
Undefined 1 (2012) 1–6 1
IOS Press

Facebook Linked Data via the Graph API
Editor(s): Pascal Hitzler, Kno.e.sis Center, Wright State University, Dayton, OH, USA; Krzysztof Janowicz, University of California, Santa
Barbara, USA
Solicited review(s): Michael Hausenblas, DERI Galway, Ireland; Ivan Herman, W3C; Amit Joshi, Kno.e.sis Center, Wright State University,
USA

Jesse Weaver a,∗ and Paul Tarjan b

a Tetherless World Constellation, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, USA
E-mail: weavej3@cs.rpi.edu
b Facebook Inc., 1601 Willow Road, Menlo Park, CA, USA
E-mail: pt@fb.com

Abstract. Facebook’s Graph API is an API for accessing objects and connections in Facebook’s social graph. To give some idea
of the enormity of the social graph underlying Facebook, it was recently announced that Facebook has 901 million users, and
the social graph consists of many types beyond just users. Until recently, the Graph API provided data to applications in only
a JSON format. In 2011, an effort was undertaken to provide the same data in a semantically-enriched, RDF format containing
Linked Data URIs. This was achieved by implementing a flexible and robust translation of the JSON output to a Turtle output.
This paper describes the associated design decisions, the resulting Linked Data for objects in the social graph, and known issues.

Keywords: Linked Data, Facebook, Graph API, Turtle, JSON

1. Introduction

Facebook’s Graph API1 “presents a simple, consis-
tent view of the Facebook social graph, uniformly rep-
resenting objects in the graph (e.g., people, photos,
events, and pages) and the connections between them
(e.g., friend relationships, shared content, and photo
tags)” [6]. To give some idea of the enormity of the
social graph underlying Facebook, it was recently an-
nounced that Facebook has 901 million users [7], and
the social graph consists of many types beyond just
users. Therefore, publishing the social graph as Linked
Data would significantly contribute to the Web of Data.

Until recently, the Graph API provided data to ap-
plications in only a JSON [4] format. In 2011, an ef-

*Corresponding author. E-mail: weavej3@cs.rpi.edu.
1It is a common mistake to confuse the Graph API with the Open

Graph Protocol (OGP) [10]. The OGP is a standard for placing meta-
data in web pages which, when followed, allows Facebook to inte-
grate web pages into its internal, social graph. The Graph API is an
API which provides access to the internal, social graph.

fort was undertaken to provide the same data in a
semantically-enriched, RDF format containing Linked
Data (HTTP(S)) URIs that dereference in accordance
with httpRange-14 [2]. The effort had three primary
restrictions: (1) to make only minimal changes to ex-
isting code, (2) to make the solution robust enough to
require little (if any) maintenance over time, and (3)
to avoid (for the present time) XML formats. This was
achieved by implementing a flexible and robust trans-
lation of the JSON output to a Turtle [1] output made
accessible via HTTP content negotiation. This paper
describes the associated design decisions, some of the
resulting Linked Data, and known issues.

Although the Graph API has many features, due to
constraints on paper length, the focus of this paper is
on Linked Data data about objects (in exclusion of con-
nections) in the social graph. However, as a rule of
thumb, any JSON that can be obtained from the Graph
API can also be obtained as Linked Data RDF in the
Turtle syntax. Therefore, one need only consult the
Graph API documentation [6] to learn about available
data and method of access. The Linked Data represents

0000-0000/12/$00.00 c© 2012 – IOS Press and the authors. All rights reserved

2 J. Weaver and P. Tarjan / Facebook Linked Data via the Graph API

only the underlying graph which does not connect to
external, non-information resources on the web, and as
such, it may be considered only four-star Linked Data.

The following is basic information regarding the
Linked Data:

– The base URL for accessing the Linked Data is
http://graph.facebook.com/, although
the HTTPS scheme can also be used wherever the
HTTP scheme is used.

– Concerning versioning, since the published
Linked Data reflects the dynamic state of the un-
derlying social graph, it is not appropriate to give
the data itself a version number. It can be said,
however, that the current methodology of publi-
cation is the first one employed by Facebook and
was publicly announced in September 2011.

– Regarding availability, it should be noted that the
Graph API respects permissions. Some basic in-
formation is public for some types of objects in
the social graph. The OAuth 2.0 protocol [8] must
be used and appropriate permissions obtained in
order to access any other information.

