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Abstract. Addressing dynamics and notifications in the Semantic Web realm has recently become an important area of research.
Run time data is continuously generated by multiple social networks, sensor networks, various on-line services and so forth. How
to get advantage of this continuously arriving data (events) remains a challenge – that is, how to integrate heterogeneous event
streams, combine them with background knowledge (e.g., an ontology), and perform event processing and stream reasoning. In
this paper we describe ETALIS – a system which enables specification and monitoring of changes in near real time. Changes can
be specified as complex event patterns, and ETALIS can detect them in real time. Moreover the system can perform reasoning
over streaming events with respect to background knowledge. ETALIS implements two languages for specification of event
patterns: ETALIS Language for Events, and Event Processing SPARQL. ETALIS has various applicabilities in capturing changes
in semantic networks, broadcasting notifications to interested parties, and creating further changes (based on processing of the
temporal, static, or slowly evolving knowledge).
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1. Introduction

The amount of semantically annotated data and re-
lated ontologies in the Web is rapidly growing. More
and more of this data is real time information where
fast delivery is crucial. For instance, consider a sensor-
based traffic management system, that needs to as-
sess traffic situations in real time, and act accordingly
(e.g., to issue traffic warnings, speed limit modifica-
tions etc.). Such a system has to cope with a high vol-
ume of continuously generated events (sensor read-
ings), and correlate them with respect to background
knowledge (a domain knowledge related to traffic man-
agement).

Semantic Web tools utilize various techniques to un-
derstand the meaning of information, and further, to
reason about that information. With rapidly changing
information this capability is however not sufficient. A
conclusion, that was derived a minute ago, may not be
valid right now. Hence, instead of a reasoning service
over static data, there is a requirement to enable rea-
soning over rapidly changing (streaming) data.
Stream Reasoning. While reasoning systems year-
over-year improve in reasoning over a static (or slowly
evolving) knowledge, reasoning over streaming knowl-
edge remains a challenge. For instance, ontological
knowledge can efficiently represent a domain of inter-
est (of an application), and help in harnessing the se-
mantics of information. However, the task of reason-
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2 Stream Reasoning and Complex Event Processing in ETALIS

ing over streaming data (e.g., RDF triples) with respect
to a background ontology constitutes a new challenge
known as Stream Reasoning [16].

Complex Event Processing (CEP) is a set of meth-
ods and techniques for real time information process-
ing. CEP is concerned with detection of near real time
situations (complex events) that are of a particular
business interest. A complex event can be perceived
as a composition of various more simple events (e.g.,
sensor readings, elementary changes, updates etc.) that
happens satisfying different temporal, and causal rela-
tionships.

Today’s CEP, however, suffers from two limita-
tions: it can provide on-the-fly analysis of streams of
events, but cannot combine streams with background
knowledge (e.g., domain ontologies, required to de-
scribe context in which events are composed); and it
does not support reasoning tasks over events and that
knowledge. CEP should be extended by classic seman-
tic techniques for knowledge management, thereby
creating Semantic-based Complex Event Processing
(SCEP).
Semantic Complex Event Processing. In state-of-
the-art CEP systems [2,9,7,14,12] complex patterns
are detected only by examining temporal and causal
relations between events. Yet the question is whether
examining these relations is (necessarily) sufficient to
detect real time situations of interest. Complex events
are used to trigger time critical actions or decisions,
and hence ensure appropriate response to certain sit-
uations. The question is whether complex events, de-
tected by current CEP systems, are expressive enough
to capture complex situations in all their aspects. For
example, consider a sequence “event a is followed by
event b in the last 10 seconds”. How likely is to use
such a complex event for triggering critical business
decisions? For some applications, this and similar pat-
terns are expressive enough; however, for semantic-
rich applications they are certainly not. In such ap-
plications, time critical actions are not only triggered
by events. Instead, additional background knowledge
is required to describe context in which complex sit-
uations are detected. This knowledge usually captures
a domain of interest related to business critical actions
and decisions.

State-of-the-art CEP systems [2,9,7,14,12] provide
integration of event streams with databases. However
explicitly represented data from databases are not al-
ways sufficient. To match two events in a pattern, we
often need to prove semantic relations between them;
and to do that, we need to process background knowl-

edge, describing relations between events. From this
knowledge we can discover, not only explicit seman-
tics, but also to derive implicit relationships. Being
able to evaluate the knowledge on-the-fly, we can for
example enrich recorded events with the background
information; detect more complex situations; give cer-
tain intelligent recommendations in real time; or ac-
complish complex event classification, clustering, and
filtering.

