects to a federation and executes a given
queryset. However, since all components are deployed
using Docker containers, in order to deploy a bench-
marking environment, one has to create an appropriate
docker-compose.yml file. A minimal example could be
the following:

version: ’2’

services:

datasource:

image: semagrow/virtuoso:bench-7.1

container_name: datasource

volumes_from:

- datasource-data

environment:

- DOWNLOAD_URL=https://path/to/download/dump.tar

datasource-data:

image: busybox

volumes:

- /data

semagrow:

image: semagrow/semagrow

container_name: semagrow

volumes:

- /path/to/semagrow/conf:/etc/default/semagrow

eval:

image: semagrow/kobe-evaluator

container_name: eval

volumes:

- /path/to/query/set:/etc/querySet

environment:

- ENDPOINT=http://semagrow:8080/SemaGrow/sparql

- TIMEOUT=3600000

This is a minimal federation that contains of a Sema-
grow federation that consists of only a single data-
source. The datasource is configured with a URL from
where the data are going to be downloaded. Semagrow
federator is configured by a configuration file which is
placed in /path/to/semagrow/conf directory of the host
machine. The minimal configuration for Semagrow for
the specific scenario is the following metadata.ttl file:

@prefix void:<http://rdfs.org/ns/void#> .

@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

_:DatasetRoot rdf:type void:Dataset .

_:Dataset1 rdf:type void:Dataset ;

void:subset _:DatasetRoot ;

void:sparqlEndpoint <http://datasource:8890/sparql>.

Finally, the evaluator engine is configured to issue in
Semagrow all queries contained in /path/to/query/set
directory of the host machine once with a timeout of
3600000 milliseconds. Each query must be contained
in its separate file. Finally, in order to run the exper-
iments, the experiment should evoke the appropriate
docker-compose commands.

Since this process of the setup can be tedious for the
experimenter, apart from the configurations of known
benchmark scenarios, we have implemented a tool that
aims to provide a quick and easy way to set up the



17

needed configuration for the specific benchmark ex-
periment. By following the provided step by step pro-
cedure one can create a docker-compose.yml file that
is used to deploy a benchmark using Docker contain-
ers.
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