– Metrics and statistics related to the Linked Data
are proprietary and therefore cannot be included
in this paper.

For abbreviation in this paper, all relative URIs
are resolved against http://graph.facebook.
com/. We also define the following prefixes for
CURIEs [3].

– rdf:, rdfs:, owl:, xsd:, and foaf: have
their usual definitions.

– : (the empty prefix) is the prefix for http://
graph.facebook.com/schema/~/ .

– api: is the prefix for tag:graph.facebook.
com,2011:/ (tag URIs discussed in section 3).

– any other prefixes used herein, e.g. user:,
are defined as http://graph.facebook.
com/schema/user# .

All examples are given in Turtle syntax with ellipses
sometimes placed in long URIs or literals to shorten
the appearance in this paper.

The remainder of this paper is organized as follows.
Section 2 describes the method of converting JSON
output to RDF triples, followed by section 3 which dis-
cusses the details of minting and supporting Linked
Data URIs in conformance with httpRange-14. Sec-
tion 4 describes how the RDF is semantically enriched
by exposing underlying object schema (in the broadest
sense) as ontologies and using ontology terms wher-

ever possible. Section 5 gives examples of the Linked
Data, section 6 discusses known issues, and section 7
concludes the paper.

2. Converting JSON to RDF

The primary interchange format of the Graph API is
JSON, a well-known, standard format for lightweight
interchange of data [4]. A detailed description of JSON
would be superfluous herein due to JSON’s wide adop-
tion. It is sufficient to say that JSON consists of two
kinds of sets of key/value pairs: JSON objects2 in
which keys are strings; and arrays in which the set
of keys forms a finite, counting sequence of non-
negative integers beginning with zero. The values of
the pairs can be JSON objects, arrays, or primitives.
JSON primitives include strings, numbers, booleans,
and null.

Given that XML syntaxes were not an option, the
only standard RDF syntax RDF/XML could not be
used. Turtle is a de facto standard, RDF syntax, and
anticipating its actual standardization in RDF 1.1
[5], Turtle was the apparent best choice in lieu of
RDF/XML.3

Design Decision 1. Turtle was chosen as the RDF syn-
tax to which the JSON output should be translated.

Translating JSON objects and arrays to triples is
a relatively straightforward process. A JSON object
(or array) is assigned a URI or blank node as its
RDF identifier to be used as subject in RDF triples.
The key/value pairs of the JSON object (or array) are
used to formulate predicate/object pairs in RDF triples,
where the key must be translated into a URI and the
value must be translated into a sensible RDF term
(URI, blank node, or literal).

Primitive values are translated into RDF literals us-
ing heuristics to determine a possible datatype URI
with which to type the literal, with the exception
that JSON strings that form URIs are translated to
URIs. Commonly employed datatype URIs are xsd:
integer, xsd:decimal, xsd:double, xsd:
boolean, and xsd:dateTime. The exception is

2The overloaded word “object” is avoided herein. Henceforth,
“instance” is used to refer to objects in the Facebook social graph,
“JSON object” is used to refer to non-array sets of key/value pairs in
JSON, and “object” is used to refer to the object position of an RDF
triple where the context makes its meaning clear.

3JSON-LD was considered but disregarded since its conventions
varied too widely from the existing JSON format.

http://graph.facebook.com/
http://graph.facebook.com/
http://graph.facebook.com/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
http://www.w3.org/2001/XMLSchema
http://xmlns.com/foaf/0.1/
http://graph.facebook.com/schema/user
http://graph.facebook.com/schema/user
http://graph.facebook.com/schema/user
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#boolean
http://www.w3.org/2001/XMLSchema#boolean
http://www.w3.org/2001/XMLSchema#dateTime

J. Weaver and P. Tarjan / Facebook Linked Data via the Graph API 3

that instance identifiers (which often look like inte-
gers) are preserved as strings. In anticipation of RDF
1.1, regular strings are not explicitly typed as xsd:
string but rather are left as plain literals which,
under RDF 1.1, are implicitly understood to have
datatype xsd:string.

The real difficulty lies in assigning URIs in such
a way that their dereference behavior complies with
httpRange-14. After some discussion, the following
decision was made.

Design Decision 2. Wherever possible, hash URIs
should be used in preference over slash URIs.