This paper presents an open source system called
ETALIS [6]. The system is capable of effectively de-
tecting complex events over streaming data. More-
over, ETALIS can evaluate domain knowledge on-the-
fly, thereby proving semantic relations among events
and reasoning about them. This important feature has
been recognised recently in various related approaches
[8,10,15]. In contrast to these, ETALIS follows a com-
pletely deductive rule-based paradigm, thereby provid-
ing an effective solution for CEP and Stream Reason-
ing.

2. ETALIS

2.1. Conceptual Architecture

An event represents something that occurs, happens
or changes the current state of affairs. For example, an
event may signify a problem or an impending problem,
a threshold, an opportunity, an information becoming
available, a deviation and so forth. Simple events are
combined into complex events depending on their tem-
poral, causal and semantic relations.

The task of Complex Event Processing and Stream
Reasoning in ETALIS is depicted in Figure 1, and it
can be described as follows. Within some dynamic
setting, events from multiple event sources take place
(see “Events” in Figure 1). Those atomic events are in-
stantaneous. Notifications about these occurred events
together with their timestamps and possibly further
associated data (such as involved entities, numerical
parameters of the event, or provenance data) enter
ETALIS in the order of their occurrence.

Further on, ETALIS features a set of complex event
descriptions (denoted as “Event Patterns”) by means
of which “Complex Events” can be specified as tem-
poral constellations of atomic events (see Figure 1).
The complex events, thus defined, can in turn be used
to compose even more complex events. As opposed to
atomic events, those complex events are not consid-
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Fig. 1. Illustration of ETALIS’ Conceptual Architecture

ered instantaneous but are endowed with a time inter-
val denoting when the event started and when it ended.

Finally, when detecting complex events, ETALIS
may consult background knowledge. For instance, con-
sider a traffic management system that detects areas
with slow traffic (in real time). Such an area is detected
when events, denoting slow traffic in a particular area,
subsequently occur within a certain time span. What
is a “slow” traffic, and what is a “particular” area for
different events, roads, and road subsections is speci-
fied as background (domain) knowledge. ETALIS can
evaluate the background knowledge on the fly (when
certain events occur), possibly inferring new implicit
knowledge. This knowledge is derived as a logical con-
sequence from deductive rules, thereby providing the
Stream Reasoning capability as illustrated with the up-
per part of Figure 1. In Section 2.4 we further detail
the internal process of Complex Event Processing and
Stream Reasoning in ETALIS.

2.2. ETALIS Language for Events

ETALIS implements a rule-based language for
events defined in [5]. It is called ETALIS Language for
Events (ELE). In this subsection we briefly review the
language capabilities thereby reflecting capabilities of
the system itself.

Figure 2 demonstrates various ways of constructing
complex event patterns in the ETALIS Language for
Events. Moreover, the figure informally presents the
semantics of the language (a formal semantics can be
found in [5]).

Let us assume that instances of three complex
events, P1, P2, P3, are occurring in time intervals as
shown in Figure 2. Vertical dashed lines depict differ-

Fig. 2. Language for Event Processing - Composition Operators

ent time units, while the horizontal bars represent de-
tected complex events for the given patterns. In the fol-
lowing, we give the intuitive meaning for all patterns
from the figure:

– (P1).3 detects an occurrence of P1 if it happens
within an interval of length 3, i.e., 3 represents the
(maximum) time window.

– P1 SEQ P3 represents a sequence of two events,
i.e., an occurrence of P1 is followed by an occur-
rence of P3; here P1 must end before P3 starts.

– P2 AND P3 is a pattern that is detected when in-
stances of both P2 and P3 occur no matter in
which order.

– P1 PAR P2 occurs when instances of both P2 and
P3 happen, provided that their intervals have a
non-zero overlap.

– P2 OR P3 is triggered for every instance of P2 or
P3.

– P1 DURING (0 SEQ 6) happens when an instance
of P1 occurs during an interval; in this case, the
interval is built using a sequence of two atomic
time-point events (one with q = 0 and another
with q = 6, see the syntax above).

