Explainable Zero-shot Learning via Attentive Graph Convolutional Network and Knowledge Graphs

Tracking #: 2547-3761

This paper is currently under review
Yuxia Geng
Jiaoyan Chen
Zhiquan Ye
Wei Zhang
Huajun Chen

Responsible editor: 
Dagmar Gromann

Submission type: 
Full Paper
Zero-shot learning (ZSL) which aims to deal with new classes that have never appeared in the training data (i.e., unseen classes) has attracted massive research interests recently. Transferring of deep features learned from training classes (i.e., seen classes) are often used, but most current methods are black-box models without any explanations, especially textual explanations that are more acceptable to not only machine learning specialists but also common people without artificial intelligence expertise. In this paper, we focus on explainable ZSL, and present a knowledge graph (KG) based framework that can explain the transferability of features in ZSL in a human understandable manner. The framework has two modules: an attentive ZSL learner and an explanation generator. The former utilizes an Attentive Graph Convolutional Network (AGCN) to match class knowledge from WordNet with deep features learned from CNNs (i.e., encode inter-class relationship to predict classifiers), in which the features of unseen classes are transferred from seen classes to predict the samples of unseen classes, with impressive (important) seen classes detected, while the latter generates human understandable explanations for the transferability of features with class knowledge that are enriched by external KGs, including a domain-specific Attribute Graph and DBpedia. We evaluate our method on two benchmarks of animal recognition. Augmented by class knowledge from KGs, our framework generates promising explanations for the transferability of features, and at the same time improves the recognition accuracy.
Full PDF Version: 
Under Review