The reasoning behind this is simple: it is less work
to support hash URIs than slash URIs. Supporting hash
URIs consists only of publishing the data to be fetched,
but supporting slash URIs also entails setting up redi-
rection. However, sometimes slash URIs are necessary,
as is illustrated in section 4.

3. Linked Data URIs for instances

Every instance in the social graph has a unique iden-
tifier. If an identifier id is a single, positive integer –
call such an identifier a primitive identifier – then in-
formation about the instance it identifies can be ob-
tained from /id. Some instances in the social graph
(e.g., statuses) are identified by concatenating integers
together with underscores. At present, when such com-
posite identifiers are used in a HTTP(S) request for ap-
plication/json, then the HTTP(S) response returns with
code 200 OK containing only the text false.

The Graph API follows a single convention in de-
scribing instances in the social graph, and that is, in-
stances are translated into JSON objects in which there
must be a key/value pair where the key is the string
“id” and the value is a string representation of the iden-
tifier. We utilize this convention to assign RDF URIs
to instances.

As mentioned, information about an instance with
primitive identifier id can be found at /id. Thus, the
simplest solution for minting a Linked Data URI for
the instance is to append a fragment to the URI. The
common conventions of using fragments #this and
#me were considered, but in the end, the empty frag-
ment # was chosen so as to require the least amount of
modification to the URI possible.

URI Pattern 1. An instance in the social graph with
primitive identifier n is identified in RDF by the URI
/n#.

Instances with composite identifiers pose a partic-
ular problem. If they are assigned URIs in the same
manner as with instances having primitive identifiers,
then dereferencing /id# will simply return false in
JSON with code 200 OK, but in reality, there is some
information about the instance identified with id. Thus,
the dereferencing behavior would be somewhat unde-
sirable.

The most correct solution would be to change the
Graph API to actually return data about the instance
identified by the composite identifier, but that would
violate the constraint that only minimal changes be
made to existing code. The possibility of allocating
a blank node was considered, but that would lead to
well-known problems with blank node proliferation.
Thus, a global identifier is needed for which derefer-
encing would not be a concern. Tag URIs [9] are em-
ployed for this very purpose.

Tag URIs are URIs of the form tag:host,date:
remainder, where by convention, the URI is con-
trolled by whomever owns the host name host at the
time date, and remainder should be interpreted in
that context. Tag URIs in the Graph API use host
graph.facebook.com and date 2011.

URI Pattern 2. An instance in the social graph with
a composite identifier i is identified in RDF by the URI
api:id_i. (Recall that the api: prefix is defined as
tag:graph.facebook.com,2011:/.)

Sometimes the JSON output contains JSON objects
(or arrays) that do not contain an “id” key (note that
arrays always meet this criterion). There are some spe-
cial cases that are treated differently, but in general,
such a JSON object (or array) is considered to repre-
sent an anonymous instance – usually something seri-
alized in the JSON that is not directly represented as
an instance in the social graph – and therefore a blank
node is allocated to represent it.

Design Decision 3. If a JSON object (or array) cannot
be determined to represent an identifiable instance, as
a last resort, it should be represented with a blank node
in RDF.

4. Ontologies and their Linked Data URIs

Every instance in the social graph has an associated
type, and some types have static properties associated
with them. When converting from JSON to RDF, the
converter uses identifiers to look up associated types.

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string

4 J. Weaver and P. Tarjan / Facebook Linked Data via the Graph API

Alternatively, if the JSON object describing the in-
stance has an explicit “type” key, the value associated
with the key is used. The typing information is used
to enrich property URIs to have type-specific seman-
tics whenever possible. If the JSON object contains the
“type” key, then a corresponding rdf:type triple is
included in the RDF. As mentioned before, though, the
challenge is in minting the URIs such that their deref-
erence behavior complies with httpRange-14.

In order to support dereferencing of ontology URIs,
the schema information needs to be published on the
web. Thus, the special /schema path was created for
accessing information about type schema. For a given
type class, the schema description can be found at
/schema/class.

URI Pattern 3. A type c is identified by the URI c:
type.

Example. Type/class user:type

user:type a rdfs:Class ;
rdfs:label "user" .

For a given type, it can be determined whether prop-
erties are associated with it, and sometimes these type-
specific properties have associated descriptions and
richer semantics that can be used to enrich the Linked
Data descriptions.