– P3 STARTS P1 is detected when an instance of P3

starts at the same time as an instance of P1 but
ends earlier.

– P1 EQUALS P3 is triggered when the two events
occur exactly at the same time interval.

– NOT(P3).[P1, P1] represents a negated pattern. It
is defined by a sequence of events (delimiting
events) in the square brackets where there is no
occurrence of P3 in the interval. In order to in-
validate an occurrence of the pattern, an instance
of P3 must happen in the interval formed by the
end time of the first delimiting event and the start
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time of the second delimiting event. In this ex-
ample delimiting events are just two instances of
the same event, i.e., P1. Different treatments of
negation are also possible, however we adopt one
from [1].

– P3 FINISHES P2 is detected when an instance of
P3 ends at the same time as an instance of P1 but
starts later.

– P2 MEETS P3 happens when the interval of an oc-
currence of P2 ends exactly when the interval of
an occurrence of P3 starts.

It is worth noting that the defined pattern language
captures the set of all possible 13 relations on two tem-
poral intervals as defined in [3]. The set can also be
used for rich temporal reasoning.

2.3. An Example of an ELE Application

It is worthwhile to demonstrate how ETALIS can be
used in practice. Let us consider a sensor-based traffic
management system mention before. The system mon-
itors continuously generated traffic events, and diag-
noses areas with slow traffic (bottleneck areas).

For example, a bottleneck area is detected when two
events, denoting slow traffic in the same area, subse-
quently occur within 30 minutes. Rule (1) detects such
a situation.

bottleneckArea(Area)←(
trafficEvent(Rd, S1, N1,W1) SEQ
trafficEvent(Rd, S2, N2,W2)

)
.30min

WHERE {
slowTraffic(Rd, S1),
slowTraffic(Rd, S2)
areaCheck(Area,N1,W1)
areaCheck(Area,N2,W2)}.

(1)

trafficEvent carries information about a public
road (Rd) for which the event is relevant; current traf-
fic speed (Si); and geographic location (Ni,Wi) of its
source sensor. Apart from the temporal condition (de-
noted with SEQ operator and the 30-minute time win-
dow), traffic events need to satisfy other conditions
too. First, they need to be considered for the same road
(i.e., the two traffic events are joined on the same at-
tribute, Rd). Second, they need to denote slow traf-
fic and belong to the same area (see WHERE clause in
rule (1)). We develop a simple knowledgebase (written
as Prolog-style rules (3)-(4)), to enable evaluation of
these conditions.

Let us define speed thresholds for particular roads,
e.g., on the road rd1, traffic under 40 kph is considered
as slow (see facts (2)).

threshold(rd1, 40).
threshold(rd2, 30).
threshold(rd3, 50).

....

(2)

Rule (3) gets information about speed from two traf-
fic events (S1, S2), and evaluates to true if the speed
is below the threshold for a road Rd.

slowTraffic(Rd, S) : −threshold(Rd,X), S < X. (3)

Further on, we define traffic areas as rectangles1 rep-
resented as four point coordinates.

area(a1, 4042, 4045, 7358, 7361).
area(a2, 4045, 4048, 7361, 7363).
area(a3, 4048, 4051, 7363, 7365).

....

(4)

Rule (5), for given coordinates of an event sensor,
retrieves a traffic area. In order to belong to the same
area, two events must be matched by the same Area

attribute.

areaCheck(Area,N,W ) : −
area(Area,X1, X2, Y1, Y2),
X1 < N,N < X2, Y1 < W,W < Y2!.

(5)

Now, when a trafficEvent occurs, followed by
another occurrence of the same event, ETALIS will
check the time window constraint. If the constraint
is satisfied, ETALIS will check whether the traffic is
slow (by evaluating rule (3)), and whether both events
come from the same area (rule (5)), in which case a
bottleneckArea event is triggered.

In this simple example, we have demonstrated how
to combine CEP capabilities with evaluation of back-
ground knowledge, thereby providing an effective on-
the-fly situation assessment. The example also demon-
strates how to apply temporal and spatial processing
over continuously arriving events.

2.4. Internals of processing in ETALIS

In this subsection we give more details about inter-
nal processing in ETALIS, i.e., how events specified
in ELE can be detected at run time. Our approach to

1Other geometric shapes can be represented by rules too.
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do SCEP is based on deductive (logic) rules. Such an
approach enables us not only to do event processing,
but also to process a domain knowledge in an event-
driven fashion. To achieve this goal, ETALIS is devel-
oped as a deductive system. However, deductive sys-
tems are rather suited for a request-response paradigm
of computation. That is, for a given request, a deduc-
tive system will evaluate available knowledge and re-
spond with an answer. In our case, this means that
a deductive system needs to check whether a com-
plex event can be deduced or not. The check is per-
formed at the time when such a request is posed. If
satisfied by the time when the request is processed, a
complex event will be reported. If not, the event is not
detected until the next time the same request is pro-
cessed (though it can become satisfied in-between the
two checks). In event processing, this is not a desir-
able behaviour. Complex events need to be detected as
soon as they happen. Therefore, to overcome this diffi-
culty, we have proposed event-driven backward chain-
ing (EDBC) rules in [5].

EDBC rules represent a basic mechanism in ETALIS
that “converts” the request-response computation into
an event-driven processing. It is a mechanism which
enables a deductive system to derive a complex event
at the moment it really occurs (not at the moment when
a request is posed). The notable property of these rules
is that they are event-driven, i.e., a rule will be evalu-
ated when an event, that matches the rule’s head, oc-
curs. In such a situation, a firing rule will insert a goal
into the memory. The purpose of the goal is to de-
note that a certain event happened, and that the system
“waits” for another appropriate event in order to pro-
duce a more complex goal. For example, let us con-
sider pattern rule (6). When event a occurs, there will
be an EDBC rule which will insert a goal stating that
the system waits for event b to happen in order to pro-
duce intermediate event ie1. Later, when event b occurs
the system will insert a goal stating that intermediate
event ie1 occurred, and the system waits for event c to
happen, in order to produce event c. We see that pat-
tern rule (6) is split into binary rules: ie1 ← a SEQ b,
and e ← ie1 SEQ c. ETALIS automatically compiles
user defined pattern rules into binary rules. We refer to
this compilation process as binarization.

The binarization eases internal processes in ETALIS
for three reasons. First, it is easier to implement an
event operator when events are considered on a “two
by two” basis. Second, binarization increases the pos-
sibility for sharing among (complex) events and inter-
mediate events (when the granularity of intermediate

patterns is reduced). Third, the binarization facilitates
the management of rules. Each new use of an event (in
a pattern) amounts to appending one or more rules to
an existing rule set. What is important is that we never
need to modify the existing rule set2.

ETALIS is a rule-based deductive system that acts
as an event-driven engine. Figure 3 shows basic op-
erational steps that are undertaken in ETALIS. Rect-
angles in the diagram are used to depict certain pro-
cesses in ETALIS, while ovals represent either (ex-
ternal/internal) inputs to these processes, or (exter-
nal/internal) outputs from them.

The system diagram starts by user-written ETALIS
CEP rules as input. These rules specify complex event
patterns according to ELE (see Section 2.2). ETALIS
validates these rules with respect to the language gram-
mar, and parses them3. As a result, ETALIS produces
rules in an internal format, ready for the process of bi-
narization (see Figure 3).

e← a SEQ b SEQ c. (6)

The ETALIS Compiler compiles binary rules into
EDBC rules, i.e., executable rules (written in Prolog).
These rules may be accompanied with background
knowledge to describe the domain of interest (as dis-
cussed in Section 1 and Section 2.1). Domain knowl-
edge is also expected to be expressed in Prolog (al-
though, in Section 3, we will describe an extension of
ETALIS that accepts RDFS ontologies as background
knowledge too). Compiled rules, together with the do-
main knowledge, are then executed by a standard Pro-
log system (e.g., SWI, YAP, XSB etc.). EDBC rules are
triggered by events from Event streams (see Figure 3).
As a result EDBC rules continuously derive complex
events as soon as they happen. Let us briefly explain
the oval on the right hand side of Figure 3. Apart from
pattern rules, detection of complex events also depends
on consumption policies. Other important matters in
ETALIS are garbage collection, and additional alge-
bra for reasoning about time intervals, see Figure 3.

In event processing, consumption policies (or event
contexts [11]) deal with an issue of selecting particular
events occurrences when there are more than one event

2This property holds, even when patterns with negations are
added.