URI Pattern 4. A type-specific property p associated
with type c is identified by the URI c:p.

When a JSON object is converted to RDF, if a type
can be found for the represented instance, then each
key in the JSON object is checked against the type
schema to see if a rich semantics can be found. If it
can, then the key is translated into a type-specific prop-
erty URI. However, sometimes a type cannot be found
for an instance, or the JSON object has a key that does
not identify a type-specific property. In this case, the
key is translated into a generic property URI.

URI Pattern 5. A generic property for a key p is iden-
tified by the URI :p.

Example. Generic property :name

:name a rdf:Property ;
rdfs:label "name" ;
rdfs:comment "A tag having no" .

In general, a generic property prop has a limited
semantics described as: “A tag having no semantics
beyond the conventional semantics of the JSON key
‘prop’ as used in the Facebook Graph API.” In other
words, a generic property has the equivalent semantics

of its corresponding JSON key. It follows that a type-
specific property is a subproperty of the generic prop-
erty with the same local name.

Design Decision 4. For any type-specific property
c:p, it holds that c:p rdfs:subPropertyOf
:p.
Example. Type-specific property user:name
user:name a rdf:Property ;
rdfs:label "name" ;
rdfs:comment "The user’s full" ;
rdfs:domain user:type ;
rdfs:subPropertyOf :name .

There are some special generic properties with
stronger semantics. One is :id because the conven-
tional semantics of the JSON key “id” can be codified
to some extent.
Example. Special generic property :id
:id a owl:InverseFunctionalProperty ;
rdfs:label "id" ;
rdfs:comment "A tag having no" ;
rdfs:range xsd:string .

The other special case is the handling of non-
negative integers. These properties are defined specifi-
cally for converting numeric keys in JSON objects and
are an attempt to improve upon the design of RDFS
container membership properties by making the index
number explicit in the RDF.
Example. Special generic property :_0
:_0 a rdf:Property ;
rdfs:label "_0" ;
rdfs:comment "A tag having no" ;
rdfs:subPropertyOf api:has ;
api:index 0 .

The property api:has is analogous to rdfs:
member, and the property api:index is used to ex-
plicitly state the numeric index of the property. Note
that these numeric-indexing properties are used only
for JSON objects with numeric keys; arrays use only
api:has.

Note that generic property URIs are the only slash
URIs used. If hash URIs were used, then the docu-
ment retrieved using the fragment-stripped URI would
need to contain information about all possible terms
in the namespace. However, a JSON key could be any
conceivable finite string, and since there are infinitely
many finite strings, the fetched document would need
to be infinitely large, making the use of hash URIs in-
feasible for this particular purpose. Thus, slash URIs
must be used because then the entire URI is received
by the server and can be used to generate information
for the single term.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://graph.facebook.com/schema/user#type
http://graph.facebook.com/schema/~/name
http://www.w3.org/2000/01/rdf-schema#subPropertyOf
http://graph.facebook.com/schema/user#name
http://graph.facebook.com/schema/~/id
http://graph.facebook.com/schema/~/id
http://graph.facebook.com/schema/~/_0
http://www.w3.org/2000/01/rdf-schema#member
http://www.w3.org/2000/01/rdf-schema#member

J. Weaver and P. Tarjan / Facebook Linked Data via the Graph API 5

Design Decision 5. Fetching a description of the
generic property URI :p results in 303 redirection to
/schema?tag=p.

5. Examples

Having completed the description of Linked Data
publication, this section provides some examples. The
best way to find more examples is to do public key-
word search using http://graph.facebook.
com/search?q=keywords, requesting text/turtle
in HTTP content negotiation. The first example is of
public data available for users, and the second is an
example of data for a photo. The third example shows
how Facebook Linked Data URIs can be used to aug-
ment a person’s FOAF profile.
Example. User instance, public description
</1340421292#> user:id "1340421292" ;

user:name "Jesse Weaver" ;
user:first_name "Jesse" ;
user:last_name "Weaver" ;
user:username "jrweave" ;
user:gender "male" ;
user:locale "en_US" .