3“parser.P” and “etalis.P” are source files that implement the cor-
responding functionality (see Figure 3) in our open source imple-
mentation [6].
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Fig. 3. System Diagram: ETALIS Language for Events

instance applicable and consuming events after they
have been used in patterns. We have implemented three
widely used consumption policies: recent, chronologi-
cal, and unrestricted policy.

ETALIS also features two memory management
techniques to prune outdated events. The first tech-
nique modifies the binarization step by pushing time
constraints4. The technique ensures that time con-
straints are checked during the incremental process of
events detection. This enables ETALIS to refrain from
detecting intermediary (sub-complex) events when
time constraints are violated (i.e., time windows have
expired). Our second solution for garbage collection is
to prune expired events by using periodic events, gen-

4users are encouraged to write patterns with certain time window
constraints

erated by the system. This technique does not check
the constraints at each step during the incremental
event detection. Instead, events are pruned periodically
as system events are triggered.

As an algebra for reasoning about time intervals
we have implemented Allen’s temporal relationships
[3]. Using this algebra, the system can also reason
about intervals of detected complex events (e.g., to
discover whether one complex event occurred during
another complex event, whether one complex event
starts/finishes another event, and so forth).

Finally, it is worth noting that detected complex
events are fed back into the system, either to produce
more complex events, or to trigger external actions in
timely fashion. Typically, this situation happens when
iterative event patterns are processed. Recursion is in
the system diagram denoted by the backward (dashed)
edge, see Figure 3.
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3. Stream Reasoning with EP-SPARQL

To enable ETALIS to be used in real time Semantic
Web applications we have developed Event Processing
SPARQL (EP-SPARQL) language [4]. This extension
enables a user to specify complex event patterns in a
SPARQL-like language which are continuously evalu-
ated. Event streams are expected to be represented as
timestamped RDF triples [4], and background knowl-
edge can be specified as an RDFS ontology.

Syntactically, EP-SPARQL extends SPARQL by
binary operators SEQ, EQUALS, OPTIONALSEQ, and
EQUALSOPTIONAL. The operators are used to com-
bine graph patterns in the same way as UNION and
OPTIONAL in the pure SPARQL. Intuitively, all those
operators act like a (left, right or full) join, but they
do so in a selective way depending on how the con-
stituents are temporally interrelated: P1 SEQ P2 joins
P1 and P2 only if P2 occurs strictly after P1, whereas
P1 EQUALS P2 performs the join if P1 and P2 are ex-
actly simultaneous. OPTIONALSEQ and EQUALSOP-
TIONAL are temporal-sensitive variants of OPTIONAL.

Moreover, we added the function getDURATION()
to be used inside filter expressions. This function
yields a literal of type xsd:duration giving the
length of the time interval associated to the graph
pattern the FILTER condition is placed in. Like-
wise, we added functions getSTARTTIME() and
getENDTIME() to retrieve the time stamps (of type
xsd:dateTime) of the start and end of the currently
described interval.

3.1. An Example of an EP-SPARQL Application

We provide an example application with EP-SPARQL,
further concerning the traffic management system.

The following EP-SPARQL query searches for
roads for which two slow traffic events have been re-
ported within the the last hour. For example, results
from this query could be used to automatically modify
a speed limit on a certain road (or its particular sec-
tion).

PREFIX tr: <http://traffic.example.org/data#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?road ?speed WHERE
{ ?road tr: slowTrafficDue ?observ }

SEQ { ?road tr: slowTrafficDue ?observ }
AND { ?observ rdfs:subClassOf tr:SlowTraffCause}
AND { ?observ tr: speed ?speed }

FILTER ( getDURATION()<"P1H"^^xsd:duration)

Traffic can be slowed down due to various reasons.
We define a simple RDFS knowledgebase to number
few of them. The background knowledge will be eval-
uated when sensor observations (events) get reported.
Only events reporting about SlowTraffCause will be
selected.

Since (direct or indirect) subclasses of
SlowTraffCause may also be relevant, ETALIS uti-
lize a reasoning procedure to find out subclass rela-
tionships.

tr:Accident rdfs:subClassOf tr:SlowTraffCause.
tr:GhostDriver rdfs:subClassOf tr:SlowTraffCause.
tr:BadWeather rdfs:subClassOf tr:SlowTraffCause.
tr:Rain rdfs:subClassOf tr:BadWeather.
tr:Snow rdfs:subClassOf tr:BadWeather.