Example. Photo instance description
api:id_1340421292_3145012107816 a photo:type;
photo:id "1340421292_3145012107816" ;
photo:from </1340421292#> ;
:message "If you thought they" ;
photo:picture <https://....jpg> ;
photo:link <http://www.facebook.com/...> ;
photo:icon <https://....gif> ;
:actions [

api:has [
:name "Comment" ;
:link <http://www.facebook.com/...>] ;

api:has [
:name "Like" ;
:link <http://www.facebook.com/...>]];

:privacy [
:description "Public" ;
:value "EVERYONE"] ;

photo:created_time
"2012-05-03T17:54:16+00:00"^^xsd:dateTime;

photo:updated_time
"2012-05-03T17:56:10+00:00"^^xsd:dateTime.

Example. FOAF profile augmentation
base URI defined just to improve clarity
@base <http://graph.facebook.com/> .
<http://www.cs.rpi.edu/~weavej3/foaf.rdf#me>

owl:sameAs </1340421292#> ;
rdfs:seeAlso </1340421292?metadata=1> ;
foaf:depiction </1340421292/picture> ;
foaf:account

<http://www.facebook.com/jrweave> .

6. Known Issues

6.1. Lack of External Links

Although it includes links to many information re-
sources, the Facebook Linked Data does not link to ex-
ternal, non-information resources. This is because the
Linked Data is provided by a dynamic translation of
the existing JSON output to a Turtle output, the pro-
cess of which cannot dynamically determine how to
link Facebook instances to external instances on the
Web of Data.

However, since they change infrequently, Face-
book ontologies could conceivably link to external on-
tologies. For example, it seems intuitively true that
user:type rdfs:subClassOf foaf:Agent.
Such links could be easily supported by maintain-
ing a static document for each Facebook type, to
which the dynamic pages could refer by including the
triple – for example – user:type rdfs:seeAlso
<file-URI>.

6.2. HTTPS URIs

As shown in previous examples, relative URIs are
used in the Turtle output to identify instances (with
primitive identifiers), but the Turtle output declares no
explicit base URI. Therefore, the URI of the docu-
ment becomes the base URI against which all rela-
tive URIs are to be resolved, and that URI could use
either the HTTP or HTTPS scheme. Therefore, in-
stances are identified by two URIs differing only in
whether the scheme is HTTP or HTTPS. While this is
technically valid, it is certainly poor practice for the
same publisher to publish multiple URIs for the same
thing. However, this can easily be remedied by includ-
ing a base URI declaration in the Turtle output, stating
which URI should be used for resolution.

Of greater concern, though, is the fact that some of
the Linked Data can only be retrieved using HTTPS
with an access token specified in the URL query (re-
specting permissions). This is not so much a problem
for instance data but rather for connections, a topic
which has not been covered herein due to limitations
on paper length. For obvious reasons, Linked Data
URIs should not include private access tokens. With-
out access tokens, dereferencing such URIs results in
400 Bad Request, but it is odd for a server to state
that a URI originally provided by that server is mal-
formed. This is the most significant issue. The best so-
lution would be to support HTTP authentication and

http://graph.facebook.com/schema/user#type
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://xmlns.com/foaf/0.1/Agent
http://graph.facebook.com/schema/user#type
http://www.w3.org/2000/01/rdf-schema#seeAlso

6 J. Weaver and P. Tarjan / Facebook Linked Data via the Graph API

return 401 Unauthorized, although the simplest solu-
tion would be to return a 403 Forbidden.

6.3. Tag URIs

As mentioned in section 3, URIs with the “tag”
scheme are utilized to produce global identifiers for
which dereferencing is unnecessary. Although this ap-
proach is completely valid, the idea of using non-
dereferenceable URIs seems to contradict the entire
purpose of Linked Data. However, they have been used
in the Linked Data primarily for identifying instances
with composite identifiers.

The best solution is to make information about the
instance identified by composite identifier id available
at /id, whereas now, only the JSON primitive false
is returned, or if Turtle is requested, empty content
is returned. This behavior is allowable but not ideal.
Therefore, an alternative solution to using tag URIs
would be to use the HTTP(S) URIs that dereference
to no (empty) data. This seems like a more correct
solution than using tag URIs, but it was disregarded
since it may add some maintenance burden in the fu-
ture. Specifically, there is no current guarantee as to the
kind or form of data that will ever be published at /id,
and thus, it seemed wise to avoid placing any con-
straints on future data published at /id by expecting
Linked-Data-friendly behavior. It is fortunate, though,
that whenever tag URIs identifying instances are used,
associated Linked Data are usually (if not always) in-
cluded for those instances.

Aside from composite identifiers, tag URIs have
been used to identify two properties: api:has and
api:index. The issue with these terms is that there
is no published description of them anywhere on the
web. The best solution would be to use HTTP(S) URIs
that correctly dereference to their descriptions, which
would be most easily supported by publishing a static
document meant for defining such special terms.

6.4. Empty fragment

Instances with primitive identifiers are identified
with URIs of the form /id#. Utilizing the empty
fragment for identifying things is perfectly valid, but it
seems somewhat of an odd choice considering that the
fragment is meant to serve as a local identifier.

7. Conclusion

Facebook’s Graph API provides access to an enor-
mous amount of data, and exposing the data (respect-

ing permissions) as Linked Data significantly grows
the Web of Data. The Linked Data is dynamically
formed by translating the JSON output to a Turtle out-
put. The RDF/Turtle output is semantically richer than
the JSON output, having explicit semantics made ac-
cessible as ontologies utilizing the RDFS and OWL
vocabularies. The URIs in the RDF are designed to
dereference correctly according to current Linked Data
standards, with some exception concerning HTTPS
URIs returning 400 Bad Request. Known issues have
been discussed and possible solutions presented.

Acknowledgements

Thanks to James A. Hendler and Gregory Todd
Williams for reviewing an earlier version of this paper.

References

[1] D. Beckett, T. Berners-Lee, and E. Prud’hommeaux. Turtle.
Working draft, W3C, Aug. 2011. http://www.w3.org/
TR/2011/WD-turtle-20110809/.

[2] T. Berners-Lee and N. Mendelsohn. ISSUE-14: What is the
range of the HTTP dereference function? - Technical Architec-
ture Group Tracker. http://www.w3.org/2001/tag/
group/track/issues/14, May 2012.

[3] M. Birbeck and S. McCarron. CURIE Syntax 1.0. Candidate
recommendation, W3C, Jan. 2009. http://www.w3.org/
TR/2009/CR-curie-20090116/.

[4] D. Crockford. The application/json Media Type for JavaScript
Object Notation (JSON). RFC 4627, IETF, July 2006. http:
//www.ietf.org/rfc/rfc4627.txt.

[5] R. Cyganiak and D. Wood. RDF 1.1 Concepts and Abstract
Syntax. Working draft, W3C, Aug. 2011. http://www.w3.
org/TR/2011/WD-rdf11-concepts-20110830/.

[6] Facebook. Graph API - Facebook Developers.
https://developers.facebook.com/docs/
reference/api/, Mar. 2012.

[7] M. Hachman. Facebook Now Totals 901 Million Users, Profits
Slip. http://www.pcmag.com/article2/0,2817,
2403410,00.asp, Apr. 2012.

[8] E. Hammer, D. Recordon, and D. Hardt. The OAuth 2.0
Authorization Framework. Draft 26, IETF, May 2012. http:
//www.ietf.org/id/draft-ietf-oauth-v2-26.
txt.

[9] T. Kindberg and S. Hawke. The ‘tag’ URI Scheme. RFC
4151, IETF, Oct. 2005. http://www.ietf.org/rfc/
rfc4151.txt.

[10] P. Tarjan and D. Recordon. The Open Graph protocol. http:
//ogp.me/, Mar. 2012.

http://www.w3.org/TR/2011/WD-turtle-20110809/
http://www.w3.org/TR/2011/WD-turtle-20110809/
http://www.w3.org/2001/tag/group/track/issues/14
http://www.w3.org/2001/tag/group/track/issues/14
http://www.w3.org/TR/2009/CR-curie-20090116/
http://www.w3.org/TR/2009/CR-curie-20090116/
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.w3.org/TR/2011/WD-rdf11-concepts-20110830/
http://www.w3.org/TR/2011/WD-rdf11-concepts-20110830/
https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/reference/api/
http://www.pcmag.com/article2/0,2817,2403410,00.asp
http://www.pcmag.com/article2/0,2817,2403410,00.asp
http://www.ietf.org/id/draft-ietf-oauth-v2-26.txt
http://www.ietf.org/id/draft-ietf-oauth-v2-26.txt
http://www.ietf.org/id/draft-ietf-oauth-v2-26.txt
http://www.ietf.org/rfc/rfc4151.txt
http://www.ietf.org/rfc/rfc4151.txt
http://ogp.me/
http://ogp.me/