We assume that there exist various types of traf-
fic observations. For example, Observ_1 is a specific
type of tr:Accident, and in general, there may ex-
ist more than one instance of each type (e.g., a traffic
accident is classified as a head-on collision, side col-
lision, rollover etc.). Additionally, for each type of an
observation there may exist a suggested speed limit,
and other relevant details (omitted here for simplicity
reasons).

Observ_1
rdf:type tr:Accident ;
tr:speed "70"^^xsd:int .

Observ_2
rdf:type tr:GhostDriver ;
tr:speed "50"^^xsd:int .

Observ_3
rdf:type tr:Snow ;
tr:speed "40"^^xsd:int .

Finally, to enable detection of indirect observations
(e.g., of SlowTraffCause class) we utilise the sub-
class relation rule (7).

rdf:type(A, Y ) : −
rdfs:subClassOf(X,Y ), rdf:type(A, X).

(7)

Note that, by using deductive rules (e.g., rule (7)),
ETALIS can be used to infer implicit knowledge (i.e.,
not only explicitly stated knowledge). This powerful
feature is beyond the state-of-the-art CEP systems [2,
9,7,14,12], and enables a more advanced processing
over streaming data.

3.2. Internals of EP-SPARQL Implementation

EP-SPARQL is implemented as an extension to
ELE (see Section 2.4). A system diagram of the EP-
SPARQL extension is shown in Figure 4.
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Fig. 4. System Diagram: EP-SPARQL

A user writes EP-SPARQL queries and deploys
them into the engine. These queries act similarly
as continuous queries in Database Stream Manage-
ment Systems (DSMS), i.e., once registered, queries
are continuously evaluated with respect to streaming
data. In our implementation, the engine incrementally
matches incoming data (events), thereby producing
complex events as soon as they occur (see Section 2.4).

Since event streams and background knowledge are
both represented in RDF, we use an RDF/XML parser
to convert inputs into internal ETALIS format (see Fig-
ure 4). For event streams, the conversion is applied
on-the-fly. It is a straight forward mapping that typi-
cally does not cause a significant overhead at run time.
Background knowledge – expressed in a form of RDFS
ontologies – is static knowledge, hence is converted
into a Prolog program at design time. Similarly, we
have also implemented a parser for the EP-SPARQL
syntax and a compiler which produces EDBC rules
out of EP-SPARQL expressions. All three inputs (EP-
SPARQL queries, event streams and a domain ontol-
ogy) are then fed into ETALIS, where the processing
as described in Section 2.4 takes place.

4. Using ETALIS

ETALIS can be accessed in the following ways:

– interaction through the command line interface;
– access through a foreign language interface.

The command line interface is suitable for develop-
ment, testing and deployment of an event-driven appli-
cation. Since CEP tools belong to middleware systems
– where they serve as a part of other complex systems
– ETALIS is designed to be interfaced from other pro-
gramming languages (e.g., Java, C and C#). This also
enables ETALIS to be combined with existing pro-
grams and libraries. For more details on this topic, we
refer the interested reader to [6]. Questions and issues
related to use of ETALIS and its further development
are discussed in a Google group for ETALIS5. Also,
to see typical use of ETALIS, the interested reader is
referred to various projects where ETALIS has been
deployed6,7,8,9,10.

5. Experimental Results

ETALIS is implemented in Prolog, and freely avail-
able from [6]. As mentioned, the system has already

5http://groups.google.com/group/etalis
6SYNERGY: http://www.synergy-ist.eu/
7PLAY: http://www.play-project.eu/
8ALERT: http://www.alert-project.eu/
9ARtSENSE: http://www.artsense.eu/
10ReFLEX: http://www.reflexforsmes.eu/
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been used in few research and academic projects. In
this section we present results from two experiments
with ETALIS. The first test compares ETALIS to Esper
3.3.011 – an open source, and commercially used en-
gine. The second test presents an example application,
demonstrating CEP capabilities combined with back-
ground knowledge evaluation. To run tests we have
implemented an event stream generator which creates
time series data with probabilistic values. The pre-
sented tests were carried out on a workstation with In-
tel Core Quad CPU Q9400 2,66GHz, 8GB of RAM,
running Windows Vista x64.
Test 1: Comparison results. Figure 5 shows ex-
perimental results we obtained for ELE: SEQ and
AND operators (evaluated in rule (8)), NOT opera-

tor (used in rule (9)), and OR operator (combined
with SEQ operator in rule (10)). The rule set was im-
plemented, executed, and verified for both systems,
ETALIS and Esper 3.3.0 (for the same input event
stream). Figure 5 shows a dominance of ETALIS sys-
tem. Esper is an engine primarily relying on state ma-
chines – a concept that is widely used today in CEP
systems. ETALIS is based on deductive rules and in-
ferencing. Nevertheless, the simplicity of the ETALIS
algorithms [5], combined with fast Prolog engines12,
gives to ETALIS advantage over Esper engine.

d(Id,X, Y ) : −a(Id,X) BIN b(Id, Y ) BIN c(Id, Z). (8)

d(Id,X, Y ) : −NOT(c(Id, Z)).[a(Id,X), b(Id, Y )]. (9)

d(Id,X, Y ) : −a(Id,X) SEQ (b(Id, Y ) OR c(Id, Y )). (10)
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Fig. 5. Throughput – comparison results

Test 2: An example application. We developed an
application using both, static RDF knowledge bases,

11Esper: http://esper.codehaus.org
12relying on many optimizations from Logic Programming

and RDF event streams. The application implements
a Goods Delivery System with traffic management ca-
pabilities in the city of Milan. The system comprises
a set of delivery agents, that need to deliver manu-
factured products to consumers. Each of them has a
list of locations that she needs to deliver goods to.
While an agent is visiting a particular location, the sys-
tem “knows” her next location, and “listens” to traffic-
update events on that route/s. The routes are known
thanks to a Milan ontology13, which ETALIS uses as
background knowledge to explore the city of Milan. If
the agent requests the next route at the moment when
the route is currently inaccessible, the system will find
another route (on-the-fly calculating a transitive clo-
sure over the background ontology). The application
has been implemented on the top of EP-SPARQL and
ETALIS. Due to space limitations we cannot show pat-
terns from the application here. Instead, we show in
Figure 6 results obtained for 1 and 10 delivery agents,
when visiting 20 locations. The time spent at a loca-
tion is irrelevant for the test, hence it is ignored. We
simulated situations where more than 50% of connec-
tions between visiting locations were inaccessible. In
such a situation, the system needed to recalculate the
transitive closure frequently.

The goal of the test was to show the usefulness of
our formalism in a real use case scenario, as well as, to
show that the application scales linearly with increase
of number of agents (throughput for one agent is about
10 times higher than the throughput for 10 agents, see
Figure 6 (a)). Similarly, Figure 6 (b) shows the mem-
ory consumption for the same test, demonstrating the
linear space dependency w.r.t number of agents.

For more extensive ETALIS experiments, the inter-
ested reader is referred to [4] and [5]. We have also im-
plemented a use case study from [13]. The implemen-
tation demonstrates how various common CEP opera-
tions can be implemented in ETALIS. The implemen-
tation is published by Event Processing Technical So-
ciety14.

6. Conclusion

Addressing dynamics in the realm of the Seman-
tic Web has recently become an important area of re-
search. Real time processing of frequent changes has

13Milan ontology http://www.larkc.eu/resources/
published-data-sources/

14http://www.ep-ts.com/content/view/79/109/
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No. of Locations vs. Consumed Memory

16511986
35

1503

1039

810

204

0

500

1000

1500

2000

5 10 15 20
Number of locations

Co
ns

um
ed

 M
em

or
y 

in
 k

B

1 Visitor 10 Visitors

No. of Locations vs. Consumed Time

3
94 109 13031

889

1076

1295

0

500

1000

1500

5 10 15 20
Number of locations

Co
ns

um
ed

 ti
m

e 
in

 m
s

1 Visitor 10 Visitors

Fig. 6. Milan Sightseeing: (a) Delay caused by processing (b) Memory consumption

useful applications in many areas, including Web ap-
plications such as blogs and feeds, financial services,
sensor networks, geospatial services, click stream
analysis, etc. In this paper we have described ETALIS
which is a system for Complex Event Processing and
Stream Reasoning. The system can efficiently detect
complex events in (near) real time, while evaluating
background knowledge (e.g., an ontology). The knowl-
edge is evaluated on-the-fly, either to capture the do-
main of interest (context), or to prove certain relations
between matching events. ETALIS is an open source
system.